厦大细胞生物学考点-本科生期末重点汇总

厦大细胞生物学考点-本科生期末重点汇总
厦大细胞生物学考点-本科生期末重点汇总

细胞生物学考点

1、细胞最早于1665年由英国科学家R.Hooke发现。活细胞是1673~1677年由荷兰科学家 A.Van Leeuwenhoek 观察到的。

2、德国植物学家M.J.Schleiden和动物学家T.Schwann根据自己的研究并总结前人的工作,提出了细胞学说(cell theory)。细胞学说的基本内容是:一切生物,从单细胞生物到高等动物和植物均由细胞组成,细胞是生物形态和功能活动的基本单位。

3、1958年Crick发表了“中心法则”,指出遗传信息的流向是:DNA→ RNA →蛋白质。

4、原核细胞与真核细胞的比较。

5、原核细胞向真核细胞的演化的两种假说:1分化起源说;2内共生起源说。

6、DNA和RNA在化学组成上的异同。

7、动物细胞内主要含有的RNA种类和功能。

8、蛋白质的各级结构:

一级结构是指蛋白质分子中氨基酸的排列顺序。主要化学键为肽键,少数含二硫键。

二级结构是指蛋白质分子中某一段肽链的局部空间结构,即该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。主要化学键为氢键。

三级结构是指整条肽链中全部氨基酸残基的相对空间位置。即肽链中所有原子在三维空间的排布位置。主要化学键为疏水键、离子键、氢键和 Van der Waals力等。

四级结构是指蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作用。主要是疏水作用,其次为氢键和离子键。

9、用可见光做光源的光学显微镜分辨率是0.2um,切片厚度为1~10um。电子显微镜的分辨率实际上仅约2nm,切片厚度为50~100nm。通常将光镜下所见物体的结构称作显微结构。在电子显微镜下观察到的细胞的结构称为亚显微结构或超微结构。

10、细胞的分离方法有:1差速离心或密度梯度离心;2流式细胞技术;3免疫磁珠法;4激光捕获显微切割技术。

11、层析:A离子交换层析,不可溶的基质上的荷电离子阻滞带有相反电荷分子的移动,可溶性分子与基质结合的强度取决于各自的离子强度和溶液的pH。B凝胶过滤层析,基质为多孔粒子,根据蛋白质分子量的大小,分子量大的蛋白质先被洗脱出来。C亲和性层析,蛋白质的特异配体,如抗体、酶底物等,被共价结合在基质上以结合特定蛋白。当被固定的底物与酶分子特异结合后,酶分子可以被高浓度的游离底物重新溶出。(P47)

12、细胞膜(cell membrane):是包围在细胞质表面的一层薄膜,又称质膜。细胞膜将细胞中的生命物质与外界环境分隔开,维持细胞特有的内环境。它还行使着物质转运、信号传递、细胞识别等多种复杂功能。

13、膜脂形成细胞的基本骨架,膜脂包括:磷脂、胆固醇、糖脂。

1)磷脂构成膜脂的基本成分;2)胆固醇能稳固膜和调节膜的流动性;3)糖脂主要位于质膜的非胞质面。

14、膜蛋白执行膜的多种功能:1内在膜蛋白(跨膜蛋白)2外在膜蛋白(外周蛋白)3脂锚定蛋白(脂连接蛋白)。

15、细胞膜的特性:

(一)、膜的不对称性决定膜功能的方向性: 1)膜脂的不对称性;2)膜蛋白的不对称性;3)膜糖的不对称性。

(二)、膜的流动性是膜功能的活动的保证:1)磷脂双分子层是二维流体;2)膜脂分子能进行多种运动:侧向扩散运动,翻转运动,旋转运动,伸缩和振荡运动,链烃的旋转异构运动。

16、多种因素影响膜脂的流动性: 1)脂肪酸链的饱和程度;2)脂肪酸链的长短;3)胆固醇的双重调节作用;4)卵磷脂和鞘磷脂的比值;5)膜蛋白的影响。

17、细胞膜的分子结构模型:片层结构模型;单位膜模型;流动镶嵌模型;脂筏模型。

流动镶嵌模型:这一模型认为膜中脂双层构成膜的连贯主体,它既有分子排列的有序性,又具有液体的流动性。膜中蛋白质以不同方式与脂双层分子结合,有的镶嵌在脂双层分子中,有的则附着在脂双层的表面,它是一种动态的、不对称的具有流动性的结构。

18、人工脂双层对各种粒子的相对通透性。疏水小分子如O2,CO2,N2,苯等能迅速通过脂双层膜;小的不带电荷的极性分子如水,尿素,甘油等能缓慢通过;较大的不带电荷的极性分子,如葡萄糖,蔗糖等几乎不能通过;脂双层对所有带电荷的分子(离子)都高度不通透。

19、绝大多数溶质如各种离子、葡萄糖、氨基酸、核苷酸及许多细胞代谢产物都不能通过简单扩散穿膜转运。细胞膜中有特定的膜蛋白负责转运这些物质,这类蛋白称为膜转运蛋白。所有的膜转运蛋白都是跨膜蛋白,且每种膜转运蛋白只转运一种特定类型的溶质。(P77)

20、异化扩散:一些非脂溶性的或亲水性的物质,如葡萄糖、氨基酸、核苷酸及细胞代谢产物等,不能以简单扩散的方式通过细胞膜,但他们在载体蛋白介导下,不消耗细胞的代谢能量,顺物质浓度梯度或电化学梯度进行转运,这种方式称为异化扩散或帮助扩散。

21、主动运输:主动运输是载体蛋白介导的物质逆浓度梯度或电化学梯度,由低浓度一侧向高浓度一侧进行的跨膜转运方式。耗能。

22、协同运输;协同运输是一类由Na+-K+泵(或H+泵)与载体蛋白协同作用,间接消耗ATP所完成的主动运输方式。

23、胞吞作用:是质膜内陷,包围细胞外物质形成胞饮泡,脱离质膜进入细胞内的转运过程。

(一)、吞噬作用(较大的固体颗粒或分子复合物,直径>250nm);

(二)、胞饮作用(细胞外液滴);

(三)、受体介导的内吞作用(专一性蛋白质或其他化合物)。

24、受体介导的LDL内吞作用过程:LDL与有被小泡处的LDL受体结合,有被小泡脱去外被(网格蛋白),形成无被小泡;无被小泡与内体融合,内体膜上有,在酸性环境下LDL与受体解离,受体经转运囊泡又返回质膜,被重新利用;LDL被内体性溶酶体中的水解酶分解,释放出游离胆固醇。载脂蛋白被水解成为氨基酸被细胞利用。

25、细胞表面的特化结构:1微绒毛;2纤毛和鞭毛;3褶皱。(P91~92)

26、一,载体蛋白异常与疾病:

1)胱氨酸尿症,是肾小管上皮细胞转运胱氨酸及二氨基氨基酸(赖氨酸、精氨酸及鸟氨酸)的载体蛋白缺陷引起的。

2)肾性糖尿,是肾小管上皮细胞膜转运葡萄糖的载体蛋白缺陷,致使葡萄糖重吸收障碍引起的糖尿。

二,膜受体异常与疾病:

1)家族性高胆固醇血症,编码LDL受体的基因发生突变导致LDL受体异常引起的疾病。

2)重症肌无力症,自身免疫性疾病,患者本身不缺乏N型乙酰胆碱受体(N-Ach),但产生了抗N-Ach的抗体,此抗体与神经突出后膜上的受体结合,使乙酰胆碱不能与受体结合,封闭了乙酰胆碱的作用,引起重症肌无力症。

26A、内膜系统:是细胞内那些在结构、功能及其发生上相互密切关联的膜性结构细胞器的总称。主要包括:内质网、高尔基复合体、溶酶体、各种转运小泡以及核膜等功能结构。此外,还包括过氧化物酶体。

27、内质网的功能:

(一)、粗面内质网与外输性蛋白质的分泌、加工修饰及转运过程密切相关

1)作为核糖体附着的支架

2)新生多肽链的折叠与装配

3)蛋白质的糖基化

4)蛋白质的胞内运输

(二)、信号肽介导分泌性蛋白在粗面内质网合成

1)信号肽与信号肽假说

2)跨膜驻留蛋白的插入与转移

(三)、滑面内质网是作为胞内脂类物质合成主要场所的多功能细胞器

1)滑面内质网参与脂质的合成与运输

2)滑面内质网参与糖原的代谢

3)滑面内质网是细胞解毒的主要场所

4)滑面内质网是肌细胞Ca2+的储存场所

5)滑面内质网与胃酸、胆汁的合成与分泌密切相关

28、高尔基复合体的功能

一、高尔基复合体是细胞内蛋白质运输的中转站

二、高尔基复合体是胞内物质加工合成的重要场所

1)糖蛋白的加工合成;(P110)

2)蛋白质的水解加工;

三、高尔基复合体是胞内蛋白质的分选和膜泡定向运输的枢纽。

29、溶酶体的共同特征是含有酸性水解酶;酸性磷酸酶是溶酶体的标志酶。

30、溶酶体的类型(区别)(P113)

初级溶酶体:刚从反面高尔基体形成的小囊泡, 仅含有水解酶类,无作用底物,酶处于非活性状态。

次级溶酶体:含有水解酶和相应的底物,是一种将要或正在进行消化作用的溶酶体。根据所消化的物质来源不同, 分为:自噬性溶酶体、异噬性溶酶体;

三级溶酶体(残余小体):消化不掉的物质会留在溶酶体内,形成残余小体.一般情况下,残余物可通过外排作用被排出细胞外.但当生理状态不好时,有些残余物会留在细胞中,如老年斑就是老年时细胞内的残余小体——脂褐质小体。

31、溶酶体形成与成熟过程:

(一)、内体性溶酶体是由运输小泡和内体合并形成

1)酶蛋白的N-糖基化与内质网转运;

2)酶蛋白在高尔基复合体内的加工和转移;

3)酶蛋白的分选和转运;

4)前溶酶体的形成;

5)溶酶体的成熟。

(二)、吞噬性溶酶体是内体性溶酶体与来源于细胞内外的作用底物融合形成的。

32、过氧化物酶体的酶类组成:1氧化酶类;2过氧化氢酶类;3过氧化物酶类。此外还含有苹果酸脱氢酶,柠檬酸脱氢酶等。

33、过氧化物酶体的功能:

1)过氧化物酶体能有效地清除细胞大写过程中产生的过氧化氢及其他毒性物质。

2)过氧化物酶体能有效地进行细胞氧张力的调节。

3)过氧化物酶体参与对细胞内脂肪酸等高能分子物质的分解转化。

34、过氧化物酶体的发生:两种观点1,类似溶酶体;2类似线粒体。(P118)

35、囊泡的来源与类型

一、网格蛋白有被囊泡,产生于高尔基复合体及细胞膜,主要介导从高尔基复合体向溶酶体、胞内体及质膜外的物质输送转运;

二、COPⅡ有被囊泡,产生于内质网,主要介导从内质网到高尔基复合体的物质转运;

三、COPⅠ有被囊泡首先发现于高尔基复合体,主要功能是回收转运内质网逃逸蛋白。

36、溶酶体与疾病(P123)

1)泰-萨氏(Tay-Sachs)病 2) Ⅱ型糖原累积病 3)矽肺 4)痛风

37、线粒体的形态、结构和数量(P127)

(一)、线粒体的形态、数量与细胞的类型和生理状态有关;

形状: 以线状和颗粒状较为常见,也可见哑铃形等其它形状。

大小:一般直径0.5-1μm,长1.5-3.0μm,在胰脏外分泌细胞中可长达10-20μm,称巨线粒体。

数量:从一个至数百个到数千个不等。单细胞鞭毛藻仅1个,酵母细胞具有一个大型分支的线粒体,巨大变形虫达50万个;许多哺乳动物成熟的红细胞中无线粒体。线粒体数目还与细胞的生理功能与代谢状态有关。

分布:以有利于细胞需能部位的能量供应的方式进行。

(二)、线粒体是由双层单位膜套叠而成的封闭性膜囊结构:外膜,内膜,内外膜转位接触点,基质,基粒。

外膜(outer membrane):含孔蛋白(porin),允许10000以下的分子通过,通透性较高。

内膜(inner membrane):高度不通透性,向内折叠形成嵴(cristae),含有与能量转换相关的蛋白。

膜间隙(intermembrane space):含许多可溶性酶、底物及辅助因子,利用ATP使其他核苷酸磷酸化。

基质(matrix):含三羧酸循环酶系、线粒体基因表达酶系等以及线粒体DNA, RNA,核糖体。

38、线粒体的内外膜的标志酶分别是细胞色素氧化酶和单胺氧化酶;线粒体基质和膜间腔的标志酶分别是苹果酸脱氢酶和腺苷酸激酶。

39、线粒体DNA(mtDNA)通常是裸露的,不与组蛋白结合,存在有线粒体的基质内或依附于线粒体内膜。主要编码线粒体的tRNA,rRNA 及一些线粒体蛋白质,但线粒体中大多数酶或蛋白质仍由细胞核DNA编码,合成后经特定的方式转运至线粒体中。

40、线粒体的起源与发生:一、线粒体是通过分裂方式实现增殖的;二、mtDNA随机地、不均等地分配到新的线粒体中;三、线粒体可能起源于共生的早期细菌。(P135)

41、细胞的能量转化(P137):ATP所携带的能量来源于糖、氨基酸、和脂肪酸等的氧化,这些物质的氧化是能量转换的前提。葡萄糖的氧化分为三个步骤:糖酵解,三羧酸循环和氧化磷酸化。

42、呼吸链(电子传递链):线粒体内膜上传递电子的酶体系是由一系列能够可逆地接受和释放H+和e-得化学物质组成,它们在线粒体内膜上有序地排列成相互关联的链状,称为呼吸链,或电子传递链。

43、ATP合酶复合体(P139)头部的功能是合成ATP。

44、化学渗透假说:该假说认为氧化磷酸化偶联的基本原理是电子传递中的自由能差造成H+穿膜传递,暂时转变为横跨线粒体内膜的电化学质子梯度,然后,质子顺梯度回流并释放能量,驱动结合在内膜上的ATP合酶,催化ADP磷酸化生成ATP。该学说有两个特点:1、需要定向的化学反应;2、突出了膜的结构。

45、微管蛋白与微管的结构(P147)

46、微管组织中心:微管聚合从特异性的核心形成位点开始,这些核心形成位点主要是中心体和纤毛的基体,称为微观组织中心。它主要作用是帮助大多数细胞质微管装配过程中的成核,微管从微管组织中心开始生长,这是细胞质微管装配的一个独特的性质。即细胞质微管装配受统一的功能位点控制。(P148)

47、影响微管组装和解聚的因素:GTP浓度、压力、温度、pH、离子浓度、微管蛋白临界浓度、药物(紫杉醇,秋水仙素,长春新碱等)等。

48、微观的功能:(P150)

1)微管构成细胞的网状支架,支持和维持细胞形态

2)微管参与中心粒、纤毛和鞭毛的形成(纤毛的9+2类型结构,图7-5,P150)

3)微管参与细胞内物质运输(驱动蛋白,沿微管由负端向正端移动;动力蛋白,沿微管由正端向负端移动)

4)微管维持细胞内细胞器的定位和分布

5)微管参与染色体的运动,调节细胞分裂

6)微管参与细胞内信号传导

49、肌动蛋白与微丝的结构(P153)

50、微丝的功能:(P157)

※1)微丝构成细胞的支架并维持细胞的形态※2)微丝参与细胞运动

※3)微丝参与细胞分裂※4)微丝参与肌肉收缩

5)微丝参与细胞内物质运输 6)微丝参与细胞内信号传递

51、丝状蛋白(P160)

52、中间纤维的功能:1中间纤维在细胞内形成一个完整的网状骨架系统,2 中间纤维参与细胞连接,4中间纤维参与细胞内信息传递及物质运输,5中间纤维维持细胞核膜稳定,6中间纤维参与细胞分化。(P162)

53、核膜的结构与区域化作用(P171)(图8-2)

54、核孔复合体结构模型——捕鱼笼式核孔复合体结构模型。(P173)(图8-4)

55、核纤层:是附着于内核膜下的纤维蛋白网。它与中间纤维及核骨架相互连接,形成贯穿于细胞核和细胞质的骨架体系。核纤层位于内核膜与染色质之间,厚10~100nm。组成核纤层的纤维蛋白称为核纤层蛋白或lamina多肽。

56、核纤层的功能:核纤层在细胞核中起支架作用,核纤层与核膜重建及染色质凝集关系密切,核纤层参与了细胞核构建与DNA复制。

57、染色质与染色体是同一种物质在不同时期的两种形态。染色质与染色体是在细胞周期不同的功能阶段可以相互转变的的形态结构,染色质与染色体具有基本相同的化学组成,但包装程度不同,构象不同。

染色质(chromatin): 指间期细胞核内由DNA、组蛋白、非组蛋白及少量 RNA组成的线性复合结构, 形状不规则,弥散分布于细胞核内,是间期细胞遗传物质存在的形式。

染色体(Chromosome): 指细胞在有丝分裂或减数分裂过程中, 由染色质反复缠绕凝聚而成的条状或棒状结构。

58、染色质组装成染色体:1核小体是DNA缠绕组成蛋白八聚体形成的染色体的基本结构单位。2核小体进一步螺旋形成螺线管。3螺线管进一步包装成染色质。

59、核仁组织区(NOR):是rDNA (rRNA基因)所在的染色体区域,与核仁的形成有关。能够合成核糖体的28S、18S和5.8S rRNA(5S rRNA 基因除外)。核仁组织区位于染色体的次缢痕区,但并非所有的次缢痕都是核仁组织区. rDNA (rRNA基因)是从染色体上伸出的DNA袢环,每个rDNA 袢环就是一个核仁组织者。rRNA基因通常分布于几条不同的染色体上(人类的rRNA基因位于13、14、15、21、22号染色体上),它们共同构成的区域称为核仁组织区。

60、纤维中心:是电镜下包埋于颗粒组成内部的低电子密度的圆形结构体,是rRNA基因rDNA存在的部位。

61、致密纤维组成:是核仁内电子密度最高的区域,由致密的纤维构成,呈环形或半月形包围纤维中心。电镜下该区由紧密排列的细纤维丝组成,主要含正在转录的rRNA分子,核糖体蛋白及某些特异性的RNA结合蛋白,如核仁纤维蛋白、核仁素等。

62、核仁的颗粒成分:呈致密的颗粒,颗粒直径15~20nm,颗粒成分由正在加工、成熟的核糖体亚单位的前体颗粒构成,多位于核仁的外周,是代谢活跃的细胞核仁中的主要结构。

63核仁周期:在有丝分裂的细胞中,核仁出现一系列的结构与功能的周期性变化,称为核仁周期。

64、核骨架:又称核基质,是指真核细胞间期核中除核膜、染色质和核仁以外的部分,是一个以非组蛋白为主构成的纤维网架结构。它不仅在维持细胞核的形态方面,而且在染色体组装、DNA复制和基因转录调控等一系列的活动中发挥重要作用。核骨架是DNA复制的支架,核骨架在基因转录过程中发挥重要作用,核骨架参与染色体和核膜的构建。

65、细胞核:它是真核细胞最重要的细胞器,是遗传物质DNA存在的主要部位。其主要功能是遗传信息的贮存、复制和转录,是生命活动的控制中心。

66、基因组:是指细胞或生物体内的一套完整的单倍体遗传物质,是所有染色体上的全部基因和基因间的DNA的总和,它含有一个生物体进行各种生命活动所需要的全部遗传信息。

67、中心法则:①DNA的复制,即遗传信息可由DNA分子的复制传给子代DNA;②RNA的转录,即以DNA为模板合成RNA的过程;③蛋白质的翻译,即RNA指导合成蛋白质的过程,mRNA的核苷酸序列转变为蛋白质的氨基酸序列。④RNA的逆转录,以RNA为模板合成DNA 的过程;⑤RNA的复制,以RNA为模板合成新的RNA分子的过程。

68、不对称转录asymmetric transcription:在DNA双链的某一区段,以其中一条链为模板,而在另一区段,以其相对应的互补链为模板,这种DNA链的选择性转录称为不对称转录。它包含两方面的含义:基因的转录以一条链为模板,以另一条链为编码链(不转录);染色体DNA上的各种基因转录并不都在同一条链上。

69、真核生物的RNA聚合酶:

70、RNA的剪接加工(P203)

71、原核细胞与真核细胞的核糖体成分的比较(P206)

71A 、多聚核糖体:多个核糖体结合到一个mRNA 分子上,成串排列,形成蛋白质合成的功能单位,称为多聚核糖体。 72、基因表达的一般特点:基因表达具有时间性和空间性;基因表达有组成性表达和可诱导/阻遏表达两种方式。 73、乳糖操纵子的调控。(P213)

74、增强子:增强子是一种能增强真核细胞某些启动子功能的调节序列,不具有启动子的功能,但能增强或提高启动子的活性。 75、RNA 加工水平的调控主要途径是剪接。多数真核细胞的mRNA 前提分子经剪接去除内含子后仅形成一种成熟的mRNA 分子,并经过翻译生成一条相应的多肽链,这种剪接方式称为常规剪接。许多高等真核细胞的mRNA 前提不只含有一个内含子,在特定条件下,剪切发生在两个内含子之间(某一内含子的5’端与另一内含子的3’端之间),就会删除这两个内含子及其中间的全部外显子和内含子,这称为RNA 可变剪接。

76、细胞连接的类型(P223 图10-1)

77、细胞间黏附的三种方式:同亲性结合,异亲性结合,连接分子依赖性结合。(P231)

78、选择素的功能:参与白细胞与血管内皮细胞或血小板的识别与粘着,帮助白细胞从血液进入炎症部位。(P235 图10-14) 79

、整联蛋白与医学(P239)

整联蛋白:又称整合素,是一类普遍存在于脊椎动物细胞表面,依赖于Ca 2+

和Mg 2+

的异亲型细胞粘附分子,介导细胞和细胞之间以及细胞与细胞外基质之间的相互识别和粘附。

80、细胞外基质的由三类分子构成:①氨基寡糖与蛋白聚糖;②胶原和弹性蛋白;③非胶原性黏合蛋白:纤维蛋白和层黏连蛋白。 81、细胞外基质中蛋白聚糖多聚体(P243 图11-3A )

82、胶原与疾病:由于胶原的含量、结构、类型或代谢异常而导致的疾病称为胶原病。

(1) 维生素C 缺乏导致坏血病:维生素C 缺乏可导致胶原的羟化反应不能充分进行,不能形成正常的胶原原纤维,导致血管、肌

腱、皮肤变脆,易出血,称坏血病。

(2) 遗传性胶原病:成骨发育不全综合症,软骨异常,爱-唐综合症,肝、肺皮肤的病理性纤维化。 (3) 免疫性胶原病:可导致类风湿性关节炎,慢性肾炎等。 83、基底膜的组成成分:Ⅳ型胶原,层黏连蛋白,内联蛋白,渗滤素。

84、受体(receptor ):是一类存在于细胞膜或细胞内的蛋白质,能特异性识别并结合细胞外的信号分子,进而激活细胞内一系列生物化学反应,是细胞对外界产生相应的效应。 85、G 蛋白的生物学特性:(P261)

86、受体的作用特点:1 受体选择性的与特定配体结合;2 配体具备强的亲和能力;3 受体-配体结合后显示可饱和性;4 受体-配体

的结合具有可逆性;5 受体与配体的结合可通过磷酸化和去磷酸化进行调节。

87、cAMP信使体系。(P264)

87A、级联效应:在细胞信号转导的过程中,许多胞内信号分子自身就是蛋白激酶,二它本身又可被上游的蛋白激酶磷酸化而激活,由此引起细胞内一系列蛋白质的磷酸化,产生级联效应。胞外信号分子产生的信号便由此被逐渐放大,在短时间内引起细胞效应。

88、受体异常与疾病:遗传性或原发性受体疾病;自身性免疫受体疾病;继发性受体疾病。

89、G蛋白与疾病:G蛋白的α亚基上含有细菌毒素糖基化修饰位点。细菌毒素能使这些位点糖基化,引起α亚基的GTP酶活性失活或与受体结合能力降低,导致某些疾病的产生。如:霍乱弧菌所致的腹泻。(P277)

90、有丝分裂器:在有丝分裂的中期细胞中,由染色体、星体、中心粒及纺锤体组成的结构被称为有丝分裂器。它在中期以后发生的染色体分离、染色体向两极的移动及平均分配到子代细胞等活动中发挥了关键性的作用。

91、联会复合体:在联会的的同源染色体之间,沿纵轴方向形成了一种特殊的结构。复合体两侧电子密度较高的为侧生成分,两侧生成分之间电子密度较低的区域为中间区,其中央为电子密集的中央成分,侧生成分与中央成分之间为横向排列的L-C纤维。联会复合体的成分主要为蛋白质,还包括DNA、RNA等。

92、有丝分裂与减数分裂的比较。(P287,表13-1)

94、细胞周期:通常将通过细胞分裂产生的新细胞的生长开始到下一次细胞分裂形成子细胞结束为止所经历的过程称为细胞周期。细胞周期首先可分为分裂期(M期)和分裂间期。细胞间期又分为G1期(合成DNA复制所需的多种酶和蛋白质),S 期,G2期,其中S期为DNA的合成期。

95、细胞周期的调控。(cyclin,Cdk)(P290)

96、细胞周期的监测点。(P298 图13-17 P300表13-4)

97、肿瘤细胞周期的特点。(P306)

98、细胞分化:由单个受精卵产生的细胞,在形态结构、生化组成和功能等方面均具有明显的差异,将个体发育中形成这种稳定性差异的过程成为细胞分化。

去分化:一般情况下,细胞分化过程是不可逆的。然而在某些特殊情况下,分化了的细胞也不稳定,其基因活动模式也可发生可逆性的变化,回到未分化的状态,这一变化过程称为去分化。

转分化:在高度分化的动物细胞中还可见到细胞从一种分化状态转变为另一种分化状态,这种变化过程称为转分化。细胞通过转分化形成一种发育相关的细胞类型。

98A、细胞分化的分子基础(P314)

一、基因组的活动模式

1)基因的选择性表达式细胞分化的普遍规律

奢侈基因:编码组织细胞特异性蛋白的基因称为奢侈基因。

细胞分化的本质是基因的选择性表达。

2)基因组改变时是细胞分化的特例

二、胞质中的细胞分化决定因子与传递方式

1)母源效应基因产物的极性分布决定细胞分化与发育的命运

母源效应基因:在卵质中呈极性分布、在受精后被翻译为在胚胎发育过程中起重要作用的转录因子和翻译调节蛋白的mRNA 分子称为母源效应基因。

2)胚胎细胞分裂时胞质的不均等分配影响细胞的分化命运

三、小RNA在细胞分化中的作用:它们参与了细胞分化与发育的基因表达调控。

99、胚胎诱导:胚胎发育过程中,一部分细胞对邻近细胞产生影响并决定其分化方向的现象称为诱导或胚胎诱导。

100、肿瘤细胞的分化特点:除了具有其来源细胞的部分特性外,还表现出低分化和高增殖的特征。(P326)

101、细胞衰老的学说与机制:

1)遗传决定学说认为衰老是遗传上的程序化过程;

2)自由基学说认为活性氧基团导致细胞损伤和衰老;

3)端粒钟学说认为端粒随细胞分裂不断缩短为衰老的主要原因;

4)细胞代谢废物累积引起细胞衰老;

5)基因转录或翻译差错导致细胞衰老;

6)其他学说。如神经免疫网络论,钙调蛋白学说,微量元素学说等。

102、细胞坏死与细胞凋亡区别:

细胞坏死:超过细胞可以承受的强度或阈值的环境因子引起的死亡,以及由于机体病理状态导致的死亡,称为非正常死亡或细胞坏死。

细胞凋亡:是细胞在一定的生理或病理条件下,遵循自身的程序,自己结束其生命的过程。亦称为程序性细胞死亡。103、细胞凋亡的主要信号传导通路:(P344)

1)死亡受体介导的信号转导通路;2)线粒体介导的信号转导通路。

104、单克隆抗体的制备流程:

细胞生物学考试重点

第一章:绪论 细胞学说:施来登和施旺提出 主要内容:◆所有生物都是由一个或多个细胞组成的 ◆细胞是所有生物结构和功能的基本单位 ◆一切细胞产自于已存在的细胞 意义:对细胞与生物有机体的关系及其在生物体中的作用和地位有了明确的科学理论的概括,把动植物等生物有机体在细胞水平上统一起来。对生物科学的发展起到重大推动作用。 第二章:细胞的统一性和多样性 细胞的基本共性: 1、相似的化学组成 2、脂-蛋白体系的生物膜 3、相同的遗传装置:核酸和蛋白质分子构成的遗传信息的复制与表达系统 4、一分为二的分裂方式 原核细胞主要代表:支原体、细菌、蓝藻 真核细胞的基本结构体系: 1、以脂质及蛋白质成分为基础的生物膜结构系统:质膜、细胞核、细胞质 主要功能:选择性的物质跨膜运输与信号转导 2、遗传信息表达系统: 包括细胞核和核糖体 DNA与组蛋白构成了染色质与染色体的基本结构—核小体(nucleosome) 核小体装配成染色质,继而在细胞分裂阶段形成染色体 3、细胞骨架系统:是由一系列特异的结构蛋白装配而成的网架系统。分为胞质骨架和核骨架。 (胞质骨架:由微丝、微管与中等纤维等构成的网络体系。核骨架:包括核纤层和核基质。)器官的大小主要决定于细胞的数量,与细胞的数量成正比,而与细胞的大小无关,把这种现象为“细胞体积的守恒定律”。 细胞的体积受什么因素控制? 答:与各部分细胞的代谢活动及细胞功能有关;受外界环境条件的影响;细胞的核与质之间有一定的比例关系;细胞的“比面值”与细胞内外物质的交换及细胞内物质交流的关系 原核细胞与真核细胞、植物与动物细胞的比较: 功能上的共同点:都是生命的基本结构单位;都能进行分裂;都能遗传 结构上的共同点:都有细胞膜;都有DNA和RNA;都有核糖体

细胞生物学期末复习简答题及答案

细胞生物学期末复习简答题及答案 五、简答题 1、细胞学说的主要容是什么?有何重要意义? 答:细胞学说的主要容包括:一切生物都是由细胞构成的,细胞是组成生物体的基本结构单位;细胞通过细胞分裂繁殖后代。细胞学说的创立参当时生物学的发展起了巨大的促进和指导作用。 其意义在于:明确了整个自然界在结构上的统一性,即动、植物的各种细胞具有共同的基本构造、基本特性,按共同规律发育,有共同的生命过程;推进了人类对整个自然界的认识;有力地促进了自然科学与哲学的进步。 2、细胞生物学的发展可分为哪几个阶段? 答:细胞生物学的发展大致可分为五个时期:细胞质的发现、细胞学说的建立、细胞学的经典时期、实验细胞学时期、细胞生物学时期。 3、为什么说19世纪最后25年是细胞学发展的经典时期? 答:因为在19世纪的最后25年主要完成了如下的工作: ⑴原生质理论的提出;⑵细胞分裂的研究;⑶重要细胞器的发现。这些工作大推动了细胞生物学的发展。 1、病毒的基本特征是什么? 答:⑴病毒是“不完全”的生命体。病毒不具备细胞的形态结构,但却具备生命的基本特征(复制与遗传),其主要的生命活动必需在细胞才能表现。⑵病毒是彻底的寄生物。病毒没有独立的代和能量系统,必需利用宿主的生物合成机构进行病毒蛋白质和病毒核酸的合成。⑶病毒只含有一种核酸。⑷病毒的繁殖方式特殊称为复制。 2、为什么说支原体是目前发现的最小、最简单的能独立生活的细胞生物? 答:支原体的的结构和机能极为简单:细胞膜、遗传信息载体DNA与RNA、进行蛋白质合成的一定数量的核糖体以及催化主要酶促反应所需要的酶。这些结构及其功能活动所需空间不可能小于100nm。因此作为比支原体更小、更简单的细胞,又要维持细胞生命活动的基本要求,似乎是不可能存在的,所以说支原体是最小、最简单的细胞。 1、超薄切片的样品制片过程包括哪些步骤? 答案要点:固定,包埋,切片,染色。 2、荧光显微镜在细胞生物学研究中有什么应用? 答案要点:荧光显微镜是以紫外线为光源,照射被检物体发出荧光,在显微镜下观察形状及所在位置,图像清晰,色彩逼真。 荧光显微镜可以观察细胞天然物质经紫外线照射后发荧光的物质(如叶绿体中的叶绿素能发出血红色荧光);也可观察诱发荧光物质(如用丫啶橙染色后,细胞中RNA发红色荧光,DNA发绿色荧光),根据发光部位,可以定位研究某些物质在细胞的变化情况。 3、比较差速离心与密度梯度离心的异同。 答案要点:二者都是依靠离心力对细胞匀浆悬浮液中的颗粒进行分离的技术。差速离心是一种较为简便的分离法,常用于细胞核和细胞器的分离。因为在密度均一的介质中,颗粒越大沉降越快,反之则沉降较慢。这种离心方法只能将那些大小有显著差异的组分分开,而且所获得的分离组分往往不很纯;而密度梯度离心则是较为精细的分离手段,这种方法的关键是先在离心管中制备出蔗糖或氯化铯等介质的浓度梯度并将细胞匀浆装在最上层,密度梯度的介质可以稳定沉淀成分,防止对流混合,在此条件下离心,细胞不同组分将以不同速率沉降并形成不同沉降带。 4、为什么电子显微镜不能完全替代光学显微镜? 答案要点:电子显微镜用电子束代替了光束,大大提高了分辨率,电子显微镜相对光学显微镜是个飞跃。

厦门大学细胞生物学题库(公卫)_填空题

填空题 1细胞是构成有机体的基本单位,是代谢与功能的基本单位,是生长与发育的基本单位,是遗传的基本单位。 2实验生物学时期,细胞学与其它生物科学结合形成的细胞分支学科主要有细胞遗传学、细胞生理学和细胞化学。 3组成细胞的最基础的生物小分子是核苷酸、氨基酸、脂肪酸核、单糖,它们构成了核酸、蛋白质、脂类和多糖等重要的生物大分子。 4按照所含的核酸类型,病毒可以分为DNA病毒和RNA病毒。 1.目前发现的最小最简单的细胞是支原体,它所具有的细胞膜、遗传物质 (DNA与RNA)、核糖体、酶是一个细胞生存与增殖所必备的结构装置。2.病毒侵入细胞后,在病毒DNA的指导下,利用宿主细胞的代谢系统首先译 制出早期蛋白以关闭宿主细胞的基因装置。 3.与真核细胞相比,原核细胞在DNA复制、转录与翻译上具有时空连续性的 特点。 4.真核细胞的表达与原核细胞相比复杂得多,能在转录前水平、转录水平、 转录后水平、翻译水平、和翻译后水平等多种层次上进行调控。 5.植物细胞的圆球体、糊粉粒、与中央液泡有类似溶酶体的功能。 6.分辨率是指显微镜能够分辩两个质点之间的最小距离。 7.电镜主要分为透射电镜和扫描电镜两类。 8.生物学上常用的电镜技术包括超薄切片技术、负染技术、冰冻蚀刻技术等。 9.生物膜上的磷脂主要包括磷脂酰胆碱(卵磷脂)、磷脂酰丝氨酸、磷脂酰肌 醇、磷脂酰乙醇胺和鞘磷脂。 10.膜蛋白可以分为膜内在蛋白(整合膜蛋白)和膜周边蛋白(膜外在蛋白)。 11.生物膜的基本特征是流动性和不对称性。 12.内在蛋白与膜结合的主要方式有疏水作用、离子键作用和共价键结合。 13.真核细胞的鞭毛由微管蛋白组成,而细菌鞭毛主要由细菌鞭毛蛋白组成。 14.细胞连接可分为封闭连接、锚定连接和通讯连接。 15.锚定连接的主要方式有桥粒与半桥粒和粘着带和粘着斑。 16.锚定连接中桥粒连接的是骨架系统中的中间纤维,而粘着带连接的是微丝 (肌动蛋白纤维)。 17.组成氨基聚糖的重复二糖单位是氨基己糖和糖醛酸。 18.细胞外基质的基本成分主要有胶原蛋白、弹性蛋白、氨基聚糖和蛋白聚糖、层 粘连蛋白和纤粘连蛋白等。

细胞生物学期末复习附带答案及作业题目

细胞生物学期末复习附带答案及作业题目 一选择 1 最早发现细胞的是:胡克 2 观察无色透明细胞:相差显微镜;观察运动细胞:暗视野显微镜。 3 信号传递中,重要的脂类是:磷酸酰基醇。 4 多药性蛋白属于ABC转运器。 5 植物细胞与细菌的协助运输借助于质子浓度梯度。动物则借助钠离子浓度梯度。 6 鞭毛基体和中心粒属于三联微管。 7 叶绿体质子动力势产生是因为类囊体腔的PH值低于叶绿体基质的PH值。 8 Hela细胞属于宫颈癌上皮细胞。 9 电子显微镜的分辨力:0.2nm。光镜:0.2um。人眼: 0.2mm。 10 鞭毛轴丝由9+2微管组成。 11 矽肺与溶酶体有关。 12 纺锤体的微管包括:星体微管,动粒微管,极微管。 13 具有细胞内消化作用的细胞器是:溶酶体。 14 细胞生命活动所需能量均来自线粒体。 15 信号识别颗粒是一种核糖核蛋白,包括RNA和蛋白质。 16 抑制脂质分裂的是:松弛素。 17 钙离子浓度上升时,PKC转移到质膜内表面。 18 类囊体膜上电子传递方向:PSII---PSI---NADP+。 19 由膜围成的细胞器是胞内体。 20 氚标记的尿嘧啶核苷用于检测细胞中RNA转录。

21 膜脂不具有的分子运动是跳跃运动。 (具有的是:侧向,旋转,翻转) 22 膜流的正确方向:内质网——高尔基体——质膜。 23 初级溶酶体来自粗面内质网和高尔基体。 24 线粒体合成ATP。 25 微丝重要的化学成分是肌动蛋白。 26 不消耗能量的运输方式是:电位门通道。 27 肌质网可贮存钙离子。 28 高尔基体功能功能:分泌颗粒形成。 29 微丝在非肌细胞中功能:变形运动,支架作用,吞噬运动。 30 中心粒:9组3联。 31 胞内信使有:C,CGMP,DG。生长因子:EGFR。、 32 流式细胞术可快速测定细胞中DNA含量。 33 完成细胞膜特定功能的组分为膜蛋白。 34 细胞质外层的一个复合结构体系和多功能体系成为:细胞膜。 35 酪氨酸蛋白激酶受体是血小板衍生生长因子受体。 36 肝细胞解毒作用发生在滑面内质网。 37 衰老细胞器被膜包裹形成自噬体。 38 线粒体中ADP---ATP在基粒中。 39 组成微丝的主要化学成分是:纤维状肌动蛋白。 40含不溶性脂蛋白颗粒的细胞内小体为脂褐质。 41 微管形态一般是中空圆柱状。 42 细胞氧化过程中,乙酰辅酶A生成在线粒体基质中。 43 粗面内质网作为核糖体附着支架。

医用细胞生物学知识点

医用细胞生物学知识点 细胞生物学 (cell biology ):细胞生物学是以细胞为研究对象,经历了从显微水平到亚显微和分子水平 的发展过程,成为今天在分子层次上研究细胞精细结构和生命活动规律的学科。 医学细胞生物学 (medical cell biology):医学细胞生物学以揭示人体各种细胞在生理和病理过程中 的生 命活动规律为目的,期望能对人体各种疾病的发病机制予以深入阐明,为疾病的诊断、治疗和预防提 供理论依据和策略。 对细胞概念理解的五个角度: ①细胞是构成有机体的基本单位; ②细胞是代谢与功能的基本单位; ③ 细胞是有机体生长与发育的基础; ④细胞是遗传的基本单位; ⑤没有细胞就没有完整的生命。 生物界划分的三个类型:原核细胞、古核细胞和真核细胞。 原核细胞与真核细胞的比较: p13 表 2-1 生物大分子:是由有机小分子构成的,大约有 3000种,分子量从 10000到 1000000。 核酸 (nucleic acid ) 的基本单位 :核苷酸。 核苷酸:核苷的戊糖羟基与磷酸形成酯键,即成为核苷酸。 DNA 分子的双螺旋结构模型( p18图 2-8):DNA 分子由两条相互平行而方向相反的多核苷酸链组成, 即一条链中磷酸二酯键连接的核苷酸方向是 5'→3',另一条是 3'→ 5',两条链围绕着同一个中心轴 以右手方向盘绕成双螺旋结构。 基因组:细胞或生物体的一套完整的单倍体遗传物质称为基因组。 动物细胞内含有的主要 RNA 种类及功能: p20 表 2-3 核酶 (ribozyme ) :核酶是具有酶活性的 RNA 分子。 蛋白质 ( protein )的基本单 位:氨基酸。 肽键:肽键是一个氨基酸分子上的 羧基 与另一个氨基酸分子上的 氨基经脱水缩合 而成的化学键。 肽 (peptide) :氨基通过肽键而连接成的化合物称为肽。 蛋白质分子的二级结构: α -螺旋, β-片层。 酶 (enzyme):酶是由生物体细胞产生的具有催化剂作用的蛋白质。 酶的特性:高催化效率,高度专一性,高度不稳定性。 光学显微镜的种类:普通光学显微镜,荧光显微镜,相差显微镜,暗视野显微镜,共聚焦激光扫描显 微镜。 细胞培养:细胞培养是指细胞在体外的培养技术,即无菌条件下,从机体中取出组织或细胞,模拟机 体内正常生理状态下生存的基本条件,让它在培养器皿中继续生存、生长和繁殖的方法。 细胞膜 (cell membrane ):细胞膜是包围在细胞质表面的一层薄膜,又称质膜 ( plasma membrane ) 生物膜 ( biomembrane ):目前把 质膜 和细胞内膜系统 总称为生物膜。 细胞膜的组成:主要由脂类、蛋白质和糖类组成 磷脂 (phospholipid)可分为两类:甘油磷脂 由于磷脂分子具有亲水头和疏水 尾,故称为 膜蛋白可分为三种基本类型:膜内在蛋白 蛋白 (lipid anchored protein) 。 细胞外被 ( cell coat ):在大多数真核细胞表面有富含糖类的周缘区,称为细胞外被或糖萼。 细胞外被的基本功能: 保护细胞抵御各种物理、化学性损伤 ,如消化道、呼吸道等上皮细胞的细胞外 被有助于润滑、防止机械损伤,保护黏膜上皮不受消化酶的作用。 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11 . 12 . 13 . 14 . 15 . 16 . 17 . 18 . 19. 20. 21 . 22 . 23 . 24 . 25 . 26. 27. 28. (phosphoglycerides )和鞘磷脂 (sphingomyelin,SM) 。 两亲性分子 或兼性分子 。 intrinsic protein )、膜外在蛋白 (extrinsic

2015年厦门大学分子细胞生物学考研真题及答案解析

厦门大学2015年招收攻读硕士学位研究生 入学考试试题 科目代码:620 科目名称:分子细胞生物学 招生专业:生命科学学院、医学院、化学系、海洋与地球学院、环境与生态学院、药学院各相关专业 一、选择题(单选,每题2分,共30分) 1.病毒与细胞在起源上的关系,下面()的观点越来越有说服力 A.生物大分子→病毒→细胞 B.生物大分子→细胞→病毒 C.细胞→生物大分子→病毒 D都不对 2.已克隆人的rDNA,用()确定rDNA分布在人的哪几条染色体上 A.单克隆抗体技术 B.免疫荧光技术 C.免疫电镜技术 D.原位杂交技术 3.关于弹性蛋白的描述,()是对的 A.糖基化、高度不溶、很少羟基化、富含脯氨酸和甘氨酸 B.非糖基化、高度不溶、羟基化、富含脯氨酸和甘氨酸 C.非糖基化、可溶、很少羟基化、富含脯氨酸和甘氨酸 D.非糖基化、高度不溶、很少羟基化、富含脯氨酸和甘氨酸 4.乙酰胆碱受体属于()系统 A.通道耦联受体 B.G蛋白耦联受体 C.酶耦联受体 D.都不对 5.内质网还含有( ),可以识别不正确折叠的蛋白或未装配好的蛋白亚基,并促进它们重新折叠和装配 A.Dp B.Bip C.SRP D.Hsp90 6.染色体骨架的主要成分是() A.组蛋白 B.非组蛋白 C.DNA D.RNA 7.溶酶体内所含有的酶为( ) A.碱性水解酶 B.中性水解酶 C.酸性水解酶 D.氧化磷酸化酶 8.用特异性药物松弛素B可以阻断( )的形成 A.胞饮泡 B.吞噬泡 C.分泌小泡 D.包被小泡 9.有丝分裂中期最主要的特征是( ) A.染色体排列在赤道面上 B.纺锤体形成 C.核膜破裂 D.姐妹染色单体各移向一极 二、名词解释(每题6分,共30分)

细胞生物学知识点

第一章医学细胞生物学绪论 名词解释:生物学,细胞生物学 解答题:细胞对生命活动的意义,细胞的共同属性 易考点:首次命名植物细胞的人,发现无丝分裂、减数分裂的事件,提出DNA 双螺旋模型 第二章细胞生物学研究方法 名词解释:分辨率,电子显微镜,酶细胞化学技术,流式细胞技术,细胞培养,细胞系,细胞株,细胞融合,干细胞 解答题:细胞培养的基本条件,光学显微镜技术的原理 易考点:分辨率的计算公式及各个字母代表的意思,光镜的分辨极限,暗视野显微镜观察的是细胞轮廓以及观察的范围,透射显微镜观察的是细胞内部的细微结构,扫描电子显微镜观察的是三维立体形貌。 第四章细胞膜 名词解释:生物膜,细胞膜 解答题:流动镶嵌模型,细胞膜的特性,耦联运输 易考点:功能复杂的膜中所占蛋白质的比例大,三种膜蛋白的存在形式,影响膜脂流动性的因素,细胞膜的物质转运功能(选择题形式),糖萼的本质 第六章内膜系统 名词解释:内膜系统,细胞质 解答题:信号假说的主要内容,高尔基复合体的功能,滑面内质网的功能,溶酶体的形成过程,溶酶体的功能 易考点:内质网的标志酶,高尔基复合体的形态(形成面,成熟面),溶酶体的标志酶 第七章线粒体 名词解释:三羧酸循环,氧化磷酸化,底物水平磷酸化,呼吸链,分子伴侣,导肽 解答题:描述线粒体的结构 易考点:光镜下线粒体的结构,线粒体各部位的标志酶,呼吸链的复合体中每个复合体有哪些物质,线粒体疾病的特点,化学渗透学说主要知道氧化放能

第八章细胞骨架 名词解释:细胞骨架,中间纤维结合蛋白 解答题:微管的体外装配,影响微管装配的因素,微管的功能(简单描述),微丝的组装过程,影响微丝组装的因素,微丝的功能,中间纤维结合蛋白的功能,中间纤维的组装的控制以及影响因素,中间纤维的功能 第九章细胞核 名词解释:核型,核纤层,细胞骨架,核基质, 解答题:简述细胞核的基本结构,核孔复合体的结构,常染色质和异染色质的异同点,核仁的光镜和电镜结构。 易考点:核基质的功能,人体哪几号染色体上有核仁组织区。 第十一章细胞生长与增殖 名词解释:细胞增殖,细胞周期蛋白依赖性激酶抑制物CDKI。解答题:简述有丝分裂过程及各过程标志,减数分裂过程。易考点:有丝分裂、无丝分裂、减数分裂的英文,细胞周期调控的起主要作用的物质。 第十三章细胞分化 名词解释:细胞分化,细胞决定,管家基因,奢侈基因。易考点:细胞分化实质,细胞分化特点。第十五章:名词解释:干细胞。易考点:干细胞的分类,干细胞的来源。 第十四章细胞衰老与死亡 名词解释:细胞衰老。解答题:细胞凋亡与细胞坏死的主要区别。易考点:细胞衰老的表现,细胞凋亡的特征。 第十五章:名词解释:干细胞。

细胞生物学复习题 含答案

1.简述细胞生物学的基本概念,以及细胞生物学发展的主要阶段。 以细胞为研究对象,经历了从显微水平到亚显微和分子水平的发展过程,研究细胞结构与功能从而探索细胞生长发育繁殖遗传变异代谢衰老及进化等各种生命现象的规律的科学;主要阶段:①细胞的发现与细胞学说的创立②光学显微镜下的细胞学研究③实验细胞学研究 ④亚显微结构与分子水平的细胞生物学. 2.简述细胞学说的主要内容。 施莱登和施旺提出一切生物,从单细胞生物到高等动物和植物均有细胞组成,细胞是生物形态结构和功能活动的基本单位.魏尔肖后来对细胞学说作了补充,强调细胞只能来自原来的细胞。 3.简述原核细胞的结构特点。 1). 结构简单 DNA为裸露的环状分子,无膜包裹,形成拟核。 细胞质中无膜性细胞器,含有核糖体. 2). 体积小直径约为1到数个微米。 4.简述真核细胞和原核细胞的区别。 5.简述DNA的双螺旋结构模型. ① DNA分子由两条相互平行而方向相反的多核苷酸链组成。②两条链围绕着同一个中心轴 以右手方向盘绕成双螺旋结构。③螺旋的主链由位于外侧的间隔相连的脱氧核糖和磷酸组

成,内侧为碱基构成。④两条多核苷酸链之间依据碱基互补原则相连螺旋内每一对碱基均位于同一平面上并且垂直于螺旋纵轴,相邻碱基对之间距离为0。34nm,双螺旋螺距为3。4nm。 6.蛋白质的结构特点。 以独特的三维构象形式存在,蛋白质三维构象的形成主要由其氨基酸的顺序决定,是氨基酸组分间相互作用的结果。一级结构是指蛋白质分子氨基酸的排列顺序,氨基酸排列顺序的差异使蛋白质折叠成不同的高级结构。二级结构是由主链内氨基酸残基之间氢键形成,有两种主要的折叠方式a-螺旋和β—片层。在二级结构的基础上进一步折叠形成三级结构,不同侧键间互相作用方式有氢键,离子键和疏水键,具有三级结构既表现出了生物活性。三级结构的多肽链亚单位通过氢键等非共价键可形成更复杂的四级结构。 7.生物膜的主要化学组成成分是什么? 膜脂(磷脂,胆固醇,糖脂),膜蛋白,膜糖 8.什么是双亲性分子(兼性分子)?举例说明。 既含有亲水头部又含有疏水的尾部的分子,如磷脂一端为亲水的磷酸基团,另一端为疏水的脂肪链尾. 9.膜蛋白的三种类型。 膜内在蛋白(整合蛋白),膜外在蛋白,脂锚定蛋白 10.细胞膜的主要特性是什么?膜脂和膜蛋白的运动方式分别有哪些? 细胞膜的主要特性:膜的不对称性和流动性;膜脂翻转运动,旋转运动,侧向扩散,弯曲运动,伸缩和振荡运动。膜蛋白旋转运动和侧向扩散. 11.影响膜脂流动的主要因素有哪些? ①脂肪酸链的饱和程度,不饱和脂肪酸越多,相变温度越低其流动性也越大。 ②脂肪酸链的长短,脂肪酸链短的相变温度低,流动性大。 ③胆固醇的双重调节,当温度在相变温度以上时限制膜的流动性起稳定质膜的作用,在相变 温度以下时防止脂肪酸链相互凝聚,干扰晶态形成。 ④卵磷脂与鞘磷脂的比例,比值越大流动性越大. ⑤膜蛋白的影响,嵌入膜蛋白越多,膜脂流动性越小 ⑥膜脂的极性基团、环境温度、pH值、离子强度及金属离子等均可对膜脂的流动性产生一 定的影响。 12.简述生物膜流动镶嵌模型的主要内容及其优缺点。 膜中脂双层构成膜的连贯主体,他们具有晶体分子排列的有序性,又有液体的流动性,膜中蛋白质以不同的方式与脂双层结合.优点,强调了膜的流动性和不对称性.缺点,但不能说明具有流动性性的质膜在变化过程中怎样保持完整性和稳定性,忽视了膜的各部分流动性的不均匀性。 13.小分子物质的跨膜运输方式有哪几种? 被动运输:简单扩散,易化扩散,离子通道扩散.主动运输:ATP直接供能,ATP间接供能。 14.简述被动运输与主动运输的区别。 被动运输不消耗细胞能量,顺浓度梯度或电化学梯度。主动运输逆电化学梯度运输,需要消耗能量,都有载体蛋白介导。 15.大分子和颗粒物质的跨膜运输方式有哪几种? 胞吞作用(吞噬作用,胞饮作用,受体介导的胞吞作用)。胞吐作用(连续性分泌作用,受调性分泌作用) 16.简述小肠上皮细胞吸收葡萄糖的过程. 小肠上皮细胞顶端质膜中的Na+/葡萄糖协同运输蛋白,运输2个Na+的同时转运1个葡萄糖分子,使胞质内产生高葡萄糖浓度;质膜基底面和侧面的葡萄糖易化扩散运输蛋白,转运葡萄糖离开细胞,形成葡萄糖的定向转运.Na+—K+泵将回流到细胞质中的Na+转运出细胞,维持Na+穿膜浓度梯度。

厦大细胞生物学考点-本科生期末重点.

细胞生物学考点 1、细胞最早于1665年由英国科学家R.Hooke发现。活细胞是1673~1677年由荷兰科学家 A.Van Leeuwenhoek 观察到的。 2、德国植物学家M.J.Schleiden和动物学家T.Schwann根据自己的研究并总结前人的工作,提出了细胞学说(cell theory)。细胞学说的基本内容是:一切生物,从单细胞生物到高等动物和植物均由细胞组成,细胞是生物形态和功能活动的基本单位。 3、1958年Crick发表了“中心法则”,指出遗传信息的流向是:DNA→ RNA →蛋白质。 4、原核细胞与真核细胞的比较。 5、原核细胞向真核细胞的演化的两种假说:1分化起源说;2内共生起源说。 6、DNA和RNA在化学组成上的异同。 7、动物细胞内主要含有的RNA种类和功能。 8、蛋白质的各级结构: 一级结构是指蛋白质分子中氨基酸的排列顺序。主要化学键为肽键,少数含二硫键。 二级结构是指蛋白质分子中某一段肽链的局部空间结构,即该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。主要化学键为氢键。 三级结构是指整条肽链中全部氨基酸残基的相对空间位置。即肽链中所有原子在三维空间的排布位置。主要化学键为疏水键、离子键、氢键和 Van der Waals力等。 四级结构是指蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作用。主要是疏水作用,其次为氢键和离子键。 9、用可见光做光源的光学显微镜分辨率是0.2um,切片厚度为1~10um。电子显微镜的分辨率实际上仅约2nm,切片厚度为50~100nm。通常将光镜下所见物体的结构称作显微结构。在电子显微镜下观察到的细胞的结构称为亚显微结构或超微结构。 10、细胞的分离方法有:1差速离心或密度梯度离心;2流式细胞技术;3免疫磁珠法;4激光捕获显微切割技术。

细胞生物学期末考试资料

细胞生物学期末考试资料 一、名词解释(8题/3分,英文,写出中文再解释) 1、蛋白质分选(protein sorting):指依靠蛋白质自身信号序列,从蛋白质起始合成部位转运到其功能发挥部位的过程。P115 2、信号肽(signal peptide):是位于蛋白质上的一段连续的氨基酸序列,一般有15~60个氨基酸残基,具有分选信号的功能。P116 信号斑(signal patach):是溶酶体酶蛋白多肽形成的一个特殊的三维结构,是位于蛋白质不同部位的几个氨基酸序列在多肽链折叠后形成的一个斑块区,具有分选信号的功能。 前肽(prepeptide):指一些分泌蛋白质的新生肽链N末端,有一段长度不等的肽段,通常由20~30个氨基酸残基组成。 导肽(leading peptide):它是游离核糖体上合成的蛋白质的N-端信号。 3、分子伴侣(molecular chaperones):将细胞核内能与组蛋白结合并能介导核小体有序组装的核质素。P123 4、细胞骨架(cytoskeleton):由微丝、微管和中间纤维组成的蛋白纤维网络结构,具有为细胞提供结构支架、维持细胞形态、负责细胞内物质和细胞器转运和细胞运动等功能。 P166 5、微管组织中心(microtubule organizing centers,MTOCs):是细胞质中决定微管在生理状态或实验处理解聚后重新组装的结构。P177 6、细胞通讯(cell communication):指一个细胞发出的信息通过介质传递到另一个靶细胞并与其特异的受体相互作用,通过细胞信号转导引起靶细胞内一系列生理生化变化等生物学效应的过程。P200 7、受体(receptor):是细胞表面或细胞内的一类大分子,可识别并特异性地与有生物活性的化学信号分子结合,从而激活或启动一系列生物化学反应,最后导致该信号物质特定的生物效应。P204 8、第二信使(second messenger):指胞内产生的非蛋白类小分子,通过其浓度的增加或减少,应答胞外信号与细胞表面受体的结合,调节细胞内酶和非酶的活性,从而在细胞信号转导途径中行使信号放大、分化、整合并传递的功能。P206 9、生物的基因组(genome):在真核细胞中,每条DNA分子都被包装在染色体中,一个生物储存在单倍染色体组中的总遗传信息。P254 10、核型(karyotype):一个体细胞有丝分裂中期的全部染色体,按其数目、大小和形态特征顺序排列所构成的图像。P272 11、灯刷染色体(lampbrush chromoome):是卵母细胞进行第一次减数分裂时,停留在双线期的染色体。P277 12、Hayflick 界限(Hayflick limit):细胞,至少是培养的细胞,不是不死的,而是有一定的寿命;它们的增殖能力不是无限的,而是有一定的界限。P369 细胞周期(cell cycle):指细胞从上一次分裂结束到下一次分裂结束的全过程。 13、表观遗传(epigenetics):指DNA序列不发生变化,但基因表达却发生了可遗传的改变。 14、干细胞(Stem cell):是存在于个体发育过程中,具有长期(或无限)自我更新能力、并可分化产生某种(或多种)特化细胞的原始细胞。是个体的生长发育、组织器官的结构和功能

2021厦大生物学考研真题经验参考书

厦大考研的那些事儿 ——生物学

我的考研史 时间过得可真快啊,2018级考研已经落幕半年了,但是一提起这段自我感觉略带些传奇色彩的考研史我就心潮澎湃,激动不已,当然更多的是感慨,毕竟这一路走来,用一句话形容就是:“兄弟,咱太不容易了!”。如今一举成功拿到目标院校的录取通知书,这成就感简直无法言表,就差眼泪夺眶而出了。为了分享,同时也是为了纪念我人生路上的这一次小成功,决定把我在备考时期准备的资料全部记录在此。 先说下我自身情况,我本科就读于一所普通二本院校,在上大二的时候,身边的同学,老师还有亲戚朋友有意无意的都会提起来:“你以后怎么打算的啊?”,“将来想做什么工作啊?”,“你以后想往什么方向发展啊?”,每次听到这些问题的时候我就会感到很迷茫,相信大家被问到的时候也会有同样的感觉,我专业是学习生物的,虽然不知道自己将来能干什么但是我觉得我还是挺喜欢这个专业的,而且专业课的升级在院系也是名列前茅的,不止一个专业课老师建议我深造,能在这个专业领域有所建树,可能是也和我个人的沉稳、耐心和认真的性格有关系。所以当时就开始考虑考研继续深造的这个事情,等大二下学期的时候,身边的同学都开始陆续的准备考研了,我也算是跟上大部队的潮流,下定决心跟他们一起准备考研。 在没决定考研之前,我就对厦门大学有一个情结,因为不止有一个人跟我说厦门大学环境好,学习氛围也好,网上的校园风景的图片更是吸引我,当时我还有开玩笑说,如果要是考研究生的话我就报考厦门大学。当我真的决定报考厦门大学的时候,可能所有人,甚至包括我的专业课老师都觉得我这目标订的有点儿高,因为我是一个普通二本院校的学生,而考研的目标院校确是一个名副其实的985院校,这个难度不是一般的大,即使我的专业课感觉学的还不错。当然,我的心里也没底,那个时候,可以说厦门大学就是我一个梦,连我自己都没有想过这个梦真的实现了。 既然已经决定好了自己的目标院校,那就要努力一搏,即使考不上,至少我也曾为我的目标认真的奋斗过,不会给自己留下遗憾,所以,备考的那段日子我真的是拼尽全力,那种劲头可能比高三学生来的还要猛烈,总算是皇天不负有心人,最后能够如愿以偿拿到录取通知书。

细胞生物学期末考试试题

细胞生物学期末考试试题 1. 一氧化氮 (NO)是不是第二信使,请简述你的观点和证据。一氧化氮是第二信使 资料表明,细胞中存在一种NO合成酶,NO合成酶分解L-精氨酸,生成NO和 L-瓜氨酸。 NO的作用决定其释放部位,生成细胞是血管内皮。如乙酞胆碱,缓激肤或动脉流等刺激内皮细胞,使之释放NO,它激活邻近平滑肌的鸟核昔酸环化酶, 引起血管舒张。在血小板,则抑制聚集和粘附; 在大鼠小脑,由于激活了兴奋性NMDA(N-甲基-D-天冬氨酸)受体,神经元释放 畜NO,使邻近的突触前神经末梢及星形细胞的可溶性鸟核昔酸释化酶激活。FMLP或LTB刺激大鼠腹腔中4性粒细胞和刺激巨噬细胞产生NO,NO可以激活血管平滑肌及血小板的鸟核昔酸环化酶: 由此看啦NO确实是一种第二信使。 参考文献:NO-神经系统和免疫系统的第二信使,Coller j&Vallance P 国外医学分子生物学分册第13卷第1期,1991 2. 简述你对干细胞的理解和干细胞的应用前景。 干细胞(stem cells, SC)是一类具有自我复制能力(self-renewing)的多潜能 细胞,在一定条件下,它可以分化成多种功能细胞。根据干细胞所处的发育阶段分为胚胎干细胞(embryonic stem cell,ES细胞)和成体干细胞(somatic stem cell)。根据干细胞的发育潜能分为三类:全能干细胞(totipotent stem cell,TSC)、多能干细胞(pluripotent stem cell)和单能干细胞(unipotent stem cell)。干细胞(Stem Cell)是一种未充分分化,尚不成熟的细胞,具有再生各种组织器官和人体的潜在功能,医学界称为“万用细胞”。

细胞生物学重点知识整理

细胞生物学 第一章:绪论 ●现代细胞生物学研究的三个层次是什么? ●细胞的发现 ●细胞学说 ●分子生物学的出现 ●真核细胞与原核细胞的比较 第三章:细胞基础 ●生物大分子 ●蛋白质一、二、三、四级结构 ●核酸分类 ●DNA/RNA结构、功能比较 ●三类主要RNA的大体结构与功能 ●DNA双螺旋结构模型 第四章:细胞膜 ●膜的化学组成:三种膜脂加二种膜蛋白 ●膜的流动镶嵌模型fluid mosaic model ●脂筏 ●膜的两大特性, ●物质运输的方式及比较:穿膜与跨膜 ●主/被动运输名词及其异同 ●内吞、外吐比较 ●细胞表面,细胞外被概念 第六章:细胞连接与细胞外基质 ●名解解释: ◆细胞连接cell junction, ◆紧密连接tightjunction, ◆锚定连接anchoringjunction, ◆通讯连接communicationjunction, ◆细胞外基质extracellular matrix, ●细胞连接可分为几种类型?在结构和功能上各有什么特点? 第七章:核糖体 ●根据来源和沉降系数,细胞中核糖体分两类,其亚基组成?其rRNA组成及组成蛋白质种类? ●细胞中核糖体有几种存在形式?所合成的蛋白质在功能上有什么不同? ●核糖体上重要活性位点 ●蛋白质合成的过程 ●遗传密码,密码子,反密码子之间有何联系和区别? ●遗传密码具有哪些特征?

(细胞生物学复习资料вTсエ莋室整理) 第一,对内膜系统的概念和相互关系有较清楚的了解和掌握; 第二,重点要了解和掌握内质网,高尔基体,溶酶体和过氧化物酶体等细胞器和结构的性质特点和主要功能,以及有关的一些重要名词术语概念。 标志酶分别是。。 Signal peptide- SRP- ribosome 膜流;溶酶体分类;有被小泡类型;膜泡定向运输机制 名词解释 内膜系统; 内质网; 粗面内质网; 滑面内质网; 信号肽,信号假说内体性溶酶体; 吞噬性溶酶体;自噬性溶酶体; 异噬性溶酶体内质网有几种类型?在形态和功能上各有何特点? ●简述分泌蛋白的合成和分泌过程 ●高尔基复合体的超微结构有何特点? ●高尔基复合体有哪些主要功能? ●简述溶酶体的形成过程(溶酶体与ER、GC的关系)。 ●溶酶体分为几类?各有何特点? ●溶酶体与过氧化物酶体比较(形态结构,化学成分,标志酶,功能) ●内膜系统各细胞器的结构与功能 第八章:线粒体 ●名词解释:(部位+结构+功能)细胞氧化,细胞呼吸, 基粒,电子传递链,氧化磷酸化 ●线粒体的超微结构如何? ●线粒体的功能 ●呼吸链及组成 ●基粒的结构与功能 ●化学渗透学说如何解释氧化磷酸化偶联? ●线粒体半自主性 第九章:细胞骨架 ●细胞骨架cytoskeleton, ?微管组织中心( MTOC ), ?微管microbubule, ?微丝microfilament, ?中间纤维intermediate filament, ?踏车现象(踏车行为)p89“快于改为等于” ●微管、微丝、中间纤维的功能 ●细胞骨架中各纤维系统的异同 ●细胞骨架中各纤维系统的装配 ●比较纤毛与微绒毛的结构组成

细胞生物学复习要点整理

春2周细胞膜 1.细胞膜的化学组成及其特性:膜脂;膜蛋白;膜糖。 2.细胞膜的分子结构模型:流动镶嵌模型,脂筏模型。 3.细胞膜的生物学特性:不对称性;流动性(膜流动性的影响因素)。 1.脂质体(liposome):当脂质分子被水环境包围时,自发聚集,疏水尾在内, 亲水头在外,出现两种存在形式:球状分子团、形成双分子层,为防止两端尾部与水接触,游离端自动闭合,形成充满液体的球状小泡称为脂质体。 2.细胞外被(cell coat)或糖萼(glycocalyx):质膜中的糖蛋白和糖脂向外表面 延伸出的寡糖链构成的糖类物质。 3.脂筏(lipid raft):膜双层内含有特殊脂质和蛋白质组成的微区,微区中富含胆 固醇和鞘脂,其中聚集一些的特定种类的膜蛋白。由于鞘脂的脂肪酸尾部比较长,这一区域比膜的其他部分厚,更有秩序且较少流动,称脂筏。 1.细胞膜的基本结构特征与生理功能? 1)脂类:包括磷脂、胆固醇、糖脂,构成细胞膜主体,与膜流动性有关。 2)蛋白质:可分为内在蛋白和外在蛋白,是膜功能的主要体现者,如物质运输、 信号转导等。 3)糖类:包括糖脂和糖蛋白,对细胞有保护作用,在细胞识别起作用。 2.影响膜脂流动性的因素? 1)脂肪酸链的饱和程度(不饱和流动性大)。 2)脂肪酸链的长短(短链流动性大)。 3)胆固醇的双重调节(相变温度以上降低,相变温度以下提高)。 4)卵磷脂和鞘磷脂的比值(比值高的流动性大)。 5)膜蛋白的影响(膜蛋白越多,流动性越差)。 6)极性基团、环境温度、pH、离子强度。 春3、4周细胞内膜系统、囊泡转运 1.细胞内膜系统的概念、组成。 2.粗面内质网功能:蛋白质的合成;蛋白质的折叠装配;蛋白质的糖基化;蛋白 质的胞内运输。 3.滑面内质网的功能:参与脂质物质的合成运输;参与糖原代谢;参与解毒;参 与储存和调节Ca2+;参与胃酸、胆汁的合成分泌(内质网以葡萄糖-6-磷酸酶为标志酶)。 4.信号肽假说:新生肽链N端有独特序列称为信号肽,细胞基质中存在SRP能 识别并结合信号肽,SRP另一端与核糖体结合,形成复合结构,然后向内质网膜移动,与内质网膜上SRP-R识别结合,并附着于移位子上,然后SRP解离,肽链延伸。当肽链进入内质网腔时,信号肽序列会被内质网腔信号肽酶切除,肽链继续延伸至终止。 5.高尔基体是高度动态、具有极性的细胞器,以糖基转移酶为标志酶,主要功能 有:糖蛋白合成;参与脂质代谢;是大分子转运枢纽;加工成熟蛋白。 6.溶酶体酶的形成:①在内质网中合成、折叠和N-连接糖基化修饰,形成N-连 接的甘露糖糖蛋白,运送至高尔基体;②溶酶体酶蛋白在高尔基体中加工时甘露糖残基磷酸化为甘露糖-6-磷酸(M-6-P),为分选重要信号;③溶酶体酶分选并以出芽方式转运到前溶酶体。 7.溶酶体以酸性磷酸酶为标志酶,主要功能为:细胞内的消化作用;细胞营养功 能;机体防御和保护;激素分泌的调控;个体发生和发育的调控。 8.过氧化物酶体(peroxisome)又称微体,特点:①内有尿酸氧化酶结晶,称作 类核体;②模内表面界面可见一条称为边缘板的高电子致密度条带状结构。以过氧化物酶为标志酶。主要功能:清除细胞代谢所产生的H2O2及其他毒物; 对细胞氧张力的调节作用;参与脂肪酸等高能分子物质的代谢。 9.三种了解最多的囊泡:①网格蛋白有被囊泡:来源于反面高尔基体网状结构和 细胞膜,介导蛋白质从反面高尔基网状结构向胞内体、溶酶体和细胞膜运输; 在受体介导的胞吞作用过程中,介导物质从细胞膜向细胞质或从胞内体向从溶酶体运输;②COP Ⅰ有被囊泡:主要产生于高尔基体顺面膜囊,主要负责回收、转运内质网逃逸蛋白返回内质网及高尔基体膜内蛋白的逆向运输;③COP Ⅱ有被囊泡:产生于粗面内质网,主要介导从内质网到高尔基体的物质转运。

厦门大学考研细胞生物学本科生期末试题库教材

1细胞是构成有机体的基本单位,是代谢与功能的基本单位,是生长与 发育的基本单位,是遗传的基本单 位。 2实验生物学时期,细胞学与其它生物科学结合形成的细胞分支学科 主要有细胞遗传学、细胞生理学和 细胞化学。 3组成细胞的最基础的生物小分子是核苷酸、氨基酸、脂肪酸核、单 糖,它们构成了核酸、蛋白质、 脂类和多糖等重要的生物大分子。4按照所含的核酸类型,病毒可以分为DNA病毒和RNA病毒。 1.目前发现的最小最简单的细胞是 支原体,它所具有的细胞膜、遗传 物质(DNA与RNA)、核糖体、 酶是一个细胞生存与增殖所必备 的结构装置。 2.病毒侵入细胞后,在病毒DNA的 指导下,利用宿主细胞的代谢系统 首先译制出早期蛋白以关闭宿主 细胞的基因装置。 3.与真核细胞相比,原核细胞在 DNA复制、转录与翻译上具有时 空连续性的特点。 4.真核细胞的表达与原核细胞相比 复杂得多,能在转录前水平、转录 水平、转录后水平、翻译水平、和 翻译后水平等多种层次上进行调 控。 5.植物细胞的圆球体、糊粉粒、与中 央液泡有类似溶酶体的功能。6.分辨率是指显微镜能够分辩两个 质点之间的最小距离。 7.电镜主要分为透射电镜和扫描电 镜两类。 8.生物学上常用的电镜技术包括超 薄切片技术、负染技术、冰冻蚀刻 技术等。 9.生物膜上的磷脂主要包括磷脂酰 胆碱(卵磷脂)、磷脂酰丝氨酸、 磷脂酰肌醇、磷脂酰乙醇胺和鞘磷 脂。 10.膜蛋白可以分为膜内在蛋白(整合 膜蛋白)和膜周边蛋白(膜外在蛋 白)。 11.生物膜的基本特征是流动性和不 对称性。 12.内在蛋白与膜结合的主要方式有 疏水作用、离子键作用和共价键结 合。 13.真核细胞的鞭毛由微管蛋白组成, 而细菌鞭毛主要由细菌鞭毛蛋白 组成。 14.细胞连接可分为封闭连接、锚定连 接和通讯连接。 15.锚定连接的主要方式有桥粒与半 桥粒和粘着带和粘着斑。 16.锚定连接中桥粒连接的是骨架系 统中的中间纤维,而粘着带连接的 是微丝(肌动蛋白纤维)。 17.组成氨基聚糖的重复二糖单位是 氨基己糖和糖醛酸。 18.细胞外基质的基本成分主要有胶 原蛋白、弹性蛋白、氨基聚糖和蛋 白聚糖、层粘连蛋白和纤粘连蛋白 等。 19.植物细胞壁的主要成分是纤维素、 半纤维素、果胶质、伸展蛋白和蛋 白聚糖等。 20.植物细胞之间通过胞间连丝相互

细胞生物学考试重点!!

细胞生物学:是研究细胞形态结构和功能和起源的科学。 细胞:是生命活动和结构的基本单位。其结构通常由细胞膜,细胞质,以及细胞器所构成。生活在地球上的细胞可分为:原核细胞;古核细胞和真核细胞三大类。 细胞学说: 一切生物,从单细胞生物到高等动植物都是由细胞组成的,细胞是生物形态结构功能活动的基本单位,细胞通过分裂形成组织。细胞来自于细胞。每个细胞相对独立,一个生物体内各细胞之间协同配合。 为什么说细胞是生命的基本单位? 细胞是生命的基本结构单位,所有生物都是由细胞组成的; 细胞是生命活动的功能单位,一切代谢活动均以细胞为基础; 细胞是生殖和遗传的基础与桥梁;具有相同的遗传语言; 细胞是生物体生长发育的基础; 形状与大小各异的细胞是生物进化的结果 没有细胞就没有完整的生命(病毒的生命活动离不开细胞) 细胞生物学学习方法: 【1】抽象思维与动态,立体的观点;【2】同一性(unity),多样性(diversity)联系性,开放性,历史性,发展性的观点;【3】实验科学与实验技术——细胞真知源于实验室,来源于观察,实验创新的观点;【4】化学成分,结构,和功能结合的观点;【5】尊重记忆的规律来进行学习。 细胞的大小和细胞分裂的原因 细胞如果太小,则最低限度的细胞器以及生命物质没有足够的空间存放;太大则表面积不够。有人认为,由于细胞的重量和体积的增长,造成了细胞表面积与体积的比例失调,从而触发细胞分裂。随着细胞生长,细胞体积增大,而细胞表面积和体积之比(表面积/体积)却在变小。活细胞不断进行新陈代谢,细胞表面担负着输入养分,排出废物的重任。表面积/体积比值的下降,意味着代谢速率的受限和下降。所以,细胞分裂是细胞生长过程中保持足够表面积,维持一定的生长速率的重要措施 原生质(protoplasm): 1839 Purkinje用原生质一词指细胞的全部活性物质,从现代概念来说它包括质膜、细胞质和细胞核(或拟核)。 细胞核:细胞核(nucleus)是细胞内最重要的细胞器,核 表面是由双层膜构成的核被膜(nuclear envelope),核内 包含有由DNA和蛋白质构成的染色体(chromosome)。核内1 至数个小球形结构,称为核仁(nucleolus)。细胞核中的原 生质称为核质。 细胞质(cytoplasm):质膜与核被膜之间的原生质。 细胞器:具有特定形态和功能的显微或亚显微结构称为细胞器 细胞质基质:细胞质中除细胞器以外的部分。又称为或胞质溶胶(cytosol),其体积约占细胞质的一半。 真核细胞:具有核膜,由膜围成的各种细胞器,如核膜、内质网、高尔基体、线粒体、叶绿体、溶酶体等在结构上形成了一个连续的体系,称为内膜系统。内膜系统将细胞质分隔成不同的区域,即所谓的区隔化。区隔化使细胞内表面积增加了数十倍,代谢能力增强。细胞质基质的功能:为细胞内各类生化反应的正常进行提供了相对稳定的离子环境;许多代谢过程是在细胞基质中完成的,如①蛋白质的合成;②核苷酸的合成;③脂肪酸合成;④糖酵解;⑤磷酸戊糖途径;⑥糖原代谢;⑦信号转导。供给细胞器行使其功能所需要的一切底物;控制基因的表达,与细胞核一起参与细胞的分化;参与蛋白质的合成、加工、运输、选择性降解 真核细胞的结构 细胞壁(植物细胞具有) 细胞细胞膜(质膜) 原生质体细胞质 细胞核 三大结构体系: 生物膜系统质膜、内膜系统(细胞器) 遗传信息表达系统染色质(体)、核糖体、mRNA、tRNA等等 细胞骨架系统胞质骨架、核骨架 植物细胞特有的结构:细胞壁、叶绿体、大液泡、胞间连丝 细胞形态:单细胞生物细胞的形态通常与细胞外沉积物或细胞骨架有关;高等生物细胞的形状与细胞功能及细胞间的相互作用有关 原核细胞:没有核膜,遗传物质集中在一个没有明确界限的低电子密度区,称为拟核。DNA为裸露的环状双螺旋分子,通常没有结合蛋白,没有恒定的内膜系统,核糖体为70S型。无细胞器, 无细胞骨架原核细胞构成的生物称为原核生物,均为单细胞生物。一般以二分裂的方式繁殖,也有的产生孢子。以无丝分裂或出芽繁殖 原核细胞真核细胞 细胞大小很小(1-10微米)较大(10-100微米) 细胞核无核膜、核仁(称“类核”)有核膜、核仁 遗传系统 DNA不与蛋白质结合 DNA与蛋白质结合成染色质, 一个细胞仅一条DNA 一个细胞有多条的染色体 细胞器无有 细胞分裂无丝分裂有丝分裂为主 质粒(plasmid) :除核区DNA外,可进行自主复制的遗传因子,是裸露的环状DNA分子,所含遗传信息量为2~200个基因,能进行自我复制,有时能整合到核DNA中去。质粒常用作基因重组与基因转移的载体。 细胞膜:细胞质与外界相隔的一层薄膜,又叫质膜 生物膜:细胞内由膜构成的结构其成分基本相近,因此又把细胞中的所有膜统称为生物膜。特征:流动性,不对称性 “单位膜”模型由厚约3.5nm的双层脂分子和内外表面各厚约2nm的蛋白质构成。 细胞膜的功能:1. 为细胞的生命活动提供相对稳定的内环境;2. 选择性的物质运输,包括代谢底物的输入与代谢产物的排出;3. 提供细胞识别位点,并完成细胞内外信息的跨膜传递4. 为多种酶提供结合位点,使酶促反应高效而有序地进行5. 介导细胞与细胞、细胞与基质之间的连接;6. 参与形成具有不同功能的细胞表面特化结构。 脂双层的特点:⑴自我封闭性⑵装配性⑶流动性⑷不对称性

相关文档
最新文档