高中数学立体几何专题空间距离的各种计算(含答案)

高中数学立体几何专题空间距离的各种计算(含答案)
高中数学立体几何专题空间距离的各种计算(含答案)

高中数学立体几何 空间距离

1.两条异面直线间的距离

和两条异面直线分别垂直相交的直线,叫做这两条异面直线的公垂线;两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离.

2.点到平面的距离

从平面外一点引一个平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离. 3.直线与平面的距离

如果一条直线和一个平面平行,那么直线上各点到这平面的距离相等,且这条直线上任意一点到平面的距离叫做这条直线和平面的距离. 4.两平行平面间的距离

和两个平行平面同时垂直的直线,叫做这两平行平面的公垂线,它夹在两个平行平面间的公垂线段的长叫做这两个平行平面的距离.

题型一:两条异面直线间的距离

【例1】 如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1)求证:EF 是AB 和CD 的公垂线; (2)求AB 和CD 间的距离;

【规范解答】 (1)证明:连结AF ,BF ,由已知可得AF =BF . 又因为AE =BE ,所以FE ⊥AB 交AB 于E . 同理EF ⊥DC 交DC 于点F . 所以EF 是AB 和CD 的公垂线.

(2)在Rt △BEF 中,BF =

a 23

,BE =a 21, 所以EF 2=BF 2-BE 2=a 2

12,即EF =a 22

.

由(1)知EF 是AB 、CD 的公垂线段,所以AB 和CD 间的距离为

a 2

2

. 【例2】 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离. 设AB 中点为E ,连CE 、ED .

∵AC =BC ,AE =EB .∴CD ⊥AB .同理DE ⊥AB .

∴AB ⊥平面CED .设CD 的中点为F ,连EF ,则AB ⊥EF . 同理可证CD ⊥EF .∴EF 是异面直线AB 、CD 的距离.

∵CE =23,∴CF =FD =21,∠EFC =90°,EF =2221232

2

=??? ??-???

? ??. ∴AB 、CD 的距离是

2

2

. 【解后归纳】 求两条异面直线之间的距离的基本方法:

(1)利用图形性质找出两条异面直线的公垂线,求出公垂线段的长度.

(2)如果两条异面直线中的一条直线与过另一条直线的平面平行,可以转化为求直线与平面的距离

.

例1题图

例2题图

(3)如果两条异面直线分别在两个互相平行的平面内,可以转化为求两平行平面的距离.

题型二:两条异面直线间的距离

【例3】 如图(1),正四面体ABCD 的棱长为1,求:A 到平面BCD 的距离; 过A 作AO ⊥平面BCD 于O ,连BO 并延长与CD 相交于E ,连AE . ∵AB =AC =AD ,∴OB =OC =OD .∴O 是△BCD 的外心.又BD =BC =CD , ∴O 是△BCD 的中心,∴BO =

3

2BE =332332=

?. 又AB =1,且∠AOB =90°,∴AO =363312

22=

???? ??-=-BO AB .∴A 到平面BCD

的距离是36. 【例4】

在梯形ABCD 中,AD ∥BC ,∠ABC =

2

π,AB =a ,AD =3a 且sin ∠ADC =55,又P A ⊥平面ABCD ,P A =a ,

求:(1)二面角P —CD —A 的大小; (2)点A 到平面PBC 的距离.

【规范解答】 (1)作AF ⊥DC 于F ,连结PF , ∵AP ⊥平面ABCD ,AF ⊥DC ,∴PF ⊥DC , ∴∠PF A 就是二面角P —CD —A 的平面角. 在△ADF 中,∠AFD =90°,∠ADF =arcsin

55

,AD =3a ,∴AF =5

3a , 在Rt △P AF 中tan ∠PF A =3535=

=a a AF PA ,∴∠PF A =arc tan 3

5. (2)∵P A ⊥平面ABCD ,∴P A ⊥BC ,又BC ⊥AB ,

∴BC ⊥平面P AB ,作AH ⊥PB ,则BC ⊥AH ,∴AH ⊥平面PBC ,∵P A ⊥AB ,P A =AB =a ,

∴PB =2a ,∴AH =a 2

2.

【例5】

如图,所示的多面体是由底面为ABCD 的长方体被截面AEC 1F 所截面而得到的,其中AB=4,BC=2,CC 1=3,BE=1.(Ⅰ)求BF 的长;(Ⅱ)求点C 到平面AEC 1F 的距离.

解法1:(Ⅰ)过E 作EH//BC 交CC 1于H ,则CH=BE=1,EH//AD ,且EH=AD. ∵AF ∥EC 1,∴∠FAD=∠C 1EH. ∴Rt △ADF ≌Rt △EHC 1.

∴DF=C 1H=2. .622

2

=+=∴DF BD BF (Ⅱ)延长C 1E 与CB 交于G ,连AG , 则平面AEC 1F 与平面ABCD 相交于AG . 过C 作CM ⊥AG ,垂足为M ,连C 1M ,

由三垂线定理可知AG ⊥C 1M.由于AG ⊥面C 1MC , 且AG ?面AEC 1F ,所以平面AEC 1F ⊥面C 1MC.

在Rt △C 1CM 中,作CQ ⊥MC 1,垂足为Q ,则CQ 的长即为C 到面AEC 1F 的距离.

.11

33

417

12317

123,17

121743cos 3cos 3,.

17,1,2

2

1

1

221=+

?

=

?=

∴=?

===∠=∠=+===MC CC CM CQ GAB MCG CM MCG GAB BG AB AG BG CG

BG

CC EB 知由从而可得由

解法2:(I )建立如图所示的空间直角坐标系,则D (0,0,0),B (2,4,0), A (2,0,0),C (0,4,0),E (2,4,1),C 1(0,4,3).设F (0,0,z ).

∵AEC 1F 为平行四边形,

例3题图

B A

C

D

1

A

1

B 1

C

1

A .

62,62||).

2,4,2().2,0,0(.2),2,0,2(),0,2(,,

11的长为即于是得由为平行四边形由BF F z z EC AF F AEC =--=∴∴=∴-=-=∴∴

(II )设1n 为面AEC 1F 的法向量,)1,,(,11y x n ADF n =故可设不垂直于平面显然

???=+?+?-=+?+??????=?=?02020140,0,011y x y x n n 得由??

?

??-==∴???=+-=+.41,1,022,014y x x y 即

111),3,0,0(n CC CC 与设又=的夹角为a ,则11114cos ||||

CC n CC n α?=

=

? ∴C 到平面AEC 1F 的距离为.11

33

4333343cos ||1=?==αCC d

【例6】

正三棱柱111C B A ABC -的底面边长为8,对角线101=C B ,D 是AC 的中点。

(1)求点1B 到直线AC 的距离.(2)求直线1AB 到平面BD C 1的距离. 解:(1)连结BD ,D B 1,由三垂线定理可得:AC D B ⊥1, 所以D B 1就是1B 点到直线AC 的距离。 在BD B Rt 1?中,6810222211=-=-=

BC C B BB 34=BD .

2122121=+=∴B B BD D B .

(2)因为AC 与平面BD 1C 交于AC的中点D, 设E BC C B =?11,则1AB //DE ,所以1AB //平面BD C 1, 所以1AB 到平面BD 1C 的距离等于A点到平面BD 1C 的距离,等于C点到平面BD 1C 的距离,也就等于三棱 锥1BDC C -的高, BDC C BDC C V V --=11 ,

13

1

311CC S hS BDC BDC ??=∴,131312=∴h ,即直线1AB 到平面BD 1C 的距离是131312. 【解后归纳】 求空间距离注意三点: 1.常规遵循一作二证三计算的步骤; 2.多用转化的思想求线面和面面距离;

3.体积法是一种很好的求空间距离的方法.

【范例4】如图,在长方体AC 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动. (1)证明:D 1E ⊥A 1D ;

(2)当E 为AB 的中点时,求点E 到面ACD 1的距离;

(3)AE 等于何值时,二面角D 1—EC —D 的大小为4

π

.

解析:法1

(1)∵AE ⊥面AA 1DD 1,A 1D ⊥AD 1,∴A 1D ⊥D 1E

(2)设点E 到面ACD 1的距离为h ,在△ACD 1中,AC=CD 1=5,AD 1=2,

故.2121,232152211=??==-??=

??BC AE S S ACE C AD 而 11

111131,1,.33223

D AEC

AEC AD C V S DD S h h h -??∴=?=?∴?=?∴=

1

A

(3)过D 作DH ⊥CE

于H ,连D 1H 、DE ,则D 1H ⊥CE , ∴∠DHD 1为二面角D 1—EC —D 的平面角.

设AE=x ,则BE=2-x

11,, 1.

4

,,,

Rt D DH DHD DH Rt ADE DE Rt DHE EH x π

?∠=

∴=?=∴?=在中在中在中

.

4

,32.

32543.

54,3122π

的大小为二面角时中在中在D EC D AE x x x x x x CE CBE Rt CH DHC Rt ---=∴-=?+-=

+∴+-=?=?

法2:以D 为坐标原点,直线DA 、DC 、DD 1分别为x 、y 、z 轴,建立空间直角坐标系,设AE=x ,则A 1(1,0,1),D 1(0,0,1),E(1,x ,0),A(1,0,0), C(0,2,0).

(1).,0)1,,1(),1,0,1(,1111D DA x D DA ⊥=-=所以因为 (2)因为E 为AB 的中点,则E (1,1,0), 从而)0,2,1(),1,1,1(1-=-=D ,)1,0,1(1-=AD ,

设平面ACD 1的法向量为),,(c b a =,

则?????=?=?,

0,01AD n 也即???=+-=+-002c a b a ,得???==c a b a 2, 从而)2,1,2(=,所以点E 到平面AD 1C 的距离为.3

1

3212|

|1=-+=

=n h (3)设平面D 1EC 的法向量),,(c b a n =, ∴),1,0,0(),1,2,0(),0,2,1(11=-=-=DD D x

由???=-+=-??????=?=?.0)2(0

2,

0,01x b a c b CE n D 令b =1, ∴c=2, a =2-x ,

∴).2,1,2(x n -=依题意.2

25

)2(22

2

4

cos

211=

+-?=

=

x π ∴321+=x (不合,舍去),322-=x . ∴AE=32-时,二面角D 1—EC —D 的大小为

4

π

. ●对应训练 分阶提升 一、基础夯实

1.把边长为a 的正△ABC 沿高线AD 折成60°的二面角,则点A 到BC 的距离是 ( )

A.a

B.

a 26 C.a 33 D.a 4

15 2.△ABC 中,AB =9,AC =15,∠BAC =120°.△ABC 所在平面外一点P 到三个顶点A 、B 、C 的距离都是14,那么点P 到平面α的距离为 ( )

A.7

B.9

C.11

D.13

3.从平面α外一点P 向α引两条斜线P A ,PB .A ,B 为斜足,它们与α所成角的差是45°,它们在α内的射影长分别是2cm 和12cm ,则P 到α的距离是 ( )

A.4cm

B.3cm 或4cm

C.6cm

D.4cm 或6cm

4.空间四点A 、B 、C 、D 中,每两点所连线段的长都等于a ,动点P 在线段AB 上,动点Q 在线段CD 上,则P 与Q 的最短距离为 ( )

A.a 2

1 B.a 2

2 C.a 2

3 D.a 5.在四面体P —ABC 中,P A 、PB 、PC 两两垂直.M 是面ABC 内一点,且点M 到三个面P AB 、PBC 、PCA 的距离分别为2、3、6,则点M 到顶点P 的距离是 ( )

A.7

B.8

C.9

D.10

6.如图,将锐角为60°,边长为a 的菱形ABCD 沿较短的对角线折成60°的二面角,则AC 与BD 的距离是 ( )

A.a 43

B.

a 43 C.a 23 D.a 4

6

7.如图,四棱锥P —ABCD 的底面为正方形,PD ⊥底面ABCD ,PD =AD =1,设点C 到平面P AB 的距离为d 1,点B 到平面P AC 的距离为d 2,则有 ( )

A.1

B.d 1

C.d 1<1

D.d 2

8.如图所示,在平面α的同侧有三点A 、B 、C ,△ABC 的重心为G .如果A 、B 、C 、G 到平面α的距离分别为a 、b 、c 、d ,那么a+b+c 等于 ( )

A.2d

B.3d

C.4d

D.以上都不对

9.如图,菱形ABCD 边长为a ,∠A =60°,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 上的点且

2====DG

CG

FB CF HD AH EB AE ,沿EH 和FG 把菱形的两锐角折起,使A 、C 重合,这时点A 到平面EFGH 的距离是 ( )

A.

2

a B.a 22 C.a 23 D.a 615

二、思维激活

10.二面角α-MN -β等于60°,平面α内一点A 到平面β的距离AB 的长为4,则点B 到α的距离为 .

11.在60°的二面角α—l —β中,A ∈α,AC ⊥l 于C ,B ∈β,BD ⊥l 于D ,又AC =BD =a ,CD =2a ,则A 、B 两点间距离为 .

12.设平面α外两点A 和B 到平面α的距离分别为4cm 和1cm ,AB 与平面α所成的角是60°,则线段AB 的长是 .

13.在直角坐标系中,已知A (3,2),B (-3,-2)沿y 轴把直角坐标系折成平面角为α的二面角A —Oy —B 后,∠AOB =90°,则cos α的值是 . 三、能力提高

第6题图

第7题图

第8题图

第9题图

14.在边长为a 的菱形ABCD 中,∠ABC =60°,PC ⊥平面ABCD ,E 是P A 的中点,求点E 到平 面PBC 的距离.

15.在直三棱柱ABC —A 1B 1C 1中,∠ACB 为直角,侧面AB 1与侧面AC 1所成的二面角为60°,M 为AA 1上的点.∠A 1MC 1=30°,∠BMC 1=90°,AB =a .

(1)求BM 与侧面AC 1所成角的正切值. (2)求顶点A 到面BMC 1的距离.

16.已知斜三棱柱ABC —A 1B 1C 1的侧面A 1ACC 1与底面ABC 垂直.∠ABC =90°,BC =2,AC =23,且AA 1⊥A 1C ,AA 1=A 1C .

(1)求侧棱A 1A 与底面ABC 所成角的大小;

(2)求侧面A 1ABB 1与底面ABC 所成二面角的大小; (3)求顶点C 到侧面A 1ABB 1的距离.

17.如图,在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,E 、F 分别为棱AB 与BC 的中点,EF 与BD 交于H . (1)求二面角B 1—EF —B 的大小.

(2)试在棱B 1B 上找一点M ,使D 1M ⊥面EFB 1,并证明你的结论. (3)求点D 1到面EFB 1的距离.

第15题图

第17题图

空间的距离习题解答

1.D 折后BC =2a ,∴点A 到BC 的距离为41542

2a a a =??

?

??-.

2.A BC =21120cos 159215922=???-+. ∴△ABC 外接圆半径R =

37120sin 221

=?

,

∴点P 到α的距离为.7)37(1422=-

3.D 设PO ⊥α垂足为O ,|PO |=x cm ,∠OAP =β,∠OBP =γ,那么β-γ=45°, tan β=

2x ,tan γ=12

x

,tan (β-γ)=tan 45° 展开左边并整理得:x 2-10x +24=0,解得x 1=6,x 2=4.

4.B P 、Q 的最短距离即为异面直线AB 与CD 间的距离,当P 为AB 的中点,Q 为CD 的中点时符合题意.

5.A PM =7632222=++.

6.C 取BD 的中点O 连AO 、OC ,作OE ⊥AC 于E ,则OE 为所求,∴AO =CO =AC =2

3a . 7.D 点C 到平面P AB 的距离d 1=

2

2, 点B 到平面P AC 的距离d 2=

332

1

122

1=+

?

, ∵

12

233<<,∴d 2

312

2=+-+-

c b a c

b d .∴a +b +

c =3

d . 9.A 设BD 的中点为O ,

∴EO =6760cos 232232

2a a a a a =???-??

?

??+??? ??,点A 到平面EFGH 的距离为23679422a a a =-. 10.2 作AC ⊥MN 于C ,连BC ,则BC ⊥MN ,

∴∠ACB =60°,又MN ⊥平面ABC ,

∴平面ABC ⊥平面α,作BD ⊥AC 于D ,则BD ⊥α,

∴BD 的长即为所求,得BD =2.

11.a 3 AB =a a a a a a 360cos 2)2(222=????-++. 12.23cm 或

3

3

10cm 当点A 、B 在α同侧时,AB =

3260sin 3

=?;

当点A 、B 在α异侧时,AB =3

3

1060sin 5=

? 13.9

4

如图,AB ″=26)32(22222=+=+OB OA ∵BC ⊥y 轴,B ′C ⊥y 轴,

∴∠B ′CB ″为二面角A —Oy —B 的平面角. ∠B ′CB ″=α,在△B ′CB ″中,B ′C =B ″C =3, B ′B ″=104262=-,由余弦定理易知cos α=

9

4. 14.如图,将点E 到平面PBC 的距离转化成线面距,再转化成点面距. 连AC 、BD ,设AC 、BD 交于O ,则EO ∥平面PBC , ∴OE 上任一点到平面PBC 的距离相等. ∵平面PBC ⊥平面ABCD ,

过O 作OG ⊥平面PBC ,则G ∈BC , 又∠ACB=60°,AC=BC=AB=a , ∴OC =

2

a ,OG =OC sin60°=43a .

点评:若直接过E 作平面PBC 的垂线,垂足难以确定.在解答求距离时,要注意距离之间的相互转化有的能起到意想不到的效果.

15.(1)∵三棱柱ABC —A 1B 1C 1为直三棱柱,∴∠BAC 为二面角B 1—AA 1—C 1的平面角,

∴∠BAC =60°.

又∵∠ACB 为直角,∴BC ⊥侧面AC 1.

连MC ,则MC 是MB 在侧面AC 1上的射影. ∴∠BMC 为BM 与侧面AC 1所成的角.

且∠CMC 1=90°,∠A 1MC 1=30°,所以∠AMC =60°. 设BC =m ,则AC =m 33

,MC =3

2m , 所以tan ∠BMC =

2

3. 即BM 与侧面AC 1所成的角的正切值为

2

3. (2)过A 作AN ⊥MC ,垂足为N ,则AN ∥面MBC 1.

∵面MBC ⊥面MBC 1,且过N 作NH ⊥MB ,垂足为H , 则NH 是N 到面MBC 1的距离,也就是A 到面MBC 1的距离. ∵AB =a ,AC =2

a

,且∠ACN =30°, ∴AN =

4

a 且∠AMN =60°,∴MN =a 123

.

第14题图解

∴NH =MN sin ∠BMC =

a 123×a 52

39(本题还可用等积法). 16.(1)如图所示,作A 1D ⊥AC ,垂足为D ,由面A 1ACC 1⊥面ABC ,得A 1D ⊥面ABC ∴∠A 1AD 为A 1A 与面ABC 所成的角 ∵AA 1⊥A 1C ,AA 1=A 1C ∴∠A 1AD =45°为所求.

(2)作DE ⊥AB 垂足为E ,连A 1E ,则由A 1D ⊥面ABC ,得A 1E ⊥AB , ∴∠A 1ED 是面A 1ABB 1与面ABC 所成二面角的平面角.

由已知AB ⊥BC 得DE ∥BC ,又D 是AC 的中点,BC =2,AC =23 ∴DE =1,AD =A 1D =3,tan ∠A 1ED =

DE

D

A 1=3,故∠A 1ED =60°为所求. (3)连结A 1

B ,根据定义,点

C 到面A 1ABB 1的距离,即为三棱锥C —A 1AB 的高h . 由V C —A 1AB =V A 1-ABC 得31S △AA 1B h =3

1

S △ABC ·A 1D 即

313223

1

22??=??h ,∴h =3为所求. 17.(1)如图连结B 1D 1,AC ,B 1H , ∵底面为正方形ABCD , ∴对角线AC ⊥BD .

又∵E 、F 分别为AB 、BC 的中点 ∴EF ∥AC .∴EF ⊥BD .

又∵棱B 1B ⊥底面ABCD ,EF 面ABCD ,∴EF ⊥B 1B . 又B 1B ∩BD =B ,BB 1面BB 1D 1D ,BD 面BB 1D 1D . ∴EF ⊥面BB 1D 1D .

而B 1H面BB 1D 1D ,BH 面BB 1D 1D ,∴EF ⊥B 1H ,EF ⊥BH . ∴∠B 1HB 为二面角B 1—EF —B 的平面角. 在Rt △B 1BH 中,B 1B =a ,BH =a 4

2

, ∴tan ∠B 1HB =

221=BH

B

B . ∴∠B 1HB =arctan22.

∴二面角B 1—EF —B 的大小为arctan22.

(2)在棱B 1B 上取中点M ,连D 1M , 则D 1M ⊥面EFB 1.连结C 1M .

∵EF ⊥面BB 1D 1D ,D 1M 面BB 1D 1D . ∴D 1M ⊥EF .

又∵D 1C 1⊥面B 1BCC 1.

∴C 1M 为D 1M 在面B 1BCC 1内的射影.

在正方形B 1BCC 1中,M 、F 分别为B 1B 和BC 的中点, 由平面几何知识B 1F ⊥C 1M .

于是,由三垂线定理可知B 1F⊥D 1M,

而B 1F 面EFB 1,EF 面EFB 1,EF ∩B 1F =F , ∴D 1M ⊥面EFB 1.

(3)设D 1M 与面EFB 1交于N 点,则D 1N 为点D 到面EFB 1的距离, ∵B 1N面EFB 1,D 1M ⊥面EFB 1,

第17题图解

∴B 1N ⊥D 1M .

在Rt △MB 1D 1中,由射影定理D 1B 12=D 1N ·D 1M , 而D 1B 1=2a ,D 1M=a M B D B 2

3

21211=

+, ∴D 1N =.3

4

1211a M D B D =

即点D 1到面EFB 1的距离为a 3

4.

高中数学立体几何 空间距离的计算(学生版)

1.两条异面直线间的距离

和两条异面直线分别垂直相交的直线,叫做这两条异面直线的公垂线;两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离.

2.点到平面的距离

从平面外一点引一个平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离. 3.直线与平面的距离

如果一条直线和一个平面平行,那么直线上各点到这平面的距离相等,且这条直线上任意一点到平面的距离叫做这条直线和平面的距离. 4.两平行平面间的距离

和两个平行平面同时垂直的直线,叫做这两平行平面的公垂线,它夹在两个平行平面间的公垂线段的长叫做这两个平行平面的距离.

题型一:两条异面直线间的距离

【例1】 如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1) 求证:EF 是AB 和CD 的公垂线;(2)求AB 和CD 间的距离;

【例2】 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离.

例1题图

例2题图

【解后归纳】 求两条异面直线之间的距离的基本方法: (1)利用图形性质找出两条异面直线的公垂线,求出公垂线段的长度.

(2)如果两条异面直线中的一条直线与过另一条直线的平面平行,可以转化为求直线与平面的距离. (3)如果两条异面直线分别在两个互相平行的平面内,可以转化为求两平行平面的距离.

题型二:两条异面直线间的距离

【例7】 如图,正四面体ABCD 的棱长为1,求:A 到平面BCD 的距离;

【例8】

在梯形ABCD 中,AD ∥BC ,∠ABC =

2

,AB =a ,AD =3a 且sin ∠ADC =55,又P A ⊥平面ABCD ,P A =a ,

求:(1)二面角P —CD —A 的大小; (2)点A 到平面PBC 的距离.

【例9】 如图,所示的多面体是由底面为ABCD 的长方体被截面AEC 1F 所截面而得到的,其中AB=4,

BC=2,CC 1=3,BE=1.(Ⅰ)求BF 的长;(Ⅱ)求点C 到平面AEC 1F 的距离.

例3题图

B A

C

D

1

A

1

B 1

C

1

A 【例10】 正三棱柱111C

B A AB

C -的底面边长为8,对角线101=C B ,

D 是AC 的中点。 (1)求点1B 到直线AC 的距离.(2)求直线1AB 到平面BD C 1的距离.

【解后归纳】 求空间距离注意三点:

1.常规遵循一作二证三计算的步骤;2.多用转化的思想求线面和面面距离; 3.体积法是一种很好的求空间距离的方法.

【例11】 如图,在长方体AC 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动. (1)证明:D 1E ⊥A 1D ;(2)当E 为AB 的中点时,求点E 到面ACD 1的距离; (3)AE 等于何值时,二面角D 1—EC —D 的大小为

4

π

. ●对应训练 分阶提升

一、基础夯实

1.把边长为a 的正△ABC 沿高线AD 折成60°的二面角,则点A 到BC 的距离是 ( )

A.a

B.

a 26 C.a 33 D.a 4

15 2.△ABC 中,AB =9,AC =15,∠BAC =120°.△ABC 所在平面外一点P 到三个顶点A 、B 、C 的距离都是14,那么点P 到平面α的距离为 ( )

A.7

B.9

C.11

D.13

3.从平面α外一点P 向α引两条斜线P A ,PB .A ,B 为斜足,它们与α所成角的差是45°,它们在α内的射影长分别是2cm 和12cm ,则P 到α的距离是 ( )

A.4cm

B.3cm 或4cm

C.6cm

D.4cm 或6cm

4.空间四点A 、B 、C 、D 中,每两点所连线段的长都等于a ,动点P 在线段AB 上,动点Q 在线段CD 上,则P 与Q 的最短距离为 ( )

A.a 2

1 B.a 2

2 C.a 2

3 D.a 5.在四面体P —ABC 中,P A 、PB 、PC 两两垂直.M 是面ABC 内一点,且点M 到三个面P AB 、PBC 、PCA 的距离分别为2、3、6,则点M 到顶点P 的距离是 ( )

A.7

B.8

C.9

D.10

6.如图,将锐角为60°,边长为a 的菱形ABCD 沿较短的对角线折成60°的二面角,则AC 与BD 的距离是 ( )

A.a 43

B.a 43

C.a 23

D.a 4

6

7.如图,四棱锥P —ABCD 的底面为正方形,PD ⊥底面ABCD ,PD =AD =1,设点C 到平面P AB 的距离为d 1,点B 到平面P AC 的距离为d 2,则有 ( )

A.1

B.d 1

C.d 1<1

D.d 2

8.如图所示,在平面α的同侧有三点A 、B 、C ,△ABC 的重心为G .如果A 、B 、C 、G 到平面α的距离分别为a 、b 、c 、d ,那么a+b+c 等于 ( )

A.2d

B.3d

C.4d

D.以上都不对

9.如图,菱形ABCD 边长为a ,∠A =60°,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 上的点且

2====DG

CG

FB CF HD AH EB AE ,沿EH 和FG 把菱形的两锐角折起,使A 、C 重合,这时点A 到平面EFGH 的距离是 ( )

A.

2

a B.a 22 C.a 23 D.a 615

二、思维激活

10.二面角α-MN -β等于60°,平面α内一点A 到平面β的距离AB 的长为4,则点B 到α的距离为 .

11.在60°的二面角α—l —β中,A ∈α,AC ⊥l 于C ,B ∈β,BD ⊥l 于D ,又AC =BD =a ,CD =2a ,则A 、B 两点间距离为 .

12.设平面α外两点A 和B 到平面α的距离分别为4cm 和1cm ,AB 与平面α所成的角是60°,则线段AB 的长是 .

13.在直角坐标系中,已知A (3,2),B (-3,-2)沿y 轴把直角坐标系折成平面角为α的二面角A —Oy —B 后,∠AOB =90°,则cos α的值是 . 三、能力提高

14.在边长为a 的菱形ABCD 中,∠ABC =60°,PC ⊥平面ABCD ,E 是P A 的中点,求点E 到平 面PBC 的距离.

15.在直三棱柱ABC —A 1B 1C 1中,∠ACB 为直角,侧面AB 1与侧面AC 1所成的二面角为60°,M 为AA 1上的点.∠A 1MC 1=30°,∠BMC 1=90°,AB =a .

(1)求BM 与侧面AC 1所成角的正切值. (2)求顶点A 到面BMC 1的距离.

16.已知斜三棱柱ABC —A 1B 1C 1的侧面A 1ACC 1与底面ABC 垂直.∠ABC =90°,BC =2,AC =23,且AA 1

第8题图

第9题图

A1C,AA1=A1C.

(1)求侧棱A1A与底面ABC所成角的大小;

(2)求侧面A1ABB1与底面ABC所成二面角的大小;

(3)求顶点C到侧面A1ABB1的距离.

17.如图,在棱长为a的正方体ABCD—A1B1C1D1中,E、F分别为棱AB与BC的中点,EF与BD交于H.

(1)求二面角B1—EF—B的大小.

(2)试在棱B1B上找一点M,使D1M⊥面EFB1,并证明你的结论.

(3)求点D1到面EFB1的距离.

第17题图

空间向量在立体几何中的应用——夹角的计算习题-详细答案

【巩固练习】 一、选择题 1. 设平面内两个向量的坐标分别为(1,2,1),(-1,1,2),则下列向量中是平面的法向量的是( ) A. (-1,-2,5) B. (-1,1,-1) C. (1, 1,1) D. (1,-1,-1) 2. 如图,1111—ABCD A B C D 是正方体,11 11114 A B B E =D F =,则1BE 与1DF 所成角的余弦值是( ) A . 1715 B . 2 1 C .17 8 D . 2 3 3. 如图,111—A B C ABC 是直三棱柱,90BCA ∠=?,点11D F 、分别是1111A B AC 、的中点,若 1BC CA CC ==,则1BD 与1AF 所成角的余弦值是( ) A . 1030 B . 2 1 C .15 30 D . 10 15 4. 若向量(12)λ=a ,,与(212)=-b ,,的夹角的余弦值为8 9 ,则λ=( ) A .2 B .2- C .2-或 255 D .2或255 - 5. 在三棱锥P ABC -中,AB BC ⊥,1 2 AB=BC=PA ,点O D 、分别是AC PC 、的中点,OP ⊥ 底面ABC ,则直线OD 与平面PBC 所成角的正弦值( ) A . 621 B . 33 8 C .60 210 D . 30210 6.(2015秋 湛江校级期末)在正四棱锥S —ABCD 中,O 为顶点在底面内的投影,P 为侧棱SD 的中点,且SO=OD ,则直线BC 与平面PAC 的夹角是( ) A .30° B .45° C .60° D .75° 7. 在三棱锥P ABC -中,AB BC ⊥,1 ==2 AB BC PA ,点O D 、分别是AC PC 、的中点,OP ⊥ 底面ABC ,则直线OD 与平面PBC 所成角的正弦值是( )

立体几何中的向量公式

向量法解立体几何 用传统的方法解立体几何需要烦琐的分析、复杂的计算。而用向量法解题思路清晰、过程简洁。对立体几何的常见问题都可以起到化繁为简,化难为易的效果。 一. 证明两直线平行 已知两直线a 和b , b D C a B A ∈∈,,,,则?b a //存在唯一的实数λ使CD AB λ= 二. 证明直线和平面平行 1.已知直线αα∈∈?E D C a B A a ,,,,,且三点不共线,则a ∥?α存在有序实数 对μλ,使CE CD AB μλ+= 2.已知直线,,,a B A a ∈?α和平面 α的法向量n ,则a ∥n AB ⊥?α 三.证明两个平面平行 已知两个不重合平面βα,,法向量分别为n m ,,则α∥n m //?β 四.证明两直线垂直 已知直线b a ,。b D C a B A ∈∈,,,,则0=??⊥CD AB b a 五.证明直线和平面垂直 已知直线α和平面a ,且A 、B a ∈,面α的法向量为m ,则m AB a //?⊥α 六.证明两个平面垂直 已知两个平面βα,,两个平面的法向量分别为n m ,,则n m ⊥?⊥βα 七.求两异面直线所成的角 已知两异面直线b a ,,b D C a B A ∈∈,,,,则异面直线所成的角θ 为:CD AB ?=θcos 八.求直线和平面所成的角 A B

已知A,B 为直线a 上任意两点,n 为平面α的法向量,则a 和平面α所成的角θ为: 1. 当??? ? ??2, 0π 时?-=2πθ 2. 当??? ??∈?ππ,2 时2πθ-?= 九.求二面角 1.已知二面角βα--l ,且l CD l AB D C B A ⊥⊥∈∈,,,,且βα,则二面角的平面角θ 的大小为:=θ 2.已知二面角,βα--l n m ,分别为面βα,的法向量,则二面角的平面角θ的 大小与两个法向量所成的角相等或互补。即-=πθ 注:如何判断二面角的平面角和法向量所成的角的关系。 (1)通过观察二面角锐角还是钝角,再由法向量的成的角求之。 (2)通过观察法向量的方向,判断法向量所成的角与二面角的平面角相等还是互补。 十.求两条异面直线的距离 已知两条异面直线b a ,,m 是与两直线都垂直的向量,b B a A ∈∈,则两条 异面直线的距离d = 十一.求点到面的距离 已知平面α和点A,B 且αα∈?B A ,,m 为平面α的法向量,则点A 到平面 α 的距离d =

立体几何的计算

教案 教师姓名授课班级授课形式 授课日期年月日第周授课时数 授课章节名称立体几何的计算 教学目的计算立体几何中的有关角度和距离以及一些体积问题教学重点二面角和几何体的体积 教学难点二面角的计算 更新、补充、 删节内容 使用教具三角板 课外作业补充 课后体会注意立体图形与平面图形的转化

授课主要内容或板书设计

一、复习知识点 1. 有关角的计算 ⑴异面直线所成的角 a . 定义:设,a b 是异面直线,过空间任一点o 引'',a a b b ,则'a 与'b 所成的锐角(或直角)叫异面直线,a b 所成的角。 b .范围(0,90] c . 求法:作平行线,将异面转化成相交 ⑵线面所成的角 a . 定义:平面的一条斜线和它在平面上的射影所成的锐角,叫这条斜线和这个平面所成的角。 b .范围:[0,90] c . 求法:作垂线,找射影 ⑶二面角 a . 定义:从一条直线出发的两个半平面所组成的图形叫二面角,其大小通过二面角的平面角来度量。 b .二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线所成的角叫二面角的平面角。 c . 范围:[0,]π d .作法: 1定义法:过棱上任一点o 在两个半平面内分别引棱的两条垂线,OA OB ,则 AOB ∠为二面角的平面角 2三垂线定理法:过二面角的一个半平面内一点A ,作棱l 的垂线,垂足为O , 作另一个面的垂线,垂足为B ,连接OB ,则AOB ∠为二面角的平面角。 β α O B A 3作棱的垂面法:过二面角内任意一点O ,分别向两个平面作垂线,垂足为,A B 则,AO BO 所确定的平面与棱l 交于P ,则APB ∠为二面角的平面角。

利用空间向量解立体几何(完整版)

向量法解立体几何 引言 立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。教材上讲的比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,给老师对这部分内容的教学及学生解有关这部分内容的题目造成一定的困难,下面主要就这几方面问题谈一下自己的想法,起到一个抛砖引玉的作用。 一、基本工具 1.数量积: cos a b a b θ?= 2.射影公式:向量a 在b 上的射影为 a b b ? 3.直线0Ax By C ++=的法向量为 (),A B ,方向向量为 (),B A - 4.平面的法向量(略) 二、用向量法解空间位置关系 1.平行关系 线线平行?两线的方向向量平行 线面平行?线的方向向量与面的法向量垂直 面面平行?两面的法向量平行 2.垂直关系

线线垂直(共面与异面)?两线的方向向量垂直 线面垂直?线与面的法向量平行 面面垂直?两面的法向量垂直 三、用向量法解空间距离 1.点点距离 点()111,,P x y z 与()222,,Q x y z 的 距离为(PQ x =2.点线距离 求点()00,P x y 到直线:l 0Ax By C ++=的距离: 方法:在直线上取一点(),Q x y , 则向量PQ 在法向量 (),n A B =上的射影PQ n n ?= 即为点P 到l 的距离. 3.点面距离 求点()00,P x y 到平面α的距离: 方法:在平面α上去一点(),Q x y ,得向量PQ , 计算平面α的法向量n , 计算PQ 在α上的射影,即为点P 到面α的距离. 四、用向量法解空间角 1.线线夹角(共面与异面) 线线夹角?两线的方向向量的夹角或夹角的补角 2.线面夹角 求线面夹角的步骤:

立体几何与平面几何计算公式

立体几何与平面几何计算公式 初中数学几何中,不论是平面几何还是立体几何,他们的计算公式是我们进行数学试题计算的基础,因此,希望中考考生积极的做好几何计算公式的复习。下面是初中数学几何计算公式,一起了解一下: 1 、正方形 C:周长S:面积:a:边长 周长=边长×4 C=4a 正方形面积=边长×边长S= a a 2 、长方形C:周长S:面积a:边长 周长=(长+宽)×2 C = 2(a+b) 长方形面积=长×宽S = a b 3 、三角形s:面积a:底h:高 三角形面积=底×高÷2 s = ah÷2 4 、平行四边形s:面积a:底h:高 平行四边形面积=底×高s = ah 5、梯形s面积a上底b下底h高 梯形面积=(上底+下底)×高÷2 s = (a+b) h÷2 6 、圆形r:半径d:直径c:周长s:面积 半径=直径÷2 r = d/2 半径=周长÷圆周率÷2 r = c/2π 直径=半径×2 d = 2r 直径=周长÷圆周率d = c/π

周长=圆周率×直径 c = πd 周长=圆周率×半径×2 c = 2πr 圆面积=圆周率×半径×半径s = πr r 圆环面积=圆周率×(大圆半径×大圆半径-小圆半径×小圆半径) s=π(R R-r r) 7 、长方体V:体积s:面积a:长b: 宽h:高 体积=长×宽×高V = abh 8、正方体V:体积a:棱长 总棱长=棱长×12 C = 12a 表面积=棱长×棱长×6 S表= a a6 体积=棱长×棱长×棱长V = a a a 9、圆柱体V:体积s:底面积h:高 圆柱体侧面积=底面周长×高s= c h 圆柱体体积=底面积×高V= sh 圆柱体体积=圆周率×半径×半径×高V =πr r h 圆柱体体积=1/2×侧面积×半径V =1/2s侧r 10、圆锥体V:体积s:底面积h:高 圆锥体体积=1/3×底面积×高V = 1/3sh 圆锥体体积=1/3×圆周率×半径×半径×高V = 1/3×πr r h

高中立体几何计算方法总结

高中立体几何计算方法总结 1.位置关系: (1)两条异面直线相互垂直 证明方法:①证明两条异面直线所成角为90o;②证明线面垂直,得到线线垂直;③证明两条异面直线的方向量相互垂直。 (2)直线和平面相互平行 证明方法:①证明直线和这个平面内的一条直线相互平行; ②证明这条直线的方向量和这个平面内的一个向量相互平行;③证明这条直线的方向量和这个平面的法向量相互垂直。(3)直线和平面垂直 证明方法:①证明直线和平面内两条相交直线都垂直,②证明直线的方向量与这个平面内不共线的两个向量都垂直;③证明直线的方向量与这个平面的法向量相互平行。 (4)平面和平面相互垂直 证明方法:①证明这两个平面所成二面角的平面角为90o;②证明一个平面内的一条直线垂直于另外一个平面;③证明两个平面的法向量相互垂直。 2.求距离: 求距离的重点在点到平面的距离,直线到平面的距离和两个 平面的距离可以转化成点到平面的距离,一个点到平面的距 离也可以转化成另外一个点到这个平面的距离。

(1)两条异面直线的距离 求法:利用公式法。 (2)点到平面的距离 求法:①“一找二证三求”,三步都必须要清楚地写出来。 ②等体积法。③向量法。 3.求角 (1)两条异面直线所成的角 求法:①先通过其中一条直线或者两条直线的平移,找出这两条异面直线所成的角,然后通过解三角形去求得;②通过两条异面直线的方向量所成的角来求得,但是注意到异面直线所成角得范围是,向量所成的角范围是,如果求出的是钝角,要注意转化成相应的锐角。 (2)直线和平面所成的角 求法:①“一找二证三求”,三步都必须要清楚地写出来。 ②向量法,先求直线的方向量于平面的法向量所成的角α,那么所要求的角为或。 (3)平面与平面所成的角 求法:①“一找二证三求”,找出这个二面角的平面角,然后再来证明我们找出来的这个角是我们要求的二面角的平面角,最后就通过解三角形来求。②向量法,先求两个平面的法向量所成的角为α,那么这两个平面所成的二面角的平面角为α或π-α。

立体几何空间距离问题

空间距离问题 (专注高三数学辅导:) 空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到面的距离为基础,求其他几种距离一般化归为这三种距离. ●难点磁场 (★★★★)如图,已知ABCD是矩形,AB=a,AD=b,PA⊥平面ABCD,PA=2c,Q 是PA的中点. 求:(1)Q到BD的距离; (2)P到平面BQD的距离. 。 P为RT△ABC所在平面α外一点,∠ACB=90°(如图) (1)若PC=a,∠PCA=∠PCB=60°,求P到面α的距离及PC和α所成的角 (2)若PC=24,P到AC,BC的距离都是6√10,求P到α的距离及PC和α所成角 (3)若PC=PB=PA,AC=18,P到α的距离为40,求P到BC的距离

●案例探究 [例1]把正方形ABCD 沿对角线AC 折起成直二面角,点E 、F 分别是AD 、BC 的中点,点O 是原正方形的中心,求: (1)EF 的长; (2)折起后∠EOF 的大小. 命题意图:考查利用空间向量的坐标运算来解决立体几何问题,属★★★★级题目. < 知识依托:空间向量的坐标运算及数量积公式. 错解分析:建立正确的空间直角坐标系.其中必 须保证x 轴、y 轴、z 轴两两互相垂直. 技巧与方法:建系方式有多种,其中以O 点为原点,以OB 、OC 、OD 的方向分别为x 轴、y 轴、z 轴的正方向最为简单. 解:如图,以O 点为原点建立空间直角坐标系O —xyz ,设正方形ABCD 边长为a ,则A (0,-22a ,0),B (2 2 a ,0,0),C (0, 2 2 a ,0),D (0,0, 22a ),E (0,-4 2a , a ),F ( 42a , 4 2 a ,0) 21| |||,cos ,2||,2||8042)42)(42(420) 0,4 2 ,42(),42,42,0()2(23 ,43)420()4242()042(||)1(2 2222-=>=<== - =?+-+?=?=-==∴=-+++-=OF OE OF OE OF OE a OF a OE a a a a a OF OE a a OF a a OE a EF a a a a a EF ∴∠EOF =120° [例2]正方体ABCD —A 1B 1C 1D 1的棱长为1,求异面直线A 1C 1与AB 1间的距离. 命题意图:本题主要考查异面直线间距离的求法,属★★★★级题目. 知识依托:求异面直线的距离,可求两异面直线的公垂线,或转化为求线面

空间几何中的角和距离的计算

空间角和距离的计算(1) 一 线线角 1.直三棱柱A 1B 1C 1-ABC ,∠BCA=900,点D 1,F 1分别是A 1B 1和A 1C 1的中点,若BC=CA=CC 1,求BD 1与AF 1所成角的余弦值. 2.在四棱锥P-ABCD 中,底面ABCD 是直角梯形,∠BAD=900,AD ∥BC ,AB=BC=a ,AD=2a ,且PA ⊥面ABCD ,PD 与底面成300角. (1)若AE ⊥PD ,E 为垂足,求证:BE ⊥PD ; (2)若AE ⊥PD ,求异面直线AE 与CD 所成角的大小. 二.线面角 1.正方体ABCD-A 1B 1C 1D 1中,E ,F 分别为BB 1、CD 的中点,且正方体的棱长为2. (1)求直线D 1F 和AB 和所成的角; (2)求D 1F 与平面AED 所成的角. F 1D 1B 1 C 1A 1 B A C A B C D P E C D E F D 1 C 1 B 1 A 1 A B

2.在三棱柱A 1B 1C 1-ABC 中,四边形AA 1B 1B 是菱形,四边形BCC 1B 1是矩形,C 1B 1⊥AB ,AB=4,C 1B 1=3,∠ABB 1=600,求AC 1与平面BCC 1B 1所成角的大小. 三.二面角 1.已知A 1B 1C 1-ABC 是正三棱柱,D 是AC 中点. (1)证明AB 1∥平面DBC 1; (2)设AB 1⊥BC 1,求以BC 1为棱,DBC 1与CBC 1为面的二面角的大小. 2.ABCD 是直角梯形,∠ABC=900,SA ⊥面ABCD ,SA=AB=BC=1,AD=0.5. (1)求面SCD 与面SBA 所成的二面角的大小; (2)求SC 与面ABCD 所成的角. 3.已知A 1B 1C 1-ABC 是三棱柱,底面是正三角形,∠A 1AC=600,∠A 1AB=450,求二面角B —AA 1—C 的大小. B 1 C 1 A 1 B A C D B 1 C 1 A 1B A C B A D C S B 1 C 1 B C A 1

立体几何及解题技巧以及空间距离专题复习

立体几何及解题技巧以及空间距离专题复习

知识点整理 (一)平行与垂直的判断 ⑴平行:设,的法向量分别为U,V ,贝U 直线l,m 的方向向量分 别为a,b ,平面 线线平行i // m a 〃 b a 诂;线面平行i // a u a u 0 ; 面面平行// u // v u J. ⑵ 垂直:设直线l ,m 的方向向量分别为a,b ,平面,的法向量 分别为u,v ,则 线线垂直I 丄m a 丄b ab 0 ;线面垂直I 丄 a // u a ku 「; 面面垂直丄 u 丄v u v 0. (二)夹角与距离的计算 注意:以下公式可以可以在非正交 基底下用,也可以在正交基底下用坐标运算 (1)夹角:设直线l ,m 的方向向量分别为,平面,的法向量 分别为u ,v ,则 ①两直线I ,m 所成的角为 (2)空间距离 ②直线I 与平面 ③二面角一I 的大小为(0< < ),cos cos (0< =2),sin 所成的角为

点、直线、平面间的距离有种.点到平面的距离是重点,两异面直线间的距离是难 ①点到平面的距离h:(定理)如图,设n是是平 面的法向量,AP是平面的一条斜线,其中A 则点P到平面的距离 uuu uu ②h 1 Auur n |(实质是AP在法向量n 方向上的投影的绝对值) |n| uuu ur ③异面直线l i,l2间的距离d: d AB JC』1( 11,12的公垂向量为 |n| ' n, C、D分别是h,l2上任一点). 题型一:非正交基底下的夹角、的计算 例1.如图,已知二面角-I - 点 A , B , A C I于点C, 且 AC=CD=DB=1. 求:(1) A、B两点间的距离; (2)求异面直线AB和CD勺所成的角(3) AB与CD勺距 离. 解:设AC a,CD b,DB c,则 |a| |b| |c| 1, a,b b,c 900, a,c 60°, 2 ? ? 2 ?? 2 ■■ 2 |AB | a b c . a b c 2a b 2b c 2c a 2 A、B两点间的距离为2. (2)异面直线AB和CD的所成的角为60°

考点17 立体几何中的计算问题(解析版)

考点17 立体几何中的计算问题 【知识框图】 【自主热身,归纳总结】 1、(2019扬州期末) 底面半径为1,母线长为3的圆锥的体积是________. 【答案】 22π 3 【解析】圆锥的高为h =32-12=22,圆锥的体积V =13×π×12 ×22=22π3 . 2、(2019镇江期末)已知一个圆锥的底面积为π,侧面积为2π,则该圆锥的体积为________. 【答案】 3π 3 【解析】思路分析 先求出圆锥的底面半径和高. 设圆锥的底面半径、高、母线长分别为r ,h ,l ,则?????πr 2 =π,πrl =2π,解得? ????r =1, l =2.所以h = 3.圆锥的体积 V =13Sh =3π 3 . 3、(2019宿迁期末)设圆锥的轴截面是一个边长为2 cm 的正三角形,则该圆锥的体积为________ cm 3 . 【答案】 3 3 π 【解析】 圆锥的底面半径R =1,高h =22-12=3,故圆锥的体积为V =13×π×12 ×3=33π. 4、(2019南通、泰州、扬州一调)已知正四棱柱的底面长是3 cm ,侧面的对角线长是3 5 cm ,则这个正四棱柱的体积为________cm 3 . 【答案】 54 【解析】由题意知,正四棱柱的高为(35)2 -32 =6,所以它的体积V =32 ×6=54,故答案为54. 5、(2019南京学情调研) 如图,在正三棱柱ABCA 1B 1C 1中,AB =2,AA 1=3,则四棱锥A 1B 1C 1CB 的体积是________.

【答案】2 3 【解析】如图,取B 1C 1的中点E ,连结A 1E ,易证A 1E ⊥平面BB 1C 1C ,所以A 1E 为四棱锥A 1B 1C 1CB 的高,所以V 四棱锥A 1B 1C 1CB =13S 矩形BB 1C 1C ×A 1E =1 3 ×(2×3)×3=2 3. 6、(2018盐城三模)若一圆锥的底面半径为1,其侧面积是底面积的3倍,则该圆锥的体积为 . 【答案】 3 【解析】设圆锥的高为h ,母线为l ,由2 =,=S rl S r ππ侧底得,2 1=31l ππ???,即=3l ,h == 故该圆锥的体积为2 113π???= .

高考数学复习 第十一讲 立体几何之空间距离

第十一讲 立体几何之空间距离 一、空间距离包括: 点与点、点与线、点与面、线与线(异面直线)、线与面(线面平行)、面与面(面面平行)的距离。要理解各个距离的概念。 二、空间距离的求法 重点掌握:线线距离、点面距离、尤其点面距离 (1) 线线距离:找公垂线段 (2) 点面距离 ① 直接法(过点向面作作垂线段,即求公垂线段长度) ② 等体积法(三棱锥) ③ 向量法:设平面α的法向量为n ,P 为平面α外一点,Q 是平面α内任一点,则 点P 到平面α的距离为d 等于PQ 在法向量n 上的投影绝对值。d =三、例题讲解 1、下列命题中: ①ABCD PA 矩形⊥所在的平面,则P 、B 间的距离等于P 到BC 的距离; ②若,,,//αα??b a b a 则a 与b的距离等于a 与α的距离; ③直线a 、b是异面直线,,//,ααb a ?则a 、b 之间的距离等于b 与α的距离 ④直线a 、b是异面直线,,//,,βαβα且??b a 则a 、b 之间的距离等于βα、间的距离 其中正确的命题个数有( C ) A . 1个 B. 2个 C. 3个 D. 4个 2、如图所示,正方形的棱长为1,C、D 为两条棱的中点,A 、B 、M 是顶点,那么点M 到截面ABCD 的距离是____________。

解析:取AB 、C D中点P、Q ,易证MPQ ?中,PQ 边长的高MH 为所求,423,22== PQ PM 3 2=∴MH 3、在底面是正方形的四棱锥A-B CD E中,BCDE AE 底面⊥且AE=CD =a , G、H是BE 、ED 的中点,则GH 到面ABD 的距离是____________。 解析:连结EC ,交BD 于O,且交GH 于O ',则有平面ABD AEO 面⊥。 过E作AO EK ⊥于K ,则所求距离等于a AO EO AE EK 6 32121=?= 4、如图,在棱长为a 的正方体1111D C B A ABCD -中,E 、F 分别为棱AB 和B C的中点,G为上底面1111D C B A 的中心,则点D 到平面EF B 1的距离___________。 解:方法1:建立如图直角坐标系,

高中数学立体几何空间距离问题

立体几何空间距离问题 空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到面的距离为基础,求其他几种距离一般化归为这三种距离. ●难点磁场 (★★★★)如图,已知ABCD是矩形,AB=a,AD=b,P A⊥平面ABCD,P A=2c,Q 是P A的中点. 求:(1)Q到BD的距离; (2)P到平面BQD的距离. P为RT△ABC所在平面α外一点,∠ACB=90°(如图) (1)若PC=a,∠PCA=∠PCB=60°,求P到面α的距离及PC和α所成的角 (2)若PC=24,P到AC,BC的距离都是6√10,求P到α的距离及PC和α所成角(3)若PC=PB=PA,AC=18,P到α的距离为40,求P到BC的距离

●案例探究 [例1]把正方形ABCD 沿对角线AC 折起成直二面角,点E 、F 分别是AD 、BC 的中点,点O 是原正方形的中心,求: (1)EF 的长; (2)折起后∠EOF 的大小. 命题意图:考查利用空间向量的坐标运算来解决立体几何问题,属★★★★级题目. 知识依托:空间向量的坐标运算及数量积公式. 错解分析:建立正确的空间直角坐标系.其中必须保证x 轴、y 轴、z 轴两两互相垂直. 技巧与方法:建系方式有多种,其中以O 点为 原点,以OB 、OC 、OD 的方向分别为x 轴、y 轴、z 轴的正方向最为简单. 解:如图,以O 点为原点建立空间直角坐标系O —xyz ,设正方形ABCD 边长为a ,则A (0,-22a ,0),B (22a ,0,0),C (0, 22a ,0),D (0,0, 22a ),E (0,-4 2 a , a ),F ( 42a , 4 2 a ,0) 21| |||,cos ,2||,2||8042)42)(42(420) 0,4 2 ,42(),42,42,0()2(23 ,43)420()4242()042(||)1(2 2222-=?>=<== - =?+-+?=?=-==∴=-+++-=OF OE OF OE OF OE a OF a OE a a a a a OF OE a a OF a a OE a EF a a a a a EF ∴∠EOF =120° [例2]正方体ABCD —A 1B 1C 1D 1的棱长为1,求异面直线A 1C 1与AB 1间的距离. 命题意图:本题主要考查异面直线间距离的求法,属★★★★级题目. 知识依托:求异面直线的距离,可求两异面直线的公垂线,或转化为求线面距离,或面面距离,亦可由最值法求得.

N维空间几何体质心的计算方法.

N维空间几何体质心的计算方法 摘要:本文主要是求一个图形或物体的质心坐标的问题,通过微积分方面的知识来求解,从平面推广到空间,问题也由易到难。首先提出质心或形心问题,然后给出重心的定义,再由具体的例子来求解相关问题。 关键字:质心重心坐标平面薄板二重积分三重积分 一.质心或形心问题: 这类问题的核心是静力矩的计算原理。 1.均匀线密度为M的曲线形体的静力矩与质心: 静力矩的微元关系为 , dMx yudl dMy xudl ==. 其中形如曲线L( (, y f x a x b =≤≤的形状体对x轴与y轴的静力矩分别 为( b

a y f x S = ? , ( b y a M u f x =? 设曲线AB L 的质心坐标为( ,x y,则,, y x M M x y

M M == 其 中( b a M u x d x u l == ? 为AB L 的质量,L为曲线弧长。若在式 y M x M

= 与式 x M y M = 两端同乘以2π,则可得 到22( b a y xl f x S ππ == ? ,

22( b a x yl f x S ππ == ? ,其中x S 与y S 分别表示曲线AB L 绕x轴与y轴旋转而成的旋转体的侧面积。 2.均匀密度平面薄板的静力矩与质心: 设f(x为 [],a b 上的连续非负函数,考虑形如区域 {} (,,0(

D x y a x b y f x =≤≤≤≤ 的薄板质心,设M为其密度,利用微元法,小曲边梯形MNPQ的形心坐标为1 (,(, 2 y f y x y x x ≤≤+? ,当分割无限细化时,可当小曲边梯形MNPQ的质量视为集中于点 1 (,( 2 x f x 处的一个质点,将它对x轴与y轴分别取静力矩微元可有 1 (( 2 x dM u f x f x dx

立体几何中的计算问题

立体几何中的计算问题 1.求底面边长为2,高为1的正三棱锥的全面积. 2.一个正三棱台的上、下底面边长分别是3 cm 和6 cm ,高是32 cm. (1)求三棱台的斜高; (2)求三棱台的侧面积和表面积. 3.(1) 若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为___ (2)平行四边形ABCD 满足AD=2,AB=4,60BAD ? ∠=,将平行四边形ABCD 绕边AB 所在的直线旋转一周,由此形 成的几何体是什么?并求出其表面积 4.正三棱锥的棱长为1,侧面等腰三角形的顶角为30度,一只小虫沿从B 出发 ,沿侧面爬行一周后回到B , 求路径的最短距离. 5.若一个正方体的棱长为a ,则 (1)该正方体外接球的体积为 ;(2)该正方体的内切球的表面积为 . 6. 若一个等边圆柱(轴截面为正方形的圆柱)的侧面积与一个球的表面积相等,则这个圆柱与该球的体积之比是 .

7.已知球的半径为R ,在球内作一个内接圆柱,当这个圆柱底面半径与高为何值时,它的侧面积最大? 8.(2012·山东卷)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为________. 9.已知正方形ABCD 的边长为2,E ,F 分别为BC ,DC 的中点,沿 AE ,EF ,AF 折成一个四面体,使B ,C ,D 三点重合,则这个四面体的体积为 . 10.如图,在长方体1111ABCD A BC D -中,13,2AB AD cm AA cm ===,则四棱锥11A BB D D -的体积为 3cm 11.正三棱柱ABC -A 1B 1C 1的所有棱长均为1,D 为线段AA 1上的点,则三棱锥B 1-BDC 1的体积为________. 12.如图,在三棱锥P -ABC 中,AC =BC =2,∠ACB =90°,AP =BP =AB ,PC ⊥AC . (1)求证:PC ⊥AB ; (2)求点C 到平面APB 的距离. 13.若三棱锥S ABC -的所有顶点都在球O 的球面上,SA ⊥平面ABC ,SA =1AB =,2AC =,60BAC ∠=?,则球O 的表面积为______.

高中数学立体几何专:空间距离的各种计算(含答案)

高中数学立体几何 空间距离 1.两条异面直线间的距离 和两条异面直线分别垂直相交的直线,叫做这两条异面直线的公垂线;两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离. 2.点到平面的距离 从平面外一点引一个平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离. 3.直线与平面的距离 如果一条直线和一个平面平行,那么直线上各点到这平面的距离相等,且这条直线上任意一点到平面的距离叫做这条直线和平面的距离. 4.两平行平面间的距离 和两个平行平面同时垂直的直线,叫做这两平行平面的公垂线,它夹在两个平行平面间的公垂线段的长叫做这两个平行平面的距离. 题型一:两条异面直线间的距离 【例1】 如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1)求证:EF 是AB 和CD 的公垂线; (2)求AB 和CD 间的距离; 【规范解答】 (1)证明:连结AF ,BF ,由已知可得AF =BF . 又因为AE =BE ,所以FE ⊥AB 交AB 于E . 同理EF ⊥DC 交DC 于点F . 所以EF 是AB 和CD 的公垂线. (2)在Rt △BEF 中,BF = a 23 ,BE =a 21, 所以EF 2=BF 2-BE 2=a 2 12,即EF =a 22 . 由(1)知EF 是AB 、CD 的公垂线段,所以AB 和CD 间的距离为 a 2 2 . 【例2】 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离. 设AB 中点为E ,连CE 、ED . ∵AC =BC ,AE =EB .∴CD ⊥AB .同理DE ⊥AB . ∴AB ⊥平面CED .设CD 的中点为F ,连EF ,则AB ⊥EF . 同理可证CD ⊥EF .∴EF 是异面直线AB 、CD 的距离. ∵CE =23,∴CF =FD =21,∠EFC =90°,EF =2221232 2 =??? ??-??? ? ??. ∴AB 、CD 的距离是 2 2 . 【解后归纳】 求两条异面直线之间的距离的基本方法: (1)利用图形性质找出两条异面直线的公垂线,求出公垂线段的长度. (2)如果两条异面直线中的一条直线与过另一条直线的平面平行,可以转化为求直线与平面的距离. (3)如果两条异面直线分别在两个互相平行的平面内,可以转化为求两平行平面的距离. 题型二:两条异面直线间的距离 【例3】 如图(1),正四面体ABCD 的棱长为1,求:A 到平面BCD 的距离; 过A 作AO ⊥平面BCD 于O ,连BO 并延长与CD 相交于E ,连AE . ∵AB =AC =AD ,∴OB =OC =OD .∴O 是△BCD 的外心.又BD =BC =CD , ∴O 是△BCD 的中心,∴BO =3 2BE =33 2332= ?. 又AB =1,且∠AOB =90°,∴AO =363312 22=??? ? ??- =-BO AB .∴A 到平面BCD 的距离是36. 例1题图 例2题图 例3题图

高中数学专题讲义-空间几何体. 截面与距离问题

棱锥、棱台的中截面与轴截面 【例1】 正四棱锥的侧棱长是底面边长的k 倍,求k 的取值范围. 【例2】 正四棱锥的斜高为2,侧棱长为5,求棱锥的高与中截面(即过高线的中点且平 行于底面的截面)的面积? 【例3】 正四棱台的高为17,两底面的边长分别是4和16,求这个棱台的侧棱长和斜高. 【例4】 已知正六棱台的上,下底面的边长和侧棱长分别为a ,b ,c ,则它的高和斜高分 别为 【例5】 已知正三棱锥S ABC -的高SO h =,斜高SM l =,求经过SO 的中点且平行于底面 的截面111A B C ?的面积. M O C 1 B 1 A 1 C A 【例6】 如图所示的正四棱锥V ABCD -,它的高3VO =,侧棱长为7, ⑴ 求侧面上的斜高与底面面积. ⑵ 'O 是高VO 的中点,求过'O 点且与底面平行的截面(即中截面)的面积. 典例分析 板块二.截面与距离问题

H O'O D C B A V 【例7】 如图,已知棱锥V ABC -的底面积是264cm ,平行于底面的截面面积是24cm ,棱锥 顶点V 在截面和底面上的射影分别是1O 、O ,过1O O 的三等分点作平行于底面的截面,求各截面的面积. C A 圆锥、圆台的中截面与轴截面 【例8】 把一个圆锥截成圆台,已知圆台的上、下底面半径的比是14∶,母线长10,求 圆锥的母线长. 【例9】 一圆锥轴截面顶角为120?,母线长为1,求轴截面的面积. 【例10】 圆台的母线长为2a ,母线和轴的夹角为30?,一个底面半径是另一个底面半径的2 倍,求圆台的高与上下两底面面积之和. 【例11】 圆台两底半径分别是2和5,母线长是,求它的轴截面的面积; 【例12】 圆台侧面的母线长为2a ,母线与轴的夹角为30?,一个底面半径是另一个底面 半径的2倍,则两底面半径为 .

31知识讲解 空间向量在立体几何中的应用三——距离的计算

空间向量在立体几何中的应用三——距离的计算 【学习目标】 1. 了解空间各种距离的概念,掌握求空间距离的一般方法; 2. 能熟练地将直线与平面之间的距离、两平行平面之间的距离转化为点到平面的距离. 【要点梳理】 要点一:两点之间的距离 1. 定义 连接两点的线段的长度叫作两点之间的距离. 如图,已知空间中有任意两点M N ,,那么这两点间的距离d MN =. 2. 向量求法 设()()111222M x y z N x y z ,,,,,,则 () ()()2 22 121212d MN x x y y z z == ++ . 要点二:点到直线的距离 1. 定义 从直线外一点向直线引垂线,点到垂足之间线段的长度就是该点到直线的距离. 如图,设l 是过点P 平行于向量s 的直线,A 是直线l 外一定点. 过点A 作做垂直于l 的直线,垂足为A ',则AA'即为点A 到直线l 的距离. 要点诠释:因为直线和直线外一点确定一个平面,所以空间点到直线的距离问题就是空间中某一个平面内的点到直线的距离距离. 2. 向量求法 2 2 d=PA PA s 要点诠释: (1)本公式利用勾股定理推得:点A 到直线l 的距离2 2 AA'=PA PA' ,其中PA'是PA 在s 上的射影,即为0PA s . (2)0cos PA PA =PA APA'=?∠s s s ,0s 为s 的单位向量,其计算公式为0=s s s . 3.计算步骤 ① 在直线l 上取一点P ,计算点P 与已知点A 对应的向量PA ; ② 确定直线l 的方向向量s ,并求其单位向量0= s s s ; ③ 计算PA 在向量s 上的投影0PA s ; ④ 计算点A 到直线l 的距离2 2 0d=PA PA s . 要点诠释:在直线上选取点时,应遵循“便于计算”的原则,可视情况灵活选择. 4. 算法框图

九章算术中的立体几何

《九章算术》中的立体几何 《九章算术》文字古奥,历代注释者甚多,其中以刘徽的注本最为有名.刘徽是我国魏晋时期著名数学家,他在曹魏末年撰成《九章算术注》九卷。在继承的基础上,又提出了许多自己的创见与发明,刘徽的观点,对现今的数学有很多借鉴的地方。 《九章算术》是一部问题集,全书分为九章,共收有246个问题,每题都有问、答、术三部分组成。内容涉及算术、代数、几何等诸多领域,并与实际生活紧密相连,充分体现了中国人的数学观与生活观。其中卷第五“商功”,主要讲各种几何体体积的计算,包括现阶段高中数学教材中的棱柱、棱锥、棱台,圆柱、圆锥、圆台,或可化为上述几何体的几何体体积的计算。 《九章算术》是东方数学的思想之源,也是我国多年来各级各类考试的重要题库。卷第五“商功”第25题作为2015年全国卷(Ⅰ)(文理)第6题,通过古题新解考查阅读理解能力,通过圆锥体积的计算考查空间想象能力与求解运算能力。 题目是:《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?” 其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的 四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米 堆的体积和堆放的米各为多少?”已知1斛米的体积约为 1.62立方尺,圆周率约为3,估算出堆放的米约有(解法见 例25) A.14斛 B.22斛 C.36斛 D.66斛 2015年湖北理科19题、文科20题选用《九章算术》“商功”第16题“阳马”与第17题“鳖臑”的组合考查立体几何中线、面间的位置关系与度量关系. 《九章算术》卷第五“商功”共收录28个题目,现将这28个问题整理如下,供参考。 【例1】今有穿地积一万尺.问为坚、壤各几何? 【注释】穿地:挖地取土. 坚:坚实的土. 壤:松软的土. 【译文】现挖地体积为1000立方尺,问换算成坚土、松土各多少? 【解析】本题是各种土方量的换算,有专门的换算比例,这里不赘述. 【说明】从例2到例7都是直四棱柱求体积问题,以例2为例,介绍它们的算法.【例2】今有城下广四丈,上广二丈,高五丈,袤一百二十六丈五尺。问积几何?【注释】广袤:广,东西方向,袤,南北方向. 【译文】现有城,下底长4丈,上底长2丈,高5丈,

立体几何空间几何体的表面积与体积

第2讲空间几何体的表面积与体积 考点 考查柱、锥、台、球的体积和表面积,由原来的简单公式套用渐渐变为与三视图及柱、锥与球的接切问题相结合,难度有所增大. 【复习指导】 本讲复习时,熟记棱柱、棱锥、圆柱、圆锥的表面积和体积公式,运用这些公式解决一些简单的问题. 基础梳理 1.柱、锥、台和球的侧面积和体积

球S球面=4πR2V=4 3 πR3 (1)棱柱、棱锥、棱台的表面积就是各面面积之和. (2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和. 两种方法 (1)解与球有关的组合体问题的方法,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.球与旋转体的组合,通常作它们的轴截面进行解题,球与多面体的组合,通过多面体的一条侧棱和球心或“切点”、“接点”作出截面图. (2)等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高.这一方法回避了具体通过作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值. 双基自测 1.(人教A版教材习题改编)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是( ). A.4πS B.2πS

C.πS D.23 3 πS 解析设圆柱底面圆的半径为r,高为h,则r=S π, 又h=2πr=2πS,∴S圆柱侧=(2πS)2=4πS. 答案 A 2.(2012·东北三校联考)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为( ). A.3πa2B.6πa2C.12πa2D.24πa2 解析由于长方体的长、宽、高分别为2a、a、a,则长方体的体对角线长为2a2+a2+a2=6a.又长方体外接球的直径2R等于长方体的体对角线,∴2R=6a.∴S球=4πR2=6πa2. 答案 B 3.(2011·北京)某四面体的三视图如图所示,该四面体四个面的面积中最大的是 ( ).A.8 B.6 2 C.10 D.8 2 解析由三视图可知,该几何体的四个面都是直角三角形,面积分别为6,62,8,10,所以面积最大的是10,故选择C. 答案 C 4.(2011·湖南)设

最新高考数学专题复习立体几何重点题型空间距离空间角(师)

立体几何题型 【考点透视】 (A)版.掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念. (B)版. ①理解空间向量的概念,掌握空间向量的加法、减法和数乘. ②了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算. ③掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式. ④理解直线的方向向量、平面的法向量,向量在平面内的射影等概念. ⑤了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念. ⑥掌握棱柱、棱锥、球的性质,掌握球的表面积、体积公式. ⑦会画直棱柱、正棱锥的直观图. 空间距离和角是高考考查的重点:特别是以两点间距离,点到平面的距离,两异面直线的距离,直线与平面的距离以及两异面直线所成的角,直线与平面所成的角,二面角等作为命题的重点内容,高考试题中常将上述内容综合在一起放在解答题中进行考查,分为多个小问题,也可能作为客观题进行单独考查.考查空间距离和角的试题一般作为整套试卷的中档题,但也可能在最后一问中设置有难度的问题. 不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,正是本专题的一大特色. 求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。 【例题解析】 考点1 点到平面的距离 求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足, 当然别忘了转化法与等体积法的应用. 典型例题 例1如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证: 1AB ⊥ 平面 1A BD ; (Ⅱ)求二面角 1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离. 考查目的:本小题主要考查直线与平面的位置关系,二面角的 A B C D 1 A 1 C 1 B

相关文档
最新文档