【完整版】移相全桥零电压开关pwm设计实现_毕业论文设计

【完整版】移相全桥零电压开关pwm设计实现_毕业论文设计
【完整版】移相全桥零电压开关pwm设计实现_毕业论文设计

移相全桥零电压开关PWM设计实现

摘要

移相全桥电路具有结构简单、易于恒频控制和高频化,通过变压器的漏感和功率开关器件的寄生电容构成谐振电路,使开关器件的应力减小、开关损耗减小等优点,被广泛应用于中大功率场合。近年来随着微处理器技术的发展,各种微控制器和数字信号处理器性能价格比的不断提高,采用数字控制已经成为大中功率开关电源的发展趋势。相对于用实现的模拟控制,数字控制有许多的优点。本文的设计采用TI公司的高速数字信号处理器TMS320F28027系列的DSP作为控制器。该模块通过采样移相全桥零电压DC-DC变换器的输出电压、输入电压及输出电流,通过实时计算得出移相PWM信号,然后经过驱动电路驱动移相全桥零电压DC-DC变换器的四个开关管来达到控制目的。实验表明这种控制策略是可行的,且控制模块可以很好的实现提出的控制策略。

关键词:移相全桥;零电压;DSP

Phase-shifted Full-bridge Zero-voltage Switching PWM Design and

Implementation

ABSTRACT

Phase-shifted full-bridge circuit . In recent years, with the development of microprocessor technology, a variety of microcontrollers and digital signal processor cost performance continues to improve, the use of digital control uses DSP ,the TI company TMS320F28027 series of of phase-shifted PWM signal phase-shifted full-bridge zero-voltage DC-DC conversion, and then after the drive circuit the four switch control purposes. The experiments show that this control strategy is feasible, and the control module can achieve the proposed control strategy.

Key words: phase-shifted full-bridge;zero-voltage;DSP

目录

1 引言 (1)

1.1 移相全桥软开关研究背景及现状 (1)

1.2 本文要做的工作 (1)

2 移相全桥电路的工作原理 (2)

2.1 电路工作状态及特点 (2)

2.2 电路的运行模式分析 (3)

2.2.1 工作过程分析 (3)

2.3 软开关实现的条件 (7)

3 DSP结构功能 (9)

3.1 DSP适合于数字信号处理的特点 (9)

3.2 TMS320系列DSP概况 (9)

3.3 TMS320F2802x芯片特点 (10)

3.4 CCSv5平台 (12)

3.5 利用CCSv5.1导入已有工程 (12)

3.6 利用CCSv5.1调试工程 (13)

4 系统程序设计实现 (14)

4.1 PWM的产生原理 (14)

4.2 主程序的流程图 (15)

4.3 程序设计 (18)

4.4 最终实现的波形图 (18)

5 总结 (24)

参考文献 (25)

致谢 (26)

1 引言

1.1 移相全桥软开关研究背景及现状[1]

随着电力电子技术的飞速发展,电子设备与人们的关系越来越密切,可靠的电子设备都离不开可靠的电源。进入20世纪90年代以后,开关电源相继进入了电子、电气设备等领域,通信电源、电子检测电源等都已经广泛采用开关源,从而在很大程度上对开关电源的技术的发展起到了很好的推动作用。开关电源是采用电力电子技术,通过控制开关管的通断,来达到变换输入和输出能量关系的一种电源。

软开关技术是20世纪80年代初由李泽元教授直接提出的,并应用于DC-DC变换中,由于它具有减少变换器的开关损耗,降低电磁干扰等特点,所以在各种电力电子变换器中得到了广泛的应用。全桥变换电路拓扑是DC-DC变换器中比较常见的拓扑之一,在中大功率场合中得到广泛应用。全桥拓扑电路的主要优点在于开关器件可以承受的电压和电流的应力较小,高频变压器的变换效率较高,开关频率固定等。全桥拓扑电路根据其输入的方式可以分为电压型和电流型这两种,其中电压型DC-DC全桥拓扑是在Buck的基础上衍生出来的,因此也成为全桥Buck变换器。移相全桥电路的移相控制方式的实质上是谐振变换技术和PWM变换技术的结合,利用功率开关管上的寄生电容和高频变压器的漏感作为谐振元件,实现移相全桥电路的四个功率开关管在零电压情况下开通,实现了恒频软开关技术。

移相全桥软开关变换电路是通过控制两桥臂对角开关管驱动脉冲的移相角度,来调节输出电压的大小。两桥臂的对角开关管驱动脉冲相差一个移相角,同一桥臂上下开关管成180度互补导通并且没有死区。利用功率开关管上的寄生电容和高频变压器的漏感来实现谐振,以错过在大电压和大电流下的硬开关状态,有效克服了在感性关断下的电压尖峰和容性开通时的电流尖峰。因此在大功率变换场合,移相全桥软开关变换器得到了广泛应用。

1.2 本文要做的工作

1)本文首先对移相全桥ZVS变换器的拓扑结构、工作原理等电路性能进行了系统的分析,得出了移相全桥ZVS变换器电路的独特优点。并分析了移相全桥ZVS变换器实现PWM 控制的各种控制策略。

2)控制电路的设计采用TI公司的高性能数字信号处理器TMS320F28027系列DSP作为控制器,通过软件编程来实现而提出的控制策略,并和一些数字逻辑电路一起产生移相全桥变换器的移相PWM控制电路。

2 移相全桥电路的工作原理

[2]

移相全桥零电压开关 PWM 电路原理图如图 2-1所示。

i V 为输入直流电压。41~S S 为功率 MOSFET ,并联的二极管为 MOSFET 内部寄生二极管,41~C C 为 MOSFET 的输出结电容。r L 为谐振电感。变压器输出采用全桥整流,经 LC 滤波输出直流电压 0V 。L R 为输出负载。

图2-1 移相全桥电路原理图

2.1 电路工作状态及特点

1)同硬开关全桥电路相比,仅增加了一个谐振电感,就使四个开关均为零电压开通。 2)变换器工作在恒频 PWM 调制方式。

3)每个开关管的导通占空比为小于但接近50%,固定不变。为了防止直通,同一个桥臂的两个开关管互补导通。同时设置了一定安全范围的死区,即同时处于关断状态的时间间隔。

4)互为对角的两对开关管41S S -和32S S -,1S 的波形比4S 超前 2~0S T 时间,而

2S 的波形比3S 超前2~0S T 时间,因此称1S 和2S 为超前桥臂,而称3S 和4S 为滞后桥臂。

5)开关管3S 、4S 的驱动波形相位是固定不变的,开关管1S 、2S 的驱动波形相位是可

调的。变换器通过调节超前桥臂 21~S S 的驱动波形相位,即调节有效占空比,来控制变换器的输出电压。

6)有开关管41S S -或32S S -同时导通时,变压器才向副边输送功率。其余时间段电路处在续流或关断状态。

2.2 电路的运行模式分析

分析时假设:

1) 所有功率 MOSFET 开关管均为理想,忽略正向压降及开关时间; 2) 四个开关管的输出电容相等,即i C =S C ,i =1,2,3,4,S C 为常数; 3) 忽略变压器绕组及线路中的寄生电阻。

2.2.1 工作过程分析

10~t t 时段:1S 与4S 导通,电容i C (i =2,3)被输入电源充电。变压器原边电压 i V V T =。

功率由变压器原边输送到负载。此状态原、副边的电流回路如图 2-2所示。直到 1t 时刻1S 关断。此时原边电流增长到最大值 P i 。

图2-2 t 0~t 1时刻等效电路图

21~t t 时段:1t 时刻开关1S 关断后,电容 1C 、2C 与电感r L 、L 构成谐振回路,等效

电路如图 2-3所示。在这个时段里,变压器原边谐振电感 r L 和滤波电感f L 是串联的,而且 f L 很大,因此可以认为原边电流 P i 近似不变,类似于一个恒流源,其大小为n I I Lr 0=。

1C 上电压线性增加,3C 上电压线性下降,即A V 不断下降,直到0=A V ,2S 的体二极管导

通,电流Lr I 通过2S 的体二极管续流。

()()112t t C i t V S Lr C -= (2-1) ()()122t t C i V t V S Lr i C --= (2-2) 当2C 的电压下降至零,2S 的反并联二极管自然导通,该模态所用的时间为:

Lr i S i V C t ?=212 (2-3)

图2-3 t 1~t 2时刻等效电路图

32~t t 时段:t 2时刻开关2S 开通,由于此时其反并联二极管2S VD 正处于导通状态,因

此2S 为零电压开通。等效电路如图 2-4所示。此时,AB V 的电压被钳为到 0 V 。原边谐振电感的电流通过2S 、4S 、变压器原边进行环流状态。由于回路内阻消耗,电流值稍有下降。

图2-4 t 2~t 3时刻等效电路图

43~t t 时段:3t 时刻开关4S 关断后,变压器二次侧 41~D D 同时导通,变压器一次侧

和二次侧电压均为零,相当于短路。此时,等效电路如图 2-5所示。

图2-5 t 3~t 4时刻等效电路图

此时 3C 、4C 与r L 构成谐振回路。r L 的电流不断减小,B 点电压不断上升,直到3S 的反并联二极管3S VD 导通,等效电路如图 2-6所示。这种状态维持到4t 时刻3S 开通。因此3S 为零电压开通。

图2-6 t 3~t 4时刻等效电路图

54~t t 时段:3S 开通后,r L 的电流继续减小,等效电路如图 2-7所示。Lr i 下降到零

后反向增大,此时原边电流的表达式为:

()()44i t t L V t i

r i LR

+--=

(2-4)

图2-7 t 4~t 5时刻等效电路图

5t 时刻n I i Lf LR /=,变压器二次侧1D 、4D 的电流下降到零而关断,电流Lf I 全部转移

到2D 、3D 中,等效电路如图2-8所示。在此时间段内,尽管变压器原边有电压波形,但没有提供负载电流,即成为占空比丢失状态。

图2-8 t5时刻等效电路图

65~t t 时段:变压器输出能量,等效电路如图 2-9所示。

图2-9 t 5~t 6时刻等效电路图

到此时段为止,电路完成了半个工作周期的工作过程。下半个工作周期的变换过程与前面阐述的过程基本相同,在此不再叙述了。

2.3 软开关实现的条件

互为对角开关的关断时间错开是实现软开关的必要条件。在前述讨论中我们可以看出,移相控制可以满足这个要求。按照一般的定义,如果某一桥臂的开关首先关断,则称此桥臂为超前桥臂,另一桥臂则称之为滞后桥臂。

通过上述分析可知,不管是超前桥臂还是滞后桥臂的开关管转换时,都形成了谐振回路。谐振时,参与谐振的电感释放储能,使谐振电容电压下降到零,从而实现 ZVS 。所以 ZVS 条件为:电感能量必须大于所有参与谐振的电容能量。

1)超前臂ZVS 条件分析

1S 、2S 相互转换时,变压器处于能量传送阶段。原边电流01I I -=,滤波电感 f L 很

大,可看作是恒流负载。原边等效电感 L n L L r e 2+=所以根据 ZVS 条件,电感能量必须大于所有参与谐振的电容能量,应有:

()+

2/2

0n I L e 励磁能量>

()2234S

t S V C C +

(2-5)

式中: 34S C 是考虑 MOSFET 输出电容非线性的等效电容值,

t C 为变压器绕组分布电容。由式(2-5)可见,实现 ZVS 的电感能量包括:()2/2

0n I L e 和励磁能量,相当大,故即

使轻载下超前桥臂较容易满足 ZVS 条件。

2) 滞后桥臂 ZVS 条件分析

3S 、4S 相互转换时,变压器副边处于续流阶段。参与谐振的电感只有原边的谐振电感,

所以根据ZVS 条件:电感能量必须大于所有参与谐振的电容能量,应有:

()2

22342S t S r V C C I L +> (2-6)

由式(2-6)可见,实现 ZVS 主要靠原边电感储能,轻载时不够大。因此滞后桥臂不易满足 ZVS 条件。

3 DSP结构功能

数字信号处理器DSP是一种具有特殊结构的微处理器,与普通的单片机相比,它的一些独有的特点非常适合进行数字信号处理。

3.1 DSP适合与数字信号处理的特点[6]

1)改进的哈佛结构

计算机总线结构分两种。一种是冯·诺依曼结构,其特点是程序和数据共用一个存储空间,统一编址依靠指令计数器提供的地址来区分是指令还是数据地址。由于对数据和程序进行分时读写,速度较慢,虽然半导体工艺的发展可弥补这一缺点,但这一结构不适合进行具有高度实时要求的数字信号处理。另外一种是哈佛结构,其主要特点是程序和数据具有独立的存储空间,有各自独立的程序和数据线;

2)流水线操作;

3)用硬件乘法器

一般的单片机采用移位和加法来实现乘法运算,速度较慢,而DSP采用硬件乘法器,则可大大提高乘法运算速;

4)特殊的DSP指令;

5)快速的指令周期

DSP芯片采用低工作电压的CMOS技术,使得DSP主频不断提高,有些型号的DSP指令周期已经下降到5nS;

6)良好的多机并行运行能力

随着要求处理数据容量不断增加,DSP芯片价格的下降。多个DSP芯片并行处理已经成为近些年来的研究热点,某些型号的DSP专门提供了用于多个并行运行的通信接口。3.2 TMS320系列DSP概况

TI公司TMS320系列DSP的体系结构专为实时信号处理而设计,该系列DSP控制器则

将实时处理能力和控制器外设功能集于一身,为系统实现数字控制应用提供了一个理想的解决方案。下列特性使得TMS320系列成为很多解决方案的理想选择:

1)灵活的指令集;

2)内在的灵活操作性;

3)高速运算能力;

4)改进的并行结构;

5)有效的成本。

3.3 TMS320F2802x芯片特点[7]

由于本课题应用DSP实现对开关电源的控制,需要能够产生PWM波形的DSP,另外开关电源开关频率较高,要求DSP处理速度要较快。TMS320F2802X Piccolo系列DSP是TI 公司的最新基于TMS320C28XTM内核的定点处理器。它通过DSP和MCU功能的整合,弥补了传统意义上二者的不足,实现了计算与控制的完美结合。

新型TMS320F2802X3X Piccolo系列DSP微控器包含高达128KB的快闪存储器、内部硬件模拟比较器、12位ADC、EPWM,以及包括通信协议、片上振荡器、通用IO等各种标准外设。其寄存器资源十分丰富,配置特别的灵活,可以通过实时更改寄存器配置,由内部硬件产生所需的逻辑信号,大大降低了程序的编写难度。

TMS320F28027芯片的特点如下:

1)有高效率32位的CPU(TMS320F2802X),60MHZ的时钟频率,单周期指令为16.67ns6*16 和 32*32 的乘法运算,6*16 双乘法器,高代码效率,快速中断响应处理以及哈佛总线结构;

2)低成本、低功耗,单一的3.3V 供电电源,无电源排序要求以及上电复位和复位要求;

3)时钟系统,片上晶体振荡器(可用于SCI通信)外部时钟输入,看门狗时钟模块,时钟丢失检测电路;

4)22 个可编程,带输入滤波的多路复用 GPIO 引脚,除用以JTAG(35-38)的4个引脚,可用引脚只有18个;

5)外设中断扩展 PIE 模块,支持所有外设中断;

6)3 个 32 位 CPU 定时器;

7)每个EPWM 模块具有16位独立定时器;

8)片上存储器Flash(16位32k,64k)、SARAM(16位 6k,12k)、OTP(16位 1k),BOOTROM;

9)128 位安全密钥;

10)通信接口,UART 模块、 SPI 模块及 IIC 模块;

11)增强的控制外设,两组共8路增强型脉宽调制器(EPWM)、 3对互补高分辨率 PWM (HRPWM),增强型捕获模块(ECAP),13路12位 ADC,转换时间216.67ns,片上温度传感器,比较器;

12)48个引脚;

13)无并口总线;

14)无 MCBSP 模块;

15)无ECAN模块;

16)具有入门的亲和力,c2000入门级芯片;

17)应用领域:数字照明、电机控制、数字电源转换、精密传感器。

图3-1 2802x 48 引脚 PT LQFP(顶视图)

图3-2 2802x 38 引脚 DA TSSOP(顶视图)

3.4 CCSv5平台

CCSv5 是建立在Eclipse基础上的一个集成开发环境(IDE),融合TI设备的支持与功能;Eclipse 是一个开源框架平台,目前由IBM牵头有150多家软件公司参与到Eclipse 项目中,成为了一个庞大的Eclipse联盟,TI将直接向开源社区提交改进;众多插件的支持使得Eclipse拥有其他功能相对固定的IDE软件很难具有的优势,用户可随意将Eclipse 插件或TI工具拖入现有CCSv5环境;用户可以享受到Eclipse中所有最新的改进所带来的便利。

3.5 利用CCSv5.1导入已有工程

1)假如,某工程LAB1,下面以LAB1为例来说明导入工程的步骤。首先打开CCSv5.1并确定工作区间C:\Users\Administrator,选择File-->Import弹出图3-3对话框,在Code Composer Studio下选择Existing CCSCCE Eclipse Projects。

图3-3 导入新的CCSv5工程文件

2)单击Next得到图3-4的对话框。

图3-4 选择导入工程目录

3)单击Browse,选择:C:\Users\Administrator.PTVDBSX4JVQQVNA(在此之前,需将实验代码复制到工作区间下)。

4)单击Finish,即可完成已有工程的导入。

3.6 利用CCSv5.1调试工程

1)以本次设计的实验为例,首先将zac工程进行编译:选择Project-->Build Project,编译工程。编译结果没有错误,可以进行下载调试;如果程序有错误,会在Problems窗口

显示,根据错误修改程序,并重新编译,直到没有错误。

2)单击按钮进行下载调试。

3)单击运行程序,观察显示结果。

4 系统程序设计实现4.1 PWM的产生原理[8]

1)模块设置

初始化相关寄存器的值后,使能定时器,计数器通过一定计数方式开始计数,它的值不断与相关的比较寄存器的值进行比较,当定时器计数值与比较寄存器值相匹配时,相关的PWM输出将发生跳变。对称PWM波形,即PWM波形关于PWM周期中心对称,需要在一个计数周期内比较两次,如下图4-1所示,在一个计数周期内,EPWMXA、EPWMXB分别对CMPA、CMPB进行了两次比较。只能在增减计数模式下产生,如图4-1,为在增减计数模式下产生的对称的PWM波形。

图4-1 对称PWM波形

非对称PWM波形和对称PWM波形相对应,可以在增计数模式、减计数模式、增减计数模式下产生。图4-2所示,为在增减计数模式下产生的非对称PWM波形。

图4-2 非对称PWM波形

2)寄存器配置

输出对称PWM波形,TB设置为增减计数模式,在增计数时TBPRD = CA的时候EPWMXA 输出高电平,在减计数时TBPRD=CA的时候输出低电平,如图4-1所示。

输出非对称PWM波形,TB设置为增减计数模式,在TBPRD = CA的时候EPWMXA输出高

移相全桥

移相全桥变换器可以大大减少功率管的开关电压、电流应力和尖刺干扰,降低损耗,提高 开关频率。如何以UC3875为核心,设计一款基于PWM软开关模式的开关电源?请见 下文详解。 主电路分析 这款软开关电源采用了全桥变换器结构,使用MOSFET作为开关管来使用,参数为1000V/24A.采用移相ZVZCSPWM控制,即超前臂开关管实现ZVS、滞后臂开关管实 现ZCS.电路结构简图如图1,VT1~VT4是全桥变换器的四只MOSFET开关管,VD1、VD2分别是超前臂开关管VT1、VT2的反并超快恢复二极管,C1、C2分别是为了实现VTl、VT2的ZVS设置的高频电容,VD3、VD4是反向电流阻断二极管,用来实现滞后 臂VT3、VT4的ZCS,Llk为变压器漏感,Cb为阻断电容,T为主变压器,副边由 VD5~VD8构成的高频整流电路以及Lf、C3、C4等滤波器件组成。 图1 1.2kw软开关直流电源电路结构简图 其基本工作原理如下: 当开关管VT1、VT4或VT2、VT3同时导通时,电路工作情况与全桥变换器的硬开 关工作模式情况一样,主变压器原边向负载提供能量。通过移相控制,在关断VT1时并不马上关断VT4,而是根据输出反馈信号决定移相角,经过一定时间后再关断VT4,在关断 VT1之前,由于VT1导通,其并联电容C1上电压等于VT1的导通压降,理想状况下其 值为零,当关断VT1时刻,C1开始充电,由于电容电压不能突变,因此,VT1即是零电 压关断。 由于变压器漏感L1k以及副边整流滤波电感的作用,VT1关断后,原边电流不能突变,继续给Cb充电,同时C2也通过原边放电,当C2电压降到零后,VD2自然导通,这时 开通VT2,则VT2即是零电压开通。

开关电源设计与实现毕业设计(论文)

毕业论文(设计) 题目开关电源设计 英文题目switch source design

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

(完整版)基于单片机的语音控制开关设计毕业设计

题目基于单片机的语音控制开关设计所在学院物理与电信工程学院专业班级通信工程专业 1102 班指导教师郑争兵 完成地点物理与电信工程学院实验室 2015年 6月03日

毕业论文﹙设计﹚任务书 院(系) 物理与电信工程学院专业班级通信1102 学生姓名朱楠 一、毕业论文﹙设计﹚题目基于单片机的语音控制开关设计 二、毕业论文﹙设计﹚工作自_2015 _年_ 1__月_10_日起至_2015__年 6 月_ 10 日止 三、毕业论文﹙设计﹚进行地点: 物理与电信工程学院实验室 四、毕业论文﹙设计﹚的内容要求: 智能家居作为一个新生产业,目前处于一个导入期与成长期的临界点,随着智能家居市场推广普及的进一步落实,培育起消费者的使用习惯,智能家居市场的消费潜力必然是巨大的,产业前景光明。本课题设计语音智能控制开关,具体要求如下: 1. 掌握语音识别的工作原理,使用语音识别芯片完成硬件设计; 2.能实现语音控制开关的开启和关闭; 3. 系统集成,焊接电路板,调试。 成果形式:实验样机一套。 毕业设计进度安排: 1.10─3.20:查阅资料(参考文献不少于10篇),进行方案论证,完成开题报告。完成不少于3000字的外文翻译; 3.20─ 4.30:设计硬件电路,编写相关软件、完成电路仿真及样机调试; 5.1─5.20:完善系统调试,撰写论文,准备毕业设计验收等工作; 5.21- 6.10:整理资料,修改论文,准备毕业答辩。

指导教师系(教研室)通信教研室 系(教研室)主任签名批准日期 接受论文(设计)任务开始执行日期学生签名

基于单片机的语音智能开关设计 朱楠 (陕西理工学院物理与电信工程学院通信1102班,陕西汉中 723003) 指导教师:郑争兵 [摘要]语音识别是解决机器“听懂”人类语言的一项技术。随着语音识别理论研究的深入和数字信号处理软、硬件技术的发展,语音识别技术应用的研究越来越受到人们的关注。智能语音家电控制系统实质上就是一个替代传统手动开关的受声控制的电子开关。此系统以STC11L08XE和LD3320语音芯片为硬件核心,对语音芯片LD3320的信息进行处理,并对开关进行控制,通过LD3320外界的麦克风采集声音信号,再通过LD3320语音芯片进行频谱分析,在提取语音特征,之后和关键词语列表中的关键词进行对比匹配,最后找出得分最高的关键词作为识别结果输出给单片机,单片机进行处理后,再输出信号来控制继电器,再通过继电器来控制开关工作,开关又可实现对电器的控制。语音芯片的功能都是通过单片机控制实现的。最终实现对智能语音开关的控制 [关键词] STC11L08XE单片机语音芯片LD3320 语音识别 Design of intelligent voice switch based on MCU Zhu nan (Grade11,Class2,Major of Communication Engineering,School of Physics and Tutor:Zheng Zheng bing Abstract: Speech recognition is a technology to solve the machine to understand human language. Along with the research of speech recognition theory and the development of digital signal processing software and hardware technology, The research on the application of speech recognition technology is getting more and more attention.The intelligent speech appliance control system is essentially an electronic switch which replaces the traditional acoustic control with the manual switch. This system LD3320 voice chip and the stc11l08xe as hardware core and the voice chip ld3320 information for processing, and control the switch, through ld3320 external microphone audio signal acquisition, and then through the ld3320 voice chip spectrum analysis, key words in speech feature extraction, and the list of key words contrast matching, finally to find the highest score of the words as recognition results output to the MCU, MCU processing, then the output signal to control the relay, then through the relay to control of the switch, the switch can be to achieve control of the electric appliances. The function of the speech chip is realized by the MCU control. Control of the intelligent speech switch is realized finally. Key words : STC11L08XEMCU LD3320 voice chip Speech recognition

移相全桥零电压开关PWM设计实现

题目:移相全桥零电压开关PWM设计实现

移相全桥零电压开关PWM设计实现 摘要 移相全桥电路具有结构简单、易于恒频控制和高频化,通过变压器的漏感和功率开关器件的寄生电容构成谐振电路,使开关器件的应力减小、开关损耗减小等优点,被广泛应用于中大功率场合。近年来随着微处理器技术的发展,各种微控制器和数字信号处理器性能价格比的不断提高,采用数字控制已经成为大中功率开关电源的发展趋势。相对于用实现的模拟控制,数字控制有许多的优点。本文的设计采用TI公司的高速数字信号处理器TMS320F28027系列的DSP作为控制器。该模块通过采样移相全桥零电压DC-DC变换器的输出电压、输入电压及输出电流,通过实时计算得出移相PWM信号,然后经过驱动电路驱动移相全桥零电压DC-DC变换器的四个开关管来达到控制目的。实验表明这种控制策略是可行的,且控制模块可以很好的实现提出的控制策略。 关键词:移相全桥;零电压;DSP

Phase-shifted Full-bridge Zero-voltage Switching PWM Design and Implementation ABSTRACT Phase-shifted full-bridge circuit has the advantages of simple structure, easy to constant frequency control and high-frequency resonant circuit constituted by the leakage inductance of the transformer and the parasitic capacitance of the power switching devices, to reduce the stress of the switching devices, switching loss is reduced,which widely used in high-power occasion. In recent years, with the development of microprocessor technology, a variety of

(完整版)高频开关电源设计毕业设计

目录 引言......................................................... 1本文概述 ................................................. 1.1选题背景............................................................................................................................ 1.2本课题主要特点和设计目标 ........................................................................................... 1.3课题设计思路.................................................................................................................... 2SABER软件................................................ 2.1SABER简介 ..................................................................................................................... 2.2SABER仿真流程 ............................................................................................................. 2.3本章小结............................................................................................................................ 3三相桥式全控整流器的设计.................................. 3.1工作原理............................................................................................................................ 3.1.1 三相桥式全控整流电路的特点 ..................................................................................... 3.2保护电路............................................................................................................................ 3.2.1 过电压产生的原因.......................................................................................................... 3.2.2 过压保护 (1) 3.2.3 过电流产生的原因 (1) 3.2.4 过流保护 (1) 3.3SABER仿真 (1) 3.3.1 设计规范 (1) 3.3.2 建立模型 (1)

移相全桥大功率软开关电源的设计

移相全桥大功率软开关电源的设计 移相全桥大功率软开关电源的设计 1引言 在电镀行业里,一般要求工作电源的输出电压较低,而电流很大。电源的功率要求也比较高,一般都是几千瓦到几十千瓦。目前,如此大功率的电镀电源一般都采用晶闸管相控整流方式。其缺点是体积大、效率低、噪音高、功率因数低、输出纹波大、动态响应慢、稳定性差等。 本文介绍的电镀用开关电源,输出电压从0~12V、电流从0~5000A连续可调,满载输出功率为60kW.由于采用了ZVT软开关等技术,同时采用了较好 的散热结构,该电源的各项指标都满足了用户的要求,现已小批量投入生产。 2主电路的拓扑结构 鉴于如此大功率的输出,高频逆变部分采用以IGBT为功率开关器件的全桥拓扑结构,整个主电路,包括:工频三相交流电输入、二极管整流桥、EMI滤波器、滤波电感电容、高频全桥逆变器、高频变压器、输出整流环节、输出LC滤波器等。 隔直电容Cb是用来平衡变压器伏秒值,防止偏磁的。考虑到效率的问题,谐振电感LS只利用了变压器本身的漏感。因为如果该电感太大,将会导致过高 的关断电压尖峰,这对开关管极为不利,同时也会增大关断损耗。另一方面,还会造成严重的占空比丢失,引起开关器件的电流峰值增高,使得系统的性能降低。 图1主电路原理图 3零电压软开关 高频全桥逆变器的控制方式为移相FB2ZVS控制方式,控制芯片采用Unitrode公司生产的UC3875N。超前桥臂在全负载范围内实现了零电压软开关,滞后桥臂在75%以上负载范围内实现了零电压软开关。图2为滞后桥臂IGBT的驱动电压和集射极电压波形,可以看出实现了零电压开通。

开关频率选择20kHz,这样设计一方面可以减小IGBT的关断损耗,另一方面又可以兼顾高频化,使功率变压器及输出滤波环节的体积减小。 图2IGBT驱动电压和集射极电压波形图 4容性功率母排 在最初的实验样机中,滤波电容C5与IGBT模块之间的连接母排为普通的功率母排。在实验中发现IGBT上的电压及流过IGBT的电流均发生了高频震荡,图3为满功率时采集的变压器初级的电压、电流波形图。原因是并联在IGBT模块上的突波吸收电容与功率母排的寄生电感发生了高频谐振。满载运行一小时后,功率母排的温升为38℃,电容C5的温升为24℃。 图3使用普通功率母排时变压器初级电压、电流波形 为了消除谐振及减小功率母排、滤波电容的温升,我们最终采用了容性功率母排,图4为采用容性功率母排后满功率时采集的变压器初级的电压、电流波形图。从图中可以看出,谐振基本消除,满载运行一小时后,无感功率母排的温升为11℃,电容C5的温升为10℃。 图4使用容性功率母排后变压器初级电压和电流波形 5采用多个变压器串并联结构,使并联的输出整流二极管之间实现自动均流为了进一步减小损耗,输出整流二极管采用多只大电流(400A)、耐高电压(80V)的肖特基二极管并联使用。而且,每个变压器的次级输出采用了全波整流方式。这样,每一次导通期间只有一组二极管流过电流。同时,次级整流二极管配上了RC吸收网络,以抑止由变压器漏感和肖特基二极管本体电容引起 的寄生震荡。这些措施都最大限度地减小了电源的输出损耗,有利于效率的提高。 对于大电流输出来说,一般要把输出整流二极管并联使用。但由于肖特基二极管是负温度系数的器件,并联时一般要考虑它们之间的均流。二极管的并联方

开关电源系统设计方案毕业论文

开关电源系统设计方案毕业论文 目录 摘要.......................................... 错误!未定义书签。Abstract.......................................... 错误!未定义书签。 1 绪言 1.1课题背景 (2) 1.2选题的国外研究现状及水平、研究目标及意义 (2) 1.3 本课题主要的研究容 (3) 2 系统设计方案与论证 2.1课题研究的基本要求 (4) 2.2方案论证 (4) 2.2.1 DC/DC电路模块方案 (4) 2.2.2 MOSEFT驱动电路方案 (7) 2.2.3 单片机选择方案 (7) 2.2.4检测采样方案 (8) 2.2.5系统框图 (8) 3 硬件电路设计 3.1变压整流滤波电路 (9) 3.2辅助电源的设计 (11) 3.3 Buck电路参数选择原理和计算 (12) 3.3.1参数选择原理 (12) 3.3.2 电感值的计算 (15) 3.3.3 滤波电容的计算 (15) 3.3.4开关管的选择和开关管保护电路设计 (16) 3.4驱动电路的设计 (18)

3.5采样电路设计 (19) 3.6保护电路的设计 (20) 4 软件部分设计 4.1 AVR128简介 (21) 4.2 PWM波的产生 (22) 4.3 AD采样 (26) 5系统调试及结果分析 6 总结与展望 6.1 总结 (30) 6.2 展望 (30) 致谢 (31) 参考文献 (32) 附录 (34)

1 绪言 开关电源具有效率高、体积小、重量轻等特点,应用越来越广泛,从70年代开始,并用轻量高频变压器替代笨重的工频变压器。高效的开关电源飞速发展,逐步替代传统的的线性电源,开关电源不需要较大的散热器,开关电源自20世纪90年代问世以来,便显示出强大的生命力,并以其优良特性倍受人们的青睐。近年来,开关电源在通信、工业自动化、航空、仪表仪器等领域的应用越来越广泛。随着电源技术的飞速发展,开关稳压电源正朝着小型化、高频化、模块化的方向发展,高效率的开关电源已经得到越来越广泛的应用。随着高频开关电源技术和应用电子技术的高速发展,直流高频开关电源依靠它的高精度、低纹波及高效率等优越性能,正在逐步取代传统的线性电源。同时,高频开关电源系统的高速响应性能、输出短路电流限制及稳压和稳流等优点也使其负载的使用寿命大大增加。评价开关电源的质量指标应该是以安全性、可靠性为第一原则。在电气技术指标满足正常使用要求的条件下,为使电源在恶劣环境及突发故障情况下安全可靠地工作,必须设计多种保护电路,比如防浪涌的软启动,防过压、欠压、过流、短路等保护电路。同时,在同一开关电源电路中,设计多种保护电路的相互关联和应注意的问题也要引起足够的重视[15]。 许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合出许多毛刺尖峰,甚至出现畸变。大量的谐波分量倒流入电网,造成对电网的谐波“污染”,一方面电流流过线路阻抗造成谐波电压降,反过来使电网电压也发生畸变;另一方面,会造成电路故障,使用设备损坏。因为它没有采用有源功率因数校正,功率因数较低,只达到 0.9,如果采用有效的功率因数校正,功率因数可以达到0.99以上。开关电源输入端产生功率因数下降问题,利用有源功率因数校正电路,成本只增加5%,成功解决了这个问题。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种校正功率因数的方法[1]。 目前市场上出售的开关电源中采用双极性晶体管制成的100kHz、用MOSFET 管制成的500kHz 电源,虽已实用化,但其频率有待进一步提高。要提高开关频率,就要减少开关损耗,而要减少开关损耗,就需要有高速开关元器件。然而,开关速度提高后,不仅会影响周围电子设备,还会大大降低电源本身的可靠性。对1MHz以上的高频,要采用谐振电路,这样既可减少开关损耗,同时也可控制浪涌的发生。现代电力电子技术是开关电源技术发展的基础。随着新型电力电子器件和适于更高开关频率的电路拓扑的不断出现,现代电源技术将在实际需要的推动下快速发展。在传统的应用技术下,由于功率器件性能的限制而使开关电源的性能受到影响。为了极大发挥各种功率器件的特性,使器件性能对开关电源性

基于单片机的智能插座设计毕业论文

基于单片机的智能插座设计毕业论文 目录 中文摘要........................................................... I 英文摘要.......................................................... II 前言............................................................ III 1 整体方案设计及选择 (1) 2 元件介绍 (2) 2.1 STC15F408AD单片机 (2) 2.2 DS1302时钟芯片 (3) 2.3 BT136晶闸管 (6) 2.4 光耦MOC3022 (7) 2.5 电流互感器 (8) 3 硬件电路设计 (9) 3.1 显示模块设计 (9) 3.2 时钟模块设计 (10) 3.3 按键模块设计 (11) 3.4 电流检测模块设计 (12) 3.5 晶闸管控制模块设计 (13) 3.6 电源模块设计 (14) 4 软件设计 (16) 4.1 主程序设计 (16) 4.2 显示子程序设计 (17) 4.3 时钟子程序设计 (18) 4.4 按键子程序设计 (19) 4.5 电流检测子程序设计 (20) 5 Protel DXP电路板制作 (22)

6 系统调试 (22) 6.1 硬件电路部分调试 (23) 6.2 软件部分调试 (23) 6.3 调试结果 (24) 结论 (25) 结束语 (26) 致谢 (28) 参考文献 (29) 附录1 实物照片 (30) 附录2 原理图 (31) 附录3 PCB图 (32) 附录4 源程序 (33) 附录5 元器件清单 (38)

智能插座系统毕业设计

智能插座系统毕业设计 目录 第1章绪论 (1) 1.1设计的目的和意义 (1) 1.2国外研究现状 (1) 1.3论文主要容与思路 (2) 第2章总体方案 (3) 第3章硬件电路设计 (5) 3.1智能排插的工作原理 (5) 3.2硬件简介 (5) 3.2.1STC89C52单片机 (5) 3.2.2QC12864B液晶屏 (6) 3.2.3DS1302时钟芯片 (8) 3.2.4BISS0001红外热释电处理芯片 (9) 3.2.5继电器模块 (10) 3.2.6按键模块 (10) 3.3系统的硬件电路设计原理图 (10) 3.3.1STC89C52最小系统电路图 (10) 3.3.2QC12864B液晶显示电路 (11) 3.3.3DS1302时钟电路 (11) 3.3.4HC-SR501模块电路 (11) 3.3.5继电器电路 (12) 3.3.6按键电路 (12) 3.3.7系统原理图 (13) 第4章系统软件设计 (14) 4.1系统软件设计流程 (14) 4.2模块程序设计 (14) 4.2.1LCD12864液晶驱动程序设计 (14) 4.2.2DS1302驱动程序设计 (16) 4.2.3按键程序设计 (18) 第5章实物制作与结果分析 (19) 5.1实物制作 (19) 5.2加载源程序后的实物结果及分析 (20) 第6章总结与展望 (22) 6.1总结 (22) 6.2展望 (22) 参考文献 (23) 致谢 (24) 附录 (25)

附录1系统原理图 (25) 附录2源程序 (25) 第1章绪论 1.1 设计的目的和意义 随着人口的增长、科技的迅猛发展,人们生活水平不断的提高,对于电子产品的需求和要求也不断增加,各式各样的电子产品应用于我们的生活中。在为人类带来便捷的同时,也意味着我们使用的产品消耗的能源同等的增加以维持我们生活的正常进行。可是,我们生活的星球能开发利用的能源是有限的并且正在不断的消耗殆尽,所以,节约能源又成为了我们必须要解决的问题,同时其也是这个社会的主题。所以,这样一对矛盾应尽快得到调解,在调查中我们发现,大部分市面上的电子产品都具有待机功能,比如电视机,电脑,冰箱,空调等家用电器。如此,就我国而言,无意识的家电或电子产品的能耗基于一个十几亿人口的大国,那是一个非常巨大的能源浪费。据测算,家电待机能耗占到中国家庭电力消耗的10%以上。而正是由于这种长期的待机状态,使得排插的负荷也越来越大,带来了非常严重的安全隐患。除此之外,也使得电器的寿命大大缩短[1]。 所以,本系统对家庭中普通的排插进行了更加智能化的设计,我们利用单片机对继电器的控制来达到控制排插通断的目的,并可以通过外设键盘对排插进行定时设置,使其可以按照我们的意愿定时通断,在定时功能的基础上,增加了人体感应模块。 基于此种思维设计,其不仅能节约能源消耗,减轻地球的负担;增加家电的使用寿命;还能让我们的生活变得更加的便捷、舒适。重要的是可以防止不必要的安全事故的发生。 1.2 国外研究现状 目前市场上使用的绝大多数移动电源排插只可以实现简单的电源机械式通断电,单一的功能并不能满足我们未来生活的需要,智能排插可编程开关排插可根据使用者的意愿,对其进行功能设置实现电源的自动通断电,是人们的生活带来极大的方便之余又能应和这个社会节能的主题。 现阶段市场上出现的智能插座有小管家智能插座、科德牌智能插座、POLYHOME智能插座、博联智能插座等等。这几款插座中小管家插座使用智能芯片系统和相应程序软件对继电器进行编程控制,使得插座待机能耗降至零,达到节能安全的目的。利用遥控功能关机后自动切断电源,遥控开机时,能自动

大功率移相全桥软开关电源的设计

工程硕士学位论文 大功率移相全桥软开关电源的设计 THE DESIGN ON SOFT SWITCHING POWER SUPPLY WITH HIGH POWER PHASE-SHIFTED FULL-BRIDGE 雷连方 哈尔滨工业大学 2006年12月

国内图书分类号 : TM92 国际图书分类号: 621.38 工程硕士学位论文 大功率移相全桥软开关电源的设计 硕士研究生:雷连方 导师:刘瑞叶 教授 副导师:肖连存 高工 申请学位:工程硕士 学科、专业:电气工程 所在单位:中国科工集团第三总体设计部 答辩日期:2006年12 月 授予学位单位:哈尔滨工业大学

Classified Index: TM92 U.D.C: 621.38 Dissertation for the Master Degree in Engineering THE DESIGN ON SOFT SWITCHING POWER SUPPLY WITH HIGH POWER PHASE-SHIFTED FULL-BRIDGE C a n d i d a t e:Lei Lianfang Supervisor:Prof. Liu Ruiye Associate Supervisor:Senior Engineer Xiaolianchun Academic Degree Applied for:Master of Engineering Speciality:Electrical Engineering Affiliation:The 3rd Headquarters of China Aerospace Science Industry Company Date of Defence:December,2006 Degree-Conferring-Institution:Harbin Institute of technology

基于单片机的智能家居总线式开关毕业论文

上传说明: 本论文仅供大家学习和参考用

基于单片机的智能家居总线式开关 毕业论文 目录 摘要与关键字 (3) 第一章课题描述 1.1课题简介 (3) 1.2系统功能要求 (4) 第二章系统设计 2.1方案论证与选择 (4) 2.2 智能总线式开关的设计 (10) 第三章硬件电路设计 3.1 通信结点电路 (19) 3.2电源电路设计 (31) 3.3 AT89C51芯片简介 (32) 第四章软件系统的设计 4.1 软件组成及结构 (37) 4.1.1 主机程序流程 (37) 4.1.2 分机程序流程 (38)

4.2 用普通I/O口控制MT8880的软件实现 (39) 4.2.1 MT8880初始化子程序 (39) 4.2.2 MT8880数据发送子程序 (41) 4.2.3 MT8880数据接收子程序 (42) 4.2.4 红外遥控开关程序 (44) 第五章毕业设计小结 (48) 第六章参考文献 (49) 家居智能总线式开关系统 【摘要:】 智能家居最早是在20世纪80年代兴起于日本和美国,并在20世纪90年代进入我国,经过十几年的发展,特别是随着我国的住宅产业发展而迅速发展起来。而且在我国智能家居引起越来越多的关注,随着人民生活水平的提高,人们对于居住环境智能化、舒适程度等要求会越来越高,这给智能家居的发展提供了很大的市场空间。由于我国的居住模式和发达国家存在很大的差别,我国人口众多,城市多以密集型住宅为主,这造成了国外在智能家居的发展和技术上存在

了很大的差别。国智能化更多地注重于整个小区智能化的建设。最早从做对系统开始,并且逐渐由过去的非可视对讲过渡到目前的以黑白可视对讲为主流,同时一些集成了安防功能、抄表功能,短信息等功能的对讲产品出现并在一些地区应用。由于可视对讲的发展迅速,一些厂家的宣传,给人造成了一种错误的观念,小区只要做可视对讲或者综合布线就称得上智能化小区。随着对智能家居的认识越来越深入,人们逐渐意识到智能化的真正主体是家居的智能化,更多地体现在家庭部自动化。所以20世纪90年代后期,一些企业开始引入国外的智能家居技术和产品在国推广,还有一些大的集团公司也看好该领域,通过各种途径介入,促进整个行业迅速发展。 【关键字:】 红外线,AT89C51,总线,双音多频DTFM,MT8 第一章课题描述 1.1 课题简介 智能家居的主体在于家庭自动化,将来家庭自动化的主体是家电、照明等电气设备的控制。家庭自动化系统能够通过集中或者分布式控制家庭部照明或者家电,住户可以通过网络或者远程控制家庭部设备。家居自动化系统是将来智能家居的主要发展方向。从智能家居所包含的容来看,智能总线式开关就适应了这一需求。本次设计以采用AT89C51实现的红外遥控和智能总线式开关来制作一个

移相全桥为主电路的软开关电源设计详解

移相全桥为主电路的软开关电源设计详解 2014-09-11 11:10 来源:电源网作者:铃铛 移相全桥变换器可以大大减少功率管的开关电压、电流应力和尖刺干扰,降低损耗,提高开关频率。如何以UC3875为核心,设计一款基于PWM软开关模式的开关电源?请见下文详解。 主电路分析 这款软开关电源采用了全桥变换器结构,使用MOSFET作为开关管来使用,参数为1000V/24A。采用移相ZVZCSPWM控制,即超前臂开关管实现ZVS、滞后臂开关管实现ZCS。电路结构简图如图1,VT1~VT4是全桥变换器的四只MOSFET开关管,VD1、VD2分别是超前臂开关管VT1、VT2的反并超快恢复二极管,C1、C2分别是为了实现VTl、VT2的ZVS设置的高频电容,VD3、VD4是反向电流阻断二极管,用来实现滞后臂VT3、VT4的ZCS,Llk为变压器漏感,Cb为阻断电容,T 为主变压器,副边由VD5~VD8构成的高频整流电路以及Lf、C3、C4等滤波器件组成。 图1 1.2kw软开关直流电源电路结构简图 其基本工作原理如下: 当开关管VT1、VT4或VT2、VT3同时导通时,电路工作情况与全桥变换器的硬开关工作模式情况一样,主变压器原边向负载提供能量。通过移相控制,在关断VT1时并不马上关断VT4,而是根据输出反馈信号决定移相角,经过一定时间后再关断VT4,在关断VT1之前,由于VT1导通,其并联电容C1上电压等于VT1的导通压降,理想状况下其值为零,当关断VT1时刻,C1开始充电,由于电容电压不能突变,因此,VT1即是零电压关断。 由于变压器漏感L1k以及副边整流滤波电感的作用,VT1关断后,原边电流不能突变,继续给Cb充电,同时C2也通过原边放电,当C2电压降到零后,VD2自然导通,这时开通VT2,则VT2即是零电压开通。 当C1充满电、C2放电完毕后,由于VD2是导通的,此时加在变压器原边绕组和漏感上的电压为阻断电容Cb两端电压,原边电流开始减小,但继续给Cb 充电,直到原边电流为零,这时由于VD4的阻断作用,电容Cb不能通过VT2、

基于移相全桥软开关技术的应用

基于移相全桥软开关技术的应用1.引言 随着科技的发展,电力电子设备不断更新,电源称为了现代工业、国防和科学研究中不可缺少的电气设备。为了触发、驱动开关变换器的功率开关管,研制适应越来越高性能要求的开关电源,近年来出现了PWM(脉宽调制)型变换器。PWM技术应用广泛,构成的变换器结构简单,它对常用的线性调节电源提出挑战,在减小体积的同时获取更大的功率密度和更高的系统效率[1,2]。为了拓展开关电源的应用场合,电源工作频率逐渐提高,高频化成为其重要发展方向,同时也是减小开关电源尺寸的最有效手段。然而高频PWM 变换器在传统硬开关方式工作下,功率管损耗较为严重,系统效率不高,随着开关频率的逐步提高,损耗相继增大[3,4]。为此,必须采取措施以提高高频开关变换器的效率,人们研究了软开关技术,除了减小开关损耗外,软开关技术应用还大大降低了开关噪声、减小了电磁干扰。 2.软开关技术概况及发展 目前广泛应用的DC-DC PWM功率变换技术是一种硬开关技术。所谓“硬开关”是指功率开关管的开通或者关断是在器件上的电压或者电流不等于零的状态下进行的,即强迫器件在其电压不为零时开通,或电流不为零时关断。 调高开关频率是开关变换技术的重要的发展方向之一。其原因是高频化可以使开关变换器的体积、重量大为减小,从而提高变换器的功率密度。为了使开关电源能够在高频下高效率的运行,高频软开关技术不断的发展,所谓“软开关”指的零电压开关(Zero Voltage Switching, ZVS)或零电流开关(Zero

Current Switching, ZCS)[5]。它是应用谐振原理,使开关变换器的开关器件中电流(或电压)按正弦或准正弦规律变化,当电流自然过零时,使器件关断;或者电压为零时,使器件开通,实现开关损耗为零。 再加入一些说明 3.移相全桥DC-DC技术 传统的全桥(full-bridge简称FB)PWM变换器适用于输出低电压、大功率的情况,以及电源电压和负载变流变换大的场合。其特点是开关频率固定,便于控制[6,7]。为了提高变换器的功率密度,减少单位输出功率的体积和重量,需要将开关频率提高到更高频率上(1MHz级水平)。为了避免开关工程中的损耗随频率增加而急剧上升,人们在移相控制(phase-shifting-control PSC)技术的基础上,利用功率MOS管的输出电容和输出变压器的漏感作为谐振元件,使FB PWM变换器四个开关管依次在零电压下导通,实现横频率软开关,称为PSC FB ZVS-PWM(简称FB ZVS-PWM)变换器[8]。由于减少了开关过程中的损耗,可以保证变换器效率达到80%-90%,并且不会发生开关应力过大的问题。现在FB ZVS-PWM开关变换器已经广泛应用于通信和电源等系统中。 再加入一段话 4.DC-DC变换器的设计 本文应用移相全桥的拓扑结构如所示: 图 1主电路拓扑结构 本文采用变换器在变压器原边串联一个阻断电容,在变压器原边电压等于零时,不仅仅依靠导通管的管压降,而主要是阻断电容上的压降使变压器原边

反激式开关电源理工科毕业设计开题报告(最新整理)

华南理工大学广州学院 本科生毕业设计(论文)开题报告 反激开关电源的设计 学院电气工程学院 专业班级10电力工程及其自动化5班 姓名吴宏达 学生学号201039488139 指导教师张冬梅 填表日期2014-1-10

说明 1.开题报告是保证毕业设计(论文)质量的一个重要环节,为规范毕业设计的开题报告,特印发此表。 2.学生应在开题报告前,通过调研和资料搜集,主动与指导教师讨论,在指导教师的指导下,完成开题报告。 3.此表一式三份,一份交学院装入毕业设计(论文)档案袋,一份交指导教师,一份学生自存。 4.选题需经基层教学单位(专业教研室)讨论审核、二级学院主管院长批准、报教务处备案, 方可正式进入下一步毕业设计(论文)阶段。

标等特点,现己成为开发中小功率开关电源、精密开关电源及开关电源模块的优选集成电路。 高效反激式开关电源以其电路抗干扰、高效、稳定性好、成本低廉等许多优点,特别适合小功率的电源以及各种电源适配器,具有较高的实用性。随着电力电子技术的发展,工作在高频的开关电源己经广泛应用于电气和电子设备的各个领域。开关电源设计的目的是通过能量处理将输入能量变化为所需要的能量输出,通常的形式是产生一个符合要求的输出电压,这个输出电压的值不能受输入电压或者负载电流的影响。 本设计开关电源是为满足一款实验用嵌入式开发板的供电需要,基于当前流行的单片集成开关电源芯片设计了一款反激开关电源。 二、研究目标、内容(论文提纲)及拟解决关键问题 通过学习和研究,收集和整理所设计开关电源的各项电气性能指标,计算和选取具体参数和器件,自主设计一个反激开关电源,论文提纲如下: 第一章绪论 1.1 开关电源及发展现状 1.2 课题背景和研究意义 1.3 本文主要工作和内容安排 第二章反激式开关电源简介 2.1 开关电源的分类 2.2 反激式开关电源的原理 第三章单端反激式开关电源系统级分析 3.1 电源设计指标 3.2 主电路拓扑 3.2.1 工作过程分析 3.2.2 工作方式选取 第四章单端反激式开关电源电路级设计 4.1 输入整流滤波器设计 4.1.1整流滤波器分析 4.1.2输入整流滤波器各个元器件选择和参数设置 4.2 钳位保护电路设计 4.2.1 钳位二级管的选择 4.3 反激变压器设计 4.2.1 反激变压器分析 4.2.2 反激变压器参数设置 4.4输出整流滤波电路设计

基于单片机的智能插座的设计含电路图毕业设计论文

毕业论文(设计) 题目基于单片机的智能插座的设计 毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明

本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

相关文档
最新文档