微波站

微波站
微波站

SDH数字微波通信技术的特点及其应用

——SDH微波通信是新一代的数字微波传输体制。数字微波通信是用微波作为载体传送数字信息的一种通信手段。它兼有SDH数字通信和微波通信两者的优点,由于微波在空间直线传输的特点,故这种通信方式又称为视距数字微波中继通信。

——一、SDH微波通信系统的组成

——数字微波传输线路的组成形式可以是一条主干线,中间有若干分支,也可以是一个枢纽站向若干方向分支。如图1所示是一条数字微波通信线路的示意图,其主干线可长达几千公里,另有若干条支线线路,除了线路两端的终端站外,还有大量中继站和分路站,构成一条数字微波中继通信线路。

——组成此通信线路设备的连接方框图如图2所示。它分为以下几个部分:

——用户终端,直接为用户所使用的终端设备,如自动电话机、电传机、计算机、调度电话等。

——交换机。这是用于功能单元、信道或电路的暂时组合以保证所需通信动作的设备,用户可通过交换机进行呼叫连接,建立暂时的通信信道或电路。这种交换可以是模拟交换,也可以是数字交换。目前,大容量干线绝大部分采用数字程控交换机。

——数字电话终端复用设备(即数字终端机)。其基本功能是把来自交换机的多路信号变换为时分多路数字信号,送往数字微波传输信道,以及把数字微波传输信道收到的时分多路数字信号反变换为交换机所需的信号,送至交换机。对于PDH系统,一般采用编码调制数字电话终端机,它还包括二次群和高次群复接器、保密机及其他数字接口设备,按工作性质不同,它可以组成数字终端或数字分路终端机。而对于SDH系统,则采用SDH数字复用设备,简称SDH设备,它由一些基本功能块灵活地组成不同类型的总的设备。图中的数字分路终端机可由分插复用器(ADM)来替代。

——微波站。按工作性质不同,它可分成数字微波终端站、数字微波中继站和数字微波分路站。有两个以上方向的上,下话路的微波站则称之为数字微波枢纽站。SDH微波终端站的发送端完成主信号的发信基带处理(包括CMI/NRZ变换、SDH开销的插入与提取,微波帧开销的插入及旁路业务的提取等)、调制(包括纠错编码、扰码及发信差分编码等)、发信混频及发信功率放大等;终端站的收信端完成主信号的低噪声接收(根据需要可含分集接收及分集合成)、解调(含中频频域均衡、基带或中频时域均衡、收信差分译码、解扰码、纠错译码等)、收信基带处理(含旁路业务的提取、微波帧开销的插入与提取石DH开销的插入与提取、NRZ/CMI变换等)。在公务联络方面,终端站具有全线公务和选站公务两种能力。在网络管理方面,终端站可以通过软件设定为网管主站或主站,收集各站汇报过来的信息,监视线路运行质量,执行网管系统配置管理及遥控、遥测指令,需要时还可通过Q3接口与电信管理网(TMN)连接。终端站基带接口与SDH复用设备连接,用于上、下低价支路信号。终端站还具有备用倒换功能,包括倒换基准的识别,倒换指令的发送与接收,倒换动作的启动与证实等。

——SDH微波中继站。主要完成信号的双向接收和转发。有调制、解调设备的中继站,称再生中继站。需要上、下话路的中继站称微波分路站,它必须与SDH的分插复用设备连接。再生中继站具有全线公务联络能力,以及向网管系统汇报站信息。线路运行质量的能力,并可执行网管系统的配置管理及进行遥控及遥测。再生中继站也可以上、下旁路业务信号。

——二、SDH数字微波采用的关键技术

——SDH微波传输设备所采用的基本技术大致与PDH相同,但由于传输方式的特点又决定了两者有所不同,SDH有下述几个关键技术:

——1.编码调制技术

——微波是一种频带受限的传输媒质,根据ITU-R建议,我国在4~11GHz频段大都采用的波道间隔为28~30MHz及40MHz(ITU-R相关的频率配置建议)。要在有限的频带内传输SDH信号,必须采用更高状态的调制技术。SDH微波与PDH微波在相同的波道间隔下,所需调制状态数的区别如表1所示。

——2.交叉极化干扰抵消以(XPIC)技术

——为了进一步增加数字微波系统的容量,提高频谱利用率,在数字微波系统中除了采用多状态调制技术(64QAM,128QAM或512QAM调制)外,还采用双极化频率复用技术,使单波道数据传输速率成倍增长。但在出现多径衰落时,交叉极化鉴别率(XPD)会降低,从而产生交叉极化干扰。为此,需要一个交叉极化抵消器,用以减小来自正交极化信号的干扰。

——自适应交叉极化干扰抵消技术的基本原理是从所传输信号相正交的干扰信道中取出部分信号,经过适当处理后与有用信号相加,用以抵消叠加在有用信号上的来自正交极化信号的干扰。原则上干扰抵消过程可以在射频、中频或基带上进行。采用XPIC技术后,对干扰的抑制能力一般可达15dB左右。

——3.自适应频域和时域均衡技术

——当系统采用多状态0AM调制方式时,要达到ITU-R所规定的性能指标,对多径衰落必须采取相应的对抗措施。考虑到ITU一R的新建议将不再给数字微波系统提供额外的差错性能配额,因此,必须采取强有力的抗衰落措施。在各种抗衰落技术中,除了分集接收技术外,最常用的技术是自适应均衡技术,包括自适应频域均衡技术和自适应时域均衡技术。

——频域均衡主要用于减少频率选择性衰落的影响,即利用中频通道插入的补偿网络的频率特性去补偿实际信道频率特性的畸变;时域自适应均衡用于消除各种形式的码间干扰,可用于最小相位和非最小相位衰落,为消除正交干扰,可引进二维时域均衡器。

——4.高线性功率放大器和自动发射功率控制

——多状态调制技术对传输信道,特别是高功率放大器的线性提出了严格的要求。例如,对采用640AM的系统而言,要求传输信道的三阶交调失真要比主信号至少低45dB。若采用128QAM或256QAM调制技术,则要求更严。为满足系统总传输性能的要求,除了对微波高功放采取输出回退措施外,还要采取一些非线性的补偿技术,如加中频或射频失真器或采用前馈技术等来改善放大器的线性。

——高线性功率放大器和自动发射功率控制(ATPC)技术的关键是微波发信机的输出功率在ATPC的控制范围内自动地随接收端接收电平的变化而变化。采用ATPC技术的优点是,降低了同一路由相邻系统的干扰,减小了上衰落对系统的影响,降低了电源消耗,减小非线性失真。

——5.大规模专用集成电路(ASIC)设计技术

——三、SDH微波在SDH电信网中的应用

——微波作为三大传输手段之一也在SDH网中起着重要作用。尽管光纤传输网在容量方面有微波无法比拟的优点,但不管是通信干线上还是支线,SDH微波网仍然是光纤网不可缺少的补充和保护手段。SDH微波网可以利用现有模拟或PDH微波网的基础设施进行建设。其主要应用有下列几种:用SDH微波系统使光纤电信网形成闭合环路;与SDH光纤系统串接使用;作为SDH光纤网的保护,以解决整个通信网的安全保护问题;自成链路或环路。

——四、工程综合应用网图

——在许多通信系统工程设计的建设过程中,不可避免地要考虑到已有系统的再利用因素,以及不同型号设备的兼容问题,SDH数字微波通信系统在此方面具有独有的优势。它不仅具有光纤级传输性能及全面的网络管理性能,还包括一个开放的系统结构,能方便地实现不同型号的ADM(上、下话路复用器)之间的切换和交叉互连。其综合应用(典型)网络链接如图3所示。

——我国地域辽阔,各地自然条件和经济发展情况差别相当大,因此,必须因地制宜的安排各种传输手段。各国的经验表明,在发生自然灾害的情况下,总是首先靠无线通信方式恢复电信业务。同时在某些应用场合,如连接到卫星地球站、移动通信网基站及其专用网,以及连接到广大农村及偏远的厂矿等,还是用微波作为传输手段比较灵活方便,而且,其性能价格比也十分理想。所以,我国在大力发展光纤干线传输网的同时,也十分注意发展建设SDH数字微波通信网。原邮电部已决定在“九五”至“十五”期间新建30条左右的国家一级干线SDH微波电路,总长约30000km。

微波的波长

微波的波长 微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,是分米波、厘米波、毫米波的统称。微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。微波作为一种电磁波也具有波粒二象性?微波量子的能量为 1 99X 10 -25 ?1. 99 X 10-22j. 微波的性质 微波的基本性质通常呈现为穿透、反射、吸收三个特性。对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。对于水和食物等就会吸收微波而使自身发热。而对金属类东西,则会反射微波。 一、穿透性 微波比其它用于辐射加热的电磁波,如红外线、远红外线等波长更长,因此具有更好的穿透性。微波透入介质时,由于介质损耗引起的介质温度的升高,使介质材料内部、外部几乎同时加热升温,形成体热源状态,大大缩短了常规加热中的热传导时间,且在条件为介质损耗因数与介质温度呈负相关关系时,物料内外加热均匀一致。 二、选择性加热 物质吸收微波的能力,主要由其介质损耗因数来决定。介质损耗因数大的物质对微波的吸收能力就强,相反,介质损耗因数小的物质吸收微波的能力也弱。由于各物质的损耗因数存在差异,微波加热就表现出选择性加热的特点。物质不同,产生的热效果也不同。水分子属极性分子,介电常数较大,其介质损耗因数也很大,对微波具有强吸收能力。而蛋白质、碳水化合物等的介电常数相对较小,其对微波的吸收能力比水小得多。因此,对于食品来说,含水量的多少对微波加热效果影响很大。 三、热惯性小 微波对介质材料是瞬时加热升温,能耗也很低。另一方面,微波的输出功率随时可调,介质温升可无惰性的随之改变,不存在“余热”现象,极有利于自动控制和连续化生产的需要。 微波的产生 微波能通常由直流电或50MHz交流电通过一特殊的器件来获得。可以产生微波的器件有许多种,但主要分为两大类:半导体器件和电真空器件。电真空器件是利用电子在真空中运动来完成能量变换的器件,或称之为电子管。在电真空器件中能产生大功率微波能量的有磁控管、多腔速战速调管、微波三、四极管、行波管等。在目前微波加热领域特别是工业应用中使用的主要是磁控管及速调管。 微波的热效应 微波对生物体的热效应是指由微波引起的生物组织或系统受热而对生物体产生的生理影响.热效应主要是生物体内有极分子在微波高频电场的作用下反复快速取向转动而摩擦生热;体内离子在微波作用下振动也会将振动能量转化为热量;一般分子也会吸收微波能量后使热运动能量增加. 如果生物体组织吸收的 微波能量较少,它可借助自身的热调节系统通过血循环将吸收的微波能量(热量) 散发至全身或体外.如果微波功率很强,生物组织吸收的微波能量多于生物体所能散发的能量,则引起该部位体温升高.局部组织温度升高将产生一系列生理反应,如使局部血管扩张,并通过热调节系统使血循环加速,组织代谢增强,白细胞吞噬作用增强,促进病理产物的吸收和消散等. 微波的非热效应

微波辅助提取

微波辅助提取-高效液相色谱法测定蔬果中的Vc含量 摘要:维生素C是一种水溶性维生素。在人体中为维持人体健康发挥着重要的作用。在本实验中,将市场上新鲜猕猴桃榨汁后,用微波辅助提取维生素C。配制出一系列标准浓度的维生素溶液,在265nm波长的光下用高效气相色谱测量其峰面积,并作出其峰面积-浓度曲线,得到其关系式。通过测出三组样品的峰面积,代入公式中计算维生素C的含量。实验测出猕猴桃中维生素C含量为56.95 mg·L-1,RSD为5.3%。 关键词:微波辅助提取液相色谱法维生素C 标准曲线 1 引言 维生素C是一种水溶性维生素,在所有维生素中,维生素C是最不稳定的,在贮藏、加工和烹调时,极易被氧化和分解。而维生素C是维持人体健康的最重要的维生素之一,人体不能自身合成,必须以食物形式获取。研究发现维生素C 的缺乏可导致坏血病和免疫力底下等多种疾病,其在人体中的含量高低常作为某些疾病诊断及营养分析的重要指标。因此抗坏血酸的定量分析在食品、医药领域相当重要[1]。 目前测定抗坏血酸含量的方法有很多,其中包括碘量法[2]、紫外分光光度法[3]、伏安法[4]、红外光谱法[5]、库伦滴定法[6]和液相色谱法等等。本实验采取微波辅助提取,快速、简便地萃取中蔬果中的维生素C,并采用高效液相色谱法进行分析,以维生素C标准系列溶液色谱峰面积相对其浓度做校准曲线,根据样品中维生素C的峰面积,由校准曲线计算其浓度。 2 实验部分 2.1 试剂 乙腈:色谱纯; 冰乙酸,维生素C,磷酸二氢钾:分析纯; Vc标准溶液:快速准确称取0.025 g Vc,用1 mol/L乙酸溶液溶解,定量转移至250 mL容量瓶中,用1 mol/L乙酸溶液定容,得到100 mg/L标准溶液备用,现用现配; 猕猴桃一个。 2.2 仪器 平头进样器;

电磁场与微波技术习题集

文档密级:内部公开 电磁场与微波技术习题集 (5~6章) 2012年11月 福建工程学院通信工程

第五章微波传输线 1、问答题: (1)微波波段是多少p154 (2)常用的波导有几种,各有什么特点p154 (3)波导中传输的模式有几种?P157~p158,各有什么特点 (4)什么叫做截止波长,有什么作用?P158 (5)什么叫做相速度、群速度,两者有什么差异?P158 (6)什么叫做波导波长、波阻抗、功率流?P159(7)矩形波导的特点p160 边界几何形状如图2.4所示。边界条件是: 解: 在区域里面满足亥姆赫兹方程 02 222=??+??y x φφ设) 0,0()()(b y a x y g x f <<<<=φ将上式子代入,得到 0) ()()()(''''=+y g y g x f x f 令 0) ()()()(222''2''=+?=?=y x y x k k k y g y g k x f x f 显然(a )对于0 )()(2"=?+y g k y g y 由于条件(3):0 )0(,00)0()(0,0,0==?=?=≤≤=g y g x f a x y φ由于条件(4):0 )(,0)()(0,0,==?=?=≤≤=b g b y b g x f a x b y φ根据课本的p44页2.86、2.88、2.89式子,可以得知

g (y)的的一个特解是: ))( ,........3,2,1sin()(22b m k m B m b y m B y g y m m m ππ===值相关,与其中一个(注意,(b )对于0 )()(2"=?+x f k x f x 由于222222(0b m k k k k k x y x y x π?=??=?=+代入0 )()(2"=?+x f k x f x 得到0)(()(2"=??x f b m x f π根据课本的p44页2.86、2.88、2.89式子,可以得知 这个时候f(x)的通解是:b x m m b x m m m e C e C x f /2,/1,)(ππ?+=为什么用Cm 不用Cn ,或者是另外一个指标呢,因为,系数C 是与b x m /π中的m 直接相关的,就是说,每个不同的m ,对于两个不同C ,所以C 与m 相关 由于条件(1):0|)(,00|)()(0, 0,00'0'==?=?=??<<===x x x f x x f y g x b y x φ将上面条件代入b x m m b x m m m e C e C x f /2,/1,)(ππ?+=可以得到m m m m m C C C C C ===2,1,2,1,可令立刻得到 ,既然两个相等,我们) /cosh()(22 /)()(////b x m C x f C C e e C e C e C x f m m m m b x m b x m m b x m m b x m m m πππππ?=+=+=??,写成上式子已经令(C )由于) 0,0()()(b y a x y g x f <<<<=φ现在将所有的特解叠加。因此,)0,0()()(1b y a x y g x f m m m <<<<= ∑∞=φ因此) /sin()/cosh(1 b y m B b x m C m m m ππφ∑∞=??=可以将Cm ,Bm 两个系数合并成为Cm 因此) /sin()/cosh(1b y m b x m C m m ππφ∑∞ =?=(D)根据条件(2) ) /sin()/cosh(10b y m b a m C U m m ππ∑∞ =?=因此:) /sin()/cosh(10b y m b a m C U m m ππ∑∞=?=所以最后可以将上面式子左右同时乘以)/sin(b y n π,并对0~b 积分

电磁场与微波技术专业(080904)研究生培养

电磁场与微波技术专业(080904)研究生培养方案 一、培养目标 1、硕士研究生: 牢固树立爱校、爱国、爱中华民族的思想,具备坚持真理、献身科学的勇气和品质以及科学职业道德、敬业精神、团结合作精神。 具备电磁场与微波技术方面扎实的理论基础和宽厚的知识面。掌握与本专业相关的实验技能,对与本学科相邻及相关学科的知识有一定的了解。具备灵活应用所学知识分析和解决实际问题的能力。有独立从事科学研究的能力。 掌握一到二门外国语,能用英语阅读专业书籍、文献并撰写科学论文。 2、博士研究生: 牢固树立爱校、爱国、爱中华民族的思想,具备坚持真理、献身科学的勇气和品质以及科学职业道德、敬业精神、团结合作精神。 在硕士研究生培养目标所达到的要求基础之上,不仅要掌握本专业理论和实验的专业知识,还要掌握与本学科相邻及相关学科的知识,在独立从事科研工作中,具备综合、分析能力,在开展所从事研究方面的前沿研究工作中,具备创新和发展的能力。熟悉所从事研究方向的科学技术发展新动向。 掌握一至二门外语,能用英语熟练阅读专业书籍、文献,并能撰写并在国际会议上宣读科学论文。 二、学科介绍 1、电磁场与微波技术学科的主要研究方向 (1) 极高频段电磁资源的开发与利用; (2) 人工电磁材料及在无线电技术中的应用; (3) 射频、微波及光电子器件与应用。 2、师资力量和科研水平 本学科师资力量较雄厚,有中国科学院院士、“长江学者奖励计划”特聘教授和讲座教授以及教育部“新世纪优秀人才”等一批优秀学者,成为本学科的学术带头人和学术骨干。目前有教授9人、博士生导师9人、副教授和高工4人。 在科学研究方面,以电子学、物理学的基本理论方法和现代实验技术作为手段,探索新型电子材料,研究其中有关物理过程和电磁现象的基本规律,据以开发新型的微波和太赫兹电子器件和系统,并在实际中推广应用。目前,本学科不仅开展了大量国际前沿性的研究工作,取得了突出的成果,享有很高的国际声誉,同时也开展应用和工程化研究,为我国国民经济和国防现代化做出了重要贡献。 3、近期承担科研项目和重大课题 本学科承担了大量国家973计划、国家863计划、国家自然科学基金等重大科技计划项目,以及省、部级科研项目和横向合作的研发项目,产生了较大的社会效益和经济效益。 近期主要科研项目和重大课题有: 科技部973项目子课题:太赫兹辐射的高灵敏检测技术基础研究; 科技部973项目子课题:超导结型器件的物理、工艺及应用基础研究; 科技部973项目子课题:磁性复合材料以及光子共振介质中负折射特性研究; 国家重大科学研究计划:超导单光子探测器原理及制备研究; 国家重大科学研究计划:固体微结构的量子效应、调控及其应用研究; 科技部863课题:新型遥感器技术/THz频段高灵敏度超导探测/接收系统;

电磁场与微波技术

电磁场与微波技术 080904 (一级学科:电子科学与技术) 本学科是电子科学与技术一级学科下属的二级学科,是1990年由国务院学位办批准的博士学位授予点,同时承担接收博士后研究人员的任务,2003年被批准为国防科工委委级重点学科点。本学科专业内容涉及电磁场理论、微波毫米波技术及其应用,主要领域包括电磁波的产生、传播、辐射、散射的理论和技术,微波和毫米波电路系统的理论、分析、仿真、设计及应用,以及环境电磁学、光电子学、电磁兼容等交叉学科内容。多年来在多种军事和国民经济应用的推动下,本学科在天线理论与技术、电磁散射与逆散射、电磁隐身技术、微波毫米波理论与技术、光电子技术、电磁兼容、计算电磁学与电磁仿真技术、微波毫米波系统工程与集成应用等方面的研究形成了鲜明的特色,取得了显著成果。其主要研究方向有: 1.计算电磁学及其应用:设计、研究、开发高精度、高效率电磁计算算法;研究高效精确电磁计算算法在目标特性、微波成像及遥感、电磁环境预测、天线分析和设计等方面的应用。 2.微波/毫米波电路设计理论与技术:研究有源元器件与电路模型、与微电子、微机械工艺相关的材料器件等模型的建立及参数提取;研究低相噪频率源技术,微波/毫米波单片集成电路设计,基于微机械(MEMS)的微波/毫米波开关、移相器和滤波器设计。 3.电磁波与物质的相互作用:研究电磁散射和逆散射算法,军事装备目标特性测试技术,隐身目标测试技术,目标散射中心三维成像技术;研究轻质、宽频、自适应智能隐身材料。 4.微波/毫米波系统理论与集成应用技术:设计、研究、开发特殊环境下的微波/毫米波系统;研究微波/毫米波测试技术;研究天线设计理论与技术。 一、培养目标 掌握坚实的电磁场与微波技术以及相应学科的基础理论,具有系统的专门知识,熟练应用计算机,掌握相应的实验技术,掌握一门外国语,学风端正,具备独立从事科学研究工作和独立担负专门技术工作的能力,能胜任科研、生产单位和高等院校的研究、开发、教学或管理等工作。 二、课程设置

微波辅助法合成金属有机骨架

微波辅助法合成金属有机骨架 微波加热在有机化学中,使用了几十年,直到最近才应用于制备多维的配位聚合物,通常称为金属–有机框架(MOF)。微波加热使反应所需时间短,快速的结晶成核力学和生长,和高产量的理想产品,产品能够很容易地被分离出来,且而几乎没有副产物。这些具有较好性质的材料从过去经济可行时期被系统研究出来的角度来看,金属有机骨架的研究是极为重要的。强调的是纳米晶体可以直接应用功能化设备上。 1 引言 超级分子化学的分支被称作“晶体工程”,它主要研究的是大分子网状物的构成,它的可预测的拓扑学和性质是有其独特的祖坟的化学性质控制的。Desiraju 和Etter的关于通过氢键有机晶体组装的研究认为是晶体工程的开端。Hoskins 和Tobson描述了基于共价键的金刚石型骨架的设计,拓展了配位键的概念,现在是人们所熟知的金属有机骨架、配位聚合物或者配位骨架。共价键影响产物的性质,尤其是高度孔状结构的设计,这个孔状结构要求达到主体的交换和气体储存的要求,并且拥有催化性质、电学性质、磁性以及荧光性质。 有机配体和金属离子作为“主要的结构单元”,和作为“第二结构单元”的多齿配体,形成聚合物。这两个术语都引自沸石化学。遗憾的是,和沸石不同的是,金属阳离子和有机配体可能的结合方式是无穷大的,因此,我们仍然不能预测任何特殊的结构形成何种结构。 金属有机骨架的合成方法的发展分为三个阶段。第一阶段,在过去的几个世纪,人们用蒸发溶剂的方法在非常小的容器里制备较大单晶,制备时间从几周到几个月不等。第二阶段,借鉴传统的沸石合成方法——溶剂热法开始被应用,实验所需时间缩短到几天。虽然微晶通常能够在这些条件下得到,但是这个方法被改进后可以获得单晶。目前面临的工作是进一步缩短反应时间,大大增加产率和功能化材料。目前研究的主要目的是,能够形成产业化。微波法将很快取代传统的溶剂热合成法,溶剂热合成法利用的是传统加热方法,而且已经有关于微波法制备金属有机骨架的文章发表。这篇文章简要地阐述了微波加热的研究,阐述了它的优点及局限。 2 背景 2.1 传统的溶剂热合成法 金属有机骨架的合成是主要结构单元通过自我识别的自组装过程。大量的结构已经用溶剂热合成法合成制得,但是所需反应时间长(几天到几周),所需设备庞大,能量消耗高。为了克服这些困难,新的方法形成了,比如说电化学方法、溶剂热合成法,甚至更多的有前景的方法,包括微波辅助合成法。 2.2 微波辅助合成法 微波加热是P. L. Spencer于1946年在Raytheon Corporation偶然发现的。当他正在进行关于雷达微波的应用时,电磁波在1m到1mm之间(300Hz~300GHz),他口袋里的巧克力棒融化了。频繁使用的家用的微波放射是2.45GHz(12.24cm),最大瓦数是800W。 微波是通过磁电管形成的,磁电管包含振荡器,振荡器是用来将高电压的直流电转换为高频率的放射。用一个典型的实验设备中,波导将磁电管形成的能量转换到进样池(图1-顶部)。许多分子,最显著的是水,其具有绝缘性,使它们循环并和微波的交流电连接在一起。当分子之间相互碰撞的时候,分子运动形成的高温就被分散了。样品池是一个法拉第笼子,它能够阻止微波进入环境中。微波加热主要的优点是他的能量效率,因为能量只在反应

电磁场与微波技术

论文题目:无形科学-电磁场与微波 技术 姓名:陈超 专业:电子科学与技术 指导教师:葛幸 申报日期:2012.10.23

摘要 电子和信息领域内所有重大技术进展几乎都离不开电磁场与微波技术的突破。在通信、雷达、激光和光纤、遥感、卫星、微电子、高能技术、生物和医疗等高新技术领域中,电磁场与微波技术都起着关键的作用,它的应用领域蕴含在国民经济、国防建设和人民生活的各个方面。同时,电磁场和微波技术也随着当代物理、数学、技术学科的不断进步而得到日新月异的发展。 关键字:电磁场,微波技术,应用

无形的科学—— 电磁场与微波技术 目录 1.前言 (2) 2.研究方向 (2) 3.基本理论与分析方法 (3) 3.1 电磁场理论 (3) 3.1.1矢量分析 (3) 3.1.2静电场 (3) 3.1.3恒定电场 (4) 3.1.4静磁场 (4) 3.1.5时变电磁场 (5) 3.2 微波技术理论 (7) 3.2.1传输线理论 (7) 3.2.2集成传输系统 (9) 3.2.3微波谐凯腔 (9) 3.2.4微波网络基础 (9) 3.2.5微波无源元件 (11) 4.发展前景 (12)

1. 前言 电子和信息领域内所有重大技术进展几乎都离不开电磁场与微波技术的突破。在通信、雷达、激光和光纤、遥感、卫星、微电子、高能技术、生物和医疗等高新技术领域中,电磁场与微波技术都起着关键的作用,它的应用领域蕴含在国民经济、国防建设和人民生活的各个方面。同时,电磁场和微波技术也随着当代物理、数学、技术学科的不断进步而得到日新月异的发展。 2. 研究方向 1.计算电磁学及其应用:设计、研究、开发高精度、高效率电磁计算算法;研究高效精确电磁计算算法在目标特性、微波成像及遥感、电磁环境预测、天线分析和设计等方面的应用。 2.微波/毫米波电路设计理论与技术:研究有源元器件与电路模型、与微电子、微机械工艺相关的材料器件等模型的建立及参数提取;研究低相噪频率源技术,微波/毫米波单片集成电路设计,基于微机械(MEMS)的微波/毫米波开关、移相器和滤波器设计。 3.电磁波与物质的相互作用:研究电磁散射和逆散射算法,军事装备目标特性测试技术,隐身目标测试技术,目标散射中心三维成像技术;研究轻质、宽频、自适应智能隐身材料。 4.微波/毫米波系统理论与集成应用技术:设计、研究、开发特殊环境下的微波/毫米波系统;研究微波/毫米波测试技术;研究天线设计理论与技术。

微波原理

微波干燥/烘干原理及特点 微波是频率在300兆赫到300千兆赫的电磁波。被加热介质物料中的水分子是极性分子,它在快迅变化的高频电磁场作用下,其极性取向将随着外电场的变化而变化,造成分子的运动和相互摩擦效应。此时微波场的场能转化为介质内的热能,使物料温度升高,产生热化和膨化一系列物化过程而达到微波加热干燥的目的。 微波加热特点: 1、加热速度快。微波加热与传统加热方式完全不同。它是使被加热物料本身成为发热体,不需要热传导的过程。因此,尽管是热传导性较差的物料,也可在极短的时间内达到加热温度。 2、节能高效。由于含有水分的物质容易吸收微波而发热,因此除少量的传输损耗外,几乎无其它损耗,故热效率高、节能。 3、加热均匀。无论物体各部位形状如何,微波加热均可使物体表里同时均匀渗透电磁波而产生热能。所以加热均匀性好,不会出现外焦内生现象。 4、防霉、杀菌、保鲜。微波加热具有热力和生物效应,能在较低温度下灭菌和防霉。由于加热速度快、时间短,能最大限度地保存物料的活性和食品中的维生素、原有的色泽和营养成份。 5、工艺先进、易控制。微波加热只需有水、电的基本条件,只要控制微波功率即可实现立即加热或终止,应用微波机可进行加热过程和加热工艺规范的自动化控制。 6、占地面积少,安全无害。由于微波能是控制在金属制成的加热室内和波导管中工作,所以微波泄漏极少,没有放射线危害及有害气体排放,不产生余热和粉尘污染;既不污染食物,也不污染环境。 从经济效益来分析,微波干燥也常较传统方法为优,如与远红外干燥相比,通常节能1/3以上。在实际工作中,微波干燥主要用在低水分物料的干燥(含水率30%以下)中。此时,传统的干燥方法(热风、电烘炉)干燥速率低、耗能大,而隧道式微波干燥设备从进料到出料中需3-5分钟时间即可完成干燥。传统方法配套设备多,占地面积大,用人多,常有污染,消防等问题。 【工作原理】 (1)炉腔。炉腔是一个微波谐振腔,是把微波能变为热能对食品进行加热的空间。为了使炉腔内的食物均匀加热,微波炉炉腔内设有专门的装置。最初生产的微波炉是在炉腔顶部装有金属扇页,即微波搅拌器,以干扰微波在炉腔中的传播,从而使食物加热更加均匀。目前,则是在微波炉的炉腔底部装一只由微型电机带动的玻璃转盘,把被加热食品放在转盘上与转盘一起绕电机轴旋转,使其与炉内的高频电磁场作相对运动,来达到炉内食品均匀加热的目的。国内独创的自动升降型转盘,使得加热更均匀,烹饪效果更理想。 (2) 炉门:炉门是食品的进出口,也是微波炉炉腔的重要组成部分。对它要求很高,即要求从门外可以观察到炉腔内食品加热的情况,又不能让微波泄漏出来。炉门由金属框架和玻璃观察窗组成。观察窗的玻璃夹层中有一层金属微孔网,既可透过它看到食品,又可防止微波泄漏。由于玻璃夹层中的金属网的网孔大小是经过精密计算的,所以完全可以阻挡微波的穿透。

电磁场理论与微波技术复习提纲

电磁场理论与微波技术复习提纲 一、总体要求 通过本课程的学习,建立起电磁场与电磁波的基本思想,掌握电磁场与微波技术的基本概念、基本原理、基本分析方法,对波导理论有比较完整的理解,了解电磁场与微波技术的最新发展和应用。 “电磁场理论与微波技术”由“电磁场与电磁波基本理论”和“微波技术基础”两部分构成。第一部分“电磁场理论”所占比例约为:55% 第二部分“微波技术基础”所占比例约为:45% “电磁场与电磁波基本理论”部分重点考查内容为: 基本概念和理论 静电场 恒定电场 麦克斯韦方程组 平面电磁波 “微波技术基础”部分考查内容为: 基本概念和理论 传输线理论 波导理论 微波网络基础 二、考试形式与试卷结构 1、试题分为选择题(20%)、填空题(20%)、名词解释题(8%)、简答题(10%)、计算题(42%)。试卷总分100分。 2、考试形式为闭卷考试 3、考试时间:120分钟 名词解释: 1、坡印廷矢量和平均坡印廷矢量 2、电位移矢量 3、主模 4、色散

5、体电荷分布、面电荷分布、线电荷分布、体电流分布、面电流分布、线电流分布 6、电偶极子 7、直线极化、左右旋圆极化、椭圆极化 8、趋肤效应 9、均匀平面波、TEM模、TE模、TM模 10、全反射和全透射 11、波导 12、基本振子和对称振子 13、简并现象 14、微波 简答题: 1、如何判断长线和短线? 2、何谓分布参数电路?何谓集总参数电路? 3、何谓色散传输线?对色散传输线和非色散传输线各举一个例子。 4、均匀无耗长线有几种工作状态?特点?条件是什么? 5、说明二端口网络几种参量的物理意义? 6、发生全反射和全透射的条件 7、分析微波网络的方法 8、写出常见的微波元件9、分析天线的方法10、写出常见的天线 11、用哪些参数可以描述天线的性能指标,并解释其中的一到两个参数。 12、通量和散度的区别 13、旋度和环流的区别14、负载匹配和电源匹配 计算题: 1、矢量分析 1.1、1. 2、1.4、1.15、1.20 2、无界空间均匀平面波2.45、2.46、3.2、3.14 3、理想介质和良导体为边界的均匀平面波垂直入射3.17、3.22 4、分离变量法2.23,平行导体板(ppt例题) 5、阻抗圆图 6、波导模式和波长等计算5.11、5.12 7、高斯定理和安培环路定理(ppt例题)

最新电磁场与微波技术(第2版)黄玉兰-习题答案资料

第一章 1.3 证: 941(6)(6)50=0 A B A B A B A B =?+?-+-?=∴?∴和相互垂直和相互平行 1.11 (1) 2 222 0.5 0.50.5 2222 0.5 0.5 0.5 2272(2)(2272)1 24 s Ax Ay Az A divA x y z x x y x y z Ad s Ad dz dy x x y x y z dz ττ---????==++ ???=++=?=++=??? ??由高斯散度定理有

1.18 (1) 因为闭合路径在xoy 平面内, 故有: 222()()8(2) (22)()2()8 x y z x y x z x s A dl e x e x e y z e dx e dy xdx x dy A dl S XOY A ds e yz e x e dxdy xdxdy A ds → →→ → ?=+++=+∴?=??=+=??=∴??因为在面内, 所以,定理成立。 1.21 (1) 由梯度公式

(2,1,3) |410410x y z x y z x y z u u u u e e e x y z e e e e e e ????=++???=++=++1 方向:() (2) 最小值为0, 与梯度垂直 1.26 证明 00u A ???=??= 书上p10 1.25 第二章 2.1

3343 sin 3sin 4q a V e wr qwr J V e a ρρ ρπθ θ ρπ= ==?= 2.3

'' 2 2' 3 222 , 40 = l l l dl d R Er R ez z ea a ez z ea a Er r z P ez z ea a E d z a ea π ρρα? ρα? πε = ==- - == - = + ? 用圆柱坐标系进行求解 场点坐标为P(0,0,z).线电荷元 可以视为点电荷,其到场点的距离矢量 得 所以点的电场强度为 () 2 ''' 3 222 cos sin0 20 l z ex ey ea d z E e z a π ??? ρα ε +∴= ∴= + ? () 2.8

电磁场理论与微波技术 试卷A

特别提示:请诚信应考,考试违纪或作弊将带来严重后果! 成都理工大学工程技术学院 2009 - 2010学年第2学期 《电磁场理论与微波技术》通信工程专业期末试卷A 注意事项:1. 考前请将密封线内的各项内容填写清楚; 2. 所有答案请直接答在答题纸上; 3.考试形式:闭卷; 4. 本试卷共二大题,满分100分,考试时间120分钟。 一.简答题(第1题20分,第2--7题各5分,第8题各10分共60分)1,分别写出麦克斯韦方程组的微分和积分形式,并解释每个积分方程的含义。2,静电场的电力线是不闭合的,为什么?在什么情况下电力线可以构成闭合回路,它的激励源是什么? 3,试从产生的原因、存在的区域以及引起的效应等方面比较传导电流和位移电流。 4,“如果空间中某一点的电场强度为零,则该点的电位为零”,这种说法正确吗? 为什么?。 5,安培环路定理应用到时变场时会出现什么矛盾?这一矛盾又是如何解决的? 6,什么是坡印廷定理?它的物理意义是什么? 7,沿均匀波导传播的波有哪三种基本模式? 8,由电磁场理论知,当微波通过传输现时,会产生分布参数效应。那么什么是分布参数效应?

二.计算及证明题 (第1,2题各15分,第3题各10分, 共40分) 1,电荷Q 均匀分布于半径为a 的球体内,求空间各点的电场强度,并由此计算电场强度的散度。(计算中所用公式:30r r ??= ,3r ??= ) 2,在自由空间传播的均匀平面波的电场强度复矢量为: (20)42042??1010j z j z x y V E e e e e m πππ-----=+ 试求:(1)平面波的传播方向和频率; (2)波的极化方式; (3)磁场强度H 3,利用无源空间(电流密度0J =,电荷密度0ρ=)的麦克斯韦方程推到电场强度E 和磁场强度H 的的波动方程。 (计算中所用公式:2()()E E E ????=???-? )

射频与微波技术原理及应用汇总

射频与微波技术原理及应用培训教材 华东师范大学微波研究所 一、Maxwell(麦克斯韦)方程 Maxwell 方程是经典电磁理论的基本方程,是解决所有电磁问题的基础,它用数学形式概括了宏观电磁场的基本性质。其微分形式为 0 B E t D H J t D B ρ???=- ????=+??=?= (1.1) 对于各向同性介质,有 D E B H J E εμσ=== (1.2) 其中D 为电位移矢量、B 为磁感应强度、J 为电流密度矢量。 电磁场的问题就是通过边界条件求解Maxwell 方程,得到空间任何位置的电场、磁场分布。对于规则边界条件,Maxwell 方程有严格的解析解。但对于任意形状的边界条件,Maxwell 方程只有近似解,此时应采用数值分析方法求解,如矩量法、有限元法、时域有限差分法等等。目前对应这些数值方法,有很多商业的电磁场仿真软件,如Ansoft 公司的Ensemble 和HFSS 、Agilent 公司的Momentum 和ADS 、CST 公司的Microwave Studio 以及Remcom 公司的XFDTD 等。 由矢量亥姆霍兹方程联立Maxwell 方程就得到矢量波动方程。当0,0J ρ==时,有 222200E k E H k H ?+=?+= (1.3) 其中k 为传播波数,22k ωμε=。 二、传输线理论 传输线理论又称一维分布参数电路理论,是射频、微波电路设计和计算的理论基

础。传输线理论在电路理论与场的理论之间起着桥梁作用,在微波网络分析中也相当重要。 1、微波等效电路法 低频时是利用路的概念和方法,各点有确切的电压、电流概念,以及明确的电阻、电感、电容等,这是集总参数电路。在集总参数电路中,基本电路参数为L、C、R。由于频率低,波长长,电路尺寸与波长相比很小,电磁场随时间变化而不随长度变化,而且电感、电阻、线间电容和电导的作用都可忽略,因此整个电路的电能仅集中于电容中,磁能集中于电感线圈中,损耗集中于电阻中。 射频和微波频段是利用场的概念和方法,主要考虑场的空间分布,测量参数由电压U、电流I转化为频率f、功率P、驻波系数等,这是分布参数电路。在分布参数电路中,电磁场不仅随时间变化也随空间变化,相位有明显的滞后效应,线上每点电位都不同,处处有储能和损耗。 由于匀直无限长的传输系统在现实中是不存在的,因此工程上常用微波等效电路法。微波等效电路法的特点是:一定条件下“化场为路”。具体内容包括: (1)、将均匀导波系统等效为具有分布参数的均匀传输线; (2)、将不均匀性等效为集总参数微波网络; (3)、确定均匀导波系统与不均匀区的参考面。 2、传输线方程及其解 传输线方程是传输线理论的基本方程,是描述传输线上的电压、电流的变化规律及其相互关系的微分方程。电路理论和传输线之间的关键不同处在于电尺寸。集总参数电路和分布参数电路的分界线可认为是l/λ≥0.05。 以传输TEM模的均匀传输线作为模型,如图1所示。在线上任取线元dz来分析(dz<<λ),其等效电路如图2所示。终端负载处为坐标起点,向波源方向为正方向。 图1. 均匀传输线模型图2、线元及其等效电路根据等效电路,有

考研专业介绍:电磁场与微波技术

非统考专业介绍:电磁场与微波技术 一、专业介绍 电磁场与微波技术隶属于电子科学与技术一级学科。 1、研究方向 目前,各大院校与电磁场与微波技术专业相关的研究方向都略有不同的侧重点。以西安电子科技大学为例,该专业研究方向有: 01电磁兼容、电磁逆问题、计算微波与计算电磁学 04计算电磁学、智能天线、射频识别 07宽带天线、电磁散射与隐身技术 08卫星通信、无线通信、智能天线、信号处理 09天线理论与工程及测量、新型天线 10电磁散射与微波成像 11天线CAD、工程与测量 13移动卫星通信天线 14天线理论与工程 16电磁散射与隐身技术 17电磁兼容、微波测量、信号完整性分析 20移动通信中的相控阵、共形相控阵天线技术 21计算微波与计算电磁学、微波通信、天线工程、电磁兼容 22电阻抗成像、电磁兼容、非线性电磁学 23天线工程与CAD、微波射频识别技术、微波电路与器件 24电磁场、微波技术与天线电磁兼容 25天线测量技术与伺服控制 26天线理论与工程技术 27天线近远场测试技术及应用、无线网络通讯技术 28天线工程及数值计算 29微波电路与微波工程 30近场辐射及散射测量理论与技术 31微波系统和器件设计、电磁场数值计算 32电磁新材料、计算电磁学、电磁兼容 33计算电磁学、电磁兼容、人工合成新材料 34计算电磁学 35电磁隐身技术、天线理论与工程 36宽带小型化天线及电磁场数值计算 37射频识别、多天线技术 38天线和微波器件的宽带设计、小型化设计 2、培养目标 本专业培养德、智、体全面发展,在电磁信号(高频、微波、光波等)的产生、交换、发射、传输、传播、散射及接收等有关的理论与技术和信息(图像、语音、数据等)的获取、处理及传输的理论与技术两大方面具有坚实的理论基础和实验技能,了解本学科发展前沿和动态,具有独立开展本学科科学研究工作能力的高层次人才。 3、专业特色

微波技术的基本原理

微波技术的基本原理以及在环境中的应用 杨燕娜 福州大学环境与资源学院 一、微波的基本知识 微波是一种电磁波,波长范围没有明确的界限,一般是指分米波、厘米波和毫米波三个波段,也就是波长从1mm到1m左右,频率范围从300 MHz到300 GHz,由于微波的频率很高,所以亦称为超高频电磁波。微波与工业用电和无线电中波广播的频率与波长范围比较如表1所示。 表1 各系统所用频率与波长范围 项目频率波长/m 工业用电 无线电中波广播 微波 50Hz或60Hz 300~3000kHz 300~300000MHz 60000000或50000000 1000~100 1~0.001 因为微波的应用极为广泛,为了避免相互间的干扰,供工业、科学及医学使用的微波频段(如表2所示)是不同的。目前只有915MHz和2450MHz被广泛使用,在较高的两个频率段还没有合适的大功率工业设备。 表2 常用微波频率范围 频率范围/MHz 波段/m 中心波长/m 常用主频率/MHz 波长/m 890~940 2400~2500 5725~5875 22000~22250 L S C K 0.330 0.122 0.052 0.014 915 2450 5800 22125 0.328 0.122 0.052 0.014 微波是电磁波,它是具有电磁波的诸如反射、投射、干涉、衍射、偏振以及伴随着电磁波进行能量传输等波动特性,这就决定了微波的产生、传输、放大、辐射等问题都不同于普通的无线电、交流电。在微波系统中没有导线式电路,交、直流电的传输特性参数以及电容和电感等概念亦失去了其确切的意义。在微波领域中,通常应用所谓“场”的概念来分析系统内电磁波的结构,并采用功率、频率、阻抗、驻波等作为微波测量的基本量。具体说来有以下几点。 (1)在研究微波问题时,应使用电磁场的概念,许多高频交变电磁场的效益不能忽略。例如微波的波长和电路的直径尺寸已是同一数量级,位相滞后现象已十分明显,这一点必须加以考虑。 (2)微波传播时是直线传播,遇到金属表面将发生反射,其反射方向符合光的反射规律。 (3)微波的频率很高,因此其辐射效应更为明显,它意味着微波在普通的导线上传播时,伴随着能量不断地向周围空间辐射,波动传播将很快地衰减,所以对传输元件有特殊的要求。 (4)当入射波与反射波相遇叠加时能形成波的干涉现象,其中包括驻波现象。在微波波导或谐振腔中,微波电磁场的驻波分布现象就很常见。在微波设备中,也可利用多种模式的电磁场的分布、叠加来改善总电磁场分布的均匀性。 (5)微波能量的空间分布同一般电磁场能量一样,具有空间分布性质。哪里存在电磁场,哪里就存在能量。例如微波能量传输方向上的空间某点,其电场能量的数值大小与该处空间的电场强度的平方有关,微波电磁场总能量为空间点的电磁场能量的总和。 另外,电磁波是以光的速度传播的,电磁波透入物质的速度也是与光的传播速度相接近;

电磁场与微波技术排名

080904 电磁场与微波技术 北京大学--信息科学技术学院-- 电磁场与微波技术 北京航空航天大学--电子信息工程学院-- 电磁场与微波技术 北京交通大学--电子信息工程学院-- 电磁场与微波技术

磁场与微波技术 北京邮电大学--电信工程学院-- 电磁场与微波技术 北京邮电大学--电子工程学院-- 电磁场与微波技术 北京邮电大学--通信网络技术综合技术研究所-- 电磁场与微波技术 北京邮电大学--理学院-- 电磁场与微波技术 北京邮电大学--网络教育学院-- 电磁场与微波技术 南开大学--信息技术科学学院-- 电磁场与微波技术 中国传媒大学--信息工程学院-- 电磁场与微波技术 华北电力大学--电气与电子工程学院-- 电磁场与微波技术 燕山大学--电气工程学院-- 电磁场与微波技术 华北电力大学(保定)--电力工程系-- 电磁场与微波技术 吉林大学--电子科学与工程学院-- 电磁场与微波技术 长春理工大学--电子信息工程学院-- 电磁场与微波技术 哈尔滨工业大学--电子与信息技术研究院-- 电磁场与微波技术 哈尔滨工程大学--信息与通信工程学院-- 电磁场与微波技术 复旦大学--信息科学与工程学院-- 电磁场与微波技术 中国科学技术大学--信息学院电子科学与技术系-- 电磁场与微波技术 武汉大学--电子信息学院-- 电磁场与微波技术 华东师范大学--电子科学技术系-- 电磁场与微波技术 上海大学--通信与信息工程学院-- 电磁场与微波技术 上海海事大学--基础部-- 电磁场与微波技术 上海交通大学--电子信息与电气工程学院-- 电磁场与微波技术

场与微波技术 合肥工业大学--电气与自动化学院-- 电磁场与微波技术 厦门大学--物理系-- 电磁场与微波技术厦门大学--电子工程系-- 电磁场与微波技术 华南理工大学--电子与信息学院-- 电磁场与微波技术 华南师范大学--电子科学与技术-- 电磁场与微波技术 郑州大学--信息工程学院-- 电磁场与微波技术 中国电波传播研究所--专业列表-- 电磁场与微波技术 华中科技大学--电子与信息工程系-- 电磁场与微波技术 武汉邮电科学研究院--武汉邮电科学研究院-- 电磁场与微波技术 中南大学--物理科学与技术学院(物理学院)-- 电磁场与微波技术 中南大学--信息科学与工程学院(信息学院)-- 电磁场与微波技术 山东大学--信息科学与工程学院-- 电磁场与微波技术 电子科技大学--光电信息学院-- 电磁场与微波技术 四川大学--电子信息学院-- 电磁场与微波技术 西南交通大学--理学院-- 电磁场与微波技术 重庆邮电学院--光电工程学院-- 电磁场与微波技术 兰州交通大学--自动化与电气工程学院-- 电磁场与微波技术 西安电子科技大学--电子工程学院-- 电磁场与微波技术 西安交通大学--电子与信息工程学院-- 电磁场与微波技术 西北工业大学--电子信息学院-- 电磁场与微波技术 华中师范大学--物理科学与技术学院-- 电磁场与微波技术 东南大学--信息科学与工程学院-- 电磁

无线电物理(070208)、电磁场与微波技术专业(080904)

无线电物理(070208)、电磁场与微波技术专业(080904) 研究生培养方案 一、培养目标 1、硕士研究生: 牢固树立爱校、爱国、爱中华民族的思想,具备坚持真理、献身科学的勇气和品质以及科学职业道德、敬业精神、团结合作精神。 具备电磁场与微波技术方面扎实的理论基础和宽厚的知识面。掌握与本专业相关的实验技能,对与本学科相邻及相关学科的知识有一定的了解。具备灵活应用所学知识分析和解决实际问题的能力。有独立从事科学研究的能力。 掌握一到二门外国语,能用英语阅读专业书籍、文献并撰写科学论文。 2、博士研究生: 牢固树立爱校、爱国、爱中华民族的思想,具备坚持真理、献身科学的勇气和品质以及科学职业道德、敬业精神、团结合作精神。 在硕士研究生培养目标所达到的要求基础之上,不仅要掌握本专业理论和实验的专业知识,还要掌握与本学科相邻及相关学科的知识,在独立从事科研工作中,具备综合、分析能力,在开展所从事研究方面的前沿研究工作中,具备创新和发展的能力。熟悉所从事研究方向的科学技术发展新动向。 掌握一至二门外语,能用英语熟练阅读专业书籍、文献,并能撰写并在国际会议上宣读科学论文。 二、学科介绍 1、无线电物理专业的主要研究方向 (1)超导电子学 (2)太赫兹技术 (3)单光子探测 (4)量子信息处理 (5)人工电磁材料 2、电磁场与微波技术专业的主要研究方向 (1)单光子探测器件 (2)太赫兹技术 (3)超导量子器件 (4)人工电磁材料及其应用 (5)新型天线和微波射频器件及其在无线技术中的应用 (6)电磁吸波/透波材料及其应用 (7)低维材料的高频物性及其在无线技术中的应用 3、师资力量和科研水平 本学科师资力量较雄厚,有中国科学院院士、“长江学者奖励计划”特聘教授和讲座教授以及教育部“新世纪优秀人才”等一批优秀学者,成为本学科的学术带头人和学术骨干。目前有教授9人、博士生导师9人、副教授和高工4人。 在科学研究方面,以无线电物理的基本理论方法和现代实验技术作为手段,探索新型电子材料和电子器件,研究其中有关物理过程和电磁现象的基本规律,据以开发新型电子器件

《电磁场和微波技术》补充练习题1(1)

2《电磁场与微波技术》补充练习 、填空: 1波速随频率变化的现象称为波的色散,色散波的群速度表达式 2、测得一微波传输线的反射系数的模皿=12,则行波系数K= 1/3;若特性阻抗Z o=75Q,则波节 点的输入阻抗R in(波节)=25欧。 3、微波传输线是一种分布参数电路,其线上的电压和电流沿线的分布规律可由传输线方程来描 述。 4、同轴线传输的主模是TEM模,微带线传输的主模是准TEM模。 5、矩形波导尺寸a = 2cm, b = 1.1cm若在此波导中只传输TE io模,则其中电磁波的工作波长范围 为2.2VX4。 6、微波传输线按其传输的电磁波波型,大致可划分为TEM波传输线,TE、TM传输线和表面波 传输线。 7、长线和短线的区别在于:前者为分布(长线)参数电路,后者为集中参数电路。 8均匀无耗传输线工作状态分三种:(1)行波(2)驻波(3)行驻波。 10、从传输线方程看,传输线上任一点处的电压或电流等于该处相应的入射波和反射波的叠加。 11、当负载为纯电阻R L,且R L Z0时,第一个电压波腹点在终端,当负载为感性阻抗时,第一 个电压波腹点距终端的距离在0< Z0V—范围内。 04 12、导波系统中的电磁波纵向场分量的有无,一般分为三种波型(或模):TEM波;TE波; TM波。 13、导波系统中传输电磁波的等相位面沿着轴向移动的速度,通常称为相速;传输信号的电 磁波是多种频率成份构成一个“波群”进行传播,其速度通常称为群速。 14、波速随着频率变化的现象称为波的色散,色散波的相速大于无限媒质中的光速,而群速小于 无限媒质中的光速。 15、矩形波导传输的主模是TE10模;同轴线传输的主模是TEM模。 16、线性媒质的本构关系为D二;E,B二」H ;

相关文档
最新文档