三点确定曲率

三点确定曲率
三点确定曲率

单片机C语言求平方根函数

2009年07月12日星期日 11:01

转自:https://www.360docs.net/doc/a1330882.html,/article/304.html

在单片机中要开平方.可以用到下面算法:

算法1:

本算法只采用移位、加减法、判断和循环实现,因为它不需要浮点运算,也不需要乘除运算,因此可以很方便地运用到各种芯片上去。

我们先来看看10进制下是如何手工计算开方的。

先看下面两个算式,

x = 10*p + q (1)

公式(1)左右平方之后得:

x^2 = 100*p^2 + 20pq + q^2 (2)

现在假设我们知道x^2和p,希望求出q来,求出了q也就求出了x^2的开方x 了。

我们把公式(2)改写为如下格式:

q = (x^2 - 100*p^2)/(20*p+q) (3)

这个算式左右都有q,因此无法直接计算出q来,因此手工的开方算法和手工除法算法一样有一步需要猜值。

我们来一个手工计算的例子:计算1234567890的开方

首先我们把这个数两位两位一组分开,计算出最高位为3。也就是(3)中的p,最下面一行的334为余数,也就是公式(3)中的(x^2 - 100*p^2)近似值

3 --------------- | 12 3

4 56 78 90 9 --------------- | 3 34

下面我们要找到一个0-9的数q使它最接近满足公式(3)。我们先把p乘以20

写在334左边:

3 q --------------- | 12 3

4 56 78 90 9 --------------- 6q| 3 34

我们看到q为5时(60+q*q)的值最接近334,而且不超过334。于是我们得到:

3 5 --------------- | 12 3

4 56 78 90 9 --------------- 65| 3 34 | 3 2

5 --------------- 9 56

接下来就是重复上面的步骤了,这里就不再啰嗦了。

这个手工算法其实和10进制关系不大,因此我们可以很容易的把它改为二进制,改为二进制之后,公式(3)就变成了:

q = (x^2 - 4*p^2)/(4*p+q) (4)

我们来看一个例子,计算100(二进制1100100)的开方:

1 0 1 0 --------------- | 1 10 01 00 1 --------------- 100| 0 10 | 0 00 --------------- | 10 011001| 10 01 --------------- 0 00

这里每一步不再是把p乘以20了,而是把p乘以4,也就是把p右移两位,而由于q的值只能为0或者1,所以我们只需要判断余数(x^2 - 4*p^2)和(4*p+1)的大小关系,如果余数大于等于(4*p+q)那么该上一个1,否则该上一个0。

下面给出完成的C语言程序,其中root表示p,rem表示每步计算之后的余数,divisor表示(4*p+1),通过a>>30取a的最高 2位,通过a<<=2将计算后的最高2位剔除。其中root的两次<<1相当于4*p。程序完全是按照手工计算改写的,应该不难理解。

unsigned short sqrt(unsigned long a){

unsigned long rem = 0;

unsigned long root = 0;

unsigned long divisor = 0;

for(int i=0; i<16; i++){

root <<= 1;

rem = ((rem << 2) + (a >> 30));

a <<= 2;

divisor = (root<<1) + 1;

if(divisor <= rem){

rem -= divisor;

root++;

}

}

return (unsigned short)(root);

}

算法2 :单片机开平方的快速算法

因为工作的需要,要在单片机上实现开根号的操作。目前开平方的方法大部分是用牛顿

迭代法。我在查了一些资料以后找到了一个比牛顿迭代法更加快速的方法。不敢独享,介

绍给大家,希望会有些帮助。

1.原理

因为排版的原因,用pow(X,Y)表示X的Y次幂,用B[0],B[1],...,B[m-1]

表示一个序列,

其中[x]为下标。

假设:

B[x],b[x]都是二进制序列,取值0或1。

M = B[m-1]*pow(2,m-1) + B[m-2]*pow(2,m-2) + ... + B[1]*pow(2,1) + B[0]*pow (2,0)

N = b[n-1]*pow(2,n-1) + b[n-2]*pow(2,n-2) + ... + b[1]*pow(2,1) + n[0]*pow (2,0)

pow(N,2) = M

(1) N的最高位b[n-1]可以根据M的最高位B[m-1]直接求得。

设 m 已知,因为 pow(2, m-1) <= M <= pow(2, m),所以 pow(2, (m-1)/2) <= N <=

pow(2, m/2)

如果 m 是奇数,设m=2*k+1,

那么 pow(2,k) <= N

n-1=k, n=k+1=(m+1)/2

如果 m 是偶数,设m=2k,

那么 pow(2,k) > N >= pow(2, k-1/2) >pow(2, k-1),

n-1=k-1,n=k=m/2

所以b[n-1]完全由B[m-1]决定。

余数 M[1] = M - b[n-1]*pow(2, 2*n-2)

(2) N的次高位b[n-2]可以采用试探法来确定。

因为b[n-1]=1,假设b[n-2]=1,则 pow(b[n-1]*pow(2,n-1) +

b[n-1]*pow(2,n-2),

2) = b[n-1]*pow(2,2*n-2) + (b[n-1]*pow(2,2*n-2) + b[n-2]*pow(2,2*n-4)), 然后比较余数M[1]是否大于等于 (pow(2,2)*b[n-1] + b[n-2]) *

pow(2,2*n-4)。这种

比较只须根据B[m-1]、B[m-2]、...、B[2*n-4]便可做出判断,其余低位不做比较。

若 M[1] >= (pow(2,2)*b[n-1] + b[n-2]) * pow(2,2*n-4), 则假设有效,b[n-2] =

1;

余数 M[2] = M[1] - pow(pow(2,n-1)*b[n-1] + pow(2,n-2)*b[n-2], 2) = M[1] -

(pow(2,2)+1)*pow(2,2*n-4);

若 M[1] < (pow(2,2)*b[n-1] + b[n-2]) * pow(2,2*n-4), 则假设无效,b[n-2] =

0;余数 M[2] = M[1]。

(3) 同理,可以从高位到低位逐位求出M的平方根N的各位。

使用这种算法计算32位数的平方根时最多只须比较16次,而且每次比较时不必把M的各位逐

一比较,尤其是开始时比较的位数很少,所以消耗的时间远低于牛顿迭代法。

2. 实现代码

这里给出实现32位无符号整数开方得到16位无符号整数的C语言代码。

-------------------------------------------------------------------------------

-

/****************************************/

/*Function: 开根号处理 */

/*入口参数:被开方数,长整型 */

/*出口参数:开方结果,整型 */

/****************************************/

unsigned int sqrt_16(unsigned long M)

{

unsigned int N, i;

unsigned long tmp, ttp; // 结果、循环计数

if (M == 0) // 被开方数,开方结果也为0

return 0;

N = 0;

tmp = (M >> 30); // 获取最高位:B[m-1] M <<= 2;

if (tmp> 1) // 最高位为1

{

N ++; // 结果当前位为1,否则为默认的0 tmp -= N;

}

for (i=15; i>0; i--) // 求剩余的15位{

N <<= 1; // 左移一位

tmp<<= 2;

tmp += (M >> 30); // 假设

ttp = N;

ttp = (ttp<<1)+1;

M <<= 2;

if (tmp>= ttp) // 假设成立

{

tmp -= ttp;

N ++;

}

}

return N; }

曲面曲率计算方法的比较与分析

研究生专业课程报告 题目:曲面曲率直接计算方法的比较 学院:信息学院 课程名称:三维可视化技术 任课教师:刘晓宁 姓名:朱丽品 学号:201520973 西北大学研究生处制

曲面曲率直接计算方法的比较 1、摘要 曲面曲率的计算是图形学的一个重要内容,一般来说,曲面的一阶微分量是指曲面的切平面方向和法向量,二阶微分量是指曲面的曲率等有关量.它们作为重要的曲面信息度量指标, 在计算机图形学, 机器人视觉和计算机辅助设计等领域发挥了重要的作用.此文对曲面上主曲率的2种直接估算方法(网格直接计算法和点云直接计算法)进行了论述, 并进行了系统的总结与实验, 并给出了其在颅像重合方面的应用。 关键词曲面曲率、主曲率、点云、三角网格 2、引言 传统的曲面是连续形式的参数曲面和隐式曲面, 其微分量的计算已经有了较完备的方法.随着激光测距扫描等三维数据采样技术和硬件设备的长足进步, 以及图形工业对任意拓扑结构光滑曲面造型的需求日益迫切, 离散形式的曲面———细分曲面、网格曲面和点云曲面正在逐渐成为计算机图形学和几何设计领域的新宠.于是, 对这种离散形式的曲面如何估算微分量, 就成为一个紧迫的课题。 CT扫描技术获得的原始点云和网格数据通常只包含物体表面的空 间三维坐标信息及其三维网格信息,没有明确的几何信息,而在点云和网格的简化、建模、去噪、特征提取等数据处理和模式识别中,常需要提前获知各点的几何信息,如点的曲率、法向量等,也正基于此,点云和网格的几何信息提取算法一直是研究的热点。点的法向量和曲

率通常采用离散曲面的微分几何理论来计算,由于离散曲面分为网格和点集两种形式,其法向量和曲率计算也分为两类: 一类是基于网格的法向量和曲率计算,另一类是基于散点的法向量和曲率计算。由于基于三角网的点云几何信息计算精度一般比较低,通常采用直接计算法。在点云几何信息提取中,常采用基于散乱点的点云几何信息计算方法,该类方法主要是通过直接计算法和最小二乘拟合算法获取点云的局部n 次曲面,然后根据曲面的第一基本形式和第二基本形式求解高斯曲率和平均曲率,而点云的局部曲面表示有两种: 一是基于法向距离的局部曲面表示,二是基于欧几里德距离的局部曲面表示。本节中针对近几年来国际上提出的对三角网格曲面估算离散曲率的直接估算法,从数学思想与表达形式等方面进行系统的归纳与总结. 3、三角网格曲面的曲率的计算及代码实现 为了叙述清楚起见, 引入统一的记号.k 1和k 2表示主曲率,曲面的主曲率即过曲面上某个点具有无穷个曲线,也就存在无穷个曲率(法曲率),其中存在一条曲线使得该曲线的曲率为极大,这个曲率为极大值k 1,垂直于极大曲率面的曲率为极小值k 2。这两个曲率的属性为主曲率。它们代表着法曲率的极值。主曲率是法曲率的最大值和最小值。 H 表示平均曲率,是空间上曲面上某一点任意两个相互垂直的正交曲率的平均值。如果一组相互垂直的正交曲率可表示为K1、K2,那么平均曲率则为:H= (K1 +K 2 ) / 2。 K 表示曲面的高斯曲率, 两个主曲率的乘积即为高斯曲率,又称

利用弯矩-曲率(M-Φ)曲线评价截面性能

利用弯矩-曲率(M-Φ)曲线评价截面性能
Revision No. : v1.0 Revision Date : 2010.1. Program Version : Civil2010 V.7.8.0 R1 Mail to : jwlee@https://www.360docs.net/doc/a1330882.html,

00. 目录
01. 概要 3 02. 建模 5 03. 材料本构模型 6
1. 混凝土本构 2. 钢材本构
04. 矩形截面的性能评价 8
1. 输入钢筋 2. 弯矩-曲率关系 3. 查看结果
05. 任意形状截面的性能评价 11
1. 1 2. 3.
输入钢筋 弯矩-曲率关系 查看结果
06. 计算书 15
07. 弯矩-曲率曲线在桥梁抗震设计中的应用 07 弯矩 曲率曲线在桥梁抗震设计中的应用 18
1. 按简化方法验算E2地震作用下的墩顶位移 2. 按非线性分析方法验算桥墩塑性铰区域的塑性转动能力
操作例题 | 利用截面的弯矩-曲率(M-Φ)曲线评价截面性能
2

01. 概要
在非线性抗震分析中经常要使用截面的非线性滞回特性,梁或柱截面的非线滞回性特性可以使用截 面的弯矩-曲率关系或荷载-位移关系曲线来描述。
弯矩-曲率曲线(Moment Curvature Curve)作为评价截面的抗震性能被广泛应用于钢筋混凝土截面 的抗震分析中。
与Pushover分析和动力弹塑性分析相比,利用截面尺寸和实配钢筋获得截面的弯矩-曲率曲线,使 用该曲线评价截面的抗震性能的方法,不仅简单而且节省分析时间。
Midas程序中提供了七种混凝土材料本构模型和四种钢材材料本构模型。用户定义了截面尺寸并输 入钢筋后,选择相应的材料本构模型,程序就会提供理想化的截面弯矩-曲率关系,并提供截面的 一些关键特性,例如屈服特性值、极限特性值。
本技术资料介绍了弯矩-曲率曲线的使用方法以及使用该曲线评价截面的性能的方法。
程序中提供的混凝土和钢材的材料本构模型如下。
1. 混凝土 1) Kent & Park Model 2) Japan Concrete Standard Specification Model 3) Japan Roadway Specification Model 4) Nagoya Highway Corporation Model 5) Trilinear Concrete Model 6) China Concrete Code (GB50010-02) 7) Mander Model
2. 钢材 1) Menegotto-Pinto Model 2) Bilinear Model 3) Asymmetrical Bilinear Steel Model 4) Trilinear Steel Model
操作例题 | 利用截面的弯矩-曲率(M-Φ)曲线评价截面性能
3

icem surf曲线的调整和分析

曲线的调整和分析 ---------------------------------作者或(背后的小刀) 使用Create – Raw Data – Express, Smooth可以由原始数据轮廓线生成一条曲线。原始数据轮廓线,曲线,和曲线的控制多边形会同时显示在屏幕中。在这一节中,我们要学习以下内容: ?冻结当前工作状态 ?打开曲线曲率分析工具 ?调整曲线控制点使曲线逼近原始数据。通过曲率变化观察曲线形状的变化. ?删除原始数据轮廓线 为了更具体熟悉这些工具,我们应该设定不同的参数观察它们的运行结果。 暂时保存当前的工作环境 1. 点击工具条按钮“FREEZE ” 2. YES确认。 你可以继续工作。但是在激活FREEZE功能之前的操作是无法撤消的,在其之后的操作可以被撤消。这就防止了撤消时,全部工作内容被清除的危险!!! 暂时保存的工作环境会在下一次激活FREEZE时被覆盖,就是说只能返回最后一次被保存的内容。,临时保存功能只在当前工作环境中起作用,不能取代数据库的永久保存保存(File – Save)功能。 曲线的曲率分析 1. 点击工具条中----诊断(Diagnos)按钮 2. 在分析(Diagnoses)对话框中点击曲率(Curvature). 3. 在弹出的曲率对话框中设定缩放比例(Scaling)为50。 4. 点击Curve.按钮 5. 窗口下面的状态条中会显示选取曲线段/边缘(Pick Segments/Edges.)选取欲分析其 曲率的曲线。 选择几何元素 此时相应的选择对话框被自动激活。这个选择对话框和UG中的选择功能差不多。 几何元素的选择方式有如下几种

如何计算抛物线点处的曲率和曲率半径

用物理方法计算抛物线某点处的曲率和曲率半径 对于一般的弧来说,各点处曲率可能不同,但当弧上点A处的曲率不为零时,我们可以设想在弧的凹方一侧有一个圆周,它与弧在点A相切(即与弧有公切线),这样的圆就称为弧上A点处的曲率圆。 对于函数图形某点的曲率和曲率半径,在数学上我们需要用到求二阶导数的方法。 今天我想简单说一种有趣的方法,将该问题用物理的思维来解决,无需求导便能够知道抛物线某点处的曲率和曲率半径。这种方法不属于主流方法,因此不能用它代替常规方法。介绍此方法的目的,只是为了让大家对抛物线及抛体运动和圆周运动乃至整个曲线运动本质上的联系有更加深刻的认识。 举一个最简单的例子:y=-x2,我们作出它的图像 设图像上存在一点A(a,-a2),求该点的曲率和曲率半径。 我们假设一质点从顶点O开始做平抛运动,恰经过A(a,-a2)。 接下来,我们可以算出该点处质点的速度大小:先得到下落时间,接着算出水平速度和竖直速度分量,再合成。质点在该点处速度大小为v=√(g/2+2a2g)。 接下来,我们利用角度关系,将A处的加速度(即重力加速度g)沿速度方向和垂直于速度方向分解,如下图:

令A点处质点速度方向与水平方向的夹角为θ,可得垂直于速度方向的加速度分量为gcosθ。我们可以求出cosθ=v0/v=1/√(1+4a2),那么垂直于速度方向的加速度分量就等于g/√(1+4a2)。 我们想象一下在A点处有个圆与抛物线切于A,且该圆为抛物线A点处的曲率圆,半径为r。 根据圆周运动向心加速度计算式a=v2/r,得到gcosθ=g/√(1+4a2)=(g/2+2a2g)/r。 从而可以求出r=(1/2+2a2)√(1+4a2) 我们用微积分可求出该函数图象某点处曲率半径为:R=|{1+[y’(x)]2}3/2/y”|(x)。 在A点,导数为-2a,二阶导数为-2,所以上式就等于(1+4a2)3/2/2=(1/2+2a2)√(1+4a2)。 与上面算出的半径相等! 因而,曲率半径K=1/r=2/(1+4a2)3/2 抛体运动和圆周运动都是曲线运动,但在高中课本里它们是分开学习的,大家或许曲线运动学得都不错,但或许很少有人想过抛体运动和圆周运动的内在联系。 高中阶段数学还没有曲率半径的概念,写本文的目的并不在于提前灌输曲率知识,也并不代表这种求法能够替代微积分。表面上看,这是一种新的数学求法,但实质上是以数学的形式为物理服务,目的是让大家看到抛体运动和圆周运动这两种曲线运动并不是割裂开的,它们内部有着非常大的联系,甚至可以说本质是相同的,我们甚至可以将抛体运动视为由无数个圆周运动组合而成!

人口的数量变化 教学设计1

1.1人口的数量变化教学设计 【课程标准要求】 1、分析不同人口增长模式的主要特点及地区分布。 2、举例说明地域文化对人口和城市的影响。 【教学的三维目标】 知识与技能 1、了解人口数量变化在时间和空间上的差异。 2、了解人口增长模式类型及其转变。理解二战以后世界人口迅速增长的原因 3、掌握人口增长模式的判断方法。 过程与方法: 1、通过读图分析讨论,让学生归纳不同时期人口增长的特征和不同地区人口增长的差异, 理解相应国家不同的人口政策。 2、讲解人口增长模式的含义,借助图表、案例等的分析和讨论,让学生归纳三种人口增长 模式的特征及差异,引导学生对不同人口增长模式的形成、转变进行深入地分析。 情感、态度与价值观: 1、通过学习帮助学生树立科学的人口观 【教学重点】 1、理解人口数量增长在时间和空间上的差异及其成因。 2、理解三种人口增长模式的特点和转变的原因。 【教学难点】人口增长模式的转变。 【教学方法】读图分析法比较法 【课标解析】 课标:分析不同人口增长模式的主要特点及地区分布。 解析:1、理解人口自然增长率的的概念,读图说出世界各大洲人口自然增长的地区差异,了解人口基数对人口自然增长率、人口增长绝对数量的影响。 2、掌握人口增长的三种模式名称和特点,利用人口资料或图表,判断其所属的人口增长模式及其转变。 3、理解我国实行计划生育的人口政策。 预习:提前发导学案 附:导学案

【课标解析】 课标:分析不同人口增长模式的主要特点及地区分布。 解析:1、理解人口自然增长率的的概念,读图说出世界各大洲人口自然增长的地区差异,了解人口基数对人口自然增长率、人口增长绝对数量的影响。 2、掌握人口增长的三种模式名称和特点,利用人口资料或图表,判断其所属的人口增长模式及其转变。 3、理解我国实行计划生育的人口政策。 【主干知识点梳理】 一、人口的自然增长 1、世界60亿人口日(了解) 2、人口自然增长的决定因素: 一个地区的人口自然增长,是由和共同决定的。 3、人口自然增长的时空差异: (1)人口数量增长随时间的不匀速性 (2)世界人口增长在空间上的不均衡性 二.人口增长模式及其转变 1、人口增长模式指标: 人口增长模式是由、和三项指标共同决定的。

proe 曲面曲率

分析曲面曲率 模块概述 使用曲面特征设计产品时,曲面间的过渡扮演着重要的角色。曲面边的曲率连续性条件确定这些过渡的平滑程度。 在本模块中,您将学习如何分析曲面的曲率以及如何使用基于双向曲率的图形和着色曲率图形来确定曲面是否具有曲率连续性。此外,您将学习曲率连续曲面的创建方法。 目标 成功完成此模块后,您即可知道如何: ?分析曲面理论。 ?定义曲率和曲率连续性。 ?分析曲线的曲率。 ?分析曲面的曲率。 ?使用截面分析曲率。 ?使用法线分析曲率。 ?使用曲面的着色曲率。 ?使用着色截面曲率。 ?创建曲率连续曲面。

曲面分析理论 您可使用专用工具分析曲面模型,例如连续性、扭曲以及视觉特性。 ?其目标是为了创建高质量的曲面。 ?分析曲面的原因: o预期的平滑度和连续性 o预期的曲率 o无扭曲或扭结 o适合于制造过程 ?常用分析选项: o快速 o已保存 o特征 查看着色曲率

“保存的分析”对话框 剖面分析 曲面分析理论 Pro/ENGINEER 提供了许多不同的工具,以满足不同的建模要求。您可根据自己的目标使用特定工具分析曲面模型,例如连续性、扭曲以及视觉特性。

分析曲面的原因 创建曲面时,目标是创建具有高质量的曲面。请考虑以下分析曲面的原因: ?创建具有预期平滑度和连续性的曲面。可使用分析工具检验相切和曲率连续性。 ?创建具有预期曲率的曲面。可检查是否存在不需要的高曲率区域,这些区域表示曲面有问题。例如,曲面中的扭结会使曲率显示为突然增大,借助Pro/ENGINEER 的分析工具可轻松找出此类扭结。 ?创建无扭曲的曲面。扭结或小曲面片是曲面模型中常见的问题。在创建实体零件或创建制造序列时,它们可能在添加厚度时引起一些问题。 ?创建适合于制造过程的曲面。许多操作(例如创建加工序列) 都会将曲面侧考虑在内。曲面模型中的面组应具有相应的正法向侧。 常用分析选项 使用Pro/ENGINEER 的模型分析工具时有三个选项可用: ?快速(Quick) - 允许计算测量而不保存分析或在模型树中创建特征。关闭对话框后此分析消失。 ?已保存(Saved) - 允许保存测量以备今后使用。关闭对话框后此分析保留。可以为分析指定一个唯一名称,以使以后它对您有意义。 可通过单击“分析”(Analysis) > “保存的分析”(Saved Analysis)来启用、禁用或编辑保存的分析的显示。已保存分析更新为模型几何更改。“保存的分析”对话框如左下图所示。 ?特征(Feature) - 允许将分析作为一种特征保存在模型树中。该分析更新为模型几何更改。 定义曲率 曲面的曲率定义为与1/R 成正比,其中R 为曲面在指定位置的半径。

高等数学-第3章 3.3 曲线的弯曲程度——曲率

* §3.3 曲线的弯曲程度——曲率 一、曲率的概念 在上一节中,我们研究了曲线的凹凸性,即曲线的弯曲方向问题。本节研究曲线的弯曲程度问题,这是在生产实践和工程技术中,常常会遇到的一类问题。例如,设计铁路、高速公路的弯道时,就需要根据最高限速来确定弯道的弯曲程度。为此,本节我们介绍描述曲线弯曲程度的概念——曲率及其计算公式。 直觉上,我们知道,直线不弯曲,半径小的圆比半径大的圆弯曲得厉害些,抛物线上在顶点附近比远离顶点的部分弯曲得厉害些。那么如何用数量来描述曲线的弯曲程度呢? 如图3.6所示, 12M M 和 23M M 是两段等长的曲线弧, 23M M 比 12M M 弯曲得厉害些,当点2M 沿曲线弧移动到点3M 时,切线的转角2α?比 从点1M 沿曲线弧移动到点2M 时,切线的转角1α?要大些。 如图3.7所示, 12M M 和 12N N 是两段切线转角同为α?的曲线弧, 12N N 比 12M M 弯曲得厉害些,显然, 12M M 的弧长比 12N N 的弧长大。 这说明,曲线的弯曲程度与曲线的切线转角成正比,与弧长成反比。由此,我们引入曲率的概念。 如图3.8所示,设,M N 是曲线()y f x =上的两点,当点M 沿曲线移动到点N 时, 切线相应的转角为α?, 曲线弧 MN 的长为s ?。我们用s ??α来表示曲线弧 MN 的平均弯曲程 1M 图 3.6 图 3.7 图3.8

1 度,并称它为曲线弧 MN 的平均曲率,记为K ,即 K s α ?= ?。 当0s ?→(即N M →)时,若极限0lim s d s ds αα ?→?=?存在,从而极限 l i m s d s d s αα?→?=?存在,则称0lim s d s ds αα ?→?= ?为曲线()y f x =在M 点处的曲率,记为K ,即 d K ds α = 。 (3.1) 注意到, d ds α 是曲线切线的倾斜角相对于弧长的变化率。 二、曲率的计算公式 设函数)(x f 的二阶导数存在,下面导出曲率的计算公式. 先求d α,因为α是曲线切线的倾斜角,所以αtan ='y ,从而y '=arctan α,两边微分,得 ())(11arctan 2y d y y d d ''+= '=αdx y y ''' +=2 11 (3.2) 其次求ds ,如图 3.9,在曲线上任取一点 0M ,并以此为起点度量弧长。若点()y x M ,在()000,y x M 的右侧()0x x >,规定弧长为正;若点()y x M ,在()000,y x M 的左侧()0x x <,规定弧长为负;依照此规定,弧长s 是点的横坐标x 的增函数,记为()x s s =。 当点M 沿曲线移动到N ,相应地,横坐标由x 变到x x +?时,有 = ?2 )(s () ()()2 2 2 y x MN ?+?=≈, 即 22)(1)( x y x s ??+≈??, 图3.9

曲率概念

曲率概念 在SMT的8.4版本中,新推出了曲率属性,包括高斯曲率、最小最大曲率、平均曲率等概念。为了让大家更清楚的了解曲率,这里与大家共享一些曲率的基础知识。 一、曲率基本概念 曲率是用来反映几何体的弯曲程度。

二、三维欧氏空间中的曲线和曲面的曲率 平均曲率、主曲率和高斯曲率是曲率的三个基本要素。 平均曲率:是空间上曲面上某一点任意两个相互垂直的正交曲率的平均值。如果一组相互垂直的正交曲率可表示为K1,K2,那么平均曲率则为:K = (K1 +K2 ) / 2。 主曲率:过曲面上某个点上具有无穷个正交曲率,其中存在一条曲线使得该曲线的曲率为极大,这个曲率为极大值Kmax,垂直于极大曲率面的曲率为极小值Kmin。这两个曲率属性为主曲率。他们代表着法曲率的极值。 高斯曲率:两个主曲率的乘积即为高斯曲率,又称总曲率,反映某点上总的完全程度。 三、地震层位的曲率属性计算

地震层位在三维空间中实际上也是一个构造曲面,因此可表示为如下公式: 根据上述方程中的系数组合,可以得出各种曲率属性: 平均曲率: 高斯曲率: 极大与极小曲率:

最大正曲率、最小负曲率: 倾向与走向曲率: 四、曲率在构造裂缝中的应用 构造层面的曲率值反映岩层弯曲程度的大小,因此岩层弯曲面的曲率值分布,可以用于评价因构造弯曲作用而产生的纵张裂缝的发育情况。计算岩层弯曲程度的方法很多,如采用主曲率法。根据计算结果,将平面上每点处的最大主曲率值进行作图,得到曲率分布图,进行裂缝分布评价。一般来讲,如果地层因受力变形越严重,其破裂程度可能越大,曲率值也应越高。

ReFract 综合裂缝预测与建模软件 2008-10-16 10:44:30| 分类:石油软件| 标签:|字号大中小订阅 近年来,在油气勘探领域,对裂缝油藏的研究变的越来越重要。ReFract应用模糊逻辑技术,对直接反映裂缝的测井数据和与裂缝关系密切的地震属性、地质数据进行多学科综合分析与描述,使我们大幅度提高对裂缝分布的认识,减低裂缝油藏的勘探与开发风险。 裂缝要素分级是ReFract的独特功能,具有重要的地位和意义,它使我们真正避免了无用信息,大大提高后续裂缝预测和建模工作的精度与可靠性,也大幅度的提高了工作效率。 ReFract采用人工智能非线性神经网络技术进行裂缝分布模拟。由于各种描述裂缝要素的多种属性(构造应力、地震属性等)与裂缝指示参数(例如裂缝密度、裂缝各项异性等)之间的关系是非线性的,而且是复杂多变的,因此人工智能神经网络技术无疑是描述裂缝和建立裂缝模型 的有效手段。 值得一提的是,在ReFract中,所有的数据应用都是非强制性的,对数据的要求具有很大的灵活性,所有对研究区的,这对勘探阶段数据缺乏的状况尤其重要。 裂缝要素分级 人工智能神经网络建模

曲率

曲率: . 1 ;0.) 1(lim M s M M :.,13202a K a K y y ds d s K M M s K tg y dx y ds s =='+''==??='?'???= =''+=→?的圆:半径为直线:点的曲率:弧长。:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:α ααα α 定积分的近似计算: ???----+++++++++-≈ ++++-≈ +++-≈ b a n n n b a n n b a n y y y y y y y y n a b x f y y y y n a b x f y y y n a b x f )](4)(2)[(3)(])(2 1 [)()()(1312420110110 抛物线法:梯形法:矩形法: 定积分应用相关公式: ??--==?=?=b a b a dt t f a b dx x f a b y k r m m k F A p F s F W )(1)(1 ,2 2 2 1均方根:函数的平均值:为引力系数引力:水压力:功: 空间解析几何和向量代数:

。 代表平行六面体的体积为锐角时, 向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。 与是向量在轴上的投影:点的距离:空间ααθθθ??,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(22 2 2 2 2 2 212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a k j i b a c b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u AB AB AB j z z y y x x M M d z y x z y x z y x z y x z y x z y x z y x z z y y x x z z y y x x u u ??==??=?=?==?=++?++++=++=?=?+=+?=-+-+-== (马鞍面)双叶双曲面:单叶双曲面:、双曲面: 同号) (、抛物面:、椭球面:二次曲面: 参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程: 1 1 3,,2221 1};,,{,1 302),,(},,,{0)()()(122 222222 22222 222 22220000002 220000000000=+-=-+=+=++?? ? ??+=+=+===-=-=-+++++= =++=+++==-+-+-c z b y a x c z b y a x q p z q y p x c z b y a x pt z z nt y y mt x x p n m s t p z z n y y m x x C B A D Cz By Ax d c z b y a x D Cz By Ax z y x M C B A n z z C y y B x x A 多元函数微分法及应用

CATIA中曲面外形分析

曲面外形分析 CATIA 提供了丰富的曲面外形分析功能对曲面进行分析,包括反射线,高亮分析、面上曲率分析、斑马线分析等功能。本文将对上述各项分析功能进行介绍。 1 反射线 反射线(Reflection Line),通过建立一组平行的直线,用这组直线模拟霓虹灯,将光线照射到曲面上,形成一系列的反射线,由此分析曲面的形状。 首先需要选择要进行分析的曲面。接着在【Shape Analysis(外形分析)】工具栏中选择【反射线】功能,弹出【Reflection Lines】对话框。在对话框中,Neons栏目可以设置反射线的密度及数量。在输入栏中设定反射线的数量, 在输入栏中设定反射线的间距。单击对话框中的按钮,可以将指南针移动到曲面上方。如图1所示。 图1 在Eye栏目中列出了反射线的入射角度。屏幕视角,以屏幕垂直的方向将光线投射到曲面上,旋转曲面,可以观察到反射线的变化,如图2所示是两个不同视角的反射线。

图2 指南针方向,以指南针的方向作为入射光线的方向,调整指南针的方向,可以改变反射线,如图3所示。 图3 在反射直线上单击右键,弹出如图4所示的菜单,选择Keep this reflection line 可以将当前所选择的直线在曲面上的所有反射线保留成为曲线,如图5所示。选择Keep all reflection lines可以将所有反射线保留。

图4 图5 2 拐点曲线 拐点曲线(Inflection line),可以江曲面上曲率为0的点连接成曲线。拐点曲线两侧的曲率方向相反。在【Shape modification(外形修改)】工具栏中选择 拐点曲线功能,弹出如图6所示的对话框。首先需要选择要进行分析的曲面,曲面显示的拐点曲线,如图6所示。

缓和曲线曲率半径 的计算

所谓完整缓和曲线就是某段缓和曲线的一端与直线连接点的曲率半径必须是无穷大(可用10的45次方代替,有时也可用“0”表示,具体情况具体分析),而缓和曲线两端无论在什么情况下与圆曲线相接时,其两端的曲率半径必须与对应连接圆曲线的半径相等。 现在我们来谈谈非完整缓和曲线,从上面的话知道,如果某段缓和曲线的一端与直线连接点曲率半径不是无穷大,而是一个实数,那么这段缓和曲线就是非完整缓和曲线。 设计图中遇到这种情况,一般会告诉这段缓和曲线的长度(我们把这段缓和曲线的长度记作L2,缺少的一段缓和曲线长度记作L1,L1+L2=完整缓和曲线长度L),如果没告诉这段缓和曲线的长度,也可以通过两端的桩号计算出来、设计参数A及缓和曲线另一端的曲率半径R2(应该是与一个圆曲线相接,也就是说R2等于这个圆曲线的半径)。 我们在输入匝道程序时必须要知道R1(起点曲率半径),怎么办呢?那就通过计算把R1计算出来不就行了,下面就是计算过程: 由公式:R=A2÷L 推出 R1= A2÷L1 => A2=R1*L1 ……………………………………………………① R2= A2÷(L1+L2) => A2=R2*(L1+L2) ……………………………………………………② R2= A2÷(L1+L2) => R2= A2÷L => L=A2÷ R2 …………………………………………③ 由公式①②推出 R1*L1=R2*(L1+L2) => R1=R2*(L1+L2)÷ L1 …………………………………………④ L=L1+L2 => L1=L-L2 ……………………………………………⑤ 由公式③④⑤推出 R1=R2*L÷(L-L2) => R1= A2÷(A2÷ R2-L2) …………………………………………⑥ 公式⑥就是我们要找的曲率半径公式,计算得到结果计算完毕。 现在我们在编制非完整缓和曲线程序时就清楚的知道起点和终点的曲率半径了。还要说明一点就是,计算出来的曲率半径既是起点也是终点,既是终点也是起点,关键是看线路前进方向了,只要大家细心,分清起点终点输入程序,计算出来的准没错。

关于不同类型缓和曲线的判断及起点、终点曲率半径的计算方法

目前在匝道或线路施工坐标计算中经常遇到缓和曲线,实际中相信有很多测友选择用积木法或叫线元法正反算程序进行线路坐标计算,这就牵涉到线元的起点终点曲率半径判断的问题,一般的直线元,圆曲线元的起点终点半径判断,比较容易,可能令大家感觉麻烦的就是缓和曲线起点终点半径判断问题,缓和曲线有时候判断算对了,有时候却坐标算不对,究其原因,其实问题出于该缓和曲线是否是完整缓和曲线引起的。关于这点,相关的课本教材上没有明确的讲述,网上对此问题的解释也是散见于不同的论文著作中,对于测量新手来说,线元法程序是非常适用上手的,但却往往因为遇到不完整缓和曲线的起点或终点的半径判断计算不出来导致坐标计算错误,的确是件令人恼火的事情,在此我就把自己的判断经验做一论述,给用线元法程序的测友们一同分享,当然高手们请一笑而过,也可留下你的经验与大家一起分享交流学习。 第一:先说说完整缓和曲线和不完整缓和曲线以及不对称缓和曲线与对称缓和曲线的概念问题,以免混为一谈. 1.当对于单独一段缓和曲线从其完整与否来讲是分为完整与不完整两类;当对于一个单交点内的两段缓和曲线(即常说的第一缓和曲线和第二缓和曲线而言)又有对称缓和曲线与不对称缓和曲线之分。由此看来,完整与对称与否是针对缓和曲线两个方面来看待区分的。 2.缓和曲线我们的测量教材上讲述的其实就是完整缓和曲线,也可以知道缓和曲线上:各个点的半径是不同的,起点到终点的半径值过度是从正无穷大到所接圆曲线半径之过度如从ZH向HY方向;或者是从所接圆曲线半径值向正无穷大过度的,如从YH向HZ方向。那么由此可以不难判断出来,完整缓和曲线就是符合上述特征的,那么不完整的缓和曲线就是不符合上述特征的,但是线路上的平曲线设计时候一般缓和曲线不单独存在的,整体上缓和曲线前或后一般都是要连接一个圆曲线的,那么不完整缓和曲线其实就是在完整缓和曲线上截取的一段,一般就是去掉了半径无穷大的那端而是从某个点开始的半径值向所接圆曲线半径值过度的。 3.对称与不对称缓和曲线是相对于一个单交点内的两段缓和曲线(即常说的第一

基于曲率的点云数据简化方法

基于曲率的点云数据简化方法 摘要:作为一种非接触型设备,它可以快速高精度的采集部分曲面数据,它变成最常用的设备,对于刻画部分曲面数据。然而,它产生大量的点云数据,为了减少计算时间和降低内存需求必须对这些点云数据进行精简。针对以往点云数据精简方法的局限性,本文提出一种基于曲率的新的精简方法。它包括搜索K个近临为了重建数据拓扑结构,计算和调整切平面法线,通过使用抛物线拟合的方法来估计曲率,并且给出数据精简原则。实验结果表明新的方法明显的减少了点云的数量,而且完好的保留了物体的几何特征。 关键字:数据精简、K个近邻、逆向工程、曲率 1简介 在逆向工程中,一种非接触式测量设备可以非常快速、高精度的扫描部件,它变成刻画部分曲面数据的主流设备。然而,获取的数据是稠密无序的,以至于难于直接给表面模型着色。这些数据需要大量的存储空间、并且大大的增加了计算的时间。因此,如何大量的精简点云数据的数量,并完美的保留数据的几何特征是点云数据精简的关键。 两个主要的趋势可以被观测到在这个实验尝试中。一个是格网简化。正如一个一般的缺点,它首先必须建立并维持网格数据结构,然后根据一些原则来减少数据,这个过程是很复杂和花费时间的。另一种是基于点的精简方法,这种方法减少点云数据通过使用部分几何信息。在文献3中,作者使用包围盒去构建分割面来将数据分割成线结构,然后根据弦角偏差法精简点云数据。在文献4中,作者使用基于局部曲面的点的法线值,这个局部曲面来自使用法线标准差生成的不规则三角网。数据精简是通过在每个网格中选择一个代表性的点,删除其他的点来完成的。 基于曲率减少点云是另一种基于点精简的方法。在参考文献5中,作者根据计算出来的每个点的曲率将点进行划分,并且不同的区间设立不同的误差值ξ,

XTRACT截面弯矩曲率分析教程

XTRACT截面弯矩曲率分析教程 Project: 钢筋混凝土柱:300mm×300mm; 纵向钢筋:8根直径22mm,屈服强度fy:500MPa,弹模Es:206000MPa,硬化系数b:0.01; 箍筋:直径6mm,间距100mm 混凝土:C20,抗压强度fc:20.0MPa,其他材料参数在软件中设置;覆盖层厚度:20mm。Step One:截面设计部分 New Project: 根据需要自行定义,本例New Project Title:MomentCurvatureColumn,然后选择“Forward”进入下一步。 Define Section Name:这里定义为:Column300(300表示柱子截面高度); Start From:选择“Template(模板)”,也可以自定义,根据自行需要选择; Select Units:本例单位制“N-mm”; Select Material Type:如果选择“Template”,该项不可更改。 接下来,选择“BeginXTRACT”进入下一步“截面设计模板”。

Section Design Template: 在Cross Section:Section Information设置如下。 在“Confinement Properties:”第一项表示箍筋直径,第二项表示箍筋间距。 然后,“Next”设置截面几何信息。 Section Width:截面高度,本例300mm; Section Height:截面高度,本例300mm; Cover Thickness:覆盖层厚度,本例为20mm,此处需注意,覆盖层厚度为纵筋外表面到边缘的距离; Number of Longi..:纵筋数量8; Longitudinal Bar Size:纵筋直径22mm; “下一步”

空间曲线的曲率、挠率和Frenet公式

空间曲线的曲率、挠率和Frenet公式摘要:本文研究了刻画空间曲线在某点邻近的弯曲程度和离开平面程度的量—曲率和挠率以及空间曲线论的基本公式--Frenet公式,并且举例有关曲率、挠率的计算和证明. 关键词:空间曲线;曲率;挠率;Frenet公式 Spatial curvature,torsion and Frenet formulas Abstract:This paper studies space curves depict a point near the bend in the degree and extend of the amount of leave plane-the curvature and torsion and the basic formula of space curves-Frenet formulas,and for example the curvature and torsion of the calculation and proof. Key Words: space curves; curvature; torsion; Frenet formulas 前言 空间曲线的曲率、挠率和Frenet公式是空间曲线基本理论的一部分,它是以空间曲线的密切平面和基本三棱形的知识作为基础的.空间曲线的曲率、挠率和Frenet公式在空间曲线的基本理论中占有重要位置,是空间曲线的一些基本性质和基本公式.曲线的曲率和挠率完全决定了曲线的形状.当曲线的曲率和挠率之间满足多种不同的关系时,就会得到不同类型的曲线.例如:0 k>时为直线,0 τ=时为平面曲线. 本文将从定义、公式推导和具体举例三方面逐步解析空间曲线的曲率、挠率和Frenet公式.本文第一部分讲述曲率和挠率的定义,第二部分讲述Frenet公式和曲率、挠率的一般参数表示的推导,第三部分具体举例有关曲率、挠率的计算和证明. 1.空间曲线的曲率和挠率的定义 1.1准备知识—空间曲线的伏雷内标架 给出2c类空间曲线()c和()c上一点p.设曲线()c的自然参数表示是

(整理)函数的凸性曲线的曲率.

精品文档 第7章 函数的凸性·曲线的曲率 ①凸函数 函数的“凸性”概念最初来自曲线的弯曲方向。 例如,曲线3 x y =(图1)在Oy 轴左边是向下弯曲的(称为上凸)而在Oy 轴右边是向上弯曲的(称为下凸)。虽然说“弯曲方向” 或“凸性”这些名称是几何上的术语,但经过抽象后的凸函数 理论在其它数学分支中也是很有用的。 从图2中看出,向上弯曲(下凸)的曲线上任何两点的连线(AB 的中点C 在弧AB 的上方;而从图3中看出,向下弯曲(上凸)的曲线上任何两点的连线(弦)AB 的中点C 在弧AB 的下方。 【注1】在国内早期的一些教科书(包括翻译前苏联的一些教科书)中,都把下凸函数称为“凹函数”,而把上凸函数称为“凸函数”。这里的称呼与新近一些教科书或论文中的称呼是一致的。请读者注意到这些区别。 【注2】还请读者注意,通常说“函数()f x 在区间(,)a b 内是下(上)凸函数”,若对于(,)a b 内任意两点1x 和2x 12()x x ≠与任意(0,1)t ∈,都满足琴生(Jesen)不等式 []1212() (1)()(1)()f t x t x t f x t f x >+-<+- 它等价于不等式 () 11221122()()()f t x t x t f x t f x >+<+ (其中1t 和2t 为正数且121t t +=) 显然,不等式(※)是琴生不等式的特殊情形。不过,对于连续函数来说,不等式(※)与琴生不等式是等价的。因此,我们就用简单的不等式(※)定义函数的凸性。关于连续函数情形下两者等价性的证明,有兴趣的读者 图2 O x 1 (x 1+x 2 )/2 x 2 图3

曲面曲率计算方法的比较与分析

. 研究生专业课程报告 题目:曲面曲率直接计算方法的比较 学院:信息学院 课程名称:三维可视化技术 任课教师:刘晓宁 姓名:朱丽品 学号: 201520973 西北大学研究生处制

曲面曲率直接计算方法的比较 1、摘要 曲面曲率的计算是图形学的一个重要内容,一般来说,曲面的一阶微分量是指曲面的切平面方向和法向量,二阶微分量是指曲面的曲率等有关量.它们作为重要的曲面信息度量指标, 在计算机图形学, 机器人视觉和计算机辅助设计等领域发挥了重要的作用.此文对曲面上主曲率的2种直接估算方法(网格直接计算法和点云直接计算法)进行了论述, 并进行了系统的总结与实验, 并给出了其在颅像重合方面的应用。 关键词曲面曲率、主曲率、点云、三角网格 2、引言 传统的曲面是连续形式的参数曲面和隐式曲面, 其微分量的计算已经有了较完备的方法.随着激光测距扫描等三维数据采样技术和硬件设备的长足进步, 以及图形工业对任意拓扑结构光滑曲面造型的需求日益迫切, 离散形式的曲面———细分曲面、网格曲面和点云曲面正在逐渐成为计算机图形学和几何设计领域的新宠.于是, 对这种离散形式的曲面如何估算微分量, 就成为一个紧迫的课题。 CT扫描技术获得的原始点云和网格数据通常只包含物体表面的空间三维坐标信息及其三维网格信息,没有明确的几何信息,而在点云和网格的简化、建模、去噪、特征提取等数据处理和模式识别中,常需要提前获知各点的几何信息,如点的曲率、法向量等,也正基于此,点云和网格的几何信息提取算法一直是研究的热点。点的法向量

和曲率通常采用离散曲面的微分几何理论来计算,由于离散曲面分为网格和点集两种形式,其法向量和曲率计算也分为两类: 一类是基于网格的法向量和曲率计算,另一类是基于散点的法向量和曲率计算。由于基于三角网的点云几何信息计算精度一般比较低,通常采用直接计算法。在点云几何信息提取中,常采用基于散乱点的点云几何信息计算方法,该类方法主要是通过直接计算法和最小二乘拟合算法获取点云的局部n 次曲面,然后根据曲面的第一基本形式和第二基本形式求解高斯曲率和平均曲率,而点云的局部曲面表示有两种: 一是基于法向距离的局部曲面表示,二是基于欧几里德距离的局部曲面表示。 本节中针对近几年来国际上提出的对三角网格曲面估算离散曲率的直接估算法,从数学思想与表达形式等方面进行系统的归纳与总结. 3、三角网格曲面的曲率的计算及代码实现 为了叙述清楚起见, 引入统一的记号.k 1和k 2表示主曲率,曲面的主曲率即过曲面上某个点具有无穷个曲线,也就存在无穷个曲率(法曲率),其中存在一条曲线使得该曲线的曲率为极大,这个曲率为极大值k 1,垂直于极大曲率面的曲率为极小值k 2。这两个曲率的属性为主曲率。它们代表着法曲率的极值。主曲率是法曲率的最大值和最小值。 H 表示平均曲率,是空间上曲面上某一点任意两个相互垂直的正交曲率的平均值。如果一组相互垂直的正交曲率可表示为K 1、K 2,

高斯曲率的计算公式汇总

第二章 曲面论 高斯曲率的计算公式 高斯曲率绝妙定理 2 122LN M K k k EG F -==- 。 注意 (,,) uu r r r L n r =?= , (,,)uv r r r M n r =?= , (,,) vv r r r N n r =?= 。 所以 2 2LN M K EG F -= - 222 1 [(,,)(,,)(,,)]() u v uu u v vv u v uv r r r r r r r r r EG F = -- ,

利用行列式的转置性质和矩阵乘法性质,得 2(,,)(,,)(,,)u v uu u v vv u v uv r r r r r r r r r - (,,)(,,) u u v u v vv v u v uv uu uv r r r r r r r r r r r r ???? ? ?=- ? ? ? ????? u u u v u vv u u u v u uv v u v v v vv v u v v v uv uu u uu v uu vv uv u uv v uv uv r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r ??????=???-????????? u vv u uv v vv v uv uu u uu v uu vv uv u uv v uv uv E F r r E F r r F G r r F G r r r r r r r r r r r r r r ??=?-??????? u vv u uv v vv v uv uu u uu v uu vv uv uv uv u uv v E F r r E F r r F G r r F G r r r r r r r r r r r r r r ??=?-????-??? , (其中用到行列式按第三行展开计 算的性质。)

相关文档
最新文档