太阳能发电系统设计(软件)

太阳能发电系统设计(软件)
太阳能发电系统设计(软件)

YanCheng Institute of Technology

课程设计报告

课程名称太阳能发电系统设计专业新能源科学与工程

学生姓名

班级

学号

完成日期

盐城工学院电气学院

目录

1.概述 (1)

2.设计框图与要求 (1)

3.总体设计思路 (2)

4.硬件设计 (2)

4.1 主控系统 (2)

4.1.1 单片机特点 (2)

4.1.2 单片机引脚功能 (3)

4.2 Pt100温度传感器选型 (6)

4.3显示电路模块选型 (7)

4.3.1 LCD1602主要参数: (7)

4.3.2 LCD1602各引脚功能: (8)

4.4 电压比较器的选型 (9)

4.5 TVS瞬态抑制二极管选型 (9)

4.6 二极管的选型 (10)

4.7 NMOS管及熔断器的选型 (10)

4.8差分放大器的选型 (11)

4.9 仪表放大器的选型 (12)

4.10 稳压集成器的选型 (12)

5.软件设计 (13)

5.1 A/D转换程序 (13)

5.2 PWM波输出程序 (14)

5.3LCD1602显示程序 (15)

6.电路工作原理 (16)

致谢 (17)

参考文献 (18)

附录 (19)

附录1 电路原理图 (20)

附录2 元器件清单 (21)

1.概述

目前,世界能源结构中,人类主要利用的是化石能源,其中石油、天然气、煤炭的消费构成分别为 41%、23%和27%。而根据目前所探明的储量和消费量计算,这些能源仅可供全世界大约消费170年,具体来说,石油将在40年内耗尽,天然气将在60年内用光,煤炭也只够使用220年。而太阳能是一个巨大,久远无尽的能源。太阳每秒照射到地球上的能量相当于500万吨媒所产生的能量。因此,太阳能发电对今后能源发展有着特别重要的意义。且太阳能的诸多优点使发展太阳能已是大势所趋,太阳能时代的到来已为时不远了。

光伏控制器是光伏发电系统中非常重要的组成部分,其性能直接影响光伏发电系统的发电量和使用寿命,特别是影响蓄电池组的使用寿命。蓄电池是贮能部件,其价格昂贵,在整个系统中的投资比例较大,其性能对整个系统的正常运行至关重要。

蓄电池的过充电或过放电都将缩短蓄电池的使用寿命,给用户造成经济损失,为光伏发电系统的推广应用带来不利影响。因此本文将对影响蓄电池使用寿命的关键部件—光伏控制器的设计进行重点讨论和分析。

2.设计框图与要求

图1-1 参考原理框图

1.根据给定的参考原理框图和技术要求,完成整体电路的拓扑设计。

2.相关器件的选型分析和电路参数计算。

3.各环节的功能及要求、所用芯片的说明。

4.具体电路图及说明、对应的软件流程图及说明和关键子程序代码。

5.系统参数:

(1)控制器输出电压范围:DC15-24V;

(2)蓄电池标称电压:DC12V;

(3)最大负载:30W;

(4)具有过充保护、过放保护、过流保护和温度补偿功能;

3.总体设计思路(由郭泽斌同学提供)

根据所给电路分析,智能光伏控制器主要由以下模块组成:

(1)单片机控制模块

(2)电压检测模块

(3)电流检测模块

(4)温度补偿模块

(5) MOS管驱动模块

(6) LCD显示模块

电路图见附录1。

4.硬件设计

4.1 主控系统

主控系统选择STC12C5410AD单片机,STC12C5410AD系列单片机是由宏晶科技生产的单时钟/机器周期(1T)的兼容8051内核单片机,是高速/低功耗/超强抗干扰的新一代8051单片机,指令代码完全兼容传统8051,但速度快8-12倍。全新的流水线/精简指令集结构,内部集成MAX810专用复位电路,4路PWM,8路高速10位A/D转换。

4.1.1 单片机特点

1.增强型1T流水线/精简指令集结构8051CPU ;

2.工作电压:STC12C5410AD系列工作电压:5.5V-3.3V(5V单片机)STC12C5410AD系列工作电压:3.8V-2.0V(3V单片机);

3.工作频率范围:0‐35MHz,相当于普通8051的0‐420MHz ;

4.用户应用程序空间12K/10K/8K/6K/4K/2K字节;

5.片上集成512字节RAM ;

6.通过I/O口(27/23/15个),复位后为:准双向口/弱上拉(普通8051传统I/O 口),可设置成四种模式:准双向口/弱上拉,强推挽/强上拉,仅为输入/高阻,开漏,每个I/O口驱动能力均可达到20mA,但整个芯片最大不要超过55ma;

7.ISP(在系统可编程)/ASP(在应用可编程),无需专用编程器可通过串口(P3.0/P3.1)直接下载用户程序,数秒即可完成一片;

8.EPROM功能;

9.看门狗;

10.内部集成MAX810专用复位电路(外部晶振20M以下时,可省外部复位电路);

11.时钟源:外部高精度晶体/时钟,内部R/C振荡器用户在下载用户程序时,可选择是使用内部R/C振荡器还是外部晶体/时钟常温下内部R/C振荡器频率为:

5.2MHz~

6.8MHz ,精度要求不高时,可选择使用内部时钟,但因为有制造误差和温漂,以实际测试为准;

12.共6个16位定时器/计数器;

13.PWM(4位)/PCA(可编程计数器阵列),也可用来在实现4个定时器;

14.ADC,10位精度ADC,共8路;

15.通用全双工异步串行口(UART),由于STC12系列是高速的8051,可再用定时器或PCA软件实现多串口;

16.SPI同步通信口,主模式/从模式;

17.工作温度范围:-40 - +85℃(工业级) / 0 - 75℃(商业级);

18.封装:PDIP—28,SOP—28,PDIP—20,SOP—20,TSSOP—20,PLCC—32;

STC12C5410AD单片机中包含中央处理器、程序存储器(Flash)、数据存储器(RAM)、EEPROM、定时/计数器、I/O接口、UART接口和中断系统、SPI接口、高速A/D转换模块、PWM(或捕捉/比较单元)以及硬件看门狗、电源监控、片内RC 振荡器等模块。可以说STC12C5410AD单片机几乎包含了数据采集和控制中所需的所有单元模块,可称得上一个片上系统(SOC),可以很容易地构成典型的测控系统。

4.1.2 单片机引脚功能

STCSTC12C5410AD单片机引脚如图4-1所示。

图4-1 STC12C5410AD单片机引脚图

STC12C5410AD单片机管脚编号及说明如表4-1所示。

4.2 Pt100温度传感器选型

Pt100温度传感器是一种将温度变量转换为可传送的标准化输出信号的仪表。主要用于工业过程温度参数的测量和控制。带传感器的变送器通常由两部分组成:传感器和信号转换器。传感器主要是热电偶或热电阻,信号转换器主要由测量单元、信号处理和转换单元组成(由于工业用热电阻和热电偶分度表是标准化的,因此信号转换器作为独立产品时也称为变送器),有些变送器增加了显示单元,有些还具有现场总线功能。

Pt100是铂热电阻,它的阻值会随着温度的变化而改变。PT 后的100即表示它在0℃时阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。

当Pt100在0摄氏度的时候他的阻值为100欧姆,它的阻值会随着温度上升而成近似匀速的增长。但他们之间的关系并不是简单的正比的关系,而更应该趋近于一条抛物线。

铂电阻的阻值随温度的变化而变化的计算公式: 对于-200~0℃ 的温度范围:

])100(1[)0()(32t C t C Bt Bt At C R t R ?-++++??= (4-1) 对于 0~850℃的温度范围:

)1()0()(2Bt Bt At C R t R +++??= (4-2)

以上两式中:

R(t): 在温度为t 时铂热电阻的电阻值Ω R(0 ℃):在温度为0℃时铂热电阻的电阻值Ω A:常数,其值为3-109083.3?

B:常数,其值为7-10775.5-? B:常数,其值为12-10183.4-?

基于以上分析,我们认为PT100温度传感器的优点是制作方便,使用简单,而且容易替换,符合我们课题的要求。

图4-2 Pt100铂电阻RT 曲线图表

4.3显示电路模块选型

显示部分有LCD1602及其外围电路组成,能够显示当前温度,蓄电池电压,负载电流。

它是一种专门用来显示字母、数字、符号等的点阵型液晶模块。它由若干个5X7或者5X11等点阵字符位组成,每个点阵字符位都可以显示一个字符,每位之间有一个点距的间隔,每行之间也有间隔,起到了字符间距和行间距的作用,正因为如此所以它不能很好地显示图形。

4.3.1 LCD1602主要参数:

1.显示容量:16×2个字符。

2.芯片工作电压:4.5—5.5V 。

3.工作电流:2.0mA(5.0V)。

4.模块最佳工作电压:

5.0V 。

5.字符尺寸:2.95×4.35(W×H)mm。

6.3.3V 或5V 工作电压,对比度可调。

7.内含复位电路。

8.提供各种控制命令,如:清屏、字符闪烁、光标闪烁、显示移位等多种功能。

9. 有80字节显示数据存储器DDRAM。

10.内建有192个5X7点阵的字型的字符发生器CGROM。

11.8个可由用户自定义的5X7的字符发生器CGRAM。

4.3.2 LCD1602各引脚功能:

第1脚:GND为电源地。

第2脚:VCC接5V电源正极。

第3脚:V0为液晶显示器对比度调整端,接正电源时对比度最弱,接地电源时对比度最高(对比度过高时会产生“鬼影”,使用时可以通过一个10K的电位器调整对比度)。

第4脚:RS为寄存器选择,高电平1时选择数据寄存器、低电平0时选择指令寄存器。

第5脚:RW为读写信号线,高电平(1)时进行读操作,低电平(0)时进行写操作。

第6脚:E(或EN)端为使能(enable)端,高电平(1)时读取信息,负跳变时执行指令。

第7~14脚:D0~D7为8位双向数据端。

15脚背光正极。

16脚背光负极。

LCD1602引脚功能表如表4-2所示。

指令1:清显示,指令码01H光标复位到地址00H位置。

指令2:光标复位,光标返回到地址00H。指令3:光标和显示模式设置I/D:光标移动方向,高电平右移,低电平左移S:屏幕上所有文字是否左移或者右移。高电平表示有效,低电平则无效。

指令4:显示开关控制。D:控制整体显示的开与关,高电平表示开显示,低电平表示关显示C:控制光标的开与关,高电平表示有光标,低电平表示无光标B:控制光标是否闪烁,高电平闪烁,低电平不闪烁。

指令5:光标或显示移位S/C:高电平时移动显示的文字,低电平时移动光标。

指令6:功能设置命令DL:高电平时为4位总线,低电平时为8位总线N:低电平时为单行显示,高电平时双行显示F:低电平时显示5x7的点阵字符,高电平时显示5x10的点阵字符。

指令7:字符发生器RAM地址设置。

指令8:DDRAM地址设置。

指令9:读忙信号和光标地址BF:为忙标志位,高电平表示忙,此时模块不能接收命令或者数据,如果为低电平表示不忙。

指令10:写数据。

指令11:读数据。

它是一种专门用来显示字母、数字、符号等的点阵型液晶模块。它由若干个5X7或者5X11等点阵字符位组成,每个点阵字符位都可以显示一个字符,每位之间有一个点距的间隔,每行之间也有间隔,起到了字符间距和行间距的作用,正因为如此所以它不能很好地显示图形。基于以上理由,本次显示模块选择的是LCD1602。

4.4 电压比较器的选型

电压比较器它可用作模拟电路和数字电路的接口,还可以用作波形产生和变换电路等。利用简单电压比较器可将正弦波变为同频率的方波或矩形波。电压比较器输入是线性量,而输出是开关(高低电平)量。它将一个模拟量电压信号和一个参考固定电压相比较,在二者幅度相等的附近,输出电压将产生跃变,相应输出高电平或低电平。比较器可以组成非正弦波形变换电路及应用于模拟与数字信号转换等领域。一般应用中,有时也可以用线性运算放大器,在不加负反馈的情况下,构成电压比较器来使用。

电压比较器采用LM358电压比较器芯片。LM358是双运算放大器。内部包括有两个独立的、高增益、内部频率补偿的运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。

LM358主要参数如下所示:

·输入偏置电流45 nA。

·输入失调电流50 nA。

·输入失调电压2.9mV。

·输入共模电压最大值VCC~1.5 V。

·共模抑制比80dB。

·电源抑制比100dB。

4.5 TVS瞬态抑制二极管选型

TVS的电路符号与普通稳压二极管相同。它的正向特性与普通二极管相同;反向特性为典型的PN结雪崩器件。在瞬态峰值脉冲电流作用下,流过TVS的电流,

由原来的反向漏电流ID上升到IR时,其两极呈现的电压由额定反向关断电压VWM 上升到击穿电压VBR,TVS被击穿。随着峰值脉冲电流的出现,流过TVS的电流达到峰值脉冲电流IPP。在其两极的电压被箝位到预定的最大箝位电压以下。尔后,随着脉冲电流按指数衰减,TVS两极的电压也不断下降,最后恢复到起始状态。这就是TVS抑制可能出现的浪涌脉冲功率,保护电子元器件的整个过程。本次课设选用的TVS型号为SMAJ20A。

SMAJ20A型TVS二极管主要参数如下:

·工作电压:20V。

·击穿电压:18.9V。

·钳位电压:27.6V。

·峰值浪涌电流:14.5A。

·工作温度:-55℃~+150℃。

·功耗:400W。

4.6 二极管的选型

为了防止蓄电池对太阳能电池板出现反充现象,在电路中需要串联防反二极管,二极管正向串联到你的电源电路输入端,二极管的正向平均电流要大于设备工作电流的1.5倍以上。反向耐压要大于设备输入电压的2倍以上,尽量选用肖特基二极管,这类二极管正向压降低(典型的约0.2V),对电路的影响低,二极管的正向平均电流要大于设备工作电流的1.5倍以上,反向耐压要大于设备输入电压的2倍以上。根据光伏板输出20V/50W,蓄电池参数12V/7Ah,防反二极管耐压值40V,电流值5A。

型号为:MBRS540 40V/5A。

·电压-DC反向:40V。

·电流-平均整流: 5A。

·工作温度:-65°C ~ 150°C。

·电流-平均整流:5A。

4.7 NMOS和PMOS及熔断器的选型

MOS管图形符号如图4-3所示。

图4-3 MOS管图形符号

NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。

PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越高,损失也越大。导通瞬间电压和电流的乘积很大,造成的损失也就很大。缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。由于电路电流是从漏极流过栅极再到源极,所以选择N沟道型MOSFET,又因为需要在栅极加上电压后才出现导电沟道,所以选择增强型MOS管。本课设中采用SI2302型MOSFET和SI2310型NMOS管。

SI2302型MOSFET主要参数如下:

·最大功耗:1.25W。

·栅极门限电压VGS: 2.5V。

·漏源电压VDS :20V。

·漏极电流ID:2.8A。

·通态电阻RDS(on):0.145ohm。

·栅极漏电流IGSS:±100nA。

·结温:-55℃~150℃。

SI2310型MOSFET主要参数如下:

·漏源电压VDS:20V。

·栅源电压VGS:±10V。

·漏极电流ID:4.5A。

·最大功耗:1.25W。

熔断器(fuse)是指当电流超过规定值时,以本身产生的热量使熔体熔断,断开电路的一种电器。熔断器是根据电流超过规定值一段时间后,以其自身产生的热量使熔体熔化,从而使电路断开;运用这种原理制成的一种电流保护器。熔断器广泛应用于高低压配电系统和控制系统以及用电设备中,作为短路和过电流的保护器,是应用最普遍的保护器件之一。由于电路电压范围是15~24V且电路功率为30W,故加入限流为2A的熔断器。

本次课设选择常用的RT28-32型熔断器。

4.8差分放大器的选型

本课设采用OP07CP差分放大器。OP07芯片是一种低噪声,非斩波稳零的双极

性(双电源供电)运算放大器集成电路。由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。OP07同时具有输入偏置电流低(OP07A为±2nA)和开环增益高(对于OP07A为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。OP07CP主要参数如下所示。

·电源电压:±22V。

·差分输入电压:±30V。

·输入电压:±22V。

·工作温度:-65℃~150℃。

4.9 仪表放大器的选型

本课设中采用的电源仪表放大器型号是AD623。AD623是一个集成单电源仪表放大器,它能在单电源(+3V到+12V)下提供满电源幅度的输出。它允许使用单个增益设置电阻进行增益编程,以得到更好的灵活性。AD623通过提供极好的随增益增大而增大的交流共模抑制比(AC CMRR)而保持最小的误差。线路噪声及谐波将由于CMRR在高达200HZ时仍保持恒定。它有较宽的共模输入范围,可以放大具有低于地电平150mv共模电压信号。它在双电源(2.5至6V)仍能提供优良性能。低功耗,宽电源电压范围,满电源幅度输出,使AD623成为电池供电的理想选择。在低电源电压下工作时,满电源幅度输出级使动态范围达最大。它可以取代分立的仪表放大器设计,且在最小的空间提供很好的线性度,温度稳定性很可靠。AD623仪表放大器主要参数如下所示:

·放大倍数:2-1000倍可调。

·功耗:150uA(典型)650uA(最大)

·电源供应:3-5.5V

·增益精度:0.35%(G>2)0.10%(G=2)

·输入失调电压:100-200uV

·输入失调漂移:1uv/℃

·共模抑制比:90db

·增益带宽:800KHZ。

4.10稳压集成器的选型

由于外电路所有的输入电压均为+5V,而蓄电池输出电压约为12V大于外电路器件额定电压,故不能直接接入,需要在蓄电池正极与外电路之间串接稳压电路,用于调节输入电压至5V。因此选用可以输出5V电压的LM7805三端稳压集成器。用LM7805三端稳压IC芯片来组成稳压电源所需的外围元件极少,电路内部还有过流、过热及调整管的保护电路,使用起来可靠、方便,而且价格便宜。

LM7805主要电气参数:

·输出电压:5.0±0.2V(Tj=25℃)。

·输出电流:1.5A。

·最大输入电压:35V。

·输入输出压差:最大值30V,最小值2V。

5.软件设计(由于飞杨同学提供)

5.1 A/D转换程序

#include"STC12C5410AD.h"

#define uchar unsigned char

unsigned char aa,bb;

void delay(uchar dd)

{

int x,y;

for(x=dd;x>0;x--)

for(y=100;y>0;y--);

}

unsigned char Read_ADC(unsigned char adcvcc)

{ //将P1.0--P1.1设置成适合AD转换的模式ADC_CONTR = ADC_CONTR|0x80; //1000,0000打开A/D转换电源delay(20); //延时20ms ADC_CONTR = ADC_CONTR&0xE0;

//1110,0000清ADC_FLAG,ADC_START位和低3位ADC_CONTR = ADC_CONTR&0xf8|adcvcc; //设置当前通道号delay(10); //延时使输入电压达到稳定ADC_DATA = 0; //清A/D转换结果寄存器ADC_CONTR = ADC_CONTR|0x08; //0000,1000ADCS =1,启动转换do { ; }

while((ADC_CONTR & 0x10)==0); //0001,0000等待A/D转换结束ADC_CONTR = ADC_CONTR&0xE7;

//1110,0111清ADC_FLAG和ADC_START位,停止A/D转换return ADC_DATA;

}

void main()

{

//里要加上设置ADC的端口,如)1.0,P1.1设为ADC口的话: P1M0 = 0x03; //0000,0011用于A/D转换的P1.x口,先设为开漏P1M1 = 0xC3;

//0000,0011P1.0--P1.1先设为开漏。断开内部上拉电阻bb=0x01;

while(1)

{

aa=Read_ADC(1);

//第一路A/D转换;如要改别的路,只要把代入通道改一下.

P3=aa; //这是让A/D的数据显示在P3口的LED上. }

}

图5-1 AD转换流程图

5.2 PWM波输出程序

#include

#define uchar unsigned char

#define uint unsigned int

uchar code table[]={0xc0,0x80}; //占空比分别为25%,50% uchar i;

void main()

{

CCON=0; //初始化PCA寄存器CL=0;

CH=0;

CMOD=0x02; //PCA时钟源来自系统时钟f/2 CCAPM0=0x42; //PCA工作在PWM模式CR=1;

while(1)

{

for(i=0;i<2;i++)

{

CCAP0H=CCAP0L=table;

while(CL!=0xff);

}

}

}

图5-2 PWM调制流程图

5.3LCD1602显示程序

LCD1602初始化函数

void LCD_Init(void)

{

LCD_Write_Com(0x38); /*显示模式设置*/

DelayMs(5);

LCD_Write_Com(0x38);

DelayMs(5);

LCD_Write_Com(0x38);

DelayMs(5);

LCD_Write_Com(0x38);

LCD_Write_Com(0x08); /*显示关闭*/

LCD_Write_Com(0x01); /*显示清屏*/

LCD_Write_Com(0x06); /*显示光标移动设置*/

DelayMs(5);

LCD_Write_Com(0x0C); /*显示开及光标设置*/

}

图5-3 LCD1602工作流程图

6.电路工作原理

光伏电池受到光照产生电能,由单片机自带的PWM功能产生脉冲控制MOSFET的通断来给蓄电池充电,通过蓄电池两端的分压电阻测量蓄电池的端电压,由于单片机自带A/D转换功能,分压电阻端的电压可直接与单片机相连,实时监测蓄电池的电压,通过显示屏显示出来,通过蓄电池端电压的变化改变脉冲的占空比,提高蓄电池的充电效率,当蓄电池达到充电充满时的电压后,控制MOSFET断开,停止给蓄电池充电,防止蓄电池过充。电路中通过Pt100监测当前温度,实现温度补偿功能。

蓄电池放电时,通过电压比较器判断蓄电池电压是否高于放电终止电压,若低于则MOSFET断开,蓄电池不向外放电,若高于则MOSFET导通,通过串联在负载的小电阻与差动放大电路测量蓄电池放电电流,将该电流与设定值相比较,若高于则单片机控制NM3断开,若低于则控制NM3导通允许蓄电池放电。防止蓄电池大电流放电和过度放电。

致谢

经过两个星期的课程设计,我学到了很多知识。以前大多数学习只是纸上谈兵,但正如陆游的诗中所说:“纸上得来终觉浅,绝知此事要躬行”,这次通过实践,让我学到了很多东西,把书本知识运用到实际中。智能型光伏控制器的设计很复杂,每一个小的部分都要有很多细致的考虑。电压检测,电流检测,温度补偿,功率驱动,它都需要对整个系统精确的计算和了解才能够更好的工作。

通过这两周的课程设计,我又重新学习了很多从前学过的知识,比如差分放大,mos管的导通条件,单片机程序设计等等。很多东西不会就上网资料,引脚图,器件功能等。总之我有了很大的收获,学到了课上学不到的东西,也让我了解到所学知识都是有用的。

能够顺利完成课程设计任务,离不开老师的指导和同学的帮助,在此特别感谢张春富老师的悉心指导,感谢同组的郭泽斌和于飞扬同学的帮助!

参考文献

[1] 杨贵恒太阳能光伏发电系统及其应用[M].化学工业出版社,2014.11

[2] 刘文刚王孝洪.基于单片机的新型太阳能控制器研究[J].单片机开发与应用,2008

[3] 沈辉,曾祖勤太阳能光伏发电技术[M] .化学工业出版社,2005

[4] 丁惠忠.基于 STC单片机的智能太阳能充电控制器的设计[J].科技创新与应用,2011

[5] 胡铭文,熊鸣王梦爽.基于单片机的太阳能充电器[J].中国科技纵横,,2012

[6] 谢建太阳能利用技术[M].中国农业大学出版社1999.8

[7] 孙荣高,孙德超基于STC单片机的太阳能光伏控制器设计与实现[J],测控技术,2009年第28卷第11期

[8] 康华光模拟电子技术基础高等教育出版社,2016

太阳能光伏发电系统(PVsyst运用)

扬州大学能源与动力工程学院本科生课程设计 题目:北京市发电系统设计 课程:太阳能光伏发电系统设计 专业:电气工程及其自动化 班级:电气0703 姓名:严小波 指导教师:夏扬 完成日期: 2011年3月11日

目录 1光伏软件Meteonorm和PVsyst的介绍---------------------------------------------3 1.1 Meteonorm--------------------------------------------------------------------------3 1.2 PVsyst-------------------------------------------------------------------------------4 2中国北京市光照辐射气象资料-------------------------------------------------------11 3独立光伏系统设计----------------------------------------------------------------------13 3.1负载计算(功率1kw,2kw,3kw,4kw,5kw)-----------------------------13 3.2蓄电池容量设计(电压:24V,48V)----------------------------------------13 3.3太阳能电池板容量设计,倾角设计--------------------------------------------13 3.4太阳能电池板安装间隔计算及作图。-----------------------------------------16 3.5逆变器选型--------------------------------------------------------------------------17 3.6控制器选型--------------------------------------------------------------------------17 3.7系统发电量预估--------------------------------------------------------------------18

太阳能光伏发电站检测设备

太阳能光伏发电站检测设备 技术规范书 1 太阳能光伏发电站检测设备总则 本规范书适用于光伏发电站并网验收、风电场接入并网验收、光伏逆变器型式实验、风力发电机组地低电压穿越检测平台,包括主要设备及其辅助设备地功能设计、结构、性能、安装和实验等方面地技术要求.b5E2RGbCAP 要求该检测平台能够同时满足现场安装在风电场地单台风电机组低电压穿越能力检测,满足光伏发电站并网接入验收地低电压穿越能力检测,满足光伏逆变器与风电发电机组地型式实验地低电压穿越实验检测.p1EanqFDPw 本规范书所提出地是最低限度地技术要求,并未对一切技术细节做出规定,也未充分引述有关标准和规范地条文.供方应保证提供符合本规范书和工业标准地优质产品.DXDiTa9E3d 2 太阳能光伏发电站检测设备使用条件 2.1环境条件 a> 户外环境温度要求:-40℃~ 50℃; b> 户外环境湿度要求:0~90% ; c> 海拔高度: 0~2000M<如果超过2000M,需要提前说明). 2.2安装方式:标准海运集装箱内固定式安装. 2.3储存条件 a)环境温度-50℃~50℃; b)相对湿度 0~95% . 2.4工作条件

a> 环境温度-40 oC~40oC; b> 相对湿度 10%~90%,无凝露. 2.5电力系统条件 a> 电网电压最高额定值为35kV,电压运行范围为31.5kV~40.5kV;同时也可 以同时满足10kV\20kV电网电压地实验检测.RTCrpUDGiT b> 电网频率允许范围:48~52Hz; c> 电网三相电压不平衡度:<= 4%; d> 电网电压总谐波畸变率:<= 5%. 2.6负载条件 负载包括直驱或双馈式等风力发电机组,其总容量不大于6.0MVA.其控制和操作需要满足国家关于风电机组电电压穿越测试与光伏发电站地相关测试规程技术要求.5PCzVD7HxA 本检测平台能够同时满足同等条件下光伏电站或光伏逆变器地低电压穿越能力测试. 2.7接地电阻:<=5Ω. 3 太阳能光伏发电站检测设备地技术要求 3.1 结构及原理要求 根据模拟实际电网短路故障地要求,测试系统须采用阻抗分压方式,原理如下图1所示(以实际为准>.测试系统串联接入风电机组出口变压器高压侧(35kV、20 kV、10 kV侧>.jLBHrnAILg

非晶硅太阳能电池研究毕业论文

非晶硅太阳能电池 赵准 (吉首大学物理与机电工程学院,湖南吉首 416000) 摘要:随着煤炭、石油等现有能源的频频告急和生态环境的恶化.使得人类不得不尽快寻找新的清洁能源和可再生资源。其中包括水能、风能和太阳能,而太阳能以其储量巨大、安全、清洁等优势使其必将成为21世纪的最主要能源之一。太阳是一个巨大的能源,其辐射出来的功率约为其中有被地球截取,这部分能量约有的能量闯过大气层到达地面,在正对太阳的每一平方米地球表面上能接受到1kw左右的能量。 目前分为光热发电和光伏发电两种形式。太阳能热发电是利用聚光集热器把太阳能聚集起来,将一定的工质加热到较高的温度(通常为几百摄氏度到上千摄氏度),然后通过常规的热机动发电机发电或通过其他发电技术将其转换成电能。光伏发电是利用界面的而将光能直接转变为电能的一种技术。目前光—电转换器有两种:一种是光—伽伐尼电池,另一种是光伏效应。由一个或多个太阳能电池片组成的太阳能电池板称为光伏组件,将光伏组件串联起来再配合上功率控制器等部件就形成了光伏发电装置。因为光伏发电规模大小随意、能独立发电、建设时间短、维护起来也简单.所以从70年代开始光伏发电技术得到迅速发展,日本、德国、美国都大力发展光伏产业,他们走在了世界的前列,我国在光伏研究和产业方面也奋起直追,现在以每年20%的速度迅速发展。 关键词:光伏发电;太阳能电池;硅基太阳能电池;非晶硅太阳能电池

1.引言 1976年卡尔松和路昂斯基报告了无定形硅(简称a一Si)薄膜太阳电他的诞生。当时、面积样品的光电转换效率为2.4%。时隔20多年,a一Si太阳电池现在已发展成为最实用廉价的太阳电池品种之一。非晶硅科技已转化为一个大规模的产业,世界上总组件生产能力每年在50MW以上,组件及相关产品销售额在10亿美元以上。应用范围小到手表、计算器电源大到10Mw级的独立电站。涉及诸多品种的电子消费品、照明和家用电源、农牧业抽水、广播通讯台站电源及中小型联网电站等。a一Si太阳电池成了光伏能源中的一支生力军,对整个洁净可再生能源发展起了巨大的推动作用。非晶硅太阳电他的诞生、发展过程是生动、复杂和曲折的,全面总结其中的经验教训对于进一步推动薄膜非晶硅太阳电池领域的科技进步和相关高新技术产业的发展有着重要意义。况且,由于从非晶硅材料及其太阳电池研究到有关新兴产业的发展是科学技术转化为生产力的典型事例,其中的规律性对其它新兴科技领域和相关产业的发展也会有有益的启示。本文将追述非晶硅太阳电他的诞生、发展过程,简要评述其中的关键之点,指出进一步发展的方向。 2.太阳能电池概述 .太阳能电池原理 太阳能电池是通过光电效应或者光化学效应把光能转化成电能的装置。太阳能电池以光电效应工作的结晶体太阳能电池和薄膜式太阳能电池为主流,而以光化学效应工作的湿式太阳能电池则还处于萌芽阶段。太阳能电池工作原理的基础是半导体PN结的光生伏特效应。所谓光生伏特效应就是当物体受到光照时,物体内的电荷分布状态发生变化而产生电动势和电流的一种效应。 为了理解太阳能电池的运做,我们需要考虑材料的属性并且同时考虑太阳光的属性。太阳能电池包括两种类型材料,通常意义上的P型硅和N型硅。在纯净的硅晶体中,自由电子和空穴的数目是相等的。如果在硅晶体掺杂了能俘获电子的硼、铝、镓、铟等杂质元素,那么就构成P型半导体。如果在硅晶体面中掺入能够释放电子的磷、砷、锑等杂质元素,那么就构成了N型半导体。若把这两种半导体结合在一起,由于电子和空穴的扩散,在交接面处便会形成PN结,并在结的两边形成内建电场。太阳光照在半导体 p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n 区流向p区,电子由p区流向n区,接通电路后就形成电流。这就是光电效应,也是太阳能电池的工作原理。 太阳能电池种类 太阳能电池的种类有很多,按材料来分,有硅基太阳能电池(单晶,多晶,非晶),化合物半导体太阳能电池(砷化镓(GaAs),磷化铟(InP),碲化镉(CdTe), 铜铟镓硒(CIGS)),有机聚合物太阳能电池(酞青,聚乙炔),染料敏化太阳能电池,纳米晶太阳能电池;按结构来分,有体结晶型太阳能电池和薄膜太阳能电池。

家用太阳能发电系统DIY(转载)

自制家用太阳能发电照明系统(转载) 太阳能发电系统由太阳能电池、太阳能充放电控制器、铅酸免维护蓄电池、逆变器和照明灯具组成。 太阳能电池(30W) 一般使用单晶硅/多晶硅太阳能电池,体积小,光电转换效率高。现在的价格平均为30元/W,封装后的成品会略贵些。建议购买成品,质量和稳定性有保证。本人使用30W单晶硅太阳能电池,设计寿命为25年,使用不锈钢支架安装于阳台外(可在铝合金门窗加工店定制),横向摆放可使抗风性更好,如图1。 For personal use only in study and research; not for commercial use

图1 太阳能充放电控制器(12V/10A) 太阳能充放电控制器是专为太阳能直流供电系统设计的,目的是为了提供过充、过放、电子短路、过载保护,在10W以上的太阳能系统中,是必不可少的,相当于整个系统的心脏。控制器的空载损耗仅为6mA,非常省电。太阳能充放电控制器有三对正负极接口,分别接太阳能电池、蓄电池和负载,如图2。控制器的选购跟负载有关,如负载超过120W,需要选用12V/20A的控制器。 图2 铅酸免维护蓄电池(12V/24AH)

在有些国家的太阳能系统中,可以直接通过逆变器转为交流电后输到电网,由政府收购,然后晚上再从电网问政府买电,如果发电量大还可以赚钱,也节约了蓄电池的成本。但我国目前还没有类似收购计划,电表也是单向运转的,如果将电输到电网,还会增加每月电费开支,所以使用蓄电池来存储白天所发的电量以供夜间使用,如图3。蓄电池建议选择铅酸免维护蓄电池,不用加水,使用方便。蓄电池的容量不能选太小,因为太小会浪费太阳能电池所发电量;也不能选太大,因为长时间处于未充满状态会影响电池寿命。一般情况下,以两天可以充满电池为宜。 图3 逆变器(70W) 现在市面上有很多车载逆变器,转换效率高,价格便宜。因车载逆变器也是12V输入,所以用来当太阳能发电系统的逆变器正好合适。经测

太阳能电池测试系统20080331

系统一: 太阳能电池量子效率测量系统 太阳能电池量子效率测量实际是首先测量太阳能电池光谱响应度,然后再经过计算得到。太阳能电池的光谱响应度和量子效率的测测量对太阳能电池的生产工艺、性能研究和高效应用都是极其重要的。 一、量子效率测量原理 1. 太阳能电池的光谱响应的测量 光谱响应分为绝对光谱响应和相对光谱响应。 太阳电池的绝对光谱响应R A (λ)(单位:A/W)是指在某一特定波长λ处,太阳电池输出的短路电流I SC (λ) (单位:A)与入射到太阳电池上的辐射通量Φ(λ) (单位:W)的比值: ()()() ()1R A L L L L L L L L L L L L L L L L L L L L λλλΦ=SC I 这里辐射通量Φ(λ)是用经过计量部门标定过的光电探测器测量,得到光电流Is(λ),其光谱响应为Rs(λ),则辐射通量为: ()()() ()2L L L L L L L L L L L L L L L L L L L L λλλS S R I =Φ 将(2)代入(1),得到: ()()() ()()3R A L L L L L L L L L L L L L L L L L λλλλS S SC R I I = 2. 太阳能电池相对光谱响应的计算 在任一波长λ0下(一般为光谱响应的峰值),对太阳电池绝对光谱响应进行归一化。得到相对光谱响应: ()()() ()40L L L L L L L L L L L L L L L L L L L L λλλA A R R R R = 3. 太阳能电池量子效率的计算

利用测量的太阳电池光谱响应度,可以计算太阳电池的量子效率η(λ): ()() ()524.1L L L L L L L L L L L L L L L L L L L λλληA R = 这里λ的单位为:μm。 二、系统组成 太阳能电池光谱响应测量系统包括如下部分: 1. 辐射光源及其电源:根据要求可选择不同的辐射光源,一般用溴钨灯。光源室还带有斩波器。 如果要求不高,可应用直流测量,此时可不用斩波器。 2. 分光单色仪:太阳电池的光谱响应范围在300-1200nm,至少要二块光栅。这里考虑到发展, 选用三光栅单色仪,光谱范围覆盖200nm-2500nm 的紫外、可见-近红外。单色仪部分还包括滤光片轮,用于消除多级光谱。 3. 探测器室:在探测器室中,放置太阳能电池和标准探测器。太阳能电池和标准探测器放置在电 动位移台上,实现自动切换。 探测器室中包括准直光路,将单色仪出来的发 散光转换成平行光,并通过可变光阑调节输出 光的强弱。 探测器室中还包括偏置光,使之达到一个太阳 常数,恒定的照射在被测太阳电池上。 4. 电测电控系统:主要用锁相放大器测试信 号的采集,用电移台控制器和单色仪控制 器控制自动测量。 5. 软件:设置系统各各部分的参数、测试标准探测器和太阳电池的参数,计算被测探测器的光谱响应度和量子效率,将测量数据和曲线存档和打印输出。

太阳能光伏发电系统_毕业论文

毕 业 论 文 题目太阳能光伏发电系统 学院 __________江西太阳能科技职业学院___ 专业 _________光伏发电技术及应用___ __

摘要 本系统采用C8051F020为控制核心,实现了模拟太阳能光伏发电系统的功能。该系统主要通过太阳能储蓄电能,通过正弦波脉宽调制技术(SPWM)控制全桥逆变将直流电变为交流电,再经过变压器将电压变为所需的电压。该系统具有最大功率追踪(MPPT),输出电压与给定参考电压频率、相位同步,欠压、过流保护,欠压保护的自动恢复等功能,且具有LCD屏幕显示功能。 关键词:C8051F020 SPWM MPPT 欠压过流保护 Abstract This system uses C8051F020 simulation of solar photovoltaic power generation system to control the core functions. The system is mainly electricity through the solar savings by sinusoidal pulse width modulation (SPWM) control full-bridge inverter direct current into alternating current, and then through the transformer voltage into the required voltage. The system has the maximum power point tracking (MPPT), output voltage with a given reference voltage frequency and phase synchronization, undervoltage, overcurrent protection, undervoltage protection, automatic recovery, and the LCD screen display Keywords:C8051F020 SPWM MPPT Under-voltage over-current protection

太阳能光伏发电系统方案

光伏发电示范项目系统设计建议书 示范项目名称:XXXXXXXXX示范项目 二〇一〇年十月

目录 第1章项目概况 (1) 1.1 项目地理情况 (1) 1.1.1 地理位置 (1) 1.1.2 供电要求 (1) 1.2 项目建筑类型(BIPV) (2) 第2章一般光伏发电系统的价格构成...............................................错误!未定义书签。第3章光伏并网发电系统设计原则与原理. (2) 3.1 总体设计原则 (3) 3.1.1 视觉美观性 (3) 3.1.2 太阳辐射量 (3) 3.1.3 电缆长度 (4) 3.2 方案设计原理 (4) 第4章光伏系统监控设计 (6) 第5章效益分析 (7) 5.1 发电量计算与节能减排量分析 (8) 5.2 资金投入与效益分析 (10) 第6章某太阳能电源技术有限公司...................................................错误!未定义书签。 6.1 雄厚的集团背景.................................................................................................................. 错误!未定义书签。 6.2 超强的项目管理能力.......................................................................................................... 错误!未定义书签。 6.3 卓越的设计团队.................................................................................................................. 错误!未定义书签。 6.4 “一揽子交钥匙服务”...................................................................................................... 错误!未定义书签。 6.5 增值服务 ............................................................................................................................. 错误!未定义书签。第7章在节能方面为万达服务过的项目 .. (20) 第8章附录《政策分析》 (21)

2021年太阳能光伏发电系统基本组成

太阳能光伏发电系统基本组成 欧阳光明(2021.03.07) 太阳能发电分为光热发电和光伏发电。通常说的太阳能发电指的是太阳能光伏发电,简称“光电”。光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。 理论上讲,光伏发电技术可以用于任何需要电源的场合,上至航天器,下至家用电源,大到兆瓦级电站,小到玩具,光伏电源无处不在。太阳能光伏发电的最基本元件是太阳能电池(片),有单晶硅、多晶硅、非晶硅和薄膜电池等。其中,单晶和多晶电池用量最大,非晶电池用于一些小系统和计算器辅助电源等。中国国产晶体硅电池效率在10至13%左右,国际上同类产品效率约12至14%。由一个或多个太阳能电池片组成的太阳能电池板称为光伏组件。 太阳能发电系统由太阳能电池组、太阳能控制器、蓄电池(组)组成。如输出电源为交流220V或110V,还需要配置逆变器。各部分的作用为:(一)太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳

的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。太阳能电池板的质量和成本将直接决定整个系统的质量和成本。 (二)太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其他附加功能如光控开关、时控开关都应当是控制器的可选项。 (三)蓄电池:一般为铅酸电池,小微型系统中,也可用镍氢电池、镍镉电池或锂电池。其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。 (四)逆变器:在很多场合,都需要提供220V AC、110V AC 的交流电源。由于太阳能的直接输出一般都是12V DC、24V DC、48V DC。为能向220V AC的电器提供电能,需要将太阳能发电系统所发出的直流电能转换成交流电能,因此需要使用DC-AC逆变器。在某些场合,需要使用多种电压的负载时,也要用到DC-DC 逆变器,如将24V DC的电能转换成5V DC的电能(注意,不是简单的降压)。

太阳能发电系统的设计分析

太阳能发电系统的设计分析 发表时间:2018-06-04T16:55:59.477Z 来源:《基层建设》2018年第10期作者:林刚张少利[导读] 摘要:在太阳能的有效利用中,太阳能发电是最具活力的研究领域,也是最受瞩目的项目之一。 江苏四季沐歌有限公司江苏省连云港市 222000 摘要:在太阳能的有效利用中,太阳能发电是最具活力的研究领域,也是最受瞩目的项目之一。太阳能发电系统采用太阳能电池阵列、太阳能控制器、蓄电池(组)、DC/AC 逆变器(并网/不并网)、低压输配电网及交、直流负载等部分组成。下面就谈谈自己对太阳能发电系统的设计的看法。 关键词:太阳能;发电系统;设计太阳能电池发电是基于“光生伏打效应”的原理,利用充电效应把太阳辐射直接转化为电能。太阳能具有永久性、清洁性和灵活性三大优点,是其他能源无法比拟的。总之,太阳能发电的过程没有机械转动部件也燃料消耗,不排放包括温室气体在内的任何有害物质,无噪音、无环境污染,太阳能资源分布广泛没有地域限制。维修保养简单,维护费用低,运行可靠性、稳定性好。无需架设输电线路即可就地发电供电及建设周期短。 1太阳能的特点 利用太阳能发电有两大类型,一类是太阳光发电(亦称太阳能光发电),另一类是太阳热发电(亦称太阳能热发电)。太阳能光发电是将太阳能直接转变成电能的一种发电方式。它包括光伏发电、光化学发电、光感应发电和光生物发电四种形式,在光化学发电中有电化学光伏电池、光电解电池和光催化电池。太阳能是一种普遍存在的能源,并且无需采集、运输就可以直接开发利用;其次,太阳能作为一种清洁能源,对环境不会造成任何损害,在环保意识逐步提高的今天,值得推广应用;有数据显示,4年地球接受到的太阳能相当于130万亿吨煤产生的能量,应用潜力巨大;此外,太阳能量可持续时间如果用地球的寿命来换算,儿乎是取之不尽用之不竭的。然而,与此同时,太阳能的利用目前还存在一些问题,比如太阳能虽然普遍存在,但是也存在严重的不稳定性,同时总量虽大但是能流密度却相对较低,并且人类对于太阳能的利用率还处于较低的水平,同时应用成本也较高。 2太阳能发电系统 太阳能发电系统分为独立发电系统与并网发电系统:独立发电系统也叫离网发电系统。主要由太阳能电池组件、控制器、蓄电池组成,若要为交流负载供电,还需要配置交流逆变器。并网发电系统就是太阳能组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电后直接接入公共电网。并网发电系统有集中式大型并网电站一般都是国家级电站,主要特点是将所发电能直接输送到电网,由电网统一调配向用户供电。但这种电站投资大、建设周期长、占地面积大,目前还没有太大发展。而分散式小型并网发电系统,特别是光伏建筑一体化发电系统,由于投资小、建设快、占地面积小、政策支持力度大等优点,是目前并网发电的主流。 太阳能电池板、太阳能控制器、蓄电池组是太阳能发电系统的主要组成部分,此外逆变器也是常见的辅助设备,用于输出合适交流电太阳能电池板的主要功能是转换太阳的辐射能为电能,送往电池组中进行存储,并推动负载作用,是太阳能发电系统中最核心、最有价值的组成部分,它的质量也直接决定了整个太阳能发电系统的质量。太阳能控制器负责对整个太阳能发电系统进行监控,并对蓄电池组起到一个保护的作用,此外,部分控制器可能还兼具有光控和时控功能。值得注意的是,一个合格的控制器在温差较大的地方,还应该配备温差补偿功能。太阳能蓄电池组的功能,就是将太阳能发电系统产生的电能储存起来以备用,铅酸电池、镍氢电池、镍锅电池或铿电池是最常见的蓄电池种类,除铅酸电池外,主要用于小微型的太阳能发电系统中。我们知道,太阳能直接输出的电能为12VDC,24VDC,48VDC,而我们日常使用的电能则为220VAC,110VAC,囚此逆变器的主要作用就是为我们提供合适的电能。 3太阳能发电系统的效率在太阳能发电系统中,系统的总效率ηese由电池组件的PV转换率、控制器效率、蓄电池效率、逆变器效率及负载的效率等组成。但相对于太阳能电池技术来讲,要比控制器、逆变器及照明负载等其它单元的技术及生产水平要成熟得多,而且目前系统的转换率只有17%左右。因此提高电池组件的转换率,降低单位功率造价是太阳能发电产业化的重点和难点。太阳能电池问世以来,晶体硅作为主角材料保持着统治地位。目前对硅电池转换率的研究,主要围绕着加大吸能面,如双面电池,减小反射;运用吸杂技术减小半导体材料的复合;电池超薄型化;改进理论,建立新模型;聚光电池等。 4太阳能发电系统的运行 4.1并网全自动运行方式 设计的太阳能发电系统产生的电能将直接分配到需要太阳能供电的用电负载上,包括楼道间照明以及地下停车场照明,不足的电力将由连接的电网进行补充调节。具体工作起来,就是太阳能发电系统在旱晚分别对太阳能电池板阵列的电压进行监测:旱上达到设定值即执行并网发电,并将产生的直流电经由逆变器转换为可供使用的交流电;晚上低于设定值时,并网发电系统将自动停止运行。 4.2并联运行方式 太阳能发电系统并联运行方式与并网全自动运行方式在电能利用和调节方式上基本一致,是一个相对独立的发电系统。该方式的配电方式与柴油发电机的配电方式基本相同,即增加一路交流市电供电,将经逆变器转换的交流电和市电组成A'1'SE双电源自动切换,这是一种简单、灵活、独立的发电系统,A'1'SE双电源自动切换系统会在太阳能供电中断,或者供电不足的时候自动切换到市电供电,供电的可靠性也随之提高然而,并联运行方式也有一定缺点,那就是A'1'SE双电源自动切换的过程中,将会中断一段时间的供电,这将不利于一些用电设备的正常运行,甚至可能会造成一定的损坏。同时,考虑到太阳能发电的不稳定性,并联运行方式的用电量也很难达到平衡。不过,由于并联运行方式可以尽量更多的发挥太阳能的发电量,从而部分节约备用的蓄电池,进而节约投资。 5太阳能光伏发电需要考虑的因素 5.1地理位置及气象条件 利用太阳能光伏发电必须要综合考虑各种因素,包括地点、纬度、经度、海拔等,太阳能每月的总辐射量。直接辐射量,年平均气温,最长连续阴雨天数,最大风速降雪及冰雹等特殊气象情况。 5.2最大负载及用电特性

太阳能电池输出功率测试系统

太阳能电池输出功率测试系统 通常需要丈量太阳能'>太阳能电池的几项关键参数。这些参数是: ● VOC——开路电压。在电流即是0时的电池电压。 ● ISC——短路电流。当负载电阻即是0时,从电池流出的电流。 ● Pmax——电池的最大功率输出。电池输出最大功率时的电压值和电流值。I-V曲线(图1)上的Pmax点通常被称为最大功率点(MPP)。 图1 这张太阳能'>太阳能电池的I-V曲线显示了Pmax及其与Imax和Vmax的关系 ● Vmax——在Pmax点,电池的电压值。 ● Imax——在Pmax点,电池的电流值。 ●η——器件的转换效率。当太阳能电池连接到某个电路时,这个值即是被转换的能量(从吸收的太阳光到电能)与被采集的能量的百分比。这个值可以通过将Pmax除以输进的光辐照度(E,单位是W/m2,在标准测试条件下进行丈量),再乘以太阳能电池的表面积(AC, 单位是平方米)计算得到。

●填充因子(FF)—Pmax除以VOC再乘上ISC 。 ●电池二极管属性。 ●电池串联电阻。 ●电池旁路电阻(或并联电阻)。 常见解决方案 现在,太阳能电池测试解决方案主要有两种形式:完整的交钥匙系统和通用的测试仪器。 假如需要在太阳能电池最大输出功率时进行测试,很多研究实验室都具备低功耗四象限电源(有时也称为SMU),并具有以下功能: ●提供精确的正电压和负电压(“提供”也可称为“施加”)。 ●提供精确的正向和反向电流(提供反向电流也被称为电流流进到电源中)。 ●精确地丈量待测器件(DUT)的电压和电流(丈量也被称为检测)。 大多数高精度四象限电源都只能提供3A的电流或20W的连续功率。 在测试较小的单个电池时,这些最大电流和功率是可接受的,但是随着电池技术向更高的效率、更大的电流密度和更大的电池尺寸推进,电池的功率输出将很快会超出这些四象限电源的最大额定值。太阳能模组的输出通常会超过50W,而且可能会爬升至300W 或更高,这意味着很多针对模组的测试都无法使用四象限电源来完成。 在这些情况下,工程师应当借助于现成的电子负载、直流电源、DMM和数据采集设备,包括温度丈量、扫描、转换和数据记录设备,以便在宽泛的操纵范围内灵活地进行独特的测试,并且达到预期的测试精度。例如,可以使用数据采集系统来扫描环境和待测器件的温度,已校准的参考电池的电压,以及在测试中需要捕捉的各种其他测试参数。

太阳能发电原理及应用论文

太阳能发电原理及应用 指导老师: 关键词:半导体,蓄电池,光伏充电控制器 摘要:本文介绍了由本人所构想的一种新型干电池,由目前比较成熟的太阳能发电系统所得到灵感经过一定的理论分析和创造所发明的一种新型干电池。主要由太阳能半导体,蓄电池,光伏充电控制器构成。太阳能半导体产生“光生电流”,“光生电流”储存在蓄电池内,需要时通过电路释放出来,而光伏充电控制器则连接在半导体与蓄电池之间可以控制太阳能电池的输出电压, 可以保护电池不被过充, 同时, 也晚上太阳能电池不发电时, 防止蓄电池的电倒流。 正文 引言 我国是电池生产和消费大国,去年电池的产量和消费高达140亿只,占世界总量的1/3。平均每人每年3.5枚。但我国目前的废旧电池的回收情况却令人非常担忧。据有关部门统计,北京市每年消耗2亿只电池,共计6000吨,1999年回收了60吨,回收率仅为1%,2005年的回收率也只有5%,回收量实在是微乎其微。上海市每年小号电池约4.5亿节,但每年回收量约50吨,不足每年耗量的1%,最近,来自上海市环保部门的一份报告显示,含铅最多的铅蓄电池回收率也比较低,150万只报废电瓶四处抛散。所以我就想到了太阳能干电池,太阳能干电池所耗太阳能无限可再生和零排放能源,对当地环境没有影响,可重复使用对于偏于地区手电筒照明,个类儿童玩具,各类家用遥控器。 一方案设计 发电原理:硅原子的外层电子壳层中有4个电子。在太阳辐照时,会摆脱原子核的束缚而成为自由电子,并同时在原来位置留出一个空穴。电子带负电;空穴带正电。在纯净的硅晶体中,自由电子和空穴的数目是相等的。如果在硅晶体中搀入能够俘获电子的3价杂质,如:硼,鋁,镓或铟等,就成了空穴型半导体,简称p型半导体。如果在硅晶体中搀入能够释放电子的磷,砷,或锑等5价杂质,就成了电子型半导体,简称n型半导体。 p-n结内建电场:

光伏电站监控系统

光伏电站监控系统 PMU(Power Management Unit)是本公司自主开发的光伏监控产品,与本公司研发的逆变器连用,可以方 便用户记录光伏电站的发电量,运行状态,是否出现错误等信息。PMU广泛应用于发电厂、办公大楼、商 场酒店、生活小区等区域的太阳能发电设备的管理。 PMU的特点是结构简单、可靠性高、功能较强、维护方便。 PMU通过RS485总线与逆变器相连,并通过TCP/IP与PC机连接,同时,一台PMU可接多达10台光伏逆变器和多台PC机,组网监控,适用于中小型发电场所。 图1-1表明:PMU在光伏发电站中充当中位机(连接PC机和逆变器的桥梁),PMU通过RS485通讯总线与逆变器通讯,能获取并存储逆变器至少三年的数据,然后通过TCP/IP将数据传到PC机的AS Control软件上,用户可以坐在家里通过AS Control直接查看数据,而不用到光伏电站现场。图1-1 光伏发电系统客户终端示意图 1. 专用监控主板 2. 10/100M以太网卡控制器

3. 1G NandFlash存储容量 4. 丰富的外部接口(I/O): 一个RS485通讯口 一个网线口,10/100(BASE-T) 一个MiniUSB-B接口 5. 支持ACTIVESYNC同步通讯 PMU采用最新WINCE6.0系统,可以配合上位机程序AS Control使用,具体的AS Control的使用方法请参考AS Control的使用说明。 1.数据实时更新; 2.多用户同时监控多台逆变器; 3.高可靠性、低功耗; 4.接口丰富:RS485、USB、RJ45,扩展方便。 PMU只能安装在室内使用,若超出下列范围可能导致PMU的损坏。另外,过热,过冷,浸在水中或遇火, 强烈撞击都会损坏PMU。 存储容量:1GByte 输入电压:7.5VDC 输入电流:1A 机器功耗:1W o工作温度范围:-10 - +40C o存储温度范围:-20 - +60C 湿度范围:0% - 98% 连接时间与速度视网络状况,正常网络状态下:AS Control与PMU连接不超过3分钟,PMU与逆变器的连接也不超过3分钟(单台连接)。 通信接口连接方式限制距离 USB接口 MiniUSB_B MAX. 2 m Ethernet RJ45 MAX. 100 m RS485 RJ45 MAX. 300 m

家用太阳能发电系统-方案书(方案版)

太阳能离网发电系统设计 方案书 二0一一年五月

目录 一、地理位置及光照情况...................................... 错误!未定义书签。 二、系统概况及技术方案 (3) 三、设备材料及工程估算 (4) 四、负载需求及系统性能 (5) 1 负载需求 (5) 2 系统性能 (5) 五、施工及调试方案 (6) 1、工程范围 (6) 2、施工人员及指导 (6) 3、设备安装流程 (6) 4、安装及调试 (7)

二、系统概况及技术方案 根据各种数据采集后计算所制定本太阳能离网发电系统,本系统将给别墅的三层用电负载进行供电,展示太阳能发电、储能、供电的过程并达到一定的环保节能的目的。 图1 60kW太阳能离网发电系统方案图 本系统主要由太阳能电池板、控制器、蓄电池、逆变器、稳压保护装置和ATS等组成,系统框图见图1。 本系统中,负载为照明、电脑、电视和小功率电器等负载。为确保系统安全可靠运行,根据初步的预算,系统的安装容量设计为60kw。根据负载情况,采用夏季和冬季的发电量最大指标来设计系统。当系统供电不足时采用ATS装置切换到市电,以保持负载正常运行所需电量。ATS装置可确保太阳能离网发电系统供电和电力电网供电分离,在任何时候,只能取一种电源供电,系统运行的可靠安全性得到保障。

三、设备材料及工程估算 主要元器件一览表 序号代号名称型号规格数量单价小计1CELL1.1太阳能电池组件DC12V, 180W×34060000 2KP充电控制系统SYT-F10001 3INV逆变系统SYT-B1000Uin=99-155V,Uo=AC220V,4.6A1 4ATS1自动电源切换系统DR61T AC220V,500A1 5ATS2稳压保护装置SCU-A1 6BAT1.1密封式胶体蓄电池DC12V, 200Ah×20040000 7SPV防雷汇流箱SPVMB-164 主要材料一览表 序号名称规格单位数量单价小计1聚氯乙烯绝缘电力电缆2x6mm2, 750V米约2000 2同上3x25mm2, 750V米约2000 工程造价估算 序号项目规格单位数量单价小计1太阳能电池阵机架项1 蓄电池机架项1 可编辑修改

太阳能监控方案

太阳能监控方案 高速公路全程视频监控技术是现代交通管理的有效手段,通过视频监控可实时掌握道路交通运行状态,对突发事件做出快速响应。但是公路的线性分布特点导致了监控外场摄像机的电网供电建设成本高、线路损耗大、电能利用率低等问题,影响了全程视频监控技术的推广应用。河南高速公路发展有限责任公司利用太阳能光伏发电技术,在连霍高速公路郑州和洛阳段全程220km范围内100个监控点,成功实施了太阳能供电的全程视频监控系统示范工程,为解决上述问题探索出了一条新途径。经过近5年的实际运行证明该示范工程技术方案成熟可靠,与电网供电相比,可节省供配电工程建设投资58.3%,平均每公里节省3.13万元;5年来节省电费22万元、汽油费96万元,减少CO2排量402吨,效果显著。该示范工程成功的关键在于示范单位领导重视以科技创新为引领,以科学实验为基础,在技术上通过优化设计大大减少了摄像机等部件的功耗,通过地埋恒温技术保证了蓄电池的最佳工作状态,通过应急充电及电源在线管理等维护措施保障了整个系统的长期稳定。该技术可广泛应用于太阳能光照条件三级以上的公路视频监控系统外场摄像机或50W以下的类似负载,在现代交通管理中具有广阔的应用前景。建议行业主管部门以实施单位在建设和维护过程中的先进经验为基础,尽快制定出相应技术标准,在全国推广应用。 ________________________________________ “太阳能技术在连霍高速公路郑州至洛阳段道路全程监控系统中的应用”推广材料 ——交通运输部节能减排专家工作组 一、概况 河南高速公路发展有限责任公司是河南省人民政府授权省交通运输厅组建的国有独资企业,公司管理资产总额达1100亿元,员工总数近2万人。主营高速公路、特大型独立桥梁等交通基础设施的开发建设、养护和经营管理,是河南省高速公路建设管理的投资主体。成立以来,累计建成通车高速公路2540公里,约占全省通车高速公路的53%;管养已通车高速公路2069公里,为全省高速公路通车总里程的46%;在建高速公路404公里。公司目前下设郑州、商丘、开封、洛阳、三门峡等15个管理分公司,9个项目建设公司,15个多种经营公司,控股河南中原高速公路股份有限公司,公司机关设办公室、工程管理部、养护管理部、路产管理部等职能部门。经营范围涉及高速公路工程施工、道路养护、交通机电运营维护、服务区经营、油品供应等领域。 随着河南高速公路路网的逐步形成,对道路设施和交通状况进行全面监控,为制定和实施应急预案,减少道路拥堵、预防交通事故、提高服务水平,河南高速公路发展有限责任公司决定在连(运港)霍(尔果斯)高速公路郑州和洛阳管辖的220km范围内(K528+881-K748+136)实施道路全程监控。 为扩展监视范围,有效实施全程监控,外场摄像机的设置间隔约为2km,处于一种线状的非集中布局,若采用电网供电方式,存在线路损耗大、建设投资成本高、施工复杂和运营维护费用高等问题。同时,该路段即将实施不中断运营的道路两侧拓宽工程(四改八),外场摄像机需设置在中央隔离带。如在中央隔离带敷设电力电缆,则影响通信及其它弱电信号。因此,摄像机供电问题已成为项

太阳能发电系统毕业设计

太阳能发电系统设计 1引言 从“蒸汽机”到“电动机”的一系列动力技术发明,人们逐渐认识到,能 源技术的革新带动人类社会日益进步,对社会发展起着巨大的推动作用。但至今所采用的化石燃料能源带给人类文明与进步的同时,却因能源需求消耗的大幅提高以及随之而来的环境污染,形成了巨大的能源缺口,同时给环境造成巨大灾难。目前,油气资源的供不应求已成为我国经济发展的瓶颈,电力供应不容乐观,天然气用量迅速增长…… 最新的资料表明太阳光的充分利用,是最清洁,环保,取之不尽的可再生能源。 太阳能的利用 我国太阳能资源丰富,陆地每年接受的太阳辐射能,相当于2.431012tce,2/3国土面积的太阳能总辐射量超过0.6MJ/m2。如果将太阳能源充分加以利用,不仅有可能节省大量常规能源,而且有可能在某些区域完全利用太阳能采暖。 目前,太阳能利用主要有两个途径,即光热和光伏。光伏是根据光生伏特效应原理,利用太阳能电池将太阳光能直接转化为电能。光伏发电在太阳能利用上是主流,前景好。 太阳能原理 太阳能电池发电的原理是基于半导体的光电效应,即一些半导体材料受到光照时,载流子数量会剧增,导电能力随之增强,这就是半导体的光敏特性。 在晶体中电子的数目总是与核电荷数相一致,所以P(N)型硅对外部来 说是电中性的。若将P(N)型硅放在阳光下照射,仅是被加热,外部看不出 变化。但内部通过光的能量,电子从化学键中被释放,由此产生电子-空 穴对,但在很短的时间内(在μS范围内)电子又被捕获,即电子和空穴 “复合”。 1 / 20

当 P 型和 N 型半导体结合在一起时,在两种半导体的交界面区域里 会形 成一个特殊的薄 层,界面的 P 型一侧 带负电,N 型一侧带正电 。这是由于 P 型半导体多空穴,N 型半导体多自由电子,出现了浓度差。N 区的电 子会扩 散到 P 区,P 区的空穴会扩散到 N 区,一旦扩散就形成了一 个由 N 指向 P 的 “内 电场”, 从而阻止扩散 进行。达到 平衡后,就形 成了这样一 个特殊的 薄层形成电势差,这就是 P -N 结。 至 今为 止,大多 数太阳能 电池厂家都是 通过扩散工艺, 在 P 型硅片 上形成 N 型区 ,在两个 区交界就 形成了一个 P -N 结(即 N+ /P )。太 阳能电池的基本结构就是一个大面积平面 P -N 结) 如果光线照射在太阳能电池上并且光在界面层被吸收,具有足够能量的 光子能够在 P 型硅和 N 型硅中将电子从共价键中激发,以 致产生 电子-空 穴对。界面层附近的电子和空穴在复合 晶片受光过程中,空穴(电子)往 P(N)区移 之 前,将 通过空 间电荷 的电 场作用 被 相互分离。电子 向带正 电的 N 区 和空 穴向带负电的 P 区运动。通过界 面层 晶片受光后,空穴(电子)从 P(N)区正(负)电极流出 产生 一个向外 的可测试的电 压。通过光 照在界面层 产生的电 子- 空穴对越 多, 电流越大 。界面层吸收 的光能越多 ,界面层即 电池面积 越大,在太 阳 能电池中形成的 电流也 越大。 此即为光生伏特效应。 光伏系统 光伏系统是利用太阳电池组件和其他辅助设 备将太阳能转换成电能的系统。一般分为独立系 统、并网系统和混合系统。 白天,在光照条件下,太阳电池组件产生一 定的电动势,通过组件的串并联形成太阳能电池方阵,使得方阵电压达到系统输 入电压的要求。再通过充放电控制器对蓄电池进行充电,将由光能转换而来的电 能贮存起来。晚上,蓄电池组为逆变器提供输入 电,通过逆变器的作用,将直流电转换成交流电, 2 / 20 的电荷分离,将在 P 区和 N 区之间

相关文档
最新文档