运筹学知识点总结

运筹学知识点总结
运筹学知识点总结

运筹学

考试时间:

2009-1-4 10:00-12:00

考试地点:

金融1、2:(二)201,会计1、2:(二)106 人资1、2:(二)203,工商1、2:(二)205 林经1、2:(二)306

答疑时间:

17周周二周四上午8:00-11:00 18周周一周三上午8:00-11:00

地点:基础楼201

线性规划

如何建立线性规划的数学模型;

线性规划的标准形有哪些要求?如何把一般的线性规划化为标准形式?

如何用图解法求解两个变量的线性规划问题?由图解法总结出线性规划问题的解有哪些性质?

如何用单纯形方法求解线性规划问题?

如何确定初始可行基或如何求初始基本可行解?(两阶段方法)如何写出一个线性规划问题的对偶问题?如果已知原问题的最优解如何求解对偶问题的最优解?(对偶的性质,互补松紧条件)对偶单纯形方法适合解决什么样的问题?如何求解?

对于已经求解的一个线性规划问题如果改变价值向量和右端向量原最优解/基是否仍是最优解/基?如果不是,如何进一步求解?

1、建立线性规划的数学模型:

特点:

(1)每个行动方案可用一组变量(x 1,…,x n )的值表示,这些变量一般取非负值;

(2)变量的变化要受某些限制,这些限制条件用一些线性等式或不等式表示;

(3)有一个需要优化的目标,它也是变量的线性函数。 2、线性规划的标准形有哪些限制?如何把一般的线性规划化为

标准形式?

目标求极小;约束为等式;变量为非负。

min b 0

T z C X AX X ==??

≥?

例:把下列线性规划化为标准形式:

12

1212112

max 2328 1 20,0z x x x x x x x x x =++≤??

-+≥??

≤??≤<>?

解:令13245,,x x x x x =-=-标准型为:

,3453456345738min 23()2()8 () x 1 +x 20,3,4,5,6,7,8i

z x x x x x x x x x x x x i =-+--+-+=??

++--=??

-=??≥=? 3、如何用图解法求解两个变量的线性规划问题?由图解法总结出线性规划问题的解有哪些性质?

例:参看ppt (唯一最优解、无穷多最优解、无界解、无解) 线性规划解的性质:(基、基本解、基本可行解、凸集、顶点) 定理1 线性规划的可行域是凸集。

定理2 X 是线性规划基可行解的充分必要条件是X 是可行域的顶点。 定理3 线性规划如果有可行解,则一定有基可行解;如果有最优解,则一定有基可行解是最优解。

4、如何用单纯形方法求解线性规划问题?(单纯形表) 单纯形法的基本法则

法则1 最优性判定法则(检验数全部小于等于零时最优) 法则2 换入变量确定法则(谁最正谁进基) 法则3 换出变量确定法则(最小比值原则) 法则4 换基迭代运算法则

12

1231242512345

min 25 2 852 20

4 12,,,,0z x x x x x x x x x x x x x x x =--++=??

++=??

+=??≥?

最优解X *=(2,3,0,4,0)T ,z *=-2×2-5×3=-19。 5、如何确定初始可行基或如何求初始基本可行解?(两阶段方

法)

例 求下列LP 问题的最优解

12312312313123

min 3 211423

2 1,,0z x x x x x x x x x x x x x x =---+≤??

-++≥??

-+=??≥? 用两阶段法来求解

它的第一阶段是先解辅助问题:

67

12341235613717

min 2 1142 3 2 1,,0g x x x x x x x x x x x x x x x x =+-++=??

-++-+=??-++=?

?≥

第二阶段:

原问题无界。

6、如何写出原问题的对偶问题?如果已知原问题的最优解,如

何求解对偶问题的最优解?

min max ..

1,,..

01,

,001,

,T

T T i i i T i i i T j j j c x b w

s t a x b i p s t w a x b i p m

w x j q

A w c ==<>≥=+≥≥=≤

例 写出下面线性规划问题的对偶问题

解:原问题的对偶问题为:

7、对偶单纯形方法适合解决什么样的问题?如何求解? 例:

123234123512345

min 15245 6 2 52 1,,,,0z x x x x x x x x x x x x x x x =+++-=??

++-=??≥? 对偶单纯形法的基本法则

法则1 最优性判定法则(检验数全部小于等于零时最优) 法则2换出变量确定法则(谁最负谁出基) 法则3换入变量确定法则(最小比值原则) 法则4 换基迭代运算法则

1234

12341342341234min 235 3 52 244 6 00

z x x x x x x x x x x x x x x x ,x x ,x =+-++-+≥??

+-≤??

++=??≥<>?,

123

12

13123123

123max

54622332541

,0,0

y w w w w w w w w w w w w w w w w =-+-≤??+≤??

--+≤-??++=?≥<>??

写出对偶问题并求解?(利用互补松紧条件)

8、对于已经求解的一个线性规划问题如果改变价值向量和右端

向量原最优解/基是否仍是最优解/基?如果不是,如何进一步求解?

例:线性规划

1212121212

max 54390

280 45,0z x x x x x x x x x x =++≤??

+≤??

+≤??≥?

已知最优表:

(1)确定x2的系数c2的变化范围,使原最优解保持最优;

(2)若c2=6,求新的最优计划。

解(1)将上表中的第0行重新计算检验数,得到:

令c2-5≤0,5-2c2≤0,解得5/2≤c2≤5,即当c2在区间[5/2,5]中变化时,最优解X*=(35,10,25,0,0)T保持不变。

(2)当c2=6时,c2-5=1>0,原最优解失去最优性,在表中修改第0行后,用单纯形法容易求得新的最优表如下:

故新的最优解为x 1*=45/2,x 2*=45/2,x 4*=25/2,x 3*= x 5*=0,最优值z *=495/2,

例 对于上例中的线性规划作下列分析: (1)b 3在什么范围内变化,原最优基不变? (2)若b 3=55,求出新的最优解。

解 原最优基为B =(P 3,P 1,P 2),由表2-6可得:

B -1= 1 2 -50 1 10 -1 2??

?

- ? ???

(1)由B -139080b ?? ? ? ???= 1 2 -50 1 10 -1 2??

?- ? ?

?

?39080b ?? ? ? ???=333250-5b 80b 802b ??

?-

? ?-+??

≥0 解得40≤b 3≤50,即当b 3∈[40,50]时,最优基B 不变,最优解为:

*

3*1*2x x x ?? ? ? ???=333250-5b 80b 802b ?? ?- ? ?

-+?

?,x 4*=x 5*=0,z *

=5×(80-b 3)+4×(-80+2

b 3)=80+3b 3

(2)当b 3=55时,

333250-5b 80b 802b ?? ?- ? ?-+?

?=252530-?? ? ? ?

??,以它代替表的b 列,用对偶单纯形法继续求解。

故新的最优解为x 1*=30,x 2*=20,x 5*=5,x 3*= x 4*=0,最优值z *=230。

整数线性规划0-1规划

如何建立整数线性规划的数学模型?

如何用图解法求解两个变量的整数线性规划问题?

割平面方法的基本思想?如何用割平面方法求解整数线性规划问题?

分支定界方法的基本思想?如何用分支定界方法求解整数线性规划问题?

如何建立0-1规划问题的数学模型?

如何用隐枚举法求解0-1规划和匈牙利法求解指派问题?

1、 如何建立整数线性规划的数学模型?

2、 如何用图解法求解两个变量的整数线性规划问题?

3、 割平面方法的基本思想?如何用割平面方法求解整数线性

规划问题?

例 考虑纯整数规划问题

12max z x x =+

121212

264520

0,0x x x x x x +≤??

+≤??≥≥?且为整数 解 先不考虑整数条件,求得其松弛问题的最优单纯形表为:

x 1 x 2

1 0

0 1

5/6 -2/3 -1/6 1/3

5/3 8/3

由第二行可以生成割平面:

13

x 3 + 1

3

x 4>=2

3

引入松弛变量s 1后得:-1

3 x 3 - 1

3 x

4 + s 1=-2

3

将此约束条件加到表中继续求解如下:

x 1

x 2

x 3

x 4

s 1 RHS z

0 0 -1/6 -1/6 0 -13/3 x 1 x 2

s 1 1 0 0 0 1 0 5/6 -2/3 [-1/3] -1/6 1/3 -1/3 0 0 1 5/3 8/3 -2/3 z

0 0 0 0 -1/2 -4 x 1 x 2 x 3

1 0 0

0 1 0

0 0 1

-1 1 1

5/2 -2 -3

0 4 2

所以原问题的最优解为:x 1*=0,x 2*=4,最优值z *=4。

4、 分支定界方法的基本思想?如何用分支定界方法求解整数

线性规划问题?

例 求解下面整数规划

12

max 32z x x =+

精心整理的运筹学重点11.决策论

第十一章 决策论  1.决策过程:1)确定目标;2)建立可行方案;3)方案的评价和选择;4)方案实施  由于决策信息不足,决策者无法知道各自然状态发生的任何信息,因此决策的结果往往取决于决策者的主观态度。不同的心理、不同的冒险精神的人可以选用不同的方法。 1)乐观法决策(最大最大准则):从每个策略行取最大值,再从列中再取最大。Max---max策略。  2)悲观法决策(华尔德准则,最大最小准则):从每个策略行取最小值,再从列中再取最大。Min---max策略。  3)折中法决策(郝威茨准则,乐观系数法):用折中系数α算出每个策略的折中值,再选最大的。max策略  max min max{|(1)}i i ij ij h h a a αα=+?  4)等可能性决策(拉普拉斯准则):以全部状态的期望损益值作为决策依据,比折中法更好。缺点是认为各种状态的概率相等,不大现实。  12111 max{ ...}j j mj j j j a a a n n n +++∑∑∑ 5)最小后悔值法:后悔值矩阵中采用Max---min策略  从每个状态(列)找出最大值;用这个最大值减去该列每个策略的效益值,得到后悔值表;在后悔值表中选择每一行中的最大值加入右列;从所有最大后悔值中选择最小的。 3.风险型决策  1)最大期望收益准则:根据各事件发生的概率,计算每一个策略的期望收益值,并从中选择最大的期望收益值。  2)最小期望损失准则(后悔值):首先构造后悔值矩阵,然后分别计算不同策略的期望机会损失,从中选择最小的一个。  3)全情报价值EVPI(Expected value of perfect information):计算出如果获得这项情报而使决策者的期望收益提高的数额,这个数额称为完全情报的期望值,如果它大于采集情报所花的费用,则采集这一情报是有价值的,否则就得不偿失,因此把EVPI作为采集情报费用的上限。  2)按最大期望收益准则公司应该选择方案1a ,期望收益为32万元。

运筹学学习心得

运筹学学习心得 运筹学学习心得 古人作战讲“夫运筹帷幄之中,决胜千里之外”。在现代商业社会中,更加讲求运筹学的应用。作为一名企业管理的学生,更应该能够熟练地掌握、运用运筹学的精髓,用运筹学的思维思考问题。即:应用分析、试验、量化的方法,对实际生活中人、财、物等有限资源进行统筹安排。本着这样的心态,在本学期运筹学即将结课之时,我得出以下关于运筹学的知识。 线性规划解决的是:在资源有限的条件下,为达到预期目标最优,而寻找资源消耗最少的方案。其数学模型有目标函数和约束条件组成。一个问题要满足一下条件时才能归结为线性规划的模型:⑴要求解的问题的目标能用效益指标度量大小,并能用线性函数描述目标的要求;⑵为达到这个目标存在很多种方案;⑶要到达的目标是在一定约束条件下实现的,这些条件可以用线性等式或者不等式描述。解决线性规划问题的关键是找出他的目标函数和约束方程,并将它们转化为标准形式。简单的设计2个变量的线性规划问题可以直接运用图解法得到。但是往往在现实生活中,线性规划问题涉及到的变量很多,很难用作图法实现,但是运用单纯形法记比较方便。单纯形法的发展很成熟应用也很广泛,在运用单纯形法时,需要先将问题化为标准形式,求出基可行解,列出单纯形表,进行单纯形迭代,当所有的变量检验数不大于零,且基变量中不含人工变量,计算结束。将所得的量的值代入目标函数,得出最优值。 遇到评价同类型的组织的工作绩效相对有效性的问题时,可以用数据包络进行分析,运用数据包络分析的的决策单元要有相同的投入和相投的产出。 对偶理论:其基本思想是每一个线性规划问题都涉及一个与其对偶的问题,在求一个解的时候,也同时给出另一问题的解。对偶问题有:对称形式下的对偶问题和非对称形式下的对偶问题。非对称形式下的对偶问题需要将原问题变形为标准形式,然后找出标标准形式的对偶问题。因为对偶问题存在特殊的基本性质,所以我们在解决实际问题比较困难时可以将其转化成其对偶问题进行求解。 灵敏度分析:分析在线性规划问题中,一个或几个参数的变化对最优解的影响问题。可以分析目标函数中变量系数、约束条件的右端项、增加一个约束变量、增加一个约束条件、约束条件的系数矩阵中的参数值等的变化。如果将问题转化为研究参数值在保持最优解或最优基不变时的允许范围或改变到某一值时对问题最优解的影响时,就属于参数线性规划的内容。 运输问题是解决多个产地和多个销地之间的同品种物品的规划问题。根据运输问题的独特性,一般采用一种简单而有效的方法:表上作业法。表上作业法先找出运输问题的基可行解,方法有:最小元素法、西北角法、沃格尔法。其中沃格尔法得出的解最接近最优解。然后利用闭回路法或对偶变量法对得到解进行最优性判别。当检验的结果为非最优解时,进行解的改进,然后再进行最优性判别,直到所有的非基变量检验数全非负,得到最优解。在解决运输问题时会遇到产销不平衡的情况,在该情况下,要将该问题转化为产销平衡问题,只需增加一个假象的产地或销地,并将表示该地的变量在目标函数中的系数设为零即可。 整数规划是解决决策变量只能取整数的规划问题,整数规划的解法有割平面法和分支定解法。整数规划中的0-1规划整数问题是一个非常有用的方法。在实际问题中,该方法能够解决很多问题。0-1整数规划的解决方法有枚举法和隐枚

大学运筹学课程知识点总结

1. 用图解法求解下列线性规划问题,并指出问题具有惟一最优解、无穷多最优解、无界解还 是 无可行解。 max Z = X i + X 2 6x i +10x 2 "20 * 5兰x 1兰10 【3乞X 2乞8 惟一最优解 最优点(10, 6)最优值Z 二16 戸 5 si = 10 / 2. 将下述线性规划问题化成标准形式。 min Z = -3x ^ 4X 2 - 2x ^ 5x 4 M x 1 - x 2 + 2x 3 - X 4 = -2 为中 X 2 — X3 + 2x 4 兰 14 (1) j - 2x 1 + 3x 2 + X 3 - X 4 A 2 1x1, x2, x3 H 0,x4无约束 解:令 z' = —Z ,X 4 =X 4 — x ; max z^ 3X ] - 4x ^ 2X 3 - 5x 4 5x 4 [—4X ] + X 2 - 2X 3 + x 4 - x ; = 2 j X ] + X 2 - X 3 + 2x 4 - 2x 4 十 X 5 = 14 |- 2x 1 + 3x 2 + X 3 - X 4 + x 4 - X e = 2 _X 1,X 2,X 3,X 4,X 4,X 5,X 6 k 0 3. 分别用图解法和单纯形法求解下述线性规划问题,并对照指出单纯形表中的各基可行解对应 、 、 1 、 1 ^2=? 0X|+1O Z 2-12O 护 ____________ 寸 v/ max Li 10

图解法中的可行域的哪个顶点。 max =10x0 解:①图解法: ②单纯形 法: max Z =10x i +5x2 :3捲+4x2 +x3 =9 {5x i +2x2 +x4 =8 I [X i,X2,X3,X4 >0 C j 10 5 0 0 0对应图解法中的 点 C B B b X1 X2 X3 X4 0 X3 9 3 4 1 0 3 0 X4 8 [5] 2 0 1 8/5 0点 O j 0 10 5 0 0 0 X3 21/5 0 [14/5] 1 -3/5 3/2 10 X1 8/5 1 2/5 0 1/5 4 C点 宵-16 0 1 0 -2 5 X2 3/2 0 1 5/14 -3/14 10 X1 1 1 0 -1/7 2/7 B点 35/2 0 0 -5/14 -25/14 1,3/2,0,0Z=35/2

运筹学实验报告1

运筹学实验报告(一) 实验要求:学会在Excel 软件中求解。 实验目的:通过小型线性规划模型的计算机求解方法。 熟练掌握并理解所学方法。 实验内容: 题目: 某昼夜服务的公交线路每天各时间区段内所需司机和乘务人员数如下; 设司机和乘务人员分别在各时间区段一开始上班,并连续工作八小时,问该公交线 路至少配备多少名司机和乘 务人员。列出这个问题的线 性规划模型。 解:设Xj 表示在第j 时间区段开始上班的司机和乘务人员数 班次 时间 所需人数 1 6:00-10:00 60 2 10:00-14:00 70 3 14:00-18:00 60 4 18:00-22:00 50 5 22:00-2:00 20 6 2:00-6:00 30

。 6-10 10-14 14-18 18-22 22-2 2-6 1 X1--- X1 2 X2--- X2 3 X3--- X3 4 X4--- X4 5 X5--- X5 6 X6 X6--- 60 70 60 50 20 30 所需人 数 Min z=x1+x2+x3+x4+x5+x6 St: x1+x6>=60 X1+x2>=70 X2+x3>=60 X3+x4>=50 X4+x5>=20 X5+x6>=30 Xj>=0,xj为整数, j=1,2,3,4,5,6

过程: 工作表[Book1]Sheet1 报告的建立: 2011-9-28 19:45:01 目标单元格(最小值) 单元格名字初值终值 $B$1 min 0 150 可变单元格 单元格名字初值终值 $B$3 x 0 45 $C$3 x 0 25 $D$3 x 0 35 $E$3 x 0 15 $F$3 x 0 15 $G$3 x 0 15 结果:最优解X=(45,25,35,15,15,15)T 目标函数值z=150 小结:1.计算机计算给规划问题的解答带来方便,让解答变得简洁;

《运筹学》复习参考资料知识点及习题

第一部分线性规划问题的求解 一、两个变量的线性规划问题的图解法: ㈠概念准备:定义:满足所有约束条件的解为可行解;可行解的全体称为可行(解)域。 定义:达到目标的可行解为最优解。 ㈡图解法: 图解法采用直角坐标求解:x1——横轴;x2——竖轴。1、将约束条件(取等号)用直线绘出; 2、确定可行解域; 3、绘出目标函数的图形(等值线),确定它向最优解的移动方向; 注:求极大值沿价值系数向量的正向移动;求极小值沿价值系数向量的反向移动。 4、确定最优解及目标函数值。 ㈢参考例题:(只要求下面这些有唯一最优解的类型) 例1:某厂生产甲、乙两种产品,这两种产品均需在A、B、C三种不同的设备上加工,每种产品在不同设备上加工所需的工时不同,这些产品销售后所能获得利润以及这三种加工设备因各种条件限制所能使用的有效加工总时数如下表所示: 问:该厂应如何组织生产,即生产多少甲、乙产品使得该厂的总利润为最大? (此题也可用“单纯形法”或化“对偶问题”用大M法求解)

解:设x 1、x 2为生产甲、乙产品的数量。 max z = 70x 1+30x 2 s.t. ???????≥≤+≤+≤+0 72039450555409321212121x x x x x x x x , 可行解域为oabcd0,最优解为b 点。 由方程组 ???=+=+72039450 5521 21x x x x 解出x 1=75,x 2=15 ∴X * =??? ? ??21x x =(75,15) T ∴max z =Z *= 70×75+30×15=5700 ⑴ ⑵ ⑶ ⑷ ⑸、⑹

max z = 6x 1+4x 2 s.t. ???????≥≤≤+≤+0781022122121x x x x x x x , 解: 可行解域为oabcd0,最优解为b 点。 由方程组 ???=+=+810 22 121x x x x 解出x 1=2,x 2=6 ∴X * =? ?? ? ??21x x =(2,6)T ∴max z = 6×2+4×6=36 ⑴ ⑵ ⑶ ⑷ ⑸、⑹

(完整版)学习运筹学的体会与心得

学习运筹学的总结与心得体会古人云“夫运筹帷幄之中,决胜千里之外”,怀着对运筹学的憧憬与崇拜之情,这学期我选择了运筹学这门课程。通过学习,我知道了运筹学是一门具有多科学交叉特点的边缘科学,是一门以数学为主要工具,寻求各种问题最优方案的优化学科。 经过一个学期的学习,我们应该熟练地掌握、运用运筹学的精髓,用运筹学的思维思考问题,即:应用分析、试验、量化的方法,对实际生活中的人力、财力、物力等有限资源进行合理的统筹安排。本着这样的心态,在本学期运筹学课程将结束之际,我对本学期所学知识作出如下总结。 一、线性规划 线性规划解决的是:在资源有限的条件下,为达到预期目标最优,而寻找资源消耗最少的方案。而线性规划问题指的是在一组线性等式或不等式的约束下,求解一个线性函数的最大或最小值的问题。其数学模型有目标函数和约束条件组成。 解决线性规划问题的关键是找出他的目标函数和约束方程,并将它们转化为标准形式。解决线性规划问题的主要方法有:图解法、单纯型法、两阶段法、对偶单纯型法、计算机软件求解等方法。简单的设计2个变量的线性规划问题可以直接运用图解法得到。但是往往在现实生活中,线性规划问题涉及到的变量很多,很难用作图法实现,但是运用单纯形法记比较方便。单纯形法的发展很成熟应用也很广泛,在运用单纯形法时,需要先将问题化为标准形式,求出基可行解,列出单纯形表,进行单纯形迭代,当所有的变量检验数不大于零,且基变量中不含人工变量,计算结束。将所得的量的值代入目标函数,得出最优值。 利用单纯形表我们可以(1)直接找出基本可行解与对应的目标函数值;(2)通过检验数判断原问题解的性质以及是否为最优解。 每一个线性规划问题都有和它伴随的另一个问题,若一个问题称为原问题,则另一个称为其对偶问题,原问题和对偶问题有着非常密切的关系,以至于可以根据一个问题的最优解,得出另一个问题的最优解的全部信息。 对偶问题有:对称形式下的对偶问题和非对称形式下的对偶问题。非对称形式下的对偶问题需要将原问题变形为标准形式,然后找出标准形式的对偶问题。因为对偶问题存在特殊的基本性质,所以我们在解决实际问题比较困难时可以将其转化成其对偶问题进行求解。 在解决线性规划问题时,我们往往会在求出最优解后,对问题进行灵敏度分

运筹学例题解析

(一)线性规划建模与求解 B.样题:活力公司准备在5小时内生产甲、乙两种产品。甲、乙两种产品每生产1 单位分别消耗2小时、1小时。又根据市场需求信息,乙产品的产量应该至少是甲产品产量的3倍。已知甲、乙两种产品每销售1单位的利润分别为3百元和1百元。请问:在5小时内,甲、乙两种产品各生产多少单位,才能够使得总销售利润最大 要求:1、建立该问题的线性规划模型。 2、用图解法求出最优解和最大销售利润值,并写出解的判断依据。如果不存在最优解,也请说明理由。 解:1、(1)设定决策变量: 设甲、乙两种产品分别生产x 1 、x 2 单位 。 (2)目标函数: max z=2 x 1+x 2 (3)约束条件如下:1221 12 25..3,0+≤??≥??≥?x x s t x x x x 2、该问题中约束条件、目标函数、可行域和顶点见图1所示,其中可行域用阴影部分标记,不等式约束条件及变量约束要标出成立的方向,目标函数只须画出其中一条等值线, 结论:本题解的情形是: 无穷多最优解 ,理由: 目标函数等值线 z=2 x 1+x 2与约 束条件2 x 1+x 2≤5的边界平行 。甲、乙两种产品的最优产量分别为 (5,0)或(1,3)单位;最大销售利润值等于 5 百元。 (二)图论问题的建模与求解样题 A.正考样题(最短路问题的建模与求解,清华运筹学教材编写组第三版267-268页例 13)某企业使用一台设备,每年年初,企业都要做出决定,如果继续使用旧的,要付维修费;若购买一台新设备,要付购买费。但是变卖旧设备可以获得残值收入,连续使用1年、2年、3年、4年以上卖掉的设备残值分别为8万元、6万元、3万元和0万元。试制定一个5年的更新计划,使总支出最少。已知设备在各年的购买费与维修费如表2所示。要求:(1)建立某种图论模型;(2)求出最少总支出金额。

浅谈管理运筹学学习心得体会

浅谈管理运筹学学习心得体会 简单的来说,运筹学就是通过数学模型来安排物资,它是一门研究如何有效的组织和管理人机系统的科学,它对于我们逻辑思维能力要求是很高的。从提出问题,分析建摸到求解到方案对逻辑思维的严密性也是一种考验,但它与我们经济管理类专业的学生以后走上工作岗位是息息相关的。 运筹学应用分析,试验,量化的方法,对经济管理系统中人财物等有限资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。对经济问题的研究,在运筹学中,就是建立这个问题的数学和模拟的模型。建立模型是运筹学方法的精髓。通常的建模可以分为两大步:分析与表述问题,建立并求解模型。通过本学期数次的实验操作,我们也可以看到正是对这两大步骤的诠释和演绎。 运筹学模型的建立与求解,是对实际问题的概括与提炼,是对实际问题的数学解答。而通过本次的实验,我也深刻的体会到了这一点。将错综复杂的实例问题抽象概括成数学数字,再将其按要求进行求解得出结果,当然还有对结果的检验与分析也是不可少的。在这一系列的操作过程中,不仅可以体会到数学问题求解的严谨和规范,同时也有对运筹学解决问题的喜悦。 通过一个学期的实验学习,我对有关运筹学建模问题有了更深刻的认识和把握;对运筹学的有关知识点也有了进一步的学习和掌握,下面是我的一些实验心得和体会。 对于这种比较难偏理的学科来说确实是的,而且往往老师也很难把这么复杂的又与实际生活联系的我们又没亲身经历过的问题分析的比较透彻,所以很多同学从一开始听不懂就放弃了。但对于上课认真听讲,课后认真复习并且做相应习题的同学来说,学好它也不是一件难事,应该比较有把握的,毕竟题目是百变不离其中的,这也是这门课的好处。 对我而言学习运筹学,并没有把它当作是一件难事,以平常心对待。它更多的是联系实际,对一步步的推论推理过程,我个人认为是比较有挑战性的,所以我也用心学好它。其实学习这门课时,大家压力还是比较大的,老担心期末会挂,至少我身边有很多同学是这样的,因为一打开书就可以看到很多复杂的图形,一个个步骤也更是吓人,有的题目甚至要解好几页。就因为这样,我课上就比较注重听讲,尽量把每道题目的关键都听懂,有的不是很清楚的及时向人问完并记下要点,这样也方便自己课后仔细想这道题的解法。因为这门不象其他课上课不听还可以蒙混过关,对于一连串的解题思路只有经过分析才会明白,因为一点不明白有可能导致整个题目前功尽弃。在平时做作业时我会认真分析老师提供给我们的答案的解题思路,在不懂的地方记一下,抽时间问老师问同学,以便在能掌握好所学内容。因为考试的时候还是要求我们把自己的思路、步骤写清楚。毕竟这门课程学习并不是只为了考试,它与以后生活也是息息相关的。

运筹学课程总结

运筹学课程总结 总结内容: 一、运筹学简述 (一)运筹学定义 (二)运筹学工作步骤 (三)运筹学的应用 二、运筹学相关理论与方法 (一)线性规划 (二)运输问题 (三)目标规划 (四)整数规划 (五)动态规划 三、运筹学应用案例分析(用matlab求解)

一、运筹学简述 (一)运筹学的定义 运筹学是一门应用科学,至今还没有统一且确切的定义。莫斯和金博尔曾对运筹学的定义是:“为决策机构在对其控制下业务活动进行决策时,提供以数量化为基础的科学方法。”它强调科学方法,以量化为基础。 另一定义是:“运筹学是一门应用科学,它广泛应用现有的科学技术知识和数学方法,解决实际中提出的专门问题,为决策者选择最优决策提供定量依据。” 中国百科全书给出的定义是:“运筹学是用数学方法研究经济、民政和国防等部门在内外环境约束的条件下合理分配人力、物力、财力等资源,使实际系统有效运行的技术科学,它可以用来预测发展趋势,制定行动规划或优选可行方案。” 如论如何定义,都表明着,运筹学是为提供最优化方法、最佳解决方案的科学。 (二)运筹学的工作步骤 1、建立数学模型:认清目标和约束; 2、寻求可行方案:求解; 3、评估各个方案:解的检验、灵敏度分析等; 4、选择最优方案:决策; 5、方案实施:回到实践中; 6、后评估:考察问题是否得到完满解决。 (三)运筹学的应用 运筹学在各个领域的应用非常广泛,主要有以下几个方面: 1、生产计划:生产作业的计划、日程表的编排、合理下料、配料问题、物料管理等; 2、库存管理:多种物资库存量的管理,库存方式、库存量等; 3、运输问题:确定最小成本的运输线路、物资的调拨、运输、工具的调度

运筹学知识点总结

运筹学 考试时间: 2009-1-4 10:00-12:00 考试地点: 金融1、2:(二)201,会计1、2:(二)106 人资1、2:(二)203,工商1、2:(二)205 林经1、2:(二)306 答疑时间: 17周周二周四上午8:00-11:00 18周周一周三上午8:00-11:00 地点:基础楼201

线性规划 如何建立线性规划的数学模型; 线性规划的标准形有哪些要求?如何把一般的线性规划化为标准形式? 如何用图解法求解两个变量的线性规划问题?由图解法总结出线性规划问题的解有哪些性质? 如何用单纯形方法求解线性规划问题? 如何确定初始可行基或如何求初始基本可行解?(两阶段方法)如何写出一个线性规划问题的对偶问题?如果已知原问题的最优解如何求解对偶问题的最优解?(对偶的性质,互补松紧条件)对偶单纯形方法适合解决什么样的问题?如何求解? 对于已经求解的一个线性规划问题如果改变价值向量和右端向量原最优解/基是否仍是最优解/基?如果不是,如何进一步求解?

1、建立线性规划的数学模型: 特点: (1)每个行动方案可用一组变量(x 1,…,x n )的值表示,这些变量一般取非负值; (2)变量的变化要受某些限制,这些限制条件用一些线性等式或不等式表示; (3)有一个需要优化的目标,它也是变量的线性函数。 2、线性规划的标准形有哪些限制?如何把一般的线性规划化为 标准形式? 目标求极小;约束为等式;变量为非负。 min b 0 T z C X AX X ==?? ≥? 例:把下列线性规划化为标准形式: 12 1212112 max 2328 1 20,0z x x x x x x x x x =++≤?? -+≥?? ≤??≤<>? 解:令13245,,x x x x x =-=-标准型为: ,3453456345738min 23()2()8 () x 1 +x 20,3,4,5,6,7,8i z x x x x x x x x x x x x i =-+--+-+=?? ++--=?? -=??≥=?

运筹学学习心得

学习心得 姓名:陈相宇班级:石油七班学号: 3120540714经过上了十几次运筹学的课,我觉得运筹学这门课程内容真的很丰富,涉及的内容有很多,例如数学,决策学等。当然,在这短短的时间了,我不可能完全掌握老师所说的内容,只能说了解什么是运筹学?如何运用运筹学?运筹学是一个应用数学和形式科学的跨领域研究,利用数学模型和算法等方法,去寻找复杂问题中的最佳或近似最佳的解答,所以说好运筹学对我们以后的生活是很有的帮助的 自古以来,运筹学就无处不在,小到菜市场买菜,大到处理国家事务,都会用到运筹学,“运筹帷幄之中,决胜千里之外”这句话就很好的形容了运筹学的重要性。中国古代有一个著名例子“田忌赛马”,就是对运筹学中博弈论的运用,通过巧妙的安排部署马匹的出场顺序,利用了现有马匹资源的最大效用,设计出了一个最佳方案,取得了一个最好的效果。从中我们不难发现,在已有的条件下,经过筹划、安排,选择一个最好的方案,就会取得最好的效果。可见,筹划安排是十分重要的。 在现在社会中,运筹学是一门重要的课程知识,它在现实生活中无处不在,经常用于解决复杂问题,特别是改善或优化现有系统的效率。经济、金融、工程、管理等都与运筹学的发展密切相关。随着科学技术和生产的发展,运筹学已渗入很多领域里,发挥了越来越重要的作用,运筹学本身也在不断发展,线性规划;非线性规划;整数规划;组合规划等)、图论、网络流、决策分析、排队论、可靠性数学理论、库存论、博弈论、搜索论、模拟等等,因此运筹学有广阔的应用领域,它已渗透到诸如服务、经济、库存、搜索、人口、对抗、控制、时间表、资源分配、厂址定位、能源、设计、生产、可靠性等各个方面。 现在普遍认为,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法进行解决。前者提供模型,后者提供理论和方法。运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法。它以整体最优为目标,从系统的观点出发,力图以整个系统最佳的方式来解决该系统各部门之间的利害冲突。对所研究的问题求出最

大学运筹学课程知识点总结

1. 2. 3.用图解法求解下列线性规划问题,并指出问题具有惟一最优解、无穷多最优解、无界解还是无可行解。 ?? ???≤≤≤≤≤++=8 3105120106max 21212 1x x x x x x z 2.将下述线性规划问题化成标准形式。 (1)?????? ?≥≥-++-≤+-+-=-+-+-+-=无约束 4,03,2,12321422245243min 43214 32143214 321x x x x x x x x x x x x x x x x x x x x z 解:令z z -=',' '4' 44x x x -=

???????≥=-+-++-=+-+-+=-+-+-+-+-=0,,,,,,23214 2222455243'max 6 5''4'43216' '4'43215''4'4321''4'4321' '4'4321x x x x x x x x x x x x x x x x x x x x x x x x x x x x x z 3.分别用图解法和单纯形法求解下述线性规划问题,并对照指出单纯形表中的各基可行解对应图解法中的可行域的哪个顶点。 ??? ??≥≤+≤++=0,825943510max 2 121212 1x x x x x x x x z 解:①图解法: ②单纯形法:将原问题标准化: ??? ??≥=++=+++=0,,,825943510max 4213 212 1x x x x x x x x x x x x z C j 10 5 θ 对应图解法

单纯型法步骤:转化为标准线性规划问题;找到一个初始可行解,列出初始单纯型表;最优性检验,求cj-zj ,若所有的值都小于0,则表中的解便是最优解,否则,找出最大的值的那一列,求出bi/aij ,选取最小的相对应的xij ,作为换入基进行初等行变换,重复此步骤。 4.写出下列线性规划问题的对偶问题。 (1)()()()?? ???? ?????==≥===== ∑∑∑∑====n j m i x n j b x m i a x t s x c z ij j m i ij i n j ij m i n j ij ij ,,1;,,10 ,,1,,1..min 11 11 ()?????==≤++=+=+=∑∑无约束 j i ij j m i n i m j j m i i i y x n j m i c y y t s y b y a w ,,,1;,,1..max 1 1

最新《运筹学》复习参考资料知识点及习题

第一部分线性规划问题的求解 1 一、两个变量的线性规划问题的图解法: 2 ㈠概念准备:定义:满足所有约束条件的解为可行解;可行解的全体称为可行(解)域。3 定义:达到目标的可行解为最优解。 4 ㈡图解法: 5 图解法采用直角坐标求解:x 1——横轴;x 2 ——竖轴。1、将约束条件(取等号)用直线 6 绘出; 7 2、确定可行解域; 8 3、绘出目标函数的图形(等值线),确定它向最优解的移动方向; 9 注:求极大值沿价值系数向量的正向移动;求极小值沿价值系数向量的反向移动。 10 4、确定最优解及目标函数值。 11 ㈢参考例题:(只要求下面这些有唯一最优解的类型) 12 例1:某厂生产甲、乙两种产品,这两种产品均需在A、B、C三种不同的设备上加工,13 每种产品在不同设备上加工所需的工时不同,这些产品销售后所能获得利润以及这三种加工14 设备因各种条件限制所能使用的有效加工总时数如下表所示: 15

16 问:该厂应如何组织生产,即生产多少甲、乙产品使得该厂的总利润为最大? 17 (此题也可用“单纯形法”或化“对偶问题”用大M法求解) 18

解:设x 1、x 2为生产甲、乙产品的数量。 19 max z = 70x 1+30x 2 20 s.t. 21 ???????≥≤+≤+≤+072039450555409321212121x x x x x x x x , 22 23 可行解域为oabcd0,最优解为b 点。 24 由方程组 25 ???=+=+720394505521 21x x x x 解出x 1=75,x 2=15 26 ∴X *=???? ??21x x =(75,15)T 27 ⑴ ⑵ ⑶ ⑷ ⑸、⑹

大学运筹学课程知识点总结

1.用图解法求解下列线性规划问题,并指出问题具有惟一最优解、无穷多最优解、无界解还是无可行解。 ?? ???≤≤≤≤≤++=8 3105120106max 21212 1x x x x x x z 2.将下述线性规划问题化成标准形式。 (1)?????? ?≥≥-++-≤+-+-=-+-+-+-=无约束 4,03,2,12321422245243min 43214 32143214 321x x x x x x x x x x x x x x x x x x x x z 解:令z z -=',' '4'44x x x -= ???????≥=-+-++-=+-+-+=-+-+-+-+-=0,,,,,,23214 2222455243'max 6 5''4'43216' '4'43215' '4'4321''4'4321' '4'4321x x x x x x x x x x x x x x x x x x x x x x x x x x x x x z 3.分别用图解法和单纯形法求解下述线性规划问题,并对照指出单纯形表中的各基可行解对应

图解法中的可行域的哪个顶点。 ??? ??≥≤+≤++=0,825943510max 2 121212 1x x x x x x x x z 解:①图解法: ②单纯形法:将原问题标准化: ??? ??≥=++=+++=0,,,825943510max 4 3214213 212 1x x x x x x x x x x x x z C j 10 5 0 0 θ 对应图解法中的点 C B B b x 1 x 2 x 3 x 4 0 x 3 9 3 4 1 0 3 O 点 0 x 4 8 [5] 2 0 1 8/5 σj 0 10 5 0 0 0 x 3 21/5 0 [14/5] 1 -3/5 3/2 C 点 10 x 1 8/5 1 2/5 0 1/5 4 σj -16 0 1 0 -2 5 x 2 3/2 0 1 5/14 -3/14 B 点 10 x 1 1 1 0 -1/7 2/7 σj 35/2 -5/14 -25/14 最优解为(1,3/2,0,0),最优值Z=35/2。

运筹学知识点总结

运筹学知识点总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

运筹学 考试时间: 2009-1-4 10:00-12:00 考试地点: 金融1、2:(二)201,会计1、2: (二)106 人资1、2:(二)203,工商1、2: (二)205 林经1、2:(二)306 答疑时间: 17周周二周四上午8:00-11:00 18周周一周三上午8:00-11:00地点:基础楼201

线性规划 如何建立线性规划的数学模型; 线性规划的标准形有哪些要求如何把一般的线性规划化为标准形式 如何用图解法求解两个变量的线性规划问题?由图解法总结出线性规划问题的解有哪些性质? 如何用单纯形方法求解线性规划问题? 如何确定初始可行基或如何求初始基本可行解(两阶段方法)如何写出一个线性规划问题的对偶问题如果已知原问题的最优解如何求解对偶问题的最优解(对偶的性质,互补松紧条件)对偶单纯形方法适合解决什么样的问题如何求解 对于已经求解的一个线性规划问题如果改变价值向量和右端向量原最优解/基是否仍是最优解/基如果不是,如何进一步求解

1、建立线性规划的数学模型: 特点: (1)每个行动方案可用一组变量(x 1,…,x n )的值表示,这些变量一般取非负值; (2)变量的变化要受某些限制,这些限制条件用一些线性等式或不等式表示; (3)有一个需要优化的目标,它也是变量的线性函数。 2、线性规划的标准形有哪些限制如何把一般的线性规划化为标 准形式 目标求极小;约束为等式;变量为非负。 min b 0 T z C X AX X ==?? ≥? 例:把下列线性规划化为标准形式: 12 1212112 max 2328 1 20,0z x x x x x x x x x =++≤?? -+≥?? ≤??≤<>? 解:令13245,,x x x x x =-=-标准型为:

管理运筹学复习要点

管理运筹学复习 (1)某工厂在计划期内要安排Ⅰ,Ⅱ两种产品的生产.生产单位产品所需的设备台时及A,B 两种原材料的消耗以及资源的限制如下表所示: 生产多少单位产品Ⅰ和产品Ⅱ才能使获利最多? 解:max z=50X1+100X2 ; 满足约束条件:X1+X2≤300, 2X1+X2≤400, X2≤250, X1≥0,X2≥0。 (2):某锅炉制造厂,要制造一种新型锅炉10台,需要原材料为∮63.5×4mm的锅炉钢管,每台锅炉需要不同长度的锅炉钢管数量如下表所示: 多少根原材料? 设按14 种方案下料的原材料的根数分别为X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12,X13,X14, 可列出下面的数学模型: min f=X1+X2+X3+X4+X5+X6+X7+X8+X9+X10+X11+X12+X13+X14 满足约束条件:2X1+X2+X3+X4≥ 80 X2+3X5+2X6+2X7+X8+X9+X10≥420 X3+X6+2X8+X9+3X11+X12+X13≥ 350 X4+X7+X9+2X10+X12+2X13+3X14≥ 10 X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12,X13,X14≥ 0

(3)某公司从两个产地A1、A2将物品运往三个销地B1、B2、B3,各产地的产量、 应如何调运,使得总运输费最小? 解:此运输问题的线性规划的模型如下 min f =6X11+4X12+6X13+6X21+5X22+5X23 约束条件:X11+X12+X13=200 X21+X22+X23=300 X11+X21=150 X12+X22=150 X13+X23=200 X ij≥0(i=1,2;j=1,2,3) (4) 某公司从两个产地A1、A2将物品运往三个销地B1、B2、B3,各产地的产量、 (5)某公司从两个产地A1、A2将物品运往三个销地B1、B2、B3,各产地的

运筹学课程设计实验报告

运筹学课程设计实验报告

目录 ①线性规划(一) (3) 线性规划(二) (5) ②整数规划(一) (8) 整数规划(二) (9) ③目标规划 (11) ④运输问题(一) (20) 运输问题(二) (22) ⑤指派问题 (24) ⑥图与网络分析 最短路径 (26) 最大流量(一) (28) 最大流量(二) (31) ⑦网络计划(一) (33) 网络计划(二) (34)

(一)线性规划问题: 1.用EXCEL 表求解下面各题,并从求解结果中读出下面要求的各项,明确写出结果。例如:原问题最优解为X*=(4,2)T ① 原问题的最优解(包括决策变量和松弛变量)、最优值; ② 对偶问题的最优解; ③ 目标函数价值系数的变化范围; ④ 右端常数的变化范围。 解: 50 10521≤+x x 1 21≥+x x 42≤x 0 ,21≥x x 2 13max x x z + =

由报告可知,①原问题最优解为产品甲生产2台,产品乙生产4台,原问题有最优值,即总利润最大为14元。 ②对偶问题的最优解为影子价格由灵敏度表可知y*=(0.2,0,1) ③目标函数价值系数的变化范围是灵敏度分析表中的允许的增量和减量,0≤X 甲≤1.5, 2 ≤X乙≤1E+33。

④右端常数的变化范围为40≤bA ≤1E+80, -1E-29≤bB ≤6,0≤bC ≤5 2. ????? ? ?≥≤++≤++≤++++=0 ,,42010132400851030010289.223max 3213213213213 21x x x x x x x x x x x x x x x z (1)求解:① 原问题的最优解(包括决策变量和松弛变量)、最优值; ② 对偶问题的最优解; ③ 目标函数价值系数的变化范围; ④ 右端常数的变化范围。 解:

学习运筹学的心得体会

学习运筹学的体会与心得 学习理论的目的就是为了解决实际问题。图论为计算机领域也奠定了基础,运筹学的计算方法可以借用计算机来完成。线性规划的理论对我们的实际生活指导意义很大。当我们遇到一个问题,需要认真考察该问题。如果它适合线性规划的条件,那么我们就利用线性规划的理论解决该问题。但是很多时候我们遇到的问题用线性规划解决耗时、准确度低或者根本无法用线性规划解决。那么我们就要寻找别的理论方法来解决问题。通过对运筹学的学习我掌握运筹学的基本概念、基本原理、基本方法和解题技巧,对于一些简单的问题可以根据实际问题建立运筹学模型及求解模型。运筹学对我们以后的生活也讲有不小的影响,将运筹学运用到实际问题上去,学以致用。以上就是我对本学期学习运筹学的总结和体会。 运输问题是解决多个产地和多个销地之间的同品种物品的规划问题。根据运输问题的独特性,一般采用一种简单而有效的方法:表上作业法。表上作业法先找出运输问题的基可行解,方法有:最小元素法、西北角法、沃格尔法。其中沃格尔法得出的解最接近最优解。然后利用闭回路法或对偶变量法对得到解进行最优性判别。当检验的结果为非最优解时,进行解的改进,然后再进行最优性判别,直到所有的非基变量检验数全非负,得到最优解。在解决运输问题时会遇到产销不平衡的情况,在该情况下,要将该问题转化为产销平衡问题,只需增加一个假象的产地或销地,并将表示该地的变量在目标函数中的系数设为零即可。 整数规划是解决决策变量只能取整数的规划问题,整数规划的解法有割平面法和分支定界法。整数规划中的0-1规划整数问题是一个非常有用的方法。在实际问题中,该方法能够解决很多问题。0-1整数规划的解决方法有枚举法和隐枚举法。指派问题是0-1整数规划中的特例, 古人作战讲“夫运筹帷幄之中,决胜千里之外”。在现代商业社会中,更加讲求运筹学的应用。作为一名测控的学生,更应该能够熟练的掌握、运用运筹学的精髓,用运筹学的思

运筹学课程论文

运筹学案例建模、算法与分析 作者; 日期: 2012年02月29日 摘要: 先是对一个学期的课程学习的总结,然后是分别对“人力资源分配问题”和“最优投资策略问题”的两个案例的分析与建模,并得出其最优方案,以及对案例职场规划的方案设计。 关键词: 运筹学;数学模型;目标函数;人力资源分配;职场规划;最优投资策略。 正文: 记得当初怀着好奇和对数学的兴趣旋律这堂课,转眼一个学期结束了,时间见证了我当初的选择是正确的。在这儿,她让我学到了新的数学解题方法和思维方式;使我对数学的兴趣更加浓厚;当然,她还让我学到了很多有关运筹学方面的很多知识。 在“运筹帷幄-为解决问题提供最佳决策”这堂课上,老师通过“1.资环争夺——运筹学的摇篮;2.追求完美——运筹优化无处不在;3.制胜法宝——运筹学成功应用范例;4.寓理于算——运筹学问题数学模型;5.追求极致——最优决策的特征;6.好谋善断——优化方法设计;7.步步为营——迭代算法特征;8.神机妙算——计算机实现;9.追求效率——提高计算效率;10.永无止境——改善与发展”这十个话题,给我们讲解了运筹学的起源、特点、分支、研究方法、涉及重点领域,对运筹学应用案例的数学模型建立于分析,以及解决运筹学问题的方法和对待运筹学问题的大概思维方式等有关运筹学的各方面知识。总之,在这堂课上我收获许许多多有形或无形的财富,让我受益匪浅。 通过一个学期在老师生动详细的讲解,以及阅读一些有关运筹学的书籍等方式的学习下,我已经掌握了一些对问题进行分析、建模等处理方法。下面是对三个案例的简单分析及处理。

案例1: 人力资源分配问题 “好又美”超市是个建在大学城边上的大型百货商场,每周对收银人员的需求,统计如下表 为了保证收银人员充分休息,收银人员每周工作5天,休息2天。问应如何安排收银人员的工作时间,使得所配收银人员的总费用最小? 解:为了让员工们休息更愉快、方便,可将每位员工的休息时间安排在连续的两天;则可设 i x (i=1,2,3,…,7)表示星期一至日开始休息的人数,依题 意我们可建立如下数学模型: 目标函数:Min Z = 1234567x x x x x x x ++++++ 约束条件: 1234x x x x x ++++≥6 23456 x x x x x ++++≥5 34567 x x x x x ++++≥8 45671x x x x x ++++≥7 56712x x x x x ++++≥10 67123x x x x x ++++≥18 71234 x x x x x ++++≥15 (1,2,3,4,5,6,7) i x N i ∈= 于以上数学模型,通过计算可得: 当:1x = 9;2x = 1;3x = 0;4x = 5;5x = 0;6x = 0;7x =3; 时,Z 取最小值18。 即安排18位收银人员即可供应百货商场收银员需求。 具体人员安排如下: 假设有18位收银人员编号分别为1、2、3、4、…、18,星期六18为收银

运筹学(胡运权)第五版复习提纲汇总

《运筹学1》复习提纲 第一章线性规划和单纯形法 1. 规划问题的三要素 2. 线性规划问题的条件 3. 线性规划问题的标准形式 4. 标准化方法 5. 作用在目标函数中的系数 松弛变量化不等式约束为等式约束0 人工变量使系数矩阵有单位矩阵-M(大M法) 6. 可行解、可行域、最优解 7. 基、基向量、基变量、非基变量、基解、基可行解(至多 个)、可行基、最优基 8. 各种解之间的关系 9. 图解法 10. 检验数 11.

线性规划问题 解的类型 用最终表判别的方法 无可行解有非0人工变量 有可行解有唯一最优解无非0人工变量,非基 变量的检验数全为负数 有无穷多最优解无非0人工变量,非基变量的检验数全非正,且有一个非基变量的检验数为0 有无界解无非0人工变量,有一个 非基变量的检验数为正 数且这一列的系数全非 正 12. 单纯形表的结构:前两行,后一行,前三列,后一列,主体部分 13. 单纯形法的步骤 14. 人工变量法(1)大M法 (2)两阶段法 15. 单纯形法的向量矩阵描述(不考) 初始表中的基变量在最终表中的矩阵是B-1

最终表中的基变量在初始表中的矩阵是B 课后练习 1.1,1.2(b,1.3(a,1.6(a,1.7(a,1.8,1.12,1.14 第二章线性规划的对偶理论 1、原问题的基本形式 对偶问题的基本形式 2、原问题与对偶问题的互化 3、对偶问题的基本性质 1 弱对偶性 2 最优性 3 无界性 4 强对偶性 5 互补松弛性(由松得紧性) 6 互补的基解 4、利用对偶理论求最优解的方法 5、影子价格 6、灵敏度分析(不考) 1 分析Cj,可使最优解不变 2 分析bi,可使最优基不变

相关文档
最新文档