高中物理常见的物理模型

高中物理常见的物理模型
高中物理常见的物理模型

高中物理常见的物理模型

方法概述

高考命题以《考试大纲》为依据,考查学生对高中物理知识的掌握情况,体现了“知识与技能、过程与方法并重”的高中物理学习思想.每年各地的高考题为了避免雷同而千变万化、多姿多彩,但又总有一些共性,这些共性可粗略地总结如下:

(1)选择题中一般都包含3~4道关于振动与波、原子物理、光学、热学的试题.

(2)实验题以考查电路、电学测量为主,两道实验小题中出一道较新颖的设计性实验题的可能性较大.

(3)试卷中下列常见的物理模型出现的概率较大:斜面问题、叠加体模型(包含子弹射入)、带电粒子的加速与偏转、天体问题(圆周运动)、轻绳(轻杆)连接体模型、传送带问题、含弹簧的连接体模型.

高考中常出现的物理模型中,有些问题在高考中变化较大,或者在前面专题中已有较全面的论述,在这里就不再论述和例举.斜面问题、叠加体模型、含弹簧的连接体模型等在高考中的地位特别重要,本专题就这几类模型进行归纳总结和强化训练;传送带问题在高考中出现的概率也较大,而且解题思路独特,本专题也略加论述.

热点、重点、难点

一、斜面问题

在每年各地的高考卷中几乎都有关于斜面模型的试题.如2009年高考全国理综卷Ⅰ第25题、北京理综卷第18题、天津理综卷第1题、上海物理卷第22题等,2008年高考全国理综卷Ⅰ第14题、全国理综卷Ⅱ第16题、北京理综卷第20题、江苏物理卷第7题和第15题等.在前面的复习中,我们对这一模型的例举和训练也比较多,遇到这类问题时,以下结论可以帮助大家更好、更快地理清解题思路和选择解题方法.

1.自由释放的滑块能在斜面上(如图9-1 甲所示)匀速下滑时,m与M之间的动摩擦因数μ=g tan θ.

图9-1甲

2.自由释放的滑块在斜面上(如图9-1 甲所示):

(1)静止或匀速下滑时,斜面M对水平地面的静摩擦力为零;

(2)加速下滑时,斜面对水平地面的静摩擦力水平向右;

(3)减速下滑时,斜面对水平地面的静摩擦力水平向左.

3.自由释放的滑块在斜面上(如图9-1乙所示)匀速下滑时,M对水平地面的静摩擦力为零,这一过程中再在m上加上任何方向的作用力,(在m停止前)M对水平地面的静摩擦力依然为零(见一轮书中的方法概述).

图9-1乙

4.悬挂有物体的小车在斜面上滑行(如图9-2所示):

图9-2

(1)向下的加速度a =g sin θ时,悬绳稳定时将垂直于斜面;

(2)向下的加速度a >g sin θ时,悬绳稳定时将偏离垂直方向向上;

(3)向下的加速度a <g sin θ时,悬绳将偏离垂直方向向下.

5.在倾角为θ的斜面上以速度v 0平抛一小球(如图9-3所示):

图9-3 (1)落到斜面上的时间t =2v 0tan θg

; (2)落到斜面上时,速度的方向与水平方向的夹角α恒定,且tan α=2tan θ,与初速度无关; (3)经过t c =v 0tan θg 小球距斜面最远,最大距离d =(v 0sin θ)22g cos θ

. 6.如图9-4所示,当整体有向右的加速度a =g tan θ时,m 能在斜面上保持相对静止.

图9-4

7.在如图9-5所示的物理模型中,当回路的总电阻恒定、导轨光滑时,ab 棒所能达

到的稳定速度v m =mgR sin θB 2L 2.

图9-5

8.如图9-6所示,当各接触面均光滑时,在小球从斜面顶端滑下的过程中,斜面后退

的位移s =m m +M L .

图9-6

●例1 有一些问题你可能不会求解,但是你仍有可能对这些问题的解是否合理进行分析和判断.例如从解的物理量单位,解随某些已知量变化的趋势,解在一些特殊条件下的结果等方面进行分析,并与预期结果、实验结论等进行比较,从而判断解的合理性或正确性.

举例如下:如图9-7甲所示,质量为M 、倾角为θ的滑块A 放于水平地面上.把质量

为m 的滑块B 放在A 的斜面上.忽略一切摩擦,有人求得B 相对地面的加速度a =M +m M +m sin 2 θ

g sin θ,式中g 为重力加速度.

图9-7甲

对于上述解,某同学首先分析了等号右侧的量的单位,没发现问题.他进一步利用特殊条件对该解做了如下四项分析和判断,所得结论都是“解可能是对的”.但是,其中有一项是错误..

的,请你指出该项[2008年高考·北京理综卷]( ) A .当θ=0°时,该解给出a =0,这符合常识,说明该解可能是对的

B .当θ=90°时,该解给出a =g ,这符合实验结论,说明该解可能是对的

C .当M ?m 时,该解给出a ≈g sin θ,这符合预期的结果,说明该解可能是对的

D .当m ?M 时,该解给出a ≈g sin θ

,这符合预期的结果,说明该解可能是对的 【解析】当A 固定时,很容易得出a =g sin θ;当A 置于光滑的水平面时,B 加速下滑的同时A 向左加速运动,B 不会沿斜面方向下滑,难以求出运动的加速度.

图9-7乙

设滑块A 的底边长为L ,当B 滑下时A 向左移动的距离为x ,由动量守恒定律得:

M x t =m L -x t

解得:x =mL M +m

当m ?M 时,x ≈L ,即B 水平方向的位移趋于零,B 趋于自由落体运动且加速度a ≈g .

选项D 中,当m ?M 时,a ≈g sin θ

>g 显然不可能. [答案] D

【点评】本例中,若m 、M 、θ、L 有具体数值,可假设B 下滑至底端时速度v 1的水平、竖直分量分别为v 1x 、v 1y ,则有:

v 1y v 1x =h L -x

=(M +m )h ML 12m v 1x 2+12m v 1y 2+12

M v 22=mgh m v 1x =M v 2

解方程组即可得v 1x 、v 1y 、v 1以及v 1的方向和m 下滑过程中相对地面的加速度.

●例2 在倾角为θ的光滑斜面上,存在着两个磁感应强度大小相同的匀强磁场,其方向一个垂直于斜面向上,一个垂直于斜面向下(如图9-8甲所示),它们的宽度均为L .一个质量为m 、边长也为L 的正方形线框以速度v 进入上部磁场时,恰好做匀速运动.

图9-8甲

(1)当ab 边刚越过边界ff ′时,线框的加速度为多大,方向如何?

(2)当ab 边到达gg ′与ff ′的正中间位置时,线框又恰好做匀速运动,则线框从开始进入上部磁场到ab 边到达gg ′与ff ′的正中间位置的过程中,线框中产生的焦耳热为多少?(线框的ab 边在运动过程中始终与磁场边界平行,不计摩擦阻力)

【解析】(1)当线框的ab 边从高处刚进入上部磁场(如图9-8 乙中的位置①所示)时,线框恰好做匀速运动,则有:

mg sin θ=BI 1L

此时I 1=BL v R

当线框的ab 边刚好越过边界ff ′(如图9-8乙中的位置②所示)时,由于线框从位置①到位置②始终做匀速运动,此时将ab 边与cd 边切割磁感线所产生的感应电动势同向叠加,回路中电流的大小等于2I 1.故线框的加速度大小为:

图9-8乙

a =4BI 1L -mg sin θm

=3g sin θ,方向沿斜面向上. (2)而当线框的ab 边到达gg ′与ff ′的正中间位置(如图9-8 乙中的位置③所示)时,线框又恰好做匀速运动,说明mg sin θ=4BI 2L

故I 2=14

I 1 由I 1=BL v R 可知,此时v ′=14v 从位置①到位置③,线框的重力势能减少了32

mgL sin θ 动能减少了12m v 2-12m (v 4)2=1532

m v 2 由于线框减少的机械能全部经电能转化为焦耳热,因此有:

Q =32mgL sin θ+1532

m v 2. [答案] (1)3g sin θ,方向沿斜面向上

(2)32mgL sin θ+1532

m v 2 【点评】导线在恒力作用下做切割磁感线运动是高中物理中一类常见题型,需要熟练掌握各种情况下求平衡速度的方法.

二、叠加体模型

叠加体模型在历年的高考中频繁出现,一般需求解它们之间的摩擦力、相对滑动路程、摩擦生热、多次作用后的速度变化等,另外广义的叠加体模型可以有许多变化,涉及的问题更多.如2009年高考天津理综卷第10题、宁夏理综卷第20题、山东理综卷第24题,2008年高考全国理综卷 Ⅰ 的第15题、北京理综卷第24题、江苏物理卷第6题、四川延考区理综卷第25题等.

叠加体模型有较多的变化,解题时往往需要进行综合分析(前面相关例题、练习较多),

下列两个典型的情境和结论需要熟记和灵活运用.

1.叠放的长方体物块A 、B 在光滑的水平面上匀速运动或在光滑的斜面上自由释放后变速运动的过程中(如图9-9所示),A 、B 之间无摩擦力作用.

图9-9

2.如图9-10所示,一对滑动摩擦力做的总功一定为负值,其绝对值等于摩擦力乘以相对滑动的总路程或等于摩擦产生的热量,与单个物体的位移无关,即Q 摩=f ·s 相.

图9-10

●例3 质量为M 的均匀木块静止在光滑的水平面上,木块左右两侧各有一位拿着完全相同的步枪和子弹的射击手.首先左侧的射击手开枪,子弹水平射入木块的最大深度为d 1,然后右侧的射击手开枪,子弹水平射入木块的最大深度为d 2,如图9-11所示.设子弹均未射穿木块,且两子弹与木块之间的作用力大小均相同.当两颗子弹均相对木块静止时,下列说法正确的是(注:属于选修3-5模块)( )

图9-11

A .最终木块静止,d 1=d 2

B .最终木块向右运动,d 1

C .最终木块静止,d 1

D .最终木块静止,d 1>d 2

【解析】木块和射出后的左右两子弹组成的系统水平方向不受外力作用,设子弹的质量为m ,由动量守恒定律得:

m v 0-m v 0=(M +2m )v

解得:v =0,即最终木块静止

设左侧子弹射入木块后的共同速度为v 1,有:

m v 0=(m +M )v 1

Q 1=f ·d 1=12m v 02-12

(m +M )v 12 解得:d 1=mM v 02

2(m +M )f

对右侧子弹射入的过程,由功能原理得:

Q 2=f ·d 2=12m v 02+12(m +M )v 12-0 解得:d 2=(2m 2+mM )v 02

2(m +M )f

即d 1<d 2.

[答案] C

【点评】摩擦生热公式可称之为“功能关系”或“功能原理”的公式,但不能称之为“动能定理”的公式,它是由动能定理的关系式推导得出的二级结论.

三、含弹簧的物理模型

纵观历年的高考试题,和弹簧有关的物理试题占有相当大的比重.高考命题者常以弹簧为载体设计出各类试题,这类试题涉及静力学问题、动力学问题、动量守恒和能量守恒问题、振动问题、功能问题等,几乎贯穿了整个力学的知识体系.为了帮助同学们掌握这类试题的分析方法,现将有关弹簧问题分类进行剖析.

对于弹簧,从受力角度看,弹簧上的弹力是变力;从能量角度看,弹簧是个储能元件.因此,弹簧问题能很好地考查学生的综合分析能力,故备受高考命题老师的青睐.如2009年

高考福建理综卷第21题、山东理综卷第22题、重庆理综卷第24题,2008年高考北京理综卷第22题、山东理综卷第16题和第22题、四川延考区理综卷第14题等.题目类型有:静力学中的弹簧问题,动力学中的弹簧问题,与动量和能量有关的弹簧问题.

1.静力学中的弹簧问题

(1)胡克定律:F =kx ,ΔF =k ·Δx .

(2)对弹簧秤的两端施加(沿轴线方向)大小不同的拉力,弹簧秤的示数一定等于挂钩上的拉力.

●例4 如图9-12甲所示,两木块A 、B 的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,两弹簧分别连接A 、B ,整个系统处于平衡状态.现缓慢向上提木块A ,直到下面的弹簧对地面的压力恰好为零,在此过程中A 和B 的重力势能共增加了( )

图9-12甲

A .(m 1+m 2)2g 2k 1+k 2

B .(m 1+m 2)2g 2

2(k 1+k 2) C .(m 1+m 2)2g 2(k 1+k 2k 1k 2D .(m 1+m 2)2g 2k 2+m 1(m 1+m 2)g 2k 1

【解析】取A 、B 以及它们之间的弹簧组成的整体为研究对象,则当下面的弹簧对地面的压力为零时,向上提A 的力F 恰好为:

F =(m 1+m 2)g

设这一过程中上面和下面的弹簧分别伸长x 1、x 2,如图9-12乙所示,由胡克定律得:

图9-12乙

x 1=

(m 1+m 2)g k 1,x 2=(m 1+m 2)g k 2

故A 、B 增加的重力势能共为:

ΔE p =m 1g (x 1+x 2)+m 2gx 2

=(m 1+m 2)2g 2k 2+m 1(m 1+m 2)g 2

k 1

. [答案] D

【点评】①计算上面弹簧的伸长量时,较多同学会先计算原来的压缩量,然后计算后来

的伸长量,再将两者相加,但不如上面解析中直接运用Δx =ΔF k 进行计算更快捷方便. ②通过比较可知,重力势能的增加并不等于向上提的力所做的功W =F ·x 总=(m 1+m 2)2g 22k 22+(m 1+m 2)2g 2

2k 1k 2.

2.动力学中的弹簧问题

(1)瞬时加速度问题(与轻绳、轻杆不同):一端固定、另一端接有物体的弹簧,形变不会发生突变,弹力也不会发生突变.

(2)如图9-13所示,将A 、B 下压后撤去外力,弹簧在恢复原长时刻B 与A 开始分离.

图9-13

●例5 一弹簧秤秤盘的质量m 1=1.5 kg ,盘内放一质量m 2=10.5 kg 的物体P ,弹簧的质量不计,其劲度系数k =800 N/m ,整个系统处于静止状态,如图9-14 所示.

图9-14

现给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在最

初0.2 s 内F 是变化的,在0.2 s 后是恒定的,求F 的最大值和最小值.(取g =10 m/s 2)

【解析】初始时刻弹簧的压缩量为:

x 0=(m 1+m 2)g k

=0.15 m 设秤盘上升高度x 时P 与秤盘分离,分离时刻有:

k (x 0-x )-m 1g m 1

=a 又由题意知,对于0~0.2 s 时间内P 的运动有:

12

at 2=x 解得:x =0.12 m ,a =6 m/s 2

故在平衡位置处,拉力有最小值F min =(m 1+m 2)a =72 N

分离时刻拉力达到最大值F max =m 2g +m 2a =168 N .

[答案] 72 N 168 N

【点评】对于本例所述的物理过程,要特别注意的是:分离时刻m 1与m 2之间的弹力恰好减为零,下一时刻弹簧的弹力与秤盘的重力使秤盘产生的加速度将小于a ,故秤盘与重物分离.

3.与动量、能量相关的弹簧问题

与动量、能量相关的弹簧问题在高考试题中出现频繁,而且常以计算题出现,在解析过程中以下两点结论的应用非常重要:

(1)弹簧压缩和伸长的形变相同时,弹簧的弹性势能相等;

(2)弹簧连接两个物体做变速运动时,弹簧处于原长时两物体的相对速度最大,弹簧的形变最大时两物体的速度相等.

●例6 如图9-15所示,用轻弹簧将质量均为m =1 kg 的物块A 和B 连接起来,将它们固定在空中,弹簧处于原长状态,A 距地面的高度h 1=0.90 m .同时释放两物块,A 与地面碰撞后速度立即变为零,由于B 压缩弹簧后被反弹,使A 刚好能离开地面(但不继续上升).若将B 物块换为质量为2m 的物块C (图中未画出),仍将它与A 固定在空中且弹簧处于原长,从A 距地面的高度为h 2处同时释放,C 压缩弹簧被反弹后,A 也刚好能离开地面.已知弹簧的劲度系数k =100 N/m ,求h 2的大小.

图9-15

【解析】设A 物块落地时,B 物块的速度为v 1,则有:

12

m v 12=mgh 1 设A 刚好离地时,弹簧的形变量为x ,对A 物块有:

mg =kx

从A 落地后到A 刚好离开地面的过程中,对于A 、B 及弹簧组成的系统机械能守恒,则有:

12

m v 12=mgx +ΔE p 换成C 后,设A 落地时,C 的速度为v 2,则有:

12

·2m v 22=2mgh 2 从A 落地后到A 刚好离开地面的过程中,A 、C 及弹簧组成的系统机械能守恒,则有: 12

·2m v 22=2mgx +ΔE p 联立解得:h 2=0.5 m .

[答案] 0.5 m

【点评】由于高中物理对弹性势能的表达式不作要求,所以在高考中几次考查弹簧问题时都要用到上述结论“①”.如2005年高考全国理综卷Ⅰ第25题、1997年高考全国卷第25题等.

●例7 用轻弹簧相连的质量均为2 kg 的A 、B 两物块都以v =6 m/s 的速度在光滑的水平地面上运动,弹簧处于原长,质量为4 kg 的物块C 静止在前方,如图9-16 甲所示.B 与C 碰撞后二者粘在一起运动,则在以后的运动中:

图9-16甲

(1)当弹簧的弹性势能最大时,物体A 的速度为多大?

(2)弹簧弹性势能的最大值是多少?

(3)A 的速度方向有可能向左吗?为什么?

【解析】(1)当A 、B 、C 三者的速度相等(设为v A ′)时弹簧的弹性势能最大,由于A 、B 、C 三者组成的系统动量守恒,则有:

(m A +m B )v =(m A +m B +m C )v A ′

解得:v A ′=(2+2)×62+2+4

m/s =3 m/s . (2)B 、C 发生碰撞时,B 、C 组成的系统动量守恒,设碰后瞬间B 、C 两者的速度为v ′,则有:

m B v =(m B +m C )v ′

解得:v ′=2×62+4

=2 m/s A 的速度为v A ′时弹簧的弹性势能最大,设其值为E p ,根据能量守恒定律得:

E p =12(m B +m C )v ′2+12m A v 2-12(m A +m B +m C )v A ′2

=12 J .

(3)方法一 A 不可能向左运动.

根据系统动量守恒有:(m A +m B )v =m A v A +(m B +m C )v B

设A 向左,则v A <0,v B >4 m/s

则B 、C 发生碰撞后,A 、B 、C 三者的动能之和为:

E ′=12m A v 2A +12(m B +m C )v 2B >12

(m B +m C )v 2B =48 J 实际上系统的机械能为:

E =E p +12

(m A +m B +m C )v A ′2=12 J +36 J =48 J 根据能量守恒定律可知,E ′>E 是不可能的,所以A 不可能向左运动.

方法二 B 、C 碰撞后系统的运动可以看做整体向右匀速运动与A 、B 和C 相对振动的合成(即相当于在匀速运动的车厢中两物块相对振动)

由(1)知整体匀速运动的速度v 0=v A ′=3 m/s

图9-16乙

取以v 0=3 m/s 匀速运动的物体为参考系,可知弹簧处于原长时,A 、B 和C 相对振动的速率最大,分别为:

v AO =v -v 0=3 m/s

v BO =|v ′-v 0|=1 m/s

由此可画出A 、B 、C 的速度随时间变化的图象如图9-16乙所示,故A 不可能有向左运动的时刻.

[答案] (1)3 m/s (2)12 J (3)不可能,理由略

【点评】①要清晰地想象、理解研究对象的运动过程:相当于在以3 m/s 匀速行驶的车厢内,A 、B 和C 做相对弹簧上某点的简谐振动,振动的最大速率分别为3 m/s 、1 m/s .

②当弹簧由压缩恢复至原长时,A 最有可能向左运动,但此时A 的速度为零.

●例8 探究某种笔的弹跳问题时,把笔分为轻质弹簧、内芯和外壳三部分,其中内芯和外壳质量分别为m 和4m .笔的弹跳过程分为三个阶段:

图9-17

①把笔竖直倒立于水平硬桌面,下压外壳使其下端接触桌面(如图9-17甲所示); ②由静止释放,外壳竖直上升到下端距桌面高度为h 1时,与静止的内芯碰撞(如图9-17乙所示);

③碰后,内芯与外壳以共同的速度一起上升到外壳下端距桌面最大高度为h 2处(如图9-17丙所示).

设内芯与外壳的撞击力远大于笔所受重力,不计摩擦与空气阻力,重力加速度为g .求:

(1)外壳与内芯碰撞后瞬间的共同速度大小.

(2)从外壳离开桌面到碰撞前瞬间,弹簧做的功.

(3)从外壳下端离开桌面到上升至h 2处,笔损失的机械能.

[2009年高考·重庆理综卷]

【解析】设外壳上升到h 1时速度的大小为v 1,外壳与内芯碰撞后瞬间的共同速度大小

为v 2.

(1)对外壳和内芯,从撞后达到共同速度到上升至h 2处,由动能定理得:

(4m +m )g (h 2-h 1)=12

m +m )v 22-0 解得:v 2=2g (h 2-h 1).

(2)外壳与内芯在碰撞过程中动量守恒,即:

4m v 1=(4m +m )v 2

将v 2代入得:v 1=54

2g (h 2-h 1) 设弹簧做的功为W ,对外壳应用动能定理有:

W -4mgh 1=12×4m v 21 将v 1代入得:W =14

mg (25h 2-9h 1). (3)由于外壳和内芯达到共同速度后上升至高度h 2的过程中机械能守恒,只有在外壳和

内芯的碰撞中有能量损失,损失的能量E 损=12×4m v 21-12(4m +m )v 22 将v 1、v 2代入得:E 损=54

mg (h 2-h 1). [答案] (1)2g (h 2-h 1) (2)14mg (25h 2-9h 1) (3)54

mg (h 2-h 1) 由以上例题可以看出,弹簧类试题的确是培养和训练学生的物理思维、反映和开发学生的学习潜能的优秀试题.弹簧与相连物体构成的系统所表现出来的运动状态的变化,为学生充分运用物理概念和规律(牛顿第二定律、动能定理、机械能守恒定律、动量定理、动量守恒定律)巧妙解决物理问题、施展自身才华提供了广阔空间,当然也是区分学生能力强弱、拉大差距、选拔人才的一种常规题型.因此,弹簧试题也就成为高考物理题中的一类重要的、独具特色的考题.

四、传送带问题

从1990年以后出版的各种版本的高中物理教科书中均有皮带传输机的插图.皮带传送类问题在现代生产生活中的应用非常广泛.这类问题中物体所受的摩擦力的大小和方向、运动性质都具有变化性,涉及力、相对运动、能量转化等各方面的知识,能较好地考查学生分析物理过程及应用物理规律解答物理问题的能力.如2003年高考全国理综卷第34题、2005年高考全国理综卷Ⅰ第24题等.

对于滑块静止放在匀速传动的传送带上的模型,以下结论要清楚地理解并熟记:

(1)滑块加速过程的位移等于滑块与传送带相对滑动的距离;

(2)对于水平传送带,滑块加速过程中传送带对其做的功等于这一过程由摩擦产生的热量,即传送装置在这一过程需额外(相对空载)做的功W =m v 2=2E k =2Q 摩.

●例9 如图9-18甲所示,物块从光滑曲面上的P 点自由滑下,通过粗糙的静止水平传送带后落到地面上的Q 点.若传送带的皮带轮沿逆时针方向匀速运动(使传送带随之运动),物块仍从P 点自由滑下,则( )

图9-18甲

A .物块有可能不落到地面上

B .物块仍将落在Q 点

C .物块将会落在Q 点的左边

D .物块将会落在Q 点的右边

【解析】如图9-18乙所示,设物块滑上水平传送带上的初速度为v 0,物块与皮带之间的动摩擦因数为μ,则:

图9-18乙

物块在皮带上做匀减速运动的加速度大小a =μmg m

=μg 物块滑至传送带右端的速度为:

v =v 02-2μgs

物块滑至传送带右端这一过程的时间可由方程s =v 0t -12

μgt 2解得. 当皮带向左匀速传送时,滑块在皮带上的摩擦力也为:

f =μmg

物块在皮带上做匀减速运动的加速度大小为:

a 1′=μmg m

=μg 则物块滑至传送带右端的速度v ′=v 02-2μgs =v

物块滑至传送带右端这一过程的时间同样可由方程s =v 0t -12

μgt 2 解得. 由以上分析可知物块仍将落在Q 点,选项B 正确.

[答案] B

【点评】对于本例应深刻理解好以下两点:

①滑动摩擦力f =μF N ,与相对滑动的速度或接触面积均无关;

②两次滑行的初速度(都以地面为参考系)相等,加速度相等,故运动过程完全相同. 我们延伸开来思考,物块在皮带上的运动可理解为初速度为v 0的物块受到反方向的大小为μmg 的力F 的作用,与该力的施力物体做什么运动没有关系.

●例10 如图9-19所示,足够长的水平传送带始终以v =3 m/s 的速度向左运动,传送带上有一质量M =2 kg 的小木盒A ,A 与传送带之间的动摩擦因数μ=0.3.开始时,A 与传送带之间保持相对静止.现有两个光滑的质量均为m =1 kg 的小球先后相隔Δt =3 s 自传送带的左端出发,以v 0=15 m/s 的速度在传送带上向右运动.第1个球与木盒相遇后立即进

入盒中并与盒保持相对静止;第2个球出发后历时Δt 1=13

s 才与木盒相遇.取g =10 m/s 2,问:

图9-19

(1)第1个球与木盒相遇后瞬间,两者共同运动的速度为多大?

(2)第1个球出发后经过多长时间与木盒相遇?

(3)在木盒与第1个球相遇至与第2个球相遇的过程中,由于木盒与传送带间的摩擦而产生的热量是多少?

【解析】(1)设第1个球与木盒相遇后瞬间,两者共同运动的速度为v 1,根据动量守恒定律得:

m v 0-M v =(m +M )v 1

解得:v 1=3 m/s ,方向向右.

(2)设第1个球与木盒的相遇点离传送带左端的距离为s ,第1个球经过时间t 0与木盒相遇,则有:

t 0=s v 0

设第1个球进入木盒后两者共同运动的加速度大小为a ,根据牛顿第二定律得: μ(m +M )g =(m +M )a

解得:a =μg =3 m/s 2,方向向左

设木盒减速运动的时间为t 1,加速到与传送带具有相同的速度的时间为t 2,则:

t 1=t 2=Δv a

=1 s 故木盒在2 s 内的位移为零

依题意可知:s =v 0Δt 1+v (Δt +Δt 1-t 1-t 2-t 0)

解得:s =7.5 m ,t 0=0.5 s .

(3)在木盒与第1个球相遇至与第2个球相遇的这一过程中,设传送带的位移为s ′,木盒的位移为s 1,则:

s ′=v (Δt +Δt 1-t 0)=8.5 m

s 1=v (Δt +Δt 1-t 1-t 2-t 0)=2.5 m

故木盒相对于传送带的位移为:Δs =s ′-s 1=6 m

则木盒与传送带间因摩擦而产生的热量为:

Q =f Δs =54 J .

[答案] (1)3 m/s (2)0.5 s (3)54 J

【点评】本题解析的关键在于:①对物理过程理解清楚;②求相对路程的方法.

(完整word版)高中物理竞赛的数学基础

普通物理的数学基础 选自赵凯华老师新概念力学 一、微积分初步 物理学研究的是物质的运动规律,因此我们经常遇到的物理量大多数是变量,而我们要研究的正是一些变量彼此间的联系。这样,微积分这个数学工具就成为必要的了。我们考虑到,读者在学习基础物理课时若能较早地掌握一些微积分的初步知识,对于物理学的一些基本概念和规律的深入理解是很有好处的。所以我们在这里先简单地介绍一下微积分中最基本的概念和简单的计算方法,在讲述方法上不求严格和完整,而是较多地借助于直观并密切地结合物理课的需要。至于更系统和更深入地掌握微积分的知识和方法,读者将通过高等数学课程的学习去完成。 §1.函数及其图形 本节中的不少内容读者在初等数学及中学物理课中已学过了,现在我们只是把它们联系起来复习一下。 1.1函数自变量和因变量绝对常量和任意常量 在数学中函数的功能是这样定义的:有两个互相联系的变量x和y,如果每当变量x取定了某个数值后,按照一定的规律就可以确定y的对应值,我们就称y是x的函数,并记作 y=f(x),(A.1) 其中x叫做自变量,y叫做因变量,f是一个函数记号,它表示y和x数值的对应关系。有时把y=f(x)也记作y=y(x)。如果在同一个问题中遇到几个不同形式的函数,我们也可以用其它字母作为函数记号, 如 (x)、ψ(x)等等。① 常见的函数可以用公式来表达,例如 e x等等。 在函数的表达式中,除变量外,还往往包含一些不变的量,如上面 切问题中出现时数值都是确定不变的,这类常量叫做绝对常量;另一类如a、b、c等,它们的数值需要在具体问题中具体给定,这类常量叫做任意常量。

在数学中经常用拉丁字母中最前面几个(如a、b、c)代表任意常量,最后面几个(x、y、z)代表变量。 当y=f(x)的具体形式给定后,我们就可以确定与自变量的任一特定值x0相对应的函数值f(x0)。例如: (1)若y=f(x)=3+2x,则当x=-2时y=f(-2)=3+2×(-2)=-1. 一般地说,当x=x0时,y=f(x0)=3+2x0. 1.2函数的图形 在解析几何学和物理学中经常用平面 上的曲线来表示两个变量之间的函数关系, 这种方法对于我们直观地了解一个函数的 特征是很有帮助的。作图的办法是先在平面 上取一直角坐标系,横轴代表自变量x,纵 轴代表因变量(函数值)y=f(x).这样一 来,把坐标为(x,y)且满足函数关系y=f (x)的那些点连接起来的轨迹就构成一条 曲线,它描绘出函数的面貌。图A-1便是上 面举的第一个例子y=f(x)=3+2x的图形,其中P1,P2,P3,P4,P5各点的坐标分别为(-2,-1)、(-1,1)、(0,3)、(1,5)、(2,7),各点连接成一根直线。图A-2是第二个例子 各点连接成双曲线的一支。 1.3物理学中函数的实例 反映任何一个物理规律的公式都是表达变量与变量之间的函数关系的。下面我们举几个例子。 (1)匀速直线运动公式 s=s0+vt,(A.2) 此式表达了物体作匀速直线运动时的位置s随时间t变化的规律,在这里t相当于自变量x,s相当于因变量y,s是t的函数。因此我们记作s=s(t)=s0+vt,(A.3) 式中初始位置s0和速度v是任意常量,s0与坐标原点的选择有关,v对于每个匀速直线运动有一定的值,但对于不同的匀速直线运动可以取不同的值。

(完整word版)高中物理传送带模型总结

“传送带模型” 1.模型特征一个物体以速度v0(v0≥0)在另一个匀速运动的物体上开始运动的力学系统可看做“传送带”模型,如图(a)、(b)、(c)所示. 2.建模指导 水平传送带问题:求解的关键在于对物体所受的摩擦力进行正确的分析判断.判断摩擦力时要注意比较物体的运动速度与传送带的速度,也就是分析物体在运动位移x(对地)的过程中速度是否和传送带速度相等.物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻. 水平传送带模型: 1.传送带是一种常用的运输工具,被广泛应用于矿山、码头、货场、车站、机场等.如图所示为火车站使用的传送带示意图.绷紧的传送带水平部分长度L=5 m,并以v0=2 m/s的速度匀速向右运动.现将一个可视为质点的旅行包无初速度地轻放在传送带的左端,已知旅行包与传送带之间的动摩擦因数μ=0.2,g取10 m/s2 .(1)求旅行包经过多长时间到达传送带的右端; (2)若要旅行包从左端运动到右端所用时间最短,则传送带速度的大小应满足什么条件?最短时间是多少? 2.如图所示,一质量为m=0.5kg的小物体从足够高的光滑曲面上自由滑下,然后滑上一水平传送带。已知物体与传送带之间的动摩擦因数为μ=0.2,传送带水平部分的长度L=5m,两端的传动轮半径为R=0.2m,在电动机的带动下始终以ω=15/rads的角速度沿顺时针匀速转运, 传送带下表面离地面的高度h不变。如果物体开始沿曲面下滑时距传送带表面 的高度为H,初速度为零,g取10m/s2.求: (1)当H=0.2m时,物体通过传送带过程中,电动机多消耗的电能。 (2)当H=1.25m时,物体通过传送带后,在传送带上留下的划痕的长度。 (3) H在什么范围内时,物体离开传送带后的落地点在同一位置。

高中物理学习中常用的数学知识专题

高中物理学习中常用的数学知识专题 1、角度的单位——弧度(rad ) ①定义:在圆中,长度等于半径的弧长所对的圆心角为1弧度(1rad )。 ②定义式:l r θ= 1rad=57.30 ③几个特殊角的弧度值: a. 30 (rad)6 π = o b. 45 (rad)4π = o c. 60 (rad)3 π = o d. 90 (rad)2π=o e. 2120 (rad)3π=o f. 5150 (rad)6 π=o g. 180 (rad)π=o h. 3270 (rad)2 π=o I. 3602 (rad)π=o 2、三角函数知识: ①几种三角函数的定义: 正弦:sin a c θ= 余弦:cos b c θ= 正切:tan a b θ= 余切:cot b a θ= ②关系:2 2 sin cos 1θθ+= sin tan cos θ θθ = cos cot sin θθθ= 1 tan cot θθ = ③诱导公式: sin(-θ)=sin θ cos(-θ)=-cos θ tan(-θ)= -tan θ cot (-θ)= -cot θ sin(900-θ)=cos θ cos(900-θ)=sin θ tan(900-θ)=cot θ cot (900-θ)=tan θ sin(1800-θ)=sin θ cos(1800-θ)=-cos θ tan(1800-θ)= -tan θ cot (1800-θ)= -cot θ ④几个特殊角的三角函数值: θ a b c

⑤二倍角公式:(含万能公式) θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ⑥半角公式:(符号的选择由 2 θ 所在的象限确定) 2cos 12 sin θθ -± = 2 cos 12sin 2θθ-= 2cos 12cos θθ+±= 2cos 12 cos 2 θθ += 2sin 2cos 12θθ=- 2 cos 2cos 12θθ=+ 2 sin 2cos )2sin 2(cos sin 12θ θθθθ±=±=± θ θθθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg ⑦和差角公式 βαβαβαsin cos cos sin )sin(±=± βαβαβαsin sin cos cos )cos(μ=±

高中物理模型总结汇总

l v 0 v S v 0 A B v 0 A B v 0 l 滑块、子弹打木块模型之一 子弹打木块模型:包括一物块在木板上滑动等。μNS 相=ΔE k 系统=Q ,Q 为摩擦在系统中产生的热量。②小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动 :包括小车上悬一单摆单摆的摆动过程等。小球上升到最高点时系统有共同速度(或有共同的水平速度);系统内弹力做功时,不将机械能转化为其它形式的能,因此过程中系统机械能守恒。 例题:质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。 解:如图,设子弹穿过木块时所受阻力为f ,突出时木块速度为V ,位移为S ,则子弹位移为(S+l)。水平方向不受外力,由动量守恒定律得:mv 0=mv+MV ① 由动能定理,对子弹 -f(s+l )=2 022 121 mv mv - ② 对木块 fs=02 12-MV ③ 由①式得 v= )(0v v M m - 代入③式有 fs=2022 )(21v v M m M -? ④ ②+④得 f l =})]([2121{212 12 1 2 120220222 v v M m M mv mv MV mv mv -+-=-- 由能量守恒知,系统减少的机械能等于子弹与木块摩擦而产生的内能。即Q=f l ,l 为子弹现木块的相对位移。 结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。即 Q=ΔE 系统=μNS 相 其分量式为:Q=f 1S 相1+f 2S 相2+……+f n S 相n =ΔE 系统 1.在光滑水平面上并排放两个相同的木板,长度均为L=1.00m ,一质量 与木板相同的金属块,以v 0=2.00m/s 的初速度向右滑上木板A ,金属 块与木板间动摩擦因数为μ=0.1,g 取10m/s 2 。求两木板的最后速度。 2.如图示,一质量为M 长为l 的长方形木块B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,现以地面为参照物,给A 和B 以大小相等、方向相反的初速度 (如图),使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离 B 板。以地面为参照系。 ⑴若已知A 和B 的初速度大小为v 0,求它们最后速度的大小和方向; ⑵若初速度的大小未知,求小木块A 向左运动到最远处(从地面上看)到出发点的距离。 3.一平直木板C 静止在光滑水平面上,今有两小物块A 和B 分别以2v 0和v 0的初速度沿同一直线从长木板

(完整版)高中物理模型解题

高中物理模型解题 模型解题归类 一、刹车类问题 匀减速到速度为零即停止运动,加速度a突然消失,求解时要注意确定其实际运动时间。如果问题涉及到最后阶段(到速度为零)的运动,可把这个阶段看成反向、初速度为零、加速度不变的匀加速直线运动。 【题1】汽车刹车后,停止转动的轮胎在地面上发生滑动,可以明显地看出滑动的痕迹,即常说的刹车线。由刹车线长短可以得知汽车刹车前的速度的大小,因此刹车线的长度是分析交通事故的一个重要依据。若汽车轮胎跟地面的动摩擦因数是0.7,刹车线长是14m,汽车在紧急刹车前的速度是否超过事故路段的最高限速50km/h? 【题2】一辆汽车以72km/h速率行驶,现因故紧急刹车并最终终止运动,已知汽车刹车过程加速度的大小为5m/s2,则从开始刹车经过5秒汽车通过的位移是多大 二、类竖直上抛运动问题 物体先做匀加速运动,到速度为零后,反向做匀加速运动,加速过程的加速度与减速运动过程的加速度相同。此类问题要注意到过程的对称性,解题时可以分为上升过程和下落过程,也可以取整个过程求解。 【题1】一滑块以20m/s滑上一足够长的斜面,已知滑块加速度的大小为5m/s2,则经过5秒滑块通过的位移是多大? 【题2】物体沿光滑斜面匀减速上滑,加速度大小为4m/s2,6s后又返回原点。那么下述结论正确的是() A物体开始沿斜面上滑时的速度为12m/s B物体开始沿斜面上滑时的速度为10m/s C物体沿斜面上滑的最大位移是18m D物体沿斜面上滑的最大位移是15m 三、追及相遇问题 两物体在同一直线上同向运动时,由于二者速度关系的变化,会导致二者之间的距离的变化,出现追及相撞的现象。两物体在同一直线上相向运动时,会出现相遇的现象。解决此类问题的关键是两者的位移关系,即抓住:“两物体同时出现在空间上的同一点。分析方法有:物理分析法、极值法、图像法。常见追及模型有两个:速度大者(减速)追速度小者(匀速)、速度小者(初速度为零的匀加速直线运动)追速度大者(匀速)、 1、速度大者(减速)追速度小者(匀速):(有三种情况)

高中物理模型总结整理

l v 0 v S v 0 A B v 0 A B v 0 l 滑块、子弹打木块模型之一 子弹打木块模型:包括一物块在木板上滑动等。μNS 相=ΔE k 系统=Q ,Q 为摩擦在系统中产生的热量。②小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动 :包括小车上悬一单摆单摆的摆动过程等。小球上升到最高点时系统有共同速度(或有共同的水平速度);系统内弹力做功时,不将机械能转化为其它形式的能,因此过程中系统机械能守恒。 例题:质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。 解:如图,设子弹穿过木块时所受阻力为f ,突出时木块速度为V ,位移为S ,则子弹位移为(S+l)。水平方向不受外力,由动量守恒定律得:mv 0=mv+MV ① 由动能定理,对子弹 -f(s+l )=2022121 mv mv - ② 对木块 fs=0212-MV ③ 由①式得 v= )(0v v M m - 代入③式有 fs=2022)(21v v M m M -? ④ ②+④得 f l =})]([2121{21212121 202202220 v v M m M mv mv MV mv mv -+-=-- 由能量守恒知,系统减少的机械能等于子弹与木块摩擦而产生的内能。即Q=f l ,l 为子弹现木块的相对位移。 结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。即 Q=ΔE 系统=μNS 相 其分量式为:Q=f 1S 相1+f 2S 相2+……+f n S 相n =ΔE 系统 1.在光滑水平面上并排放两个相同的木板,长度均为L=1.00m ,一质量 与木板相同的金属块,以v 0=2.00m/s 的初速度向右滑上木板A ,金属 块与木板间动摩擦因数为μ=0.1,g 取10m/s 2。求两木板的最后速度。 2.如图示,一质量为M 长为l 的长方形木块B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,现以地面为参照物,给A 和B 以大小相等、方向相反的初速度 (如图),使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离 B 板。以地面为参照系。 ⑴若已知A 和B 的初速度大小为v 0,求它们最后速度的大小和方向; ⑵若初速度的大小未知,求小木块A 向左运动到最远处(从地面上看)到出发点的距离。 3.一平直木板C 静止在光滑水平面上,今有两小物块A 和B 分别以2v 0和v 0的初速度沿同一直线从长木板

2010年经典高中物理模型--常见弹簧类问题分析

常见弹簧类问题分析 高考要求 轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视. 弹簧类命题突破要点 1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化. 2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变. 3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义 进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-(21kx 22-21kx 12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p =2 1kx 2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解. 下面就按平衡、动力学、能量、振动、应用类等中常见的弹簧问题进行分析。 一、与物体平衡相关的弹簧问题 1.(1999年,全国)如图示,两木块的质量分别为m 1和m 2,两轻质 弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴 接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离 开上面弹簧.在这过程中下面木块移动的距离为( ) A.m 1g/k 1 B.m 2g/k 2 C.m 1g/k 2 D.m 2g/k 2 此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧 形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m 1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m 1 + m 2)g /k 2,而m l 刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m 2g /k 2,因而m 2移动△x =(m 1 + m 2)·g /k 2 - m 2g /k 2=m l g

(完整版)高中物理学习中常用的数学知识

高中物理学习中常用的数学知识 1、角度的单位——弧度(rad ) ①定义:在圆中,长度等于半径的弧长所对的圆心角为1弧度(1rad )。 ②定义式:l r θ= 1rad=57.30 ③几个特殊角的弧度值: a. 30 (rad)6 π = o b. 45 (rad)4π = o c. 60 (rad)3 π = o d. 90 (rad)2π=o e. 2120 (rad)3π=o f. 5150 (rad)6 π=o g. 180 (rad)π=o h. 3270 (rad)2 π=o I. 3602 (rad)π=o 2、三角函数知识: ①几种三角函数的定义: 正弦:sin a c θ= 余弦:cos b c θ= 正切:tan a b θ= 余切:cot b a θ= ②关系:2 2 sin cos 1θθ+= sin tan cos θ θθ = cos cot sin θθθ= 1 tan cot θθ = ③诱导公式: sin(-θ)=sin θ cos(-θ)=-cos θ tan(-θ)= -tan θ cot (-θ)= -cot θ sin(900-θ)=cos θ cos(900-θ)=sin θ tan(900-θ)=cot θ cot (900-θ)=tan θ sin(1800-θ)=sin θ cos(1800-θ)=-cos θ tan(1800-θ)= -tan θ cot (1800-θ)= -cot θ θ a b c

θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ⑥半角公式:(符号的选择由 2 θ 所在的象限确定) 2cos 12 sin θθ -± = 2cos 12sin 2θθ-= 2cos 12cos θθ+±= 2cos 12 cos 2 θθ += 2sin 2cos 12θθ=- 2 cos 2cos 12θθ=+ 2 sin 2cos )2sin 2(cos sin 12θ θθθθ±=±=± θ θθθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg ⑦和差角公式 βαβαβαsin cos cos sin )sin(±=± βαβαβαsin sin cos cos )cos(μ=± β αβ αβαtg tg tg tg tg ?±= ±μ1)( )1)((βαβαβαtg tg tg tg tg ?±=±μ γ βγαβαγ βαγβαγβαtg tg tg tg tg tg tg tg tg tg tg tg tg ?-?-?-??-++= ++1)( 其中当A+B+C=π时,有:

关于高级高中物理模型总结归纳

1、追及、相遇模型 火车甲正以速度v 1向前行驶,司机突然发现前方距甲d 处有火车乙正以较小速度v 2同向匀速行驶,于是他立即刹车,使火车做匀减速运动。为了使两车不相撞,加速度a 应满足什么条件? 故不相撞的条件为d v v a 2)(2 21-≥ 2、传送带问题 1.(14分)如图所示,水平传送带水平段长L =6米,两皮带轮直径均为D=0.2米,距地面高度H=5米,与传送带等高的光滑平台上有一个小物体以v 0=5m/s 的初速度滑上传送带,物块与传送带间的动摩擦因数为,g=10m/s 2,求: (1)若传送带静止,物块滑到B 端作平抛 运动 的水平距离S 0。 (2)当皮带轮匀速转动,角速度为ω,物 体平抛运动水平位移s ;以不同的角速度ω值重复 上述过程,得到一组对应的ω,s 值,设皮带轮顺时针转动时ω>0,逆时针转动时ω<0,并画出s —ω关系图象。 解:(1))(12110m g h v t v s === (2)综上s —ω关系为:?? ? ??≥≤≤≤s rad s rad s rad s /707/70101.0/101ωωω ω 2.(10分)如图所示,在工厂的流水线上安装有水平传送带,用水平传送带传送工件,可以大大提高工作效率,水平传送带以的 工 恒定的速率s m v /2=运送质量为kg m 5.0=

件,工件都是以s m v /10=的初速度从A 位置滑上传送带,工件与传送带之间的动摩擦因数2.0=μ,每当前一个工件在传送带上停止相对滑动时,后一个工件立即滑上传送带,取2/10s m g =,求: (1)工件滑上传送带后多长时间停止相对滑动 (2)在正常运行状态下传送带上相邻工件间的距离 (3)在传送带上摩擦力对每个工件做的功 (4)每个工件与传送带之间由于摩擦产生的内能 解:(1)工作停止相对滑动前的加速度2/2s m g a ==μ ① 由at v v t +=0可知:s s a v v t t 5.02 1 20=-=-= ② (2)正常运行状态下传送带上相邻工件间的距离m m vt s 15.02=?==? ③ (3)J J mv mv W 75.0)12(5.02 12121 222 02=-??=-= ④ (4)工件停止相对滑动前相对于传送带滑行的距离 )21(20at t v vt s +-=m )5.022 1 5.01(5.022??+?-?=m m 25.0)75.01(=-=⑤ J mgs fs E 25.0===μ内 ⑥ 3、汽车启动问题 匀加速启动 恒定功率启动 4、行星运动问题 [例题1] 如图6-1所示,在与一质量为M ,半径为R ,密度均匀的球体距离为R 处有一质量为m 的质点,此时M 对m 的万有引力为F 1.当从球M 中挖去一个半径为R/2的小球体时,剩下部分对m 的万有引力为F 2,则F 1与F 2的比是多少?

高中常用物理模型及解题思路

高中常用物理模型及解题思路 ◆1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。解决这类问题的基本方法是整体法和隔离法。 整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程 隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。 连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒) 与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。 平面、斜面、竖直都一样。只要两物体保持相对静止 记住:N= 211212 m F m F m m ++ (N 为两物体间相互作用力), 一起加速运动的物体的分子m 1F 2和m 2F 1两项的规律并能应用?F 2 12m m m N += 讨论:①F 1≠0;F 2=0 122F=(m +m )a N=m a N= 2 12 m F m m + ② F 1≠0;F 2≠0 N= 211212 m F m m m F ++ (20F =就是上面的情 况) F=211221m m g)(m m g)(m m ++ F=122112 m (m )m (m gsin )m m g θ++ F=A B B 12 m (m )m F m m g ++ F 1>F 2 m 1>m 2 N 1

经典高中物理模型--打木块模型之一

l v 0 v S v 0 A B v 0 A B v 0 l 滑块、子弹打木块模型之一 子弹打木块模型:包括一物块在木板上滑动等。μNS 相=ΔE k 系统=Q ,Q 为摩擦在系统中产生的热量。②小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动 :包括小车上悬一单摆单摆的摆动过程等。小球上升到最高点时系统有共同速度(或有共同的水平速度);系统内弹力做功时,不将机械能转化为其它形式的能,因此过程中系统机械能守恒。 例题:质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。 解:如图,设子弹穿过木块时所受阻力为f ,突出时木块速度为V ,位移为S ,则子弹位移为(S+l)。水平方向不受外力,由动量守恒定律得:mv 0=mv+MV ① 由动能定理,对子弹 -f(s+l )=2022 121mv mv - ② 对木块 fs=0212-MV ③ 由①式得 v=)(0v v M m - 代入③式有 fs=2022)(21v v M m M -? ④ ②+④得 f l =})]([2121{21212121202202220v v M m M mv mv MV mv mv -+-=-- 由能量守恒知,系统减少的机械能等于子弹与木块摩擦而产生的内能。即Q=f l ,l 为子弹现木块的相对位移。 结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。即 Q=ΔE 系统=μNS 相 其分量式为:Q=f 1S 相1+f 2S 相2+……+f n S 相n =ΔE 系统 1.在光滑水平面上并排放两个相同的木板,长度均为L=1.00m ,一质量 与木板相同的金属块,以v 0=2.00m/s 的初速度向右滑上木板A ,金属 块与木板间动摩擦因数为μ=0.1,g 取10m/s 2。求两木板的最后速度。 2.如图示,一质量为M 长为l 的长方形木块B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,现以地面为参照物,给A 和B 以大小相等、方向相反的初速度 (如图),使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离 B 板。以地面为参照系。 ⑴若已知A 和B 的初速度大小为v 0,求它们最后速度的大小和方向; ⑵若初速度的大小未知,求小木块A 向左运动到最远处(从地面上看)到出发点的距离。

高中物理连体模型总结

精讲3 牛顿运动定律连体问题 ?在实际问题中,常常会碰到几个物体(连接)在一起在外力作用下运动,求解它们的运动规律及所受外力和相互作用力,这类问题被称为连接体问 题。 常见的连体模型:①用轻绳连接②直接接触 ③靠摩擦接触 a

连接体常会处于某种相同的运动状态,如处于平衡态或以相同的加速度运动。处理方法:整体法与隔离法相结合 整体法:就是把整个系统作为一个研究对象来分析的方法。不必考虑系统内力的影响,只考虑系统受到的外力,根据牛顿第二定律列方程求解. 例1:如图所示,U形框B放在粗糙斜面上刚好静止。若将物体A放入放入U形框B内,问B是否静止。 隔离法:是把系统中的各个部分(或某一部分)隔离,作为一个单独的研究对象来分析的方法。 此时系统内部各物体间的作用力(内力)就可能成为研究对象的外力,在分析时要加以注意。需要求内力时,一般要用隔离法。

例2 如图所示,为研究a与F、m关系的实验装置,已知A、B质量分别为m、M,当一切摩擦力不计时,求绳子拉力。原来说F约为mg,为什么? 拓展:质量分别为m=2kg和M=3kg的物体A和B,挂在弹簧秤下方的定滑轮上,如图所示,当B加速下落时,弹簧秤的示数是。(g取10m/s2) 例3:用力F推,质量为M的物块A和质量为m的物块B,使两物体一起在光滑水平面上前进时,求物体M对m的作用力F N。

若两物体与地面摩擦因数均为μ时,相互作用力F N是否改变?为什么? 例4.如图所示,质量为M的木箱放在水平面上,木箱中的立杆上套着一个质量为m的小球。开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的一半,则小球在下滑过程中,木箱对地面的压力是多少? 拓展:如图所示,A、B的质量分别为m1和m2,叠放于光滑的水平面上,现用水平力拉A时,A、B一起运动的最大加速度为a1,若用水平力改拉B物体时,A,B一起运动的最大为a2,则a1:a2等于() A.1:1 B.m1:m2 C.m2:m1D.m12:m22

高中物理解题模型详解总结

高考物理解题模型 目录 第一章运动和力................................................. 一、追及、相遇模型............................................ 二、先加速后减速模型.......................................... 三、斜面模型................................................. 四、挂件模型................................................. 五、弹簧模型(动力学)........................................ 第二章圆周运动................................................. 一、水平方向的圆盘模型........................................ 二、行星模型................................................. 第三章功和能 ................................................... 一、水平方向的弹性碰撞........................................ 二、水平方向的非弹性碰撞...................................... 三、人船模型................................................. 四、爆炸反冲模型 ............................................. 第四章力学综合................................................. 一、解题模型: ............................................... 二、滑轮模型................................................. 三、渡河模型................................................. 第五章电路...................................................... 一、电路的动态变化............................................ 二、交变电流................................................. 第六章电磁场 ................................................... 一、电磁场中的单杆模型........................................ 二、电磁流量计模型............................................ 三、回旋加速模型 ............................................. 四、磁偏转模型 ...............................................

柱体模型在流体中的应用

柱体模型在流体中的应用 吴中区木渎第三中学陈丽金 一、柱体模型的提出 在中学物理中,有一些实际问题与流体有关。由于流体具有流动性、连续性等特点,在求解以流体为物理情景的问题时,只要抓住流体的特点,建立柱体模型,则往往可以使问题简单化,甚至格式化。 二、柱体模型 设S为与流体流动方向垂直的某一截面 的面积,则在△t时间内,流过这一截面的 流体的体积可看成一个小个圆柱体,如图1 所示柱体的棱长为v o△t,体积为V=Sv o△t,v o△t 质量为△m=ρSv o△t。图1 三、柱体模型的应用 例1、水力采煤就是利用从高压水枪喷出来的强力水柱冲击煤层而使煤层破裂。设所用水枪的直径为d,水速为v o,水的密度为ρ,水柱垂直地冲击到竖直煤壁上后沿竖直煤壁流下,求水柱施于煤层上的冲力大小。 解析:设在△t时间内射到煤层上的水的质量为△m,以S表示水柱的截面积,则△m=ρSv o△t=ρ·πd2/4·v o△t 这部分水经△t时间,其水平方向的动量有△m v o变为零,设煤层对水的作用力为F,以水速方向为正方向,根据动量定理,有 F△t = 0-△m v o 则F=-πd2ρv o2/4 根据牛顿第三定律,水柱对煤层的作用力为F’=-F=πd2ρv2/4 例2、风能是一种清洁能源,高原地区可利用风能发电。某地的平均风速是5.0m/s,已知空气的密度是1.2kg/m3,此地有一风车,它的车叶转动时形成半径为20m的圆面,假如这个风车能将此圆圈内10%的气流动能转变成电能,这个风车平均每秒内发出的电能是

多少? 解析:风车是一种能截获流动的空气所具有的动能并将叶片迎风扫掠面积内的一部分动能转化为有用机械能(再转化为电能)的装置。 设S为与空气流动方向垂直的车叶转动时形成的圆面,在单位时间内穿过风车的动能P s= mv o2/2 =ρSv o3/2 =πr2ρv o3/ 2 则这个风车平均每秒发出的电能为 P电= η·P s =ηπr2ρv o3/ 2= 9.42KW 例3、某地拟建一水电站代替原有年发电12.5万千瓦的火电厂。设平均流量为Qm3/s,水流落差为H,发电效率为η。则坝高至少要多少? 解析:取△t时间内下落的水为研究对象,这部分水的质量为 △m=ρQ△t 当这部分水下落H高度时,单位时间内减少的重力势能为 P s=ρQ g H 则单位时间内的发电量为 P = η·P s =ηρQ g H 故坝高即水流落差 H= P/ηρQ g =1.25×104/(ηQ) 例4、为了诊断病人的心脏功能和动脉中血液粘滞情况,需要测量血管中血液的流速与流量。如图为电磁流量计示意图。将血管置于磁感应强度为B的匀强磁场中,测得血管两侧ab电压为U和血管直径为D,求血液在血管中的流量Q为多少? 解析:血液是带电体,当血液以速率v在血管中定向流动时,在△t时间内流过血管某一截面S的血液量为V,则 V = Sv△t =πD2v△t /4 又血管两侧电压U满足 U = BDv 故血液在血管中的流量

(完整版)高中物理中常用的三角函数数学模型(强烈推荐)

高中物理中常用的三角函数数学模型 数学作为工具学科,其思想、方法和知识始终渗透贯穿于整个物理学习和研究的过程中,为物理概念、定律的表述提供简洁、精确的数学语言,为学生进行抽象思维和逻辑推理提供有效方法.为物理学的数量分析和计算提供有力工具。 高考物理试题的解答离不开数学知识和方法的应用,借助物理知识渗透考查数学能力是高考命题的永恒主题。可以说任何物理试题的求解过程实质上是一个将物理问题转化为数学问题经过求解再次还原为物理结论的过程。高考物理考试大纲对学生应用数学工具解决物理问题的能力作出了明确要求。 一、三角函数的基本应用 在进行力的分解时,我们经常用到三角函数的运算.虽然三角函数学生初中已经学过,但笔者在多年的教学过程中发现,有相当一部分学生经常在这里出问题,还有一部分学生一直到高三都没把这部分搞清楚.为此,本人将自己的一些体会写出来,仅供大家参考. (一)三角函数的定义式 斜边对边正弦= 邻边 对边正切= 斜边邻边余弦= 对边 邻边余切= (二)探寻规律 1.涉及斜边与直角边的关系为“弦”类,涉及两直角边的关系为“切”类; 2.涉及“对边”为“正”类,涉及“邻边”为“余”类; 3.运算符:由直角边求斜边用“除以”,由斜边求直角边用“乘以”,为更具规律性,两直角边之间互求我们都用“乘以”. (三)速写 第一步:判断运算符是用“乘以”还是“除以”; 第二步:判断用“正”还是用“余”; 第三步:判断用“弦”还是用“切”. 即 (边)=(边)(运算符)(正/余)(弦/切) 1、由直角边求斜边 正弦 对边斜边= 余弦邻边斜边= 2、由斜边求直角边 正弦斜边对边?= 余弦斜边邻边?= 3、两直角边互求 正切邻边对边?= 余切对边邻边?= (四)典例分析 经典例题1 如图1所示,质量为m 的小球静止于斜面与竖直挡板之间,斜面倾角为θ,求小球对挡板和对斜面的压力大小分别是多少? 【解析】小球受到的重力产生的效果是压紧挡板和使球压紧斜面,重力的分解如图2所示。 θtan 1?=mg F

高考物理解题模型总结(完整资料).doc

【最新整理,下载后即可编辑】 高考物理模型

目录 第一章运动和力 (1) 一、追及、相遇模型 (1) 二、先加速后减速模型 (3) 三、斜面模型 (6) 四、挂件模型 (10) 五、弹簧模型(动力学) (17) 第二章圆周运动 (19) 一、水平方向的圆盘模型 (19) 二、行星模型 (21) 第三章功和能 (1) 一、水平方向的弹性碰撞 (1) 二、水平方向的非弹性碰撞 (5) 三、人船模型 (8) 四、爆炸反冲模型 (11) 第四章力学综合 (13) 一、解题模型: (13) 二、滑轮模型 (18) 三、渡河模型 (21) 第五章电路 (1) 一、电路的动态变化 (1) 二、交变电流 (6) 第六章电磁场 (1) 一、电磁场中的单杆模型 (1) 二、电磁流量计模型 (7) 三、回旋加速模型 (9)

四、磁偏转模型 .......................................................................................

一、追及、相遇模型 模型讲解: 1. 火车甲正以速度v 1向前行驶,司机突然发现前方距甲d 处有火 车乙正以较小速度v 2同向匀速行驶,于是他立即刹车,使火车做匀减速运动。为了使两车不相撞,加速度a 应满足什么条件? 解析:设以火车乙为参照物,则甲相对乙做初速为)(21v v -、加速度为a 的匀减速运动。若甲相对乙的速度为零时两车不相撞,则此后就不会相撞。因此,不相撞的临界条件是:甲车减速到与乙车车速相同时,甲相对乙的位移为d 。 即:d v v a ad v v 2)(2)(02 212 21-= -=--,, 故不相撞的条件为d v v a 2)(2 21-≥ 2.甲、乙两物体相距s ,在同一直线上同方向做匀减速运动,速度减为零后就保持静止不动。甲物体在前,初速度为v 1,加速度大小为a 1。乙物体在后,初速度为v 2,加速度大小为a 2且知v 1

高中物理解题中涉及的数学知识

高中物理解题中涉及的数学知识 物理和数学是联系最密切的两门学科。运用数学工具解决物理问题的能力,是中学物理教学的最基本的要求。高中物理中用到的数学方法有:方程函数的思维方法,不等式法,极限的思维方法,数形结合法,参数的思维方法,统计及近似的思维方法,矢量分析法,比例法,递推归纳法,等等。现就“力学”与“电磁学”中常用数学知识进行归纳。 Ⅰ.力学部分:静力学、运动学、动力学、万有引力、功和能量与几何、代数知识相结合,从而增大题目难度,更注重求极值的方法。 Ⅱ.电磁学部分:电磁学中的平衡、加速、偏转及能量与圆的知识、三角函数,正余弦定理、相似三角形的对应比、扇形面积、二次函数求极值(配方法或公式法)、均值不等式 、正余弦函数、积化和差、和差积化、半角倍角公式、直线方程(斜率,截距)、对称性、)sin(cos sin 22?θθθ++=+b a b a a b =?tan 、数学归纳法及数学作图等联系在一起。 第一章 解三角形 三角函数 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,则有2sin sin sin a b c R C ===A B (R 为C ?AB 的外接圆的半径) 变形公式: ::sin :sin :sin a b c C =A B ; 2、三角形面积公式:111 sin sin sin 222 C S bc ab C ac ?AB = A == B . 3、余弦定理:在 C ?AB 中,有2 2 2 2cos a b c bc =+-A ,推论:222 cos 2b c a bc +-A = 4、均值定理: 若0a >,0b >,则a b +≥,即2 a b +≥ ()2 0,02a b ab a b +??≤>> ??? ; 2 a b +称为正数a 、b a 、b 的几何平均数. 5、均值定理的应用:设x 、y 都为正数,则有 ⑴若x y s +=(和为定值),则当x y =时,积xy 取得最大值 2 4 s . ⑵若xy p =(积为定值),则当x y =时,和x y +取得最小值 1、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l r α= . 2、弧度制与角度制的换算公式:2360π= ,1180 π = . 3、若扇形的圆心角为()α α为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=, 2C r l =+,2112 2 S lr r α==. 4、角三角函数的基本关系:()221sin cos 1αα+=;()sin 2tan cos α αα =. 5、函数的诱导公式:

相关文档
最新文档