大型蛋白质分离器的发展趋势及技术分析

大型蛋白质分离器的发展趋势及技术分析
大型蛋白质分离器的发展趋势及技术分析

大型蛋白质分离器的发展趋势及技术分析

由于蛋分器功效的优劣关键看其核心部分射流器的造泡效果,所以在这里多罗嗦几句,捎带介绍一下“无压射流器”与“传统射流器”的比较:

以前的蛋分器为了带动射流器发泡都必须单独配备一个高压水泵,而“无压射流器”不需单独配套水泵,仅需借助外来污水源流进蛋分器时管道中的压力即可完成造泡工作,这在能耗方面等于省掉两台高压水泵的电耗。换句话说,该款蛋分器自身不再用电。

当然,水族上所使用的迷你蛋分器是不需要单独配备水泵去带动射流器的,因水族上的蛋分器所配备的射流器严格意义上讲不能叫射流器,它的喉管大所需压力小,只需要外来污水低压流入时喉管产生负压吸气即可造泡,当然,这种造泡形式产量低气泡直径大。

现在有些发烧友所DIY的大型水族蛋分器就需要单独配备射流泵了,由于设计的处理量已经上千升,自然需要配备专业的小型射流器,其目的无外乎为了营造更大量细腻的气泡以起到大型水族蛋分器的功效。

(PVDF材质的是加空气、纯氧、臭氧专用;压克力材质的是加药专用)

作为水产行业的大型蛋分器,配置大型号射流器甚至双射流四射流也就不可避免,每个射流器配套高扬程水泵也成必须。

射流器造泡流程:抽取蛋分器底部水体-高压泵-射流器-气液混合送回蛋分器-发泡气浮。

另外一路:外来污水直接流入-蛋分器反应罐-处理后净水流出。

所以射流器的循环水为蛋分器内的自循环。

无压射流器造泡流程:外来污水流入-无压射流器-蛋分器反应罐-处理后净水流出。

所以无压射流器无需单独配套高压泵。

想必有的仁兄要问,传统射流器为何不能靠外来水源直接打入?

理由:1、外来水源都是根据蛋分器处理量来配套的大流量低扬程泵,而造泡用的射流器仅对入水压力有要求,对于流量要求不大,提供个数据:4kg水压作用于传统射流器要比2kg 的进气量大一倍,所以水压对造泡量及细腻度起了至关重要的作用。再提供个数据,传统射流器所需最低进水压力不能低于2.5KG,这就不难理解如果低扬程的水泵根本起不到造泡作用。

2、传统射流器狭窄的喉管(比如2寸射流器的喉管直径只有10mm)也极大阻碍了过流量,换句话说,40T蛋分器的外来水源如果配套40T的低扬泵,经过射流器再从蛋分器出来后最多还剩10T,等于相同能耗条件下让40T处理量的设备仅处理10T,这是我们无法忍受的。

3、从能耗角度考虑这也是不可想象的。列个数据比较:3kw功率的自吸离心泵扬程15M左右时流量在50T左右;如果要配4kg(40M以上扬程)压力的泵只有漩涡泵可选,来看看漩涡泵的怪异表现,功率3kw扬程40M流量仅6T 。哪个疯子敢去配40M扬程50T流量的巨泵?除了消防车吧。

以上理由表明,把外来水源用的那个大流量低扬程泵改成大流量高扬程泵的能耗是不可接受的,所以相对还是为射流器单独配置小流量高扬程泵来带动还有实用价值。

敲了一堆字估计已说明白了,无压射流器利用大流量低压力的外来水源来驱动造泡在节能方面意义显得尤为突出。

其实无压射流器也算不上什么高科技,其工作原理有点类似于现在水族界比较流行的1408喷头,该喷头的意义也在于省略射流泵而利用外来水源压力同样产生大量细腻气泡。

传统的造泡装置以前还出现过曝气石、曝气管、曝气盘等

二、集污罐加装旋转喷淋冲洗装置

集污罐采用压克力制造便于观测,就不废话。

这款蛋分器在集污罐的顶端加装了一个旋转喷淋冲洗装置,目的也不必废话,凡是用过蛋分器的都清楚集污罐有多脏。

值得小提一笔的是,该旋转喷淋装置无需电力驱动,只要接上自来水管或主管路引出一个4分旁路,接上后通过自身水压即可完成旋转喷林动作。冲洗后的脏水通过集污罐的排污管排入地沟

当然,排污管只是在生产上应用的大型蛋分器才配,水族用的小蛋分器没有设排污管的必要,都是集污杯收集后人工定时取下倒掉。一是因为水族上的养殖水体远比水产上的养殖水体干净的多,另外太小处理量的蛋分器也不可能有那么多源源不断的有机污物产生。

如果是鱼友DIY 1000L以上的,可能装配排污管有一定价值,千升以上的处理能力收集杯肯定是不够用的。

这里仅提供个思路供D时参考。

三、预留加装气液混合泵装置

对于水产行业某些有机物极度超标的环境比如水产品加工厂的废水达标排放、或者环保行业有些需要回收的环境比如造纸厂费水纸浆回收,就需额外配备更加强大的气浮装置,气液混合泵自然成为必配设备。目的无外乎快速强力提取有机悬浮微粒。

当然,作为水产养殖污水处理,有双射流器配置已足够应付。

四、此款管路连接部分全部采用进口快接管件

所有进出管口、弯头、三通、对接等部位都改为进口快接管件,目的自然是为了安装便捷之考虑,这让蛋分器变成了完全可拆散的设备;所有管件实现随时更换,否定一次性沾接使用,避免了沾接漏水后无法修补的弊端,彻底改进了传统蛋分器不可拆卸运输安装困难的问题。另外不得不提的是,PE材质的管件是PVC材质管件强度的三倍,同时PE材质中加了抗紫外剂,能抵抗住露天恶劣使用环境的老化问题;管件内连接部位采用三件套密封方式,这比国产快接内衬只配橡胶密封圈在强度和密封性上肯定要强的多。总体来说对于设备的长期稳定运行都有很大帮助。

作为水族厂家所出品的小蛋分器都是模具加工可拆卸的,决不会给使用者带来沾接管路这些工作量。

不过作为DIY蛋分器的发烧友或者水产上的大型蛋分器就无法回避管路沾接问题,管路是否沾接严密、是否沾接美观、是否经过10kg打压实验,都变成一个不小工作量;如果发生沾接漏水,整套已完工的管件不可拆卸二次利用,这也是个不小的成本。

所以通过这款蛋分器的快接配置,或许能为我们这些热衷DI Y的鱼友提供某些借鉴,是否我们在D时只是简单照办其它产品的模式,比如总是大量采用沾接管路的手法,这对日后的器材移动或者二次利用都变的不利。所以是否可以考虑把自己的器材D的更随机一些。快接管件各城市不难买到,多转转建材市场这类商铺

五、淘汰不锈钢螺栓,全部升级为PC螺栓

没什么好说的,防腐能力更强了,最主要可避免金属对水体的污染,全部设备不含任何金属部件。

六、反应罐采用PE材质制造

就是那个蓝色的大罐啦,小弟觉得这蓝色罐配黑色玻璃钢底座挺好看

作为小型蛋分器的反应罐,毫无疑问首选压克力加工,目的当然是为了便于观察液位,也是美观的考虑。作为水族厂家出产的迷你蛋分器,一般都采用PC类透明塑料加工(模具的活就是美丽)

作为鱼友要为自己的大型海缸自制蛋分器其功率肯定会远大于水族厂家的产品,否则也没自制的必要,但又不可能去开模具。

作为生产行业用的大型蛋分器小的几十吨大的上百吨处理量,更不可能用造价昂贵的压克力去加工,再说直径1M以上的压克力罐也没有厂家提供。所以各大蛋分器厂家一般是选用玻璃钢、铝合金、PVC作为反应罐体

七、射流造泡量升级为可控

1、通过进水量来控制射流造泡

主入水口一路直接通至反应罐,另外两路通至无压射流器,通过阀门调节流入无压射流器的水量从而来控制造泡量。

2、通过进气量来控制射流造泡

无压射流器配备了进气调节阀,可直接进空气,也可外接纯氧臭氧气源,通过调节阀来控制进气量从而来控制造泡量(呵呵,我喜欢)

八、反应罐内置涡流装置

反应罐内通过45度双射流顺向搅拌,营造出涡流效应,使气泡吸附有机物的能力进一步提高。(

大数据专业发展前景如何

大数据是目前最火热的一个词了,想必所有人,只要你接触网络,那你就应该听说过这个词。然而更多的人也只是听说过而已,对大数据并没有过多的了解,前几天我好多朋友就问我,大数据这么火,那它到底是做什么呢,这么火热的大数据前景究竟怎么样?今天我们就来探讨一下。 一、大数据的前景中国拥有世界上五分之一的人口,很多行业内专业人士断定中国在未来将成为大数据最重要的市场。中国的发展正在处于快速的上升期,中国产生的数据将是巨大的,而巨大的数据对大数据的发展将起到促进的作用,而大数据在中国市场的发展也将领先。如今,大数据作为中国官方重点扶持的战略性新兴产业,已逐步从概念走向落地“大数据”和“虚拟化”两大热门领域得到了广泛关注和重视,90%企业都在实用大数据。大数据将给中国的企业带来更广泛的发展机会,是值得大家重视的一个市场。 二、大数据发展的几大方向

方向一:大数据分析领域快速发展数据蕴藏价值,但是数据的价值需要用IT技术去发现、去探索,数据的积累并不能够代表其价值的多少。方向二:分布式存储有了用武之地大数据的特点就是数量多且大,这就使得存储的管理面临着挑战,这个问题就需要新的技术来解决,分布式存储技术将作为未来解决大数据存储的重要技术。方向三:大数据与云技术的结合如果再找一个可以跟大数据并驾齐驱的IT热词,云计算无疑是跟大数据关系非常大的一个词语。方向四:大数据将成为企业IT核心随着大数据价值逐渐被发展,大数据将成为企业IT的核心,毕竟在这个以盈利为主导的行业环境中,谁能够为企业带来更多的价值就将会更重要。 三、大数据就业前景好,工资高。大数据技术人才在中国市场目前非常紧缺,因此企业也是开出了高薪聘请这类高端人才。北大青鸟佳音校区为您提供一个好的平台,让你深入接触大数据,实现你的高薪就业梦,北大青鸟佳音校区为您扬帆起航。

旋风分离器计算

作成 作成::时间时间::2009.5.14 一、問題提出 PHLIPS FC9262/01 這款吸塵器不是旋風除塵式的,現在要用這款吸塵器測參數選擇旋風分離裝置。二、計算過程 1.選擇工作狀況選擇工作狀況:: 根據空氣曲線選擇吸入效率最高點的真空度和流量作為旋風分離器的工作狀態。 吸塵器旋風分離器選擇 Bryan_Wang

已知最大真空度h和最大流量Q,則H-Q曲線的兩個軸截距已知,可確H-Q直線的方程。 再在這個直線上求得吸入功率H*Q最高點(求導數得)。求解過程不再詳述。求得最大吸入功率時真空度H=16.5kPa;流量Q=18.5L/s;吸入功率P2=305.25w 現將真空度及流量按照吸入功率計算值與實際值的比例放大,得真空度H=18.3kPa;流量Q=20.5L/s;2.選擇旋風分離器 為使旋風分離裝置體積最小,選擇允許的最小旋風分離器尺寸。一般旋風分離器筒體直徑不小于50mm,故選擇筒體直徑為50mm。按照標準旋風分離器的尺寸比例,確定旋風除塵器的結構尺寸。 D0=50mm b=12.5mm a=25mm de=25mm h0=20mm h=75mm H-h=100mm D2=12.5mm 計算α約為11度 發現計算得到的吸入功率最大值與產品標稱值375W相差一些,可能是由于測量誤差存在以及壓力損失的原因。

一般要求旋風分離器進氣速度不超過25m/s,這里取旋風分離器進氣速度為22m/s. 計算入口面積為S=3.125e-4平方米。 則單個旋風除塵器流量為Q=6.9e-3平方米/秒則所需旋風除塵器個數為3個計算分級效率 根據GB/T 20291-2006吸塵器標準,這里使用標準礦物灰塵,為大理石沙。进气粒径分布 103058 10019037575015002010 10102016113 顆粒密度ρp=2700kg/m3 進口含塵濃度取為10g/Nm3,大致選取空氣粘度μ=1.8e-6Pa*s 按照以下公式計算顆粒分級效率: 平均粒徑(μm)比重(%)

(完整版)大健康产业未来发展的三大趋势:大数据、互联网、消费者参与.doc

大健康产业未来发展的三大趋势:大数据、互联网、消费者参与 最近,生活在华北地区的人们被频繁的雾霾天气和居高不下的PM2.5指数所困扰,随之引发的口罩及空气净化器等产品的热卖却让商家们意外发现了新的营销机会。在微博上广泛流传的一些年轻白领过劳死事件,使得亚健康现象成为大家议论的热点,而这又促使人们购买更多的保健 食品和补品,并关注各种媒体中的健康养生信息。当今人们在拼事业时,他们的身体也在不断的 发出警告,健康成为很多人生活中的痛点,这让商家看到了大健康产业的新契机。 大健康产业:以预防为主不以治疗为主 人类在医学方面的伟大进步,使得人们在健康受到损害之后,有了科学的方法判断病因,对 症下药,并逐步恢复健康。近一百年来,医疗行业在“治疗疾病”方面取得了很大进展,并发展出了一个庞大的医疗卫生产业。 然而,传统的医疗行业特别是西医,其主要的产品和服务都集中在对疾病的诊断和治疗方面。而如今,热卖的口罩、空气净化器、有机食品、保健食品等产品在传统的医疗行业中并没有自己 位置的产品,开始备受消费者的宠爱。 原来,有了病再去治,对身体已经造成了损害。随着人们生活方式的改变和环境的恶化,让 人生病的因素越来越多,处在亚健康状态的人也越来越多。人们意识到,健康问题必须从源头进 行控制,仅仅对疾病做出反应是远远不够的。而保持健康,则需要在生活的各个方面,从食品饮 料到个人护理,工作环境,休闲旅游,文化娱乐,甚至到生活方式和精神健康,都予以关注。大 健康的概念由此应运而生。 大健康产业未来发展的三大趋势:大数据、互联网、消费者参与 一,利用大数据

提到大健康的大数据,首先有一个前提:没有一次疾病是偶然的。每一次疾病都有一个病因, 比如境,生活,??在防与治并行的大健康理念中,如果能把病因找出来,就 能活得更好。 看国外的展,很多都在从事数据采集工作,收集到用的身体健康相关的各种信息, 通辨,直接可以健康状况作出准确度相当高的。谷歌眼,可穿戴,其就是一 个巨大的数据采集器。其最理想的状是,每个人都收集自己一部分日常数据,就像女孩 子了解自己的期一。 在中国,用数据收集不如国外成气候,但是我确是一个展。很多医 企、机构,都开始新的布局,行也在洗牌。以企仁例,仁成立老子养生 子商有限公司,直接可以将展中收集到的各数据分享自己的商。再比如,京、淘宝 商,同可以将自己的数据向金融,而些都是大数据在背后起作用。 二,抱互网 大数据使大健康行有了数据支撑,但是些数据如何着,是每个企都在思考的。 移互网使得更多、更广的数据不断生,要享受到大数据来的便利,必抱互网。 《2013 中国医商数据告》示,2013 年我国网上店售39元,保持了200% 以上高幅度的增。大健康抱互网的表主要包括:一是互网展将推医商企 商化,重构医零售行生。二是医大健康企售渠道向商拓展, 借助淘宝、京等 平台开渠道。三是企自大健康品牌,自建网售渠道。比如企仁集 构建老子养生商品牌,在上售。不管是哪种模式,用互网精神抱大健康展 。 三,消者参与 互网的互性要求我与用建立最大的互。因此,我需要重新构想与用沟通、服

简述旋风分离器性能的优化

简述旋风分离器性能的优 化 摘要:综合了国内众多优秀论文的观点,从旋风分离器的结构设计、故障排除等角度讲述了提高旋风分离器工作效率,减少压降、阻力(延长使用寿命)的优化措施。阐述了工艺优化后旋风分离器性能上的改善,为进一步扩展其应用领域提供了必要的依据。 关键词:旋风分离器:分离效率;压降;使用寿命;性能优化 0 引言 旋风分离器作为一种重要的除尘设备,在石油化工、燃煤发电等许多行业都得到广泛应用。但是,由于其除尘效率一般多在90%左右,同时对粉尘粒径较小的粉尘除去效果一般,故对于除尘要求较高的生产场合,它一般只作为多级除尘中的一级除尘使用。这就使得旋风除尘器的使用条件受到了很大的限制。本文综合了国内众多优秀论文的观点,从旋风分离器的结构设计、故障排除等角度论述其性能优化的方法措施,使旋风分离器能适用于更广阔的应用领域。 1 旋风分离器结构设计对其性能优化的影响 1.1 旋风分离器与多孔材料的组合 人们为提高旋风分离器的效率,做了许多努力:将金属多孔材料安置于旋风分离器中,组合成的旋风—过滤复合式除尘器就是其中之一。这种结构设计在锥筒底部加了一段直管,机器到了增加分离的目的,又起到减缓旋流的目的,以避免二次扬尘的产生。 为此,实验人员做了相关的测定实验,选取了铁合金冶炼粉尘等4种直径大小从0.05μm~10μm的不等的颗粒(基本上涵盖了所有常见粉尘的粒径范围),让实验更具有广泛的实用性,分离效率可大幅提高至近100%。实验结束后,用氮气反吹滤管后,得到的结果非常理想,可进行再次实验,即实验的再生效果好。 1.2 改变入口切入角及外筒直径对旋风分离器性能的影响

影响旋风分离器性能的因素有很多,可以从改变其入口切入角和外筒直径这两个方面考虑工艺的优化。根据模拟结果显示,r=6000mm、θ=7.5°构造的旋风分离器效率接近95%,分离效果较好。现实验人员研究的就是在此基础上的设计优化。 首先,把入口切入角θ改为θ=9°及θ=6°两组,发现θ=9°比θ=6°入口速度高,但速度衰减慢,速度场分布均匀,速度偏差小,减少了对颗粒的二次卷吸,在外筒壁面处速度高,分离效率提高了。 其次,实验人员将外筒直径由6000mm变更为5600mm、5800mm、6200mm、6400mm,发现当直径增大,离心力作用小,分离效率降低;直径减少后,分离效果好,但由于在下部形成内旋涡卷吸了一些下沉颗粒,分离效果下降。故可利用此外筒直径与分离效率的变化关系,寻找最合适的外筒直径大小,以达到最佳的分离效率。 1.3加装循环管和防液罩对旋风分离器性能的影响 对旋风分离器加装循环管前后进行实验对比分析可知,加装循环管的旋风分离器压降小于不带循环管的分离器,这就是说,带循环管的旋风分离器在入口摩擦损失、器内气流旋转的动能损失等方面均要小于不带循环管的分离器。 防液罩的存在对分离器压降影响不大,但带防液罩的分离器在不同高度剖面上的切向速度明显大于不带防液罩的分离器,那么他的分离效率就会相应提高。因此,防液罩可以在不增加压降损失的同时,进一步提高切向速度,从而提高气、液相的分离效率。 1.4新设计样式的旋风分离器与旋风分离器性能的影响 已有许多研究人员着手于新型旋风分离器的设计与研究,新型双蜗壳旋风分离器就是新设计出的一种新型旋风分离器。他的上行流区的静压变化为顺压梯度,有利于气体的顺利排出,减少旋风分离器的压力损失。 另外,循环式旋风分离器也有着提高分离效率,降低系统能耗的作用。 2 排除故障以优化旋风分离器的效率 2.1 消除三旋单管堵塞 笔者以比较常见的三级旋风分离器为例,简述通过工艺手段,消除由于

大数据发展趋势标准答案

大数据发展趋势答案

————————————————————————————————作者:————————————————————————————————日期:

大数据发展趋势势 2011年,IBM的“沃森”超级计算机在美国著名智力竞赛节目《危险边缘》上击败两名人类选手而夺冠。(3分) ? A. 是 ? B. 否 答题情况:正确选项:A你答对了! 北京航空航天大学创办了国内第一个“大数据科学与应用”软件工程硕士专业。(3分) ? A. 是 ? B. 否 答题情况:正确选项:A你答对了! 解析:暂无解析! 人工智能够和人一样进行感知、认知、决策、执行的人工程序或系统。(3分) ? A. 是 ?

答题情况:正确选项:A你答对了! 解析:暂无解析! 大数据开发的根本目的是以数据分析为基础,帮助人们做出更明确的决策,优化企业和社会运转。(3分) ? A. 是 ? B. 否 答题情况:正确选项:A你答对了! 机器学习就是通过算法,使得机器能从大量历史数据中学习规律,从而对新的样本做智能识别或对未来做预测。(3分) ? A. 是 ? B. 否 答题情况:正确选项:A你答对了! 解析:暂无解析! 目前,我国政府、企业和行业信息化系统建设往往缺少统一规划和科学论证,系统之间缺乏统一的标准,形成了众多“信息孤岛”。(3分) ?

? B. 否 答题情况:正确选项:A你答对了! 解析:暂无解析! 当前,企业提供的大数据解决方案大多基因Hadoop开源项目。(3分) ? A. 是 ? B. 否 答题情况:正确选项:A你答对了! 解析:暂无解析! 由于大数据处理多样性的需求,目前出现了多种典型的计算模式,包括大数据查询分析计算、批处理计算、流式计算、图计算等。(3分) ? A. 是 ? B. 否 答题情况:正确选项:A你答对了!

旋风分离器工作原理

旋风分离器的作用 旋风分离器设备的主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行。 工作原理 净化天然气通过设备入口进入设备内旋风分离区,当含杂质气体沿轴向进入旋风分离管后,气流受导向叶片的导流作用而产生强烈旋转,气流沿筒体呈螺旋形向下进入旋风筒体,密度大的液滴和尘粒在离心力作用下被甩向器壁,并在重力作用下,沿筒壁下落流出旋风管排尘口至设备底部储液区,从设备底部的出液口流出。旋转的气流在筒体内收缩向中心流动,向上形成二次涡流经导气管流至净化天然气室,再经设备顶部出口流出。 性能指标 分离精度旋风分离器的分离效果:在设计压力和气量条件下,均可除去≥10μm的固体颗粒。在工况点,分离效率为99%,在工况点±15%范围内,分离效率为97%。压力降正常工作条件下,单台旋风分离器在工况点压降不大于0.05MPa。设计使用寿命旋风分离器的设计使用寿命不少于20年。 结构设计 旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。内装旋风子构件,按圆周方向均匀排布亦通过上下管板固定;设备采用裙座支撑,封头采用耐高压椭圆型封头。设备管口提供配对的法兰、螺栓、垫片等。通常,气体入口设计分三种形式:a) 上部进气b) 中部进气c) 下部进气对于湿气来说,我们常采用下部进气方案,因为下部进气可以利用设备下部空间,对直径大于300μm或500μm 的液滴进行预分离以减轻旋风部分的负荷。而对于干气常采用中部进气或上部进气。上部进气配气均匀,但设备直径和设备高度都将增大,投资较高;而中部进气可以降低设备高度和降低造价。 应用范围及特点

旋风分离器设计

旋风分离器设计中应该注意的问题 旋风分离器被广泛的使用已经有一百多年的历史。它是利用旋转气流产生的离心力将尘粒从气流中分离出来。旋风分离器结构简单,没有转动部分。但人们还是对旋风分离器有一些误解。主要是认为它效率不高。还有一个误解就是认为所有的旋风分离器造出来都是一样的,那就是把一个直筒和一个锥筒组合起来,它就可以工作。旋风分离器经常被当作粗分离器使用,比如被当做造价更高的布袋除尘器和湿式除尘器之前的预分离器。 事实上,需要对旋风分离器进行详细的计算和科学的设计,让它符合各种工艺条件的要求,从而获得最优的分离效率。例如,当在设定的使用范围内,一个精心设计的旋风分离器可以达到超过99.9%的分离效率。和布袋除尘器和湿式除尘器相比,旋风分离器有明显的优点。比如,爆炸和着火始终威胁着布袋除尘器的使用,但旋风分离器要安全的多。旋风分离器可以在1093 摄氏度和500 ATM的工艺条件下使用。另外旋风分离器的维护费用很低,它没有布袋需要更换,也不会因为喷水而造成被收集粉尘的二次处理。 在实践中,旋风分离器可以在产品回收和污染控制上被高效地使用,甚至做为污染控制的终端除尘器。 在对旋风分离器进行计算和设计时,必须考虑到尘粒受到的各种力的相互作用。基于这些作用,人们归纳总结出了很多公式指导旋风分离器的设计。通常,这些公式对具有一致的空气动力学形状的大粒径尘粒应用的很好。在最近的二十年中,高效的旋风分离器技术有了很大的发展。这种技术可以对粒径小到5微米,比重小于1.0的粒子达到超过99%的分离效率。这种高效旋风分离器的设计和使用很大程度上是由被处

理气体和尘粒的特性以及旋风分离器的形状决定的。同时,对进入和离开旋风分离器的管道和粉尘排放系统都必须进行正确的设计。工艺过程中气体和尘粒的特性的变化也必须在收集过程中被考虑。当然,使用过程中的维护也是不能忽略的。 1、进入旋风分离器的气体 必须确保用于计算和设计的气体特性是从进入旋风分离器的气体中测量得到的,这包括它的密度,粘度,温度,压力,腐蚀性,和实际的气体流量。我们知道气体的这些特性会随着工艺压力,地理位置,湿度,和温度的变化而变化。 2、进入旋风分离器的尘粒 和气体特性一样,我们也必须确保尘粒的特性参数就是从进入旋风分离器的尘粒中测量获得的。很多时候,在想用高效旋风分离器更换低效旋风分离器时,人们习惯测量排放气流中的尘粒或已收集的尘粒。这种做法值得商榷,有时候是不对的。 获得正确的尘粒信息的过程应该是这样的。首先从进入旋风分离器的气流中获得尘粒样品,送到专业实验室决定它的空气动力学粒径分布。有了这个粒径分布就可以计算旋风分离器总的分离效率。 实际生产中,进入旋风分离器的尘粒不是单一品种。不同种类的尘粒比重和物理粒径分布都不相同。但空气动力学粒径分布实验有机地将它们统一到空气动力学粒径分布中。 3、另外影响旋风分离器的设计的因素包括场地限制和允许的压降。例如,效率和场地限制可能会决定是否选用并联旋风分离器,或是否需要加大压降,或两者同时采用。 4、旋风分离器的形状 旋风分离器的形状是影响分离效率的重要因素。例如,如果入口

2019年大数据发展趋势

大数据在行业内的火爆程度,已经是互联网公司必不可少的一项技术配置,甚至受到了更大的重视。大数据工程师的薪资待遇和发展前景都是不可限量的!大数据这么火,2017年会是什么样的情形呢? 1开放源码 Apache 、Hadoop、Spark等开源应用程序已经在大数据领域占据了主导地位。一项调查发现,预计到今年年底,近60%企业的Hadoop集群将投入生产。佛瑞斯特的研究显示,Hadoop的使用率正以每年32.9%的速度增长。专家表示,2017年许多企业将继续扩大他们的Hadoop和NoSQL技术应用,并寻找方法来提高处理大数据的速度。 2 内存技术 很多公司正试图加速大数据处理过程,它们采用的一项技术就是内存技术。在传统数据库中,数据存储在配备有硬盘驱动器或固态驱动器(SSD)的存储系统中。而现代内存技术将数据存储在RAM中,这样大大提高了数据存储的速度。佛瑞斯特研究的报告中预测,内存数据架构每年将增长29.2%。目前,有很多企业提供内存数据库技术,最著名的有SAP、IBM和Pivotal。

3机器学习 随着大数据分析能力的不断提高,很多企业开始投资机器学习(ML)。机器学习是人工智能的一项分支,允许计算机在没有明确编码的情况下学习新事物。换句话说,就是分析大数据以得出结论。机器学习是2017年十大战略技术趋势之一。它指出,当今最先进的机器学习和人工智能系统正在超越传统的基于规则的算法,创建出能够理解、学习、预测、适应,甚至可以自主操作的系统。 4预测分析 预测分析与机器学习密切相关,事实上ML系统通常为预测分析软件提供动力。在早期大数据分析中,企业通过审查他们的数据来发现过去发生了什么,后来他们开始使用分析工具来调查这些事情发生的原因。预测分析则更进一步,使用大数据分析预测未来会发生什么。普华永道(PwC)2016年调查显示,目前仅为29%的公司使用预测分析技术,这个数量并不

蛋白质组学复习资料

蛋白质组学复习资料 一、名词解释 1、蛋白质组学:蛋白质组学是研究与基因对应的蛋白质组的学科,蛋白质组(proteome)一词,源于蛋白质(protein)与基因组(genome)两个词的杂合,意指“一种基因组所表达的全套蛋白质”,即包括一种细胞乃至一种生物所表达的全部蛋白质。 2、二维(双向)电泳原理:根据蛋白质的等电点和相对分子质量的特异性将蛋白质混合物在第一个方向上按照等电点高低进行分离,在第二个方向上按照相对分子质量大小进行分离。二维电泳分离后的蛋白质点经显色,通过图象扫描存档,最后是呈现出来的是二维方向排列的,呈漫天星状的小原点,每个点代表一个蛋白质。 3、三步纯化策略: 第一步:粗提。纯化粗样快速浓缩 (减少体积) 和稳定样品 (去除蛋白酶) 最适用层析技术: 离子交换/疏水层析 第二步:中度纯化。去除大部分杂质 最适用层析技术: 离子交换/疏水层析 第三步:精细纯化。达到最终纯度(去除聚合物,结构变异物) 最适用层析技术:凝焦过滤/离子交换/疏水层析/反相层析 4、高效纯化策略:在三步纯化蛋白质过程中,同时考虑到纯化的速度、载量、回收率及分辨率的纯化策略。 5、离子交换色谱:离子交换色谱中的固定相是一些带电荷的基团,这些带电基团通过静电相互作用与带相反电荷的离子结合。如果流动相中存在其他带相反电荷的离子,按照质量作用定律,这些离子将与结合在固定相上的反离子进行交换。固定相基团带正电荷的时候,其可交换离子为阴离子,这种离子交换剂为阴离子交换剂;固定相的带电基团带负电荷,可用来与流动相交换的离子就是阳离子,这种离子交换剂叫做阳离子交换剂。阴离子交换柱的功能团主要是-NH2,及-NH3 :阳离子交换剂的功能团主要是-SO3H及-COOH。其中-NH3 离子交换柱及-SO3H离子交换剂属于强离子交换剂,它们在很广泛的pH范围内都有离子交换能力;-NH2及-COOH 离子交换柱属于弱离子交换剂,只有在一定的pH值范围内,才能有离子交换能力。离子交换色谱主要用于可电离化合物的分离,例如,氨基酸自动分析仪中的色谱柱,多肽的分离、蛋白质的分离,核苷酸、核苷和各种碱基的分离等。 6、吸附色谱:吸附色谱系色谱法之一种,利用固定相吸附中对物质分子吸附能力的差异实现对混合物的分离,吸附色谱的色谱过程是流动相分子与物质分子竞争固定相吸附中心的过程。洗脱次序∶一般为正相,即:极性低的先被洗脱。 7、PCR扩增:PCR技术(polymerase chain reaction)技术能把单个目的基因大量扩增,这个方法必须在已知基因序列或已知该基因所翻译的氨基酸序列。进而推断出因序列的情况下使用。PCR的每次扩增循环包括三步:1)变性,在高温下把双链靶DNA 拆开; 2)在较低的温度下使引物与靶DNA互补; 3)在中间温度下,在DNA多聚酶作用下,引物按模板DNA延长。典型的PCR包括30~50循环,如此重复循环,使被扩增的靶核苷酸以几何级数扩增。 8、基因组文库 基因文库是指整套由基因组DNA片段插入克隆载体获得的分子克隆这总和。 广义的基因文库指来于单个基因组的全部DNA克隆,理想情况下应含有这一基因组的全部DNA序列(遗传信息),这种基因文库常通过鸟枪法获得。 狭义的基因文库有基因组文库和cDNA文库之分。基因文库可用于研究基因的结构、功能和筛选基因工程的目的基因。 9、cDNA文库:以mRNA为模板,经反转录酶催化,在体外反转录成cDNA,与适当的载体(常用噬菌体或质粒载体)连接后转化受体菌,则每个细菌含有一段cDNA,并能繁殖扩增,这样包含着细胞全部mRNA信息的cDNA克隆集合称为该组织细胞的cDNA 文库。真核生物基因组DNA庞大,复杂度是mRNA和蛋白质的100倍左右,而且含有大量的重复序列,和不被表达的间隔子。这是从染色体DNA出发材料直接克隆目的基因的主要困难。而从mRNA出发的cDNA克隆比基因组克隆要简单得多。 10、基因芯片 基因芯片又叫DNA芯片(DNA chip),DNA微阵列(DNA microarray), DNA集微芯片(DNA microchip),寡核苷酸阵列(oligonucleotide array)。 是一种将核酸分子杂交原理与微电子技术相结合而形成的高新生物技术。 将靶标样品核酸或探针中的任一方按阵列形式固定在固相载体(硅片、尼龙膜、聚丙烯膜、硝酸纤维素膜、玻璃片等)上,另一方用荧光分子标记后,加样至微阵列上杂交,然后用荧光扫描或摄像技术记录,通过计算机软件分析处理,获得样品中大量的基因序列和表达信息。 11、基因敲除:基因敲除(gene knock out),又称基因打靶(gene targeting),是指用外源的DNA与受体细胞基因组中顺序相同或非常相近的基因发生同源重组,整合至受体细胞基因组中并得以表达的一种外源DNA导入技术。对一个结构已知但功能未知的基因,从分子水平上设计实验,将该基因敲除,或用其他顺序相近基因取代,然后从整体观察实验动(植)物,推测相应基因的功能。 12、同源建模:是一种蛋白质结构预测方法,具体指是利用同同源蛋白质结构为模板来预测未知蛋白质的结构。同源性大于50%时,结果比较可靠;30~50%之间,其结果需要参考其它蛋白的信息。同源性小于30%时,人们一般采用折叠识别方法。同源性更小时,从无到有法更有效。 13、Gene:合成有功能的蛋白质或RNA所必需的全部DNA(部分RNA病毒除外),即一个基因不仅包括编码蛋白质或RNA的核酸序列,还应包括为保证转录所必需的调控序列。 14.genome:细胞或生物体中,一套完整单体的遗传物质的总和,即某物种单倍体的总DNA。对于二倍体高等生物来说,其配子的DNA总和即一组基因组,二倍体有两份同源基因组。 15.Protein:生物体中广泛存在的一类生物大分子,由核酸编码的α氨基酸之间通过α氨基和α羧基形成的肽键连接而成的肽链,经翻译后加工而生成的具有特定立体结构的、有活性的大分子。 16.exon:外显子(expressed region)是真核生物基因的一部分,它在剪接(Splicing)后仍会被保存下来,并可在蛋白质生物合成过程中被表达为蛋白质。 17.蛋白质组学研究的两条途径:一条是类似基因组学的研究,即力图"查清"人类大约3万到4万多基因编码的所有蛋白质,建立蛋白质组数据库,即组成蛋白质组学研究;另一条途径,则是着重于寻找和筛选引起2个样本之间的差异蛋白质谱产生的任何有意义的因素,揭示细胞生理和病理状态的进程与本质,对外界环境刺激的反应途径,以及细胞调控机制,同时获得对某些关键蛋白的定性和功能分析,即比较蛋白质组学研究。 18.组成蛋白质组学研究(结构蛋白质组学) 这是一种针对有基因组或转录组数据库的生物体或组织、细胞,建立其蛋白质或亚蛋白质组(或蛋白质表达谱)及其蛋白质组连锁群的一种全景式的蛋白组学研究,从而获得对有机体生命活动的全景式认识。 应该认识到,全基因组研究的发端和升温,是由于大规模基因组测序技术的实现和其后高通量的基因芯片技术的发展所推动的。而蛋白质组迄今还不具备相应的技术基础,且大规模的高通量DNA研究是建立在4种碱基及其配对性质的相对单一和简

旋风分离器的建模及fluent模拟

旋风分离器的建模及 f l u e n t模拟 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

Gambit建模部分 本次模拟为一旋风分离器,具体设置尺寸见建模过程,用空气作为材料模拟流 场。为方便图形截取,开始先设置界面为白色窗体,依次点击“Edit”,“Defaults”,“GRAPHICS”,选择“WINDOWS_BACKGROUND_COLOR”设置为“White”,点击Modify。关闭对话框。 一.利用Gambit建立几何模型 1.双击打开, 2.先创建椭圆柱 依次点击“Operation”下的“Geometry”创建体“Volume”,点击“Create Real Frustum”,输入数据基于Z轴正方向创建“height 475;radius1 ; radius3 95”,点击Apply,生产椭圆柱体。如图1-1,图1-2。 3.创建圆柱体 再次利用创建椭圆柱按钮,输入数据基于Z轴正方向创建“height 285; radius1 95;radius3 95”,点击Apply。 移动刚刚创建的圆柱体,依次点击“Geometry”,“Volume”,点击“Move/copy”,选择刚刚创建的圆柱体,点击“Move——>Translate”,输入移动的数据“X=0,Y=0,Z=475”,并选择Connected Geometry,点击Apply。如图1-3,1-4所示。 图1-1椭圆柱设置对话框图1-2椭圆柱生成图

同样的方法创建小圆柱体,输入数据基于Z轴正方向创建“height 150;radius1 32;radius3 32”,点击Apply。 同样的方式移动小圆柱体,点击“Move——>Translate”,输入移动的数据“X=0,Y=0,Z=665”,不选择Connected Geometry,点击Apply。如图1-5,图 1-6,图1-7所示。 显示实体图,如图1-8。 4.将小圆柱体进行分割,分成上下两个圆柱面,点击“Split Volume”,选择被分割的圆柱体Volume2,选择下部组合体为分割体,点击“Bidirectional 和connected”,点击Apply。删除Volume3。如图1-9,图1-10所示。 5.创建旋风分离器进风口,点击依次点击“Geometry”,“Volume”,“create real brick”,基于中心,输入数据“width 140 ,depth 38,height 95”,点击Apply。如图1-11,图1-12所示。 图1-6小圆柱体移动命令对话框 图1-3圆柱体移动设置对话框图1-4圆柱体生成图图1-5生成小圆柱体 图1-7小圆柱体移动生成图图1-8实体图图1-9实体分割命令对话框图1-10生成实体图

大数据时代数据领域未来发展的三大趋势

大数据时代数据领域未来发展的三大趋势 市场的变幻无常和商业全球互联的趋势使得直觉决策不再有效。今天,企业业务决策涉及的数据和参数越来越复杂,企业决策者们都希望身边能有一个数据分析专家可以求助,数据蕴含着对企业有价值的信息,所以数据已经是企业的重要资产,驾驭大数据的能力成为企业的核心能力。这种能力将帮助企业寻找最优的模式支持商业决策,并确保做出接近于最优的商业决策。那么针对信息数据自身未来的发展趋势将成为首要关注点,今天就让我们一起来探究信息数据的三大发展趋势。 大数据时代飘然而至 何为大数据,对于这个新名词相信还是有不少人会对它感到陌生。其实“大 数据”这个术语的使用不太恰当,因为它暗示着预先存在的数据比较小(其实不然)或者我们面临的唯一的挑战只是它的大小(大小是挑战之一,但还有其他许多挑战)。简言之,“大数据”指无法使用传统流程或工具处理或分析的信息。为了让大家更形象的理解这个新名词,我就拿一根金条的诞生过程给大家做个比喻。如今对金矿的挖掘可使用需要巨额资本的设备来执行,用于处理数百万吨无用的泥土。如果要肉眼可看到金矿,通常需要30 mg/kg (30 ppm) 的矿石品味,也就是说,现在金矿中的大部分黄金是肉眼看不到的。尽管所有黄金(高价值数据)都在整堆泥土(低价值数据)中,但通过使用正确的设备,您可以经济地处理大量泥土并保留您找到的金箔。然后将金箔集中在一起制成金条,存储并记录在安全、受到严密监视、可靠且值得信赖的地方。这就是大数据的真正含义! 如今,许多企业日渐面临着越来越多的大数据挑战。它们能够访问丰富的 信息,但不知道如何从中获得价值,因为这些信息以最原始的形式或半结构化或非结构化格式存在,这导致他们甚至不知道这些信息是否值得保留以及如何保留。信息的搜集和存储是对信息分析的前提,云计算技术是目前信息搜集存储的首选,云计算和大数据就是相辅相成的关系,未来数据就是企业重要的资产,云计算为数据资产提供存储、访问和计算,盘活资产,使其为企业管理、企业决策、个人生活服务等选择提供依据,这是大数据核心价值,也是云计算的最终目的。 数据领域的三大发展趋势 大数据时代的来临是科技世界里的每个人决定站在哪一队的一个机会,因为这个时代将为科技公司和个人带来自互联网诞生以来最大的机会。让我们回头看看本世纪以来,科技世界发生了哪些变化:

旋风分离器的设计

旋风分离器的设计 姓名:顾一苇 班级:食工0801 指导老师:刘茹 设计成绩: 华中农业大学食品科学与技术学院 食品科学与工程专业 2011年1月14日 目录 第一章、设计任务要求与设计条件 (3) 第二章、旋风分离器的结构和操作 (4) 第三章、旋风分离器的性能参数 (6) 第四章、影响旋风分离器性能的因素 (8) 第五章、最优类型的计算 (11) 第六章、旋风分离器尺寸说明 (19) 附录 1、参考文献 (20) 任务要求 1.除尘器外筒体直径、进口风速及阻力的计算 2.旋风分离器的选型 3.旋风分离器设计说明书的编写

4.旋风分离器三视图的绘制 5.时间安排:2周 6.提交材料含纸质版和电子版 设计条件 风量:900m3/h ; 允许压强降:1460Pa 旋风分离器类型:标准型 (XLT型、XLP型、扩散式) 含尘气体的参数: 气体密度:kg/m3 粘度:x 10-5Pa?s 颗粒密度:1200 kg/m3 颗粒直径:6 [1 m 旋风分离器的结构和操作 原理: 含尘气体从圆筒上部长方形切线进口进入,沿圆筒内壁作旋转流动。颗粒的离心力较大,被甩向外层,气流在内层。气固得以分离。 在圆锥部分,旋转半径缩小而切向速度增大,气流与颗粒作下螺旋运动。在圆锥的底部附近,气流转为上升旋转运动,最后由上部出口管排出;固相沿内壁落入灰斗。 旋风分离器不适用于处理粘度较大,湿含量较高及腐蚀性较大的粉尘,气量的波动对除尘效果及设备阻力影响较大。 旋风分离器结构简单,造价低廉,无运动部件,操作范围广,不受温度、

压力限制,分离效率高。一般用于除去直径5um以上的尘粒,也可分离雾沫。

旋风分离器的工艺计算

旋风分离器的工艺计算 》 : *

目录 一.前言 (3) 应用范围及特点 (3) 分离原理 (3) 分离方法 (4) ) 性能指标 (4) 二.旋风分离器的工艺计算 (4) 旋风分离器直径的计算 (5) 由已知求出的直径做验算 (5) 计算气体流速 (5) < 计算旋风分离器的压力损失 (5) 旋风分离器的工作范围 (6) 进出气管径计算 (6) 三.旋风分离器的性能参数 (6) 分离性能 (6) ~ 临界粒径d pc (7) 分离效率 (8) 旋风分离器的压强降 (8) 四.旋风分离器的形状设计 (9) 五.入口管道设计 (10) $ 六.尘粒排出设计 (10) 七.算例(以天然气作为需要分离气体) (11) 工作原理 (11) 基本计算公式 (12) 算例 (13) ( 八.影响旋风分离器效率的因素 (14) 气体进口速度 (14) 气液密度差 (14) 旋转半径 (14) 参考文献 (15) …

' 旋风分离器的工艺计算 摘要:分离器已经使用十分广泛无论在家庭生活中还是工业生产,而且种类繁多每种都有各自的优缺点。现阶段旋风分离器运用比较广泛,它的性能的好坏主要决定于旋风分离器性能的强弱。这篇文章主要是讨论旋风分离器工艺计算。旋风分离器是利用离心力作用净制气体,主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,以达到气固液分离,以保证管道及设备的正常运行。在本篇文章中,主要是对旋风分离器进行工艺计算。 [ 关键字:旋风分离器、工艺计算 一.前言 旋风分离器设备的主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行。它是利用旋转气流产生的离心力将尘粒从气流中分离出来。旋风分离器结构简单,没有转动部分制造方便、分离效率高,并可用于高温含尘气体的分离,而得到广泛运用。 ' 旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。内装旋风子构件,按圆周方向均匀排布亦通过上下管板固定;设备采用裙座支撑,封头采用耐高压椭圆型封头。设备管口提供配对的法兰、螺栓、垫片等。 通常,气体入口设计分三种形式: a) 上部进气 b) 中部进气 c) 下部进气 对于湿气来说,我们常采用下部进气方案,因为下部进气可以利用设备下部空间,对直径大于300μm或500μm的液滴进行预分离以减轻旋风部分的负荷。而对于干气常采用中部进气或上部进气。上部进气配气均匀,但设备直径和设备高度都将增大,投资较高;而中部进气可以降低设备高度和降低造价。 应用范围及特点 旋风分离器适用于净化大于1-3微米的非粘性、非纤维的干燥粉尘。它是一种结构简单、

旋风分离器的设计

旋风分离器的设计公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

旋风分离器的设计 姓名:顾一苇 班级:食工0801 指导老师:刘茹 设计成绩: 华中农业大学食品科学与技术学院 食品科学与工程专业 2011年1月14日 目录 第一章、设计任务要求与设计条件 (3) 第二章、旋风分离器的结构和操作 (4) 第三章、旋风分离器的性能参数 (6) 第四章、影响旋风分离器性能的因素 (8) 第五章、最优类型的计算 (11) 第六章、旋风分离器尺寸说明 (19) 附录 1、参考文献 (20) 任务要求 1.除尘器外筒体直径、进口风速及阻力的计算 2.旋风分离器的选型 3.旋风分离器设计说明书的编写 4.旋风分离器三视图的绘制

5.时间安排:2周 6.提交材料含纸质版和电子版 设计条件 风量:900m3/h ; 允许压强降:1460Pa 旋风分离器类型:标准型 (XLT型、XLP型、扩散式) 含尘气体的参数: 气体密度: kg/m3 粘度:×10-5Pa·s 颗粒密度:1200 kg/m3 颗粒直径:6μm 旋风分离器的结构和操作 原理: 含尘气体从圆筒上部长方形切线进口进入,沿圆筒内壁作旋转流动。 颗粒的离心力较大,被甩向外层,气流在内层。气固得以分离。 在圆锥部分,旋转半径缩小而切向速度增大,气流与颗粒作下螺旋运动。 在圆锥的底部附近,气流转为上升旋转运动,最后由上部出口管排出; 固相沿内壁落入灰斗。 旋风分离器不适用于处理粘度较大,湿含量较高及腐蚀性较大的粉尘,气量的波动对除尘效果及设备阻力影响较大。 旋风分离器结构简单,造价低廉,无运动部件,操作范围广,不受温度、压力限制,分离效率高。一般用于除去直径5um以上的尘粒,也可分离雾沫。对于

旋风分离器设计

旋风分离器: 旋风分离器,是用于气固体系或者液固体系的分离的一种设备。工作原理为靠气流切向引入造成的旋转运动,使具有较大惯性离心力的固体颗粒或液滴甩向外壁面分开。旋风分离器的主要特点是结构简单、操作弹性大、效率较高、管理维修方便,价格低廉,用于捕集直径5~10μm以上的粉尘,广泛应用于制药工业中。 主要功能: 旋风分离器设备的主要功能是尽可能除去输送气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行,在西气东输工程中,旋风分离器是较重要的设备。 机构简介: 旋风分离器,是用于气固体系或者液固体系的分离的一种设备。工作原理为靠气流切向引入造成的旋转运动,使具有较大惯性离心力的固体颗粒或液滴甩向外壁面分开。是工业上应用很广的一种分离设备。 工作原理: 旋风分离器是利用气固混合物在作高速旋转时所产生的离心力,将粉尘从气流中分离出来的干式气固分离设备。由于颗粒所受的离心力远大于重力和惯性力,所以分离效率较高。 常用的(切流)切向导入式旋风分离器的分离原理及结构如图所示。主要结构是一个圆锥形筒,筒上段切线方向装有一个气体入口管,圆筒顶部装有插入筒内一定深度的排气管,锥形筒底有接受细粉的出

粉口。含尘气流一般以12—30m/s速度由进气管进入旋风分离器时,气流将由直线运动变为圆周运动。旋转气流的绝大部分,沿器壁自圆筒体呈螺旋形向下朝锥体流动。此外,颗粒在离心力的作用下,被甩向器壁,尘粒一旦与器壁接触,便失去惯性力,而靠器壁附近的向下轴向速度的动量沿壁面下落,进入排灰管,由出粉口落入收集袋里。旋转下降的外旋气流,在下降过程中不断向分离器的中心部分流入,形成向心的径向气流,这部分气流就构成了旋转向上的内旋流。内、外旋流的旋转方向是相同的。最后净化气经排气管排出器外,一部分未被分离下来的较细尘粒也随之逃逸。自进气管流入的另一小部分气体,则通过旋风分离器顶盖,沿排气管外侧向下流动,当到达排气管下端时,与上升的内旋气流汇合,进入排气管,于是分散在这部分上旋气流中的细颗粒也随之被带走,并在其后用袋滤器或湿式除尘器捕集。 净化天然气通过设备入口进入设备内旋风分离区,当含杂质气体沿轴向进入旋风分离管后,气流受导向叶片的导流作用而产生强烈旋转,气流沿筒体呈螺旋形向下进入旋风筒体,密度大的液滴和尘粒在离心力作用下被甩向器壁,并在重力作用下,沿筒壁下落流出旋风管排尘口至设备底部储液区,从设备底部的出液口流出。旋转的气流在筒体内收缩向中心流动,向上形成二次涡流经导气管流至净化天然气室,再经设备顶部出口流出。 特点: 旋风分离器的主要特点是结构简单、操作弹性大、效率较高、管

旋风分离器的建模及fluent模拟

Gambit 建模部分 本次模拟为一旋风分离器,具体设置尺寸见建模过程,用空气作为材料模拟流场。为方便图形截取,开始先设置界面为白色窗体,依次点击“Edit ”,“Defaults ”,“GRAPHICS ”,选择“WINDOWS_BACKGROUND_COLOR ”设置为“White ”,点击Modify 。关闭对话框。 一.利用Gambit 建立几何模型 1. 双击打开Gambit 2.4.6, 2. 先创建椭圆柱 依次点击“Operation ”下的“Geometry ”创建体“Volume ”,点击“Create Real Frustum ”,输入数据基于Z 轴正方向创建“height 475;radius1 36.25;radius3 95”,点击Apply ,生产椭圆柱体。如图1-1,图1-2。 3. 创建圆柱体 再次利用创建椭圆柱按钮,输入数据基于Z 轴正方向创建“height 285;radius1 95;radius3 95”,点击Apply 。 图1-1椭圆柱设置对话框 图1-2椭圆柱生成图

移动刚刚创建的圆柱体,依次点击“Geometry”,“Volume”,点击“Move/copy”,选择刚刚创建的圆柱体,点击“Move——>Translate”,输入移动的数据“X=0,Y=0,Z=475”,并选择Connected Geometry,点击Apply。如图1-3,1-4所示。 同样的方法创建小圆柱体,输入数据基于Z轴正方向创建“height 150;radius1 32;radius3 32”,点击Apply。 同样的方式移动小圆柱体,点击“Move——>Translate”,输入移动的数据“X=0,Y=0,Z=665”,不选择Connected Geometry,点击Apply。如图1-5,图1-6,图1-7所示。 图1-6小圆柱体移动命令对话框 图1-3圆柱体移动设置对话框图1-4圆柱体生成图图1-5生成小圆柱体 图1-7小圆柱体移动生成图图1-8实体图

蛋白质组学及其主要技术

蛋白质组学及其主要技术 朱红1 周海涛2 (综述) 何春涤1, (审校) (1.中国医科大学附属第一医院皮肤科,辽宁沈阳110001; 2.北京大学深圳医院核医学 科,广东深圳518036) 【摘要】蛋白质组是指一种细胞、组织或有机体所表达的全部蛋白质。蛋白质组学是以蛋白质组为研究对象的新兴学科,近年来发展迅速,已成为后基因组时代的研究热点。目前,蛋白质组学研究技术主要包括:样品的制备和蛋白质的分离、蛋白质检测与图像分析、蛋白质鉴定及信息查询。本文就蛋白质组学概念及主要技术进行综述。 【关键词】蛋白质组,蛋白质组学 1蛋白质组学的概念 随着人类基因组测序计划的完成,人们对生命科学的研究重点由结构基因组转向功能基因组,1994年Wilkins和Williams首先提出蛋白质组一词[1],蛋白质组是指一种细胞、组织或有机体所表达的全部蛋白质。从基因到蛋白质存在转录水平、翻译水平及翻译后水平的调控,组织中mRNA丰度与蛋白质丰度不完全符合[2]。蛋白质复杂的翻译后修饰、蛋白质的亚细胞定位或迁移、蛋白质-蛋白质相互作用等也无法从DNA/mRNA水平来判断。因此,只有将功能基因组学与蛋白质组学相结合,才能精确阐明生命的生理及病理机制。 蛋白质组学是以蛋白质组为研究对象,对组织、细胞的整体蛋白进行检测,包括蛋白质表达水平、氨基酸序列、翻译后加工和蛋白质的相互作用,在蛋白质水平上了解细胞各项功能、各种生理、生化过程及疾病的病理过程等[3,4]。蛋白质组学有两种研究策略。一种是高通量研究技术,把生物体内所有的蛋白质作为对象进行研究,并建立蛋白质数据库,从大规模、系统性的角度来看待蛋白质组学,更符合蛋白质组学的本质。但是,由于剪切变异和翻译后修饰,蛋白质数量极其庞大,且表达随空间和时间不断变化,所以分析生物体内所有的蛋白质是一个耗时费力,难以实现的理想目标。另一种策略是研究不同状态或不同时期细胞或组织蛋白质组成的变化,主要目标是研究有差异蛋白质及其功能,如正常组织与肿瘤组织间的差异蛋白质,寻找肿瘤等疾病标记物并为其诊断治疗提供依据。 2蛋白质组学的常用技术 2.1样品的制备和蛋白质的分离技术 2.1.1样品的制备样品制备包括细胞裂解与蛋白质溶解,以及去除核酸等非蛋白质成分。 激光捕获显微切割(Laser-captured microdissection, LCM)[5]技术可大量获得足够用于蛋白质组学研究的单一细胞成分,避免其他蛋白成分对电泳结果的干扰。尤其是肿瘤的蛋白质组学研究常用LCM技术来获取单一的肿瘤细胞。 2.1.2蛋白质的分离技术 ①双向凝胶电泳(Two-dimensional electrophoresis, 2-DE):双向电泳方法于 l975年由O'Farrell[6]首先提出,根据蛋白质等电点和分子量的差异,连续进行成垂直方向的两次电泳将其分离。 第一向为等电聚焦(Isoelectric focusing,IEF)电泳,其基本原理是利用蛋白质分子的等电点不同进行蛋白质的分离。较早出现的IEF是载体两性电解质pH梯度,即在电场中通过两性缓冲离子建立pH梯度;20世纪80年代初建立起来的固相pH梯度(Immobilized pH gradients,IPG)IEF,是利用一系列具有弱酸或弱碱性质的丙烯酰胺衍生物形成pH梯度并参与丙烯酰胺的共价聚合,形成固定的、不随环境电场条件变化的pH梯度。IPG胶实验的重复

相关文档
最新文档