小波信号处理

小波信号处理
小波信号处理

小波去噪代码

例1: load leleccum; index = 1:1024; x = leleccum(index); %产生噪声信号 init = 2055615866; randn('seed',init); nx = x + 18*randn(size(x)); %获取消噪的阈值 [thr,sorh,keepapp] = ddencmp('den','wv',nx); %对信号进行消噪 xd = wdencmp('gbl',nx,'db4',2,thr,sorh,keepapp); subplot(221); plot(x); title('原始信号'); subplot(222); plot(nx); title('含噪信号'); subplot(223); plot(xd); title('消噪后的信号'); 例2: 本例中,首先使用函数wnoisest获取噪声方差,然后使用函数wbmpen获取小波去噪阈值,最后使用wdencmp实现信号消噪。 load leleccum; indx = 1:1024; x = leleccum(indx); %产生含噪信号 init = 2055615886; randn('seed',init); nx = x + 18*randn(size(x)); %使用小波函数'db6'对信号进行3层分解 [c,l] = wavedec(nx,3,'db6'); %估计尺度1的噪声标准差 sigma = wnoisest(c,l,1); alpha = 2; %获取消噪过程中的阈值 thr = wbmpen(c,l,sigma,alpha); keepapp = 1; %对信号进行消噪 xd = wdencmp('gbl',c,l,'db6',3,thr,'s',keepapp); subplot(221); plot(x); title('原始信号'); subplot(222); plot(nx);

小波分析的最新进展

高级数字信号处理 题目:小波分析的最新进展姓名: 学号: 年级: 专业:

小波分析的最新进展 摘要: 目前,小波分析的发展及应用引起人们的广泛关注。小波分析是国际上公认的最新时间——频率分析工具,由于其“自适应性”和“数学显微镜性质”而成为许多学科共同关注的焦点,对于信号处理及信急处理起着至关重要的作用。本文介绍了小波分析的产生和发展过程,小波及连续小波变换的概念,小波分析在信号处理中的应用以及未来的发展趋势。 Abstract At present, the development and application of wavelet analysis to cause widespread concern. Wavelet analysis is the latest international recognized -- time frequency analysis tools, due to the "adaptive" and "mathematical microscope nature" and has become the common focus of attention of many disciplines, for signal processing and signal processing plays a vital role in emergency. This paper introduces the generation and development process of the concept of wavelet analysis, wavelet and continuous wavelet transform, the application of wavelet analysis in signal processing and the development trend in the future. 关键词: 小波分析信号处理发展趋势 Key Words Wavelet analysis Signal processing Development trend 一、绪论 波分析(Wavelet Analysis)是上世纪末数学研究的重要成果之一,其在时域和频域同时具有良好的局部化性质,可以聚焦到对象的任意细节。小波分析是一种时域-频域分析,它可以根据信号不同的频率成分,在时域和空间域自动调节取样的疏密:高频率时则密,低频率时则疏。从信号分析的角度讲,小波分析相当于用一族带通滤波器对信号进行滤波,这族滤波器的特点在于其Q值(中心频率/带宽)基本相同即随着小波变换的尺度减小,滤波器的中心频率向高频移动的同时,其通带宽度也随之增加。因此,小波分析具有广泛的应用领域,在未来具有广阔的发展前景。

小波理论

小波变换 一、小波变换的基本原理及性质 1、小波是什么? 小波可以简单的描述为一种函数,这种函数在有限时间范围内变化,并且平均值为0。这种定性的描述意味着小波具有两种性质:A 、具有有限的持续时间和突变的频率和振幅;B 、在有限时间范围内平均值为0。 2、小波的“容许”条件 用一种数学的语言来定义小波,即满足“容许”条件的一种函数,“容许”条件非常重要,它限定了小波变换的可逆性。 小波本身是紧支撑的,即只有小的局部非零定义域,在窗口之外函数为零;本身是振荡的,具有波的性质,并且完全不含有直流趋势成分,即满足 3、信号的信息表示 时域表示:信号随时间变化的规律,信息包括均值、方差、峰度以及峭陡等,更精细的表示就是概率密度分布(工程上常常采用其分布参数)。 频域表示:信号在各个频率上的能量分布,信息为频率和谱值(频谱或功率谱),为了精确恢复原信号,需要加上相位信息(相位谱),典型的工具为FT 。 时频表示:时间和频率联合表示的一种信号表示方法,信息为瞬时频率、瞬时能量谱 信号处理中,对不同信号要区别对待,以选择哪种或者哪几种信号表示方法 ) ()(ωψ??x ∞ <=?∞ ∞-ωω ωψ?d C 2 ) (0 )()0(==?∞ ∞ -dx x ?ψ

平稳信号 非平稳信号 不满足平稳性条件至少是宽平稳条件的信号。 信号的时域表示和频域表示只适用于平稳信号,对于非平稳信号而言,在时间域各种时间统计量会随着时间的变化而变化,失去统计意义;而在频率域,由于非平稳信号频谱结构随时间的变化而变化导致谱值失去意义。 时频表示主要目的在于实现对非平稳信号的分析,同样的可以应用于平稳信号的分析。 4、为什么选择小波 小波提供了一种非平稳信号的时间-尺度分析手段,不同于FT 方法,与STFT 方法比较具有更为明显的优势。 ) ,,,;,,,(),,,;,,,(21212121τττ+++=n n n n t t t x x x f t t t x x x f [][][] ??? ????∞<-=====?+∞ ∞-)(),()()(),()()(21 22121t x E t t R t x t x E t t R m dx x xf t x E x x x ττ时间幅度 小波变换 时间 尺度

数字信号处理习题集(附答案)

第一章数字信号处理概述 简答题: 1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用? 答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。此滤波器亦称为“抗混叠”滤波器。 在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器。 判断说明题: 2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。 () 答:错。需要增加采样和量化两道工序。 3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。() 答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。故离散时间信号和系统理论是数字信号处

理的理论基础。 第二章 离散时间信号与系统分析基础 一、连续时间信号取样与取样定理 计算题: 1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混叠效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。 (a ) 如果kHz T rad n h 101,8)(=π截止于,求整个系统的截止频 率。 (b ) 对于kHz T 201=,重复(a )的计算。 采样(T) () n h () n x () t x () n y D/A 理想低通T c πω=() t y 解 (a )因为当0)(8=≥ω πωj e H rad 时,在数 — 模变换中 )(1)(1)(T j X T j X T e Y a a j ωω=Ω= 所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为 8 π = ΩT c 因此 Hz T f c c 625161 2==Ω= π

小波分析的发展历程

小波分析的发展历程 一、小波分析 1910年,Haar提出了L2(R)中第一个小波规范正交基,即Haar正交基。 (1)操作过程:Haar正交基是以一个简单的二值函数作为母小波经平移和伸缩而形成的。 (2)优点:Haar小波变换具有最优的时(空)域分辨率。 (3)缺点:Haar小波基是非连续函数,因而Haar小波变换的频域分辨率非常差。 1936年,Littlewood和Paley对傅立叶级数建立了二进制频率分量分组理论,(即L-P理论:按二进制频率成分分组,其傅立叶变换的相位并不影响函数的大小和形状),这是多尺度分析思想的最早起源。 1952年~1962年,Calderon等人将L-P理论推广到高维,建立了奇异积分算子理论。 1965年,Calderon发现了著名的再生公式,给出了抛物型空间上H1的原子分解。 1974年,Coifman实现了对一维空间和高维空间的原子分解。 1976年,Peetre在用L-P理论对Besov空间进行统一描述的同时,给出了Besov空间的一组基。1981年,Stromberg引入了Sobolev空间H p的正交基,对Haar正交基进行了改造,证明了小波函数的存在性。 1981年,法国地球物理学家Morlet提出了小波的正式概念。 1985年,法国数学家Meyer提出了连续小波的容许性条件及其重构公式。 1986年,Meyer在证明不可能存在同时在时频域都具有一定正则性(即光滑性)的正交小波基时,意外发现具有一定衰减性的光滑性函数以构造L2(R)的规范正交基(即Meyer基),从而证明了正交小波系的存在。 1984年~1988年,Meyer、Battle和Lemarie分别给出了具有快速衰减特性的小波基函数:Meyer小波、Battle-Lemarie样条小波。 1987年,Mallat将计算机视觉领域中的多尺度分析思想引入到小波分析中,提出了多分辨率分析的概念,统一了在此前的所有具体正交小波的构造,给出了构造正交小波基的一般方法,提出了快速小波变换(即Mallat算法)。它标志着第一代小波的开始? (1)操作过程:先滤波,再进行抽二采样。 (2)优点:Mallat算法在小波分析中的地位相当于FFT在经典傅立叶分析中的地位。它是小波分析从纯理论走向实际应用。 (3)缺点:以傅立叶变换为基础,直接在时(空)域中设计滤波器比较困难,并且计算量大。 1988年,Daubechies基于多项式方式构造出具有有限支集的光滑正交小波基(即Daubechies基)。 Chui和中国学者王建忠基于样条函数构造出单正交小波函数,并提出了具有最优局部化性能的尺度函数和小波函数的一般性构造方法。1988年,Daubechies在美国NSF/CBMS主办的小波专题研讨会上进行了10次演讲,引起了广大数学家、物理学家、工程师以及企业家的重视,将小波理论发展与实际应用推向了一个高潮。 1992年,Daubechies对这些演讲内容进行了总结和扩展形成了小波领域的经典著作——小波十讲《Ten Lectures on Wavelet》。 1992年3月,国际权威杂志《IEEE Transactions on Information Theory》专门出版了“小波分析及其应用”专刊,全面介绍了此前的小波分析理论和应用及其在不同学科领域的发展,从此小波分析开始进入了全面应用阶段。 1992年,Kovacevic和Vetterli提出了双正交小波的概念。 1992年,Cohen、Daubechies和Feauveau构造出具有对称性、紧支撑、消失矩、正则性等性质的双正交小波。 (1)操作过程:利用两组互为对偶的尺度函数和小波函数实现函数的分解与重构。 (2)优点:具有正交小波无法同时满足的对称性、紧支撑、消失矩、正则性等性质。

信号处理-习题(答案)

数字信号处理习题解答 第二章 数据采集技术基础 2.1 有一个理想采样系统,其采样角频率Ωs =6π,采样后经理想低通滤波器H a (j Ω)还原,其中 ?? ???≥Ω<Ω=Ωππ 3032 1 )(,,j H a 现有两个输入,x 1(t )=cos2πt ,x 2(t )=cos5πt 。试问输出信号y 1(t ), y 2(t )有无失真?为什么? 分析:要想时域采样后能不失真地还原出原信号,则采样角频率Ωs 必须大于等于信号谱最高角频率Ωh 的2倍,即满足Ωs ≥2Ωh 。 解:已知采样角频率Ωs =6π,则由香农采样定理,可得 因为x 1(t )=cos2πt ,而频谱中最高角频率ππ π32 621 =< =Ωh , 所以y 1(t )无失真; 因为x 2(t )=cos5πt ,而频谱中最高角频率ππ π32 652 => =Ωh , 所以y 2(t )失真。 2.2 设模拟信号x (t )=3cos2000πt +5sin6000πt +10cos12000πt ,求: (1) 该信号的最小采样频率; (2) 若采样频率f s =5000Hz ,其采样后的输出信号; 分析:利用信号的采样定理及采样公式来求解。 ○ 1采样定理 采样后信号不失真的条件为:信号的采样频率f s 不小于其最高频

率f m 的两倍,即 f s ≥2f m ○ 2采样公式 )()()(s nT t nT x t x n x s === 解:(1)在模拟信号中含有的频率成分是 f 1=1000Hz ,f 2=3000Hz ,f 3=6000Hz ∴信号的最高频率f m =6000Hz 由采样定理f s ≥2f m ,得信号的最小采样频率f s =2f m =12kHz (2)由于采样频率f s =5kHz ,则采样后的输出信号 ? ?? ? ????? ??-???? ????? ??=? ??? ????? ??+???? ????? ??-???? ????? ??=? ??? ????? ??++???? ????? ??-+???? ????? ??=? ??? ????? ??+???? ????? ??+???? ????? ??=? ?? ? ??====n n n n n n n n n n n f n x nT x t x n x s s nT t s 522sin 5512cos 13512cos 10522sin 5512cos 35112cos 105212sin 5512cos 3562cos 10532sin 5512cos 3)()()(πππππππππππ 说明:由上式可见,采样后的信号中只出现1kHz 和2kHz 的频率成分, 即 kHz f f f kHz f f f s s 25000200052150001000512211 ======,, 若由理想内插函数将此采样信号恢复成模拟信号,则恢复后的模拟信号

小波变换的几个典型应用

第六章小波变换的几个典型应用 6.1 小波变换与信号处理 小波变换作为信号处理的一种手段,逐渐被越来越多领域的理论工作者和工程技术人员所重视和应用,并在许多应用中取得了显著的效果。同传统的处理方法相比,小波变换取得了质的飞跃,在信号处理方面具有更大的优势。比如小波变换可以用于电力负载信号的分析与处理,用于语音信号的分析、变换和综合,还可以检测噪声中的未知瞬态信号。本部分将举例说明。 6.1.1 小波变换在信号分析中的应用 [例6-1] 以含躁的三角波与正弦波的组合信号为例具体说如何利用小波分析来分析信号。已知信号的表达式为 应用db5小波对该信号进行7层分解。xiaobo0601.m 图6-1含躁的三角波与正弦波混合信号波形 分析: (1)在图6-2中,逼近信号a7是一个三角波。 (2)在图6-3中细节信号d1和d2是与噪声相关的,而d3(特别是d4)与正弦信号相关。 图6-2 小波分解后各层逼近信号 图6-3 小波分解后各层细节信号 6.1.2 小波变换在信号降躁和压缩中的应用 一、信号降躁 1.工程中,有用信号一般是一些比较平稳的信号,噪声通常表现为高频信号。2.消躁处理的方法:首先对信号进行小波分解,由于噪声信号多包含在具有较高频率的细节中,我们可以利用门限、阈值等形式对分解所得的小波系数进行处理,然后对信号进行小波重构即可达到对信号的消躁目的。 小波分析进行消躁处理的3种方法: (1)默认阈值消躁处理。该方法利用ddencmp生成信号的默认阈值,然后利用wdencmp函数进行消躁处理。 (2)给定阈值消躁处理。在实际的消躁处理过程中,阈值往往可通过经验公式获得,且这种阈值比默认阈值的可信度高。在进行阈值量化处理时可利用函数wthresh。 (3)强制消躁处理。该方法时将小波分解结构中的高频系数全部置为0,即滤掉所有高频部分,然后对信号进行小波重构。方法简单,消躁后信号比较平滑,但易丢失信号中的有用成分。 小波阈值去噪方法是目前应用最为广泛的小波去噪方法之一。 3.信号降噪的准则: 1.光滑性:在大部分情况下,降噪后的信号应该至少和原信号具有同等的光滑性。

基于小波分析的一维信号处理方法研究

基于小波分析的一维信号处理方法研究 [摘要]小波分析是在傅立叶变换的基础上发展起来的一种时频分析方法。作为一种新的变换域信号处理方法,小波变换尤其擅长处理在非平稳信号的分析。 目前,这种分析方法已经广泛应用于信号处理、图像处理、量子场论、分形理论等领域 。 【关键词 】小波分析 ;时域 ;频域 1 前言 小波分析是近年来发展起来的一门新技术,是建立在Fourier 分析、泛函分析、调和分析 及样条分析基础上的分析处理工具。是傅里叶分析发展史上里程碑式的进展,它被看成是调和分析这一数学领域半个世纪以来工作的结晶。在信号处理方面Fourier 变换是不可缺少的分析工具,但由于Fourier 只适用于平稳信号的分析,不能做局部分析,加窗Fourier 变换无法满足正交性。且窗口大小固定,它不能敏感反映信号的突变,而小波分析优于Fourier 分析之处在于它的时间域和频率域同时具有良好的局部化性质,即在低频部分具有较高的频率分辨率和较低的时间分辨率,在高频部分具有较高的时间分辨率和较低的频率分辨率。这种特性正符合低频信号变化缓慢而高频信号变化迅速的特点,使小波变换县有对信号的自适应能力。有一个灵活可变的时间-频率窗,它被称为多分辨分析,并且常被誉为信号分析的“数学显微镜”。 2 小波分析的发展历史 小波分析方法的提出,可以追溯到1910年Haar 提出的小“波”规范正交基及1938年Littlewood-Paley 对Fourier 级数建立的L-P 理论,即按二进制频率成分分组。Fourier 变换的相位变化本质上不影响函数的形状及大小。其后,Calderon 于1975年用其早年发现的再生公式给出抛物型空间上H 1的原子分解,它的离散形式已接近小波展开,只是还无法得到组成一个正交系的结论。1981年,Stromberg 对Haar 系统进行了改进,证明了小波函数的存在性。1984年,法国地球物理学家Morlet 在分析地震波的局部性质时,发现传统的Fourier 变换难以达到要求,引入“小波”概念对信号进行分解。随后,理论物理学家Grossman 对Morlet 的这种信号按一个确定函数的伸缩,平移系展开的可行性进行了研究,这无疑为小波分析的形成开了先河。 真正的小波热开始于1986年,Meyer 创造性的构造出了具有一定衰减性的光滑函数ψ,其二进制伸缩与平移/2,{()2(2):,}j j k j t t k j k z ψψ--=-∈构成L 2(R)的规范正交 基。继Meyer 提出了小波变换之后,Lemarie 和Battle 又分别独立地给出了具有指数衰减的小波函数。1987年,Mallat 巧妙地将计算机视觉领域内的多尺度分析的思

小波变换的原理及matlab仿真程序

基于小波变换的信号降噪研究 2 小波分析基本理论 设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。当Ψ(t)满足条件[4,7]: 2 () R t dw w C ψψ =<∞? (1) 时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列: ,()( )a b t b t a ψ -= ,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。 对于任意的函数f(t)∈L 2( R)的连续小波变换为: ,(,),()( )f a b R t b W a b f f t dt a ψψ-=<>= ? (3) 其逆变换为: 211()(,)()f R R t b f t W a b dadb C a a ψ ψ+-= ?? (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。 3 小波降噪的原理和方法 3.1 小波降噪原理 从信号学的角度看 ,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如 图所示[6] : 小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下

数字信号处理基础书后题答案中文版

Chapter 2 Solutions 2.1 最小采样频率为两倍的信号最大频率,即44.1kHz 。 2.2 (a)、由ω = 2πf = 20 rad/sec ,信号的频率为f = 3.18 Hz 。信号的奈奎斯特采样频率为6.37 Hz 。 (b)、3 5000π=ω,所以f = 833.3 Hz ,奈奎斯特采样频率为1666.7 Hz 。 (c)、7 3000π=ω,所以f = 214.3 Hz ,奈奎斯特采样频率为428.6 Hz 。 2.3 (a) 1258000 1f 1T S S ===μs (b)、最大还原频率为采样频率的一半,即4000kHz 。 2.4 ω = 4000 rad/sec ,所以f = 4000/(2π) = 2000/π Hz ,周期T = π/2000 sec 。因此,5个周期为5π/2000 = π/400 sec 。对于这个信号,奈奎斯特采样频率为2(2000/π) = 4000/π Hz 。所以采样频率为f S = 4(4000/π) = 16000/π Hz 。因此5个周期收集的采样点为(16000/π samples/sec )(π/400 sec) = 40。 2.5 ω = 2500π rad/sec ,所以f = 2500π/(2π) = 1250 Hz ,T = 1/1250 sec 。因此,5个周期为5/1250 sec 。对于这个信号,奈奎斯特采样频率为2(1250) = 2500 Hz ,所以采样频率为f S = 7/8(2500) = 2187.5 Hz 。采样点数为(2187.5 点/sec)(5/1250 sec) = 8.75。这意味着在模拟信号的五个周期内只有8个点被采样。事实上,对于这个信号来说,在整数的模拟周期中,是不可能采到整数个点的。 2.6 2.7 信号搬移发生在kf S ± f 处,换句话说,频谱搬移发生在每个采样频率的整数倍 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 频率/kHz

一维信号小波阈值去噪

一维信号小波阈值去噪 1、小波阈值处理基本理论所谓阈值去噪简而言之就是对信号进行分解,然后对分解后的系数进行阈值处理,最后重构得到去噪信号。该算法其主要理论依据是:小波变换具有很强的去数据相关性,它能够使信号的能量在小波域集中在一些大的小波系数中;而噪声的能量却分布于整个小波域内。因此,经小波分解后,信号的小波系数幅值要大于噪声的系数幅值。可以认为,幅值比较大的小波系数一般以信号为主,而幅值比较小的系数在很大程度上是噪声。于是,采用阈值的办法可以把信号系数保留,而使大部分噪声系数减小至零。小波阈值收缩法去噪的具体处理过程为:将含噪信号在各尺度上进行小波分解,设定一个阈值,幅值低于该阈值的小波系数置为0,高于该阈值的小波系数或者完全保留,或者做相应的收缩(shrinkage)处理。最后将处理后获得的小波系数用逆小波变换进行重构,得到去噪后的信号。 2、阈值函数的选取小波分解阈值去噪中,阈值函数体现了对超过和低于阈值的小波系数不同处理策略,是阈值去噪中关键的一步。设w表示小波系数,T为给定阈值,sign(*)为符号函数,常见的阈值函数有: 硬阈值函数:(小波系数的绝对值低于阈值的置零,高于的保留不变) 软阈值函数:(小波系数的绝对值低于阈值的置零,高于的系数shrinkage处理) 式(3-8)和式(3-9)用图像表示即为: 值得注意的是: 1)硬阈值函数在阈值点是不连续的,在下图中已经用黑线标出。不连续会带来振铃,伪吉布斯效应等。 2)软阈值函数,原系数和分解得到的小波系数总存在着恒定的偏差,这将影响重构的精度 同时这两种函数不能表达出分解后系数的能量分布,半阈值函数是一种简单而经典的改进方案。见下图: 选取的阈值最好刚好大于噪声的最大水平,可以证明的是噪声的最大限度以非常高的概率

数字信号处理基础书后题答案中文版

数字信号处理基础书后题答案中文版

Chapter 2 Solutions 2.1 最小采样频率为两倍的信号最大频率,即44.1kHz 。 2.2 (a)、由ω = 2πf = 20 rad/sec ,信号的频率为f = 3.18 Hz 。信号的奈奎斯特采样频率为6.37 Hz 。 (b)、35000π =ω,所以f = 833.3 Hz ,奈奎斯特采样频率为1666.7 Hz 。 (c)、7 3000π =ω,所以f = 214.3 Hz ,奈奎斯特采样频率为428.6 Hz 。 2.3 (a) 1258000 1f 1T S S === μs (b)、最大还原频率为采样频率的一半,即4000kHz 。 2.4 ω = 4000 rad/sec ,所以f = 4000/(2π) = 2000/π Hz ,周期T = π/2000 sec 。因此,5个周期为5π/2000 = π/400 sec 。对于这个信号,奈奎斯特采样频率为2(2000/π) = 4000/π Hz 。所以采样频率为f S = 4(4000/π) = 16000/π Hz 。因此5个周期收集的采样点为(16000/π samples/sec )(π/400 sec) = 40。 2.5 ω = 2500π rad/sec ,所以f = 2500π/(2π) = 1250 Hz ,T = 1/1250 sec 。因此,5个周期为5/1250 sec 。对于这个信号,奈奎斯特采样频率为2(1250) = 2500 Hz ,所以采样频率为f S = 7/8(2500) = 2187.5 Hz 。采样点数为(2187.5 点/sec)(5/1250 sec) = 8.75。这意味着在模拟信号的五个周期内只有8个点被采样。事实上,对于这个信号来说,在整数的模拟周期中,是不可能采到整数个点的。 2.7 信号搬移发生在kf S ± f 处,换句话说,频谱搬移发生在每个采样频率的整数 倍 -200 200 400 600 800 1000 1200 0.10.20.30.40.50.60.70.80.91 幅度 频

研究生《小波理论及应用》复习题

2005年研究生《小波理论及应用》复习题 1. 利用正交小波基建立的采样定理适合于:紧支集且有奇性(函数本身或其导数不连续)的函数(频谱无限的函数)。Shannon 采样定理适合于频谱有限的信号。 2. 信号的突变点在小波变换域常对于小波变换系数模极值点或过零点。并且信号奇异性大小同小波变换的极值随尺度的变化规律相对立。只有在适当尺度下各突变点引起的小波变化才能避免交迭干扰,可以用于信号的去噪、奇异性检测、图象也缘提取、数据压缩等。 3. 信号在一点的李氏指数表征了该点的奇异性大小,α越大,该点的光滑性越小,α越小,该点的奇异性越大。光滑点(可导)时,它的1≥α;如果是脉冲函数,1-=α;白噪声时0≤α。 4. 做出三级尺度下正交小波包变换的二进数图,小波包分解过程?说明小波基与小波包基的区别? 5. 最优小波包基的概念:给定一个序列的代价函数,然后在小波包基中寻找使代价函数最小的基――最优基。 6. 双通道多采样率滤波器组的传递函数为: ()()()()()()()()()()()()()z X z G z G z H z H z X z G z G z H z H z Y z Y z Y -??????-++??????+=+=∧∧∧∧212121请根据此式给出理想重建条件: 为了消除映象()z X -引起的混迭:()()()()0=-+-∧ ∧z G z G z H z H

为了使()z Y 成为()z X 的延迟,要求:()()()()k CZ z G z G z H z H -∧∧=+ (C,K 为任一常数) 7. 正交镜像对称滤波器()()n h n g ,的()jw e G 与()jw e H 以2π=w 为轴左右对称。如果知道QMF 的()n h ,能否确定()()()n h n g n g ∧ ∧,,? ()()()n h n g n 1-= ,()()()n g n h n 1--=∧ , ()()()n h n g n 1-=∧ 8. 试列出几种常用的连续的小波基函数 Morlet 小波,Marr 小波,Difference of Gaussian (DOG ),紧支集样条小波 9. 试简述海森堡测不准原理,说明应用意义? 10. 从连续小波变换到离散小波变换到离散小波框架-双正交小波变换-正交变换、紧支集正交小波变换,其最大的特点是追求变换系数的信息冗余小,含有的信息量越集中。 11. 解释紧支集、双正交、正交小波、紧支集正交小波、光滑性、奇异性。 12. 已知共轭正交滤波器组(CQF )()n h 请列出()()()n g n h n g ∧ ∧,,。 ()()() ()()()()()()???????-=--=-=---=∧∧n h n N g n g n N h n h n N h n g n n 11 13. 共轭正交滤波器()()n g n h ,的()jw e G 与()jw e H 的关系与QMF 情况

基于小波去噪的微弱信号提取

0 引言 微弱信号检测和提取是近年来兴起的关于提取和测量强噪声背景下微弱信号的方法,也是信号处理领域中经常遇到的问题。在工程应用中,往往存在着有用信号较弱,而噪声较强的情况,例如在机械故障检测与诊断中,当机器发生故障时,若机器中潜伏着某一零部件的早期微弱缺陷时,该缺陷信息被其它零部件的运行振动信号和随机噪声所淹没。为了有效地提取弱故障信息,实现早期诊断,可以用小波分析理论,对信号进行小波分解,把信号分解为各个频段的信号,再根据诊断的目的选取包含所需零部件故障信息的频段序列,进行深层信息处理以查到机器的故障源。小波变换是一种新的变换分析方法,通过变换能够充分突出问题某些方面的特征,利用小波变换良好的时频特性,可以在低信噪比情况下提取信号的波形信息。 1 小波变换的原理 1.1 小波变换的定义 设f (t )是平方可积函数,即f (t )L 2(R ),则该连续函数的小波变换定义为[1] : (1) ψ*(t )生成因子。 基于小波去噪的微弱信号提取 The extraction of weak signal based on wavelet denoising 刘正平,冯召勇,杨卫平 LIU Zheng-ping, FENG Zhao-yong, YANG Wei-ping (华东交通大学 机电工程学院,南昌 330013) 摘 要: 小波分析理论是近几年来兴起的一种信号处理理论,已经成为信号去噪处理中的一种重要的工具。介绍了小波分析理论及其在信号去噪中的应用,并主要介绍了三种噪声处理方法:默认阈值法、强制阈值法和独立阈值法,运用小波分解与重构去噪方法,实现含噪信号的去噪处理。仿真结果证明:在信号分析中,利用小波变换来实现信噪分离提取弱信号是一种非常有效的方法。 关键词:小波分析;小波重构;消噪 中图分类号:TN911.6 文献标识码:A 文章编号:1009-0134(2010)08-0098-04Doi: 10.3969/j.issn.1009-0134.2010.08.32 小波能够消噪主要由于小波变换具有如下特点: 低熵性。小波系数的稀疏分布,使信号处理后的熵降低。 多分辨特性。由于采用了多分辨的方法,所以可以非常好地刻画信号的非平稳性,如突变和断点等,可以在不同分辨率下根据信号和噪声的分布来去除噪声。 去相关性。小波变换可对信号去相关,且噪声在变换后有白化趋势,所以小波域比时域更有利于去噪。 基函数选择更灵活。小波变换可以灵活选择基函数,也可以根据信号特点和降噪要求选择多带小波、小波包等,对不同的场合,可以选择不同的小波基函数。1.2 含噪信号模型假设 假设一个含噪的一维信号的模型为: (2) 其中s (k )号,f (k )为有用信号,e (k )为噪声信号。通常e (k )表现为高频信号,而工程实际中f (k )通常表现为低频信号,或者是一些比较平稳的信号。噪声e (k )一般假设成是一个平稳的高斯白噪声,其小波系数的平均功率与尺度成反比。小波变换的目的就是要抑制e (k )以恢复f (k )。1.3 小波分解与重构法去噪的过程 小波变换运用在信号降噪处理中,主要是针 收稿日期:2009-10-11 作者简介:刘正平(1963-),男,湖南桃江人,教授,主要从事机电设备状态监测与故障诊断软硬件的研究工作。

小波分析及其在信号处理中的应用

小波分析及其在信号处理中的应用 发表时间:2016-07-27T16:15:12.383Z 来源:《基层建设》2016年9期作者:王亚东杨浩雷娜 [导读] 小波分析,是当前迅速发展的新领域。 西安电子工程研究所陕西西安 710100 摘要:小波分析,是当前迅速发展的新领域。在应用数学和工程学科中,在经过近30年的研究和探索中,已经建立起非常重要的数学形式化体系,在理论基础中也更加的扎实。那么与Fourier的变换相比,小波的变换是空间,和频率的局部性变换,所以能高效率地从信号中提取有用的信息。通过平移和伸缩等一些运算功能,对信号或函数进行微观的细化分析。它解决了Fourier变换所不能解决的很多困难。小波变换联系了多个学科,包括:应用数学、物理学、科学、信号与信息处理、计算机、图像处理、地震勘探等。有数学家认为,小波分析就是一个新的数学分支,它是泛函分析、Fourier分析、样条分析、数值分析的完美结晶;信号和信息处理专家认为,小波分析是时间—尺度分析和多分辨分析的一种新技术,它在信号分析、语音合成、图像识别、计算机视觉、数据压缩、地震勘探、大气与海洋波分析等方面的研究都取得了有科学意义和应用价值的成果。 关键词:小波分析;信号处理;主要应用 引言: 小波分析是当前数学中一个迅速发展的新领域,它同时具有理论深刻和应用十分广泛的双重意义。小波分析是近年来发展起来的一种新的信号处理工具,这种方法是因为傅立叶分析,小波(wavelet),就是在小范围的波,只在有限的区间内有非零值,比起正弦波和余弦波那样无始无终完全不同。小波是可以通过时间轴上下平移的,同时也可以按比例伸展和压缩,用来获取低频和高频的小波,一些构造好的小波函数,就可以用于滤波或者压缩信号,从而可以提取出信号中的有用信号。 1.小波分析的概念 小波(Wavelet)这一词语,顾名思义,“小波”通俗说就是小的波形。“小”的意思就是具有减退性;而“波”的意思就是指它的震动性,它的振幅有上下相间的震荡。与Fourier变换相比,小波变换也就是时间(空间)频率的部分化解析,它通过伸缩平移运算对信号(函数)逐步细致的对比,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。还有人把小波变换称为“数学显微镜”。 2.小波分析基本理论 小波变换的时频窗是可以由伸缩因子 a 和平移因子 b 来调节的,平移因子 b,可以改变窗口在相平面时间轴上的位置,而伸缩因子 b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。对在不同的频率在时域上小波变换的取样步长是可调节的。在频率较低时,小波变换的时间分辨率也比较低,但是频率分辨率较高;在频率较高时,小波变换的时间分辨率较高,但是频率分辨率却较低。处理信号时如要使用小波变换,首先应当选取适当的小波函数,对其信号进行分解,其次,要进行阈值处理对分解出的参数,再选取适当的阈值进行简要分析,最后要进行逆小波变换利用处理后的参数对信号进行重构。它可以用于边界的处理与滤波、信噪时频、时频分析,分析分离提取信号、求分形指数、信号的识别以及诊断以及多尺度边缘检测。 3.小波分析在信号处理中的应用 事实上,小波分析在应用上,领域十分宽泛,它包括:数学领域的许多学科,以及信号分析和图像处理甚至大型机械的故障诊断的方面。小波分析应用的一个重要方面是小波分析用于信号与图像压缩。它的主要特点是压缩比例高,压缩的速度也快,在压缩后不仅能保持信号与图像的特征不变,而且在传递中可以抵抗干扰。小波分析的压缩方法有很多。小波包最好基形式,小波域的纹理模型形式,都是科学的例子。 3.1在数学方面,它已用于数值分析、构造快速数值方法、曲线曲面构造、微分方程求解、控制论等;在信号的分析方面它能用于边界的处理与滤波也可以用于时频分析、求分形指数、信噪分离与提取弱信号、信号的识别和与诊断以及多尺度边缘检测等;在图像压缩方面,它具有压缩比高,压缩的速度快的特征。在医学成像方面的减少B超、CT、核磁共振成像的时间,以提高分辨率等。 3.2信号的小波和小波包分解:小波变换可以等效为一组镜像滤波的过程,即信号通过一个分解快速的滤波器和一个分解慢速的滤波器。细节信号就是快速滤波器输出对应信号的高频分量组成。慢速滤波器所输出对应信号的相对较低的频率分量组成,称为近似分量。并同时对信号进行一次二抽一采样,以一个多层分解来说明的。 3.3小波在去噪方面的应用:从信号学的角度看,小波去噪是一个信号滤波的问题。小波去噪在很大程度上可以看成是低通滤波,但是因为在去噪后,也还能成功地保留信号特征,所以在这一点上,又比传统的低通滤波器更加优良。所以可以分析出,小波去噪的实质就是特征提取和低通滤波的相互综合。小波分析的重要应用之一就是用于信号消噪,一个含噪的一维信号模型可表示为如下形式:S f k e k (k)()()k=0.1…….n-1其中,f(k)为有用信号,s(k)为含噪声信号,e(k)为噪声,ε为噪声系数的标准偏差。假设 e(k)为高斯白噪声,通常情况下有用信号表现为低频部分或是一些比较平稳的信号,而噪声信号则表现为高频的信号。 3.4在工程技术等方面:包括计算机视觉、计算机图形学、曲线设计、湍流、远程宇宙的研究与生物医学方面。 4.小波提升方案具有的优点 20世纪90年代中期,Sweldens提出了小波提升方案(lifting scheme)以及第二代小波概念,它不依赖于Fourier变换,在时域和空域中直接实现小波变换,并切确定了经典小波中,双正交小波的提升方案(又称提升格式)。同年,Daubechies和Sweldens合作,将小波分化成有限步的过程利用提升方法,并同时证明,凡是用Mallat算法完成的小波变动,都可以转用提升格式来完成。从理论上说,提升方案大大拓展了小波分析的研究领域小波提升格式可以实现整数到整数变换的优点,给图像处理带来了极大的方便。它具有良好的特性:结构方便简单、原位计算、运算量较低、节省空间、逆变换可直接反转实现,以及可逆的整数到整数的变换,非常便于实现。在移动的手持设备、高速处理、低功耗设备应用中也具有很大的吸引力。在静态图像处理中,提升小波已被选JPEG2000的变换核心。它提供了多精度的功能,同基于JPEG2000的标准相比,在很低的比特率时具有良好的压缩DCT的JPEG性能,并且提供了在同一个编码结构内有效的失真和

小波分析简述

第一篇:小波分析发展历史简述 1910年,Haar提出了L2(R)中第一个小波规范正交基,即Haar正交基。 1936年,Littlewood和Paley对傅立叶级数建立了二进制频率分量分组理论,(即L-P理论:按二进制频率成分分组,其傅立叶变换的相位并不影响函数的大小和形状),这是多尺度分析思想的最早起源。1952年~1962年,Calderon等人将L-P理论推广到高维,建立了奇异积分算子理论。 1965年,Calderon发现了著名的再生公式,给出了抛物型空间上H1的原子分解。 1974年,Coifman实现了对一维空间和高维空间的原子分解。 1976年,Peetre在用L-P理论对Besov空间进行统一描述的同时,给出了Besov空间的一组基。 1981年,Stromberg引入了Sobolev空间Hp的正交基,对Haar正交基进行了改造,证明了小波函数的存在性。 1981年,法国地球物理学家Morlet提出了小波的正式概念。 1985年,法国数学家Meyer提出了连续小波的容许性条件及其重构公式。 1984年~1988年,Meyer、Battle和Lemarie分别给出了具有快速衰减特性的小波基函数:Meyer小波、Battle-Lemarie样条小波。1987年,Mallat将计算机视觉领域中的多尺度分析思想引入到小波分析中,提出了多分辨率分析的概念,统一了在此前的所有具体正交小波的构造,给出了构造正交小波基的一般方法,提出了快速小波变换(即Mallat算法)。

1988年,Daubechies基于多项式方式构造出具有有限支集的光滑正交小波基(即Daubechies基)。Chui和中国学者王建忠基于样条函数构造出单正交小波函数,并提出了具有最优局部化性能的尺度函数和小波函数的一般性构造方法。1988年,Daubechies在美国NSF/CBMS 主办的小波专题研讨会上进行了10次演讲,引起了广大数学家、物理学家、工程师以及企业家的重视,将小波理论发展与实际应用推向了一个高潮。 1991年,Alpert用多项式构造了第一个多小波。Geronimo等利用分形插值函数构造了正交、对称、紧支撑、逼近阶位2的GHM多小波。1992年,Daubechies对这些演讲内容进行了总结和扩展形成了小波领域的经典著作——小波十讲《Ten Lectures on Wavelet》。1992年3月,国际权威杂志《IEEE Transactions on Information Theory》专门出版了“小波分析及其应用”专刊,全面介绍了此前的小波分析理论和应用及其在不同学科领域的发展,从此小波分析开始进入了全面应用阶段。 1992年,Bamberger和Smith提出无冗余且能完全重构的方向滤波器(Directional Filter Banks,DFB,也即2D-DFB),DFB能有效地对二维信号进行方向分解。具有不可分性,把DFB从二维扩展多维,至今没有完美的实现方法。 1992年,Kovacevic和Vetterli提出了双正交小波的概念。 1992年,Cohen、Daubechies和Feauveau构造出具有对称性、紧支撑、消失矩、正则性等性质的双正交小波。 1992年,Coifman和Wickerhauser提出了小波包(Wavelet Packet,WP)分析。

相关文档
最新文档