漆膜的力学性质与附着力

漆膜的力学性质与附着力
漆膜的力学性质与附着力

作为保护层的涂料,经常受到各种力的作用,如摩擦、冲击、拉伸等,因此要求漆膜有必要的力学性能。为了评价漆膜的力学性质,涂料工业本身发展了一系列测试方法,但这些方法只能提供具体材料性能优劣的数据,而不能给出漆膜力学性能的规律、特点及其与漆膜结构之间的关系。另一方面,由于聚合物材料的广泛应用,有关聚合物材料的力学性质已进行了广泛而深入的研究,涂料也是一种聚合物材料,且包括了聚合物材料的各种形式,如热塑性材料,热固材料、复合材料、聚合物合金等等,因此用已有的聚合物材料学的知识来了解和总结漆膜力学性质是很有意义的。但是,涂料和塑料、橡胶、纤维等典型的聚合物材料又有不同,漆膜的性能是和底材密切联系的,换言之,聚合物材料的规律和理论只和自由漆膜的性质有直接关联。如何将自由漆膜与附着在底材上的实际漆膜的性能联系起来,仍是一个需要研究的课题,但无论如何,有关自由漆漆膜是和底材结合在一起的,因此漆膜和底材之间的附着力对漆膜的应用性能同样有重要影响。附着力的理论和规律是粘合剂研究的重要课题,因此涂料和粘合剂有着密切的关系,粘合剂的理论对于涂料同样有重要的参考价值。

1、无定型聚合物力学性质的特点

材料的力学性质主要是指材料对外力作用响应的情况。当材料受到外力作用,而所处的条件使它不能产生惯性移动时,它的几何形态和尺寸将产生变化,而几何尺寸变化的难易又与材料原有的尺寸有关,

用原有尺寸除以受力后的形变尺寸就称为应变。材料发生应变时,其分子间和分子内的原子间的相对位置和距离便要发生变化。由于原子和分子偏离原来的平衡位置,于是产生了原子间和分子间的回复内力,它抵抗着外力,并倾向恢复到变化前的状态。达到平衡时,回复内力与外力大小相等,方向相反。定义单位面积上的回复内力为应力,其值与单位面积上的外力相等。产生单位形变所需的应力称为模量。

模量=应力/应变

根据外力形式不同,如拉伸力、剪切力和静压力,模量分别称为杨氏模量、剪切模量和体积模量。从材料的观点来看,模量是材料抵抗外力形变能力,它与材料的化学结构和聚集态结构有关,是材料最重要的参数。

①模量与温度的关系

将无定形聚合物材料的模量与温度作图,可得如下图的典型曲线。在t<tg的低温下模量很高(109帕斯卡数量级),这便是玻璃态的聚合物的特征。当温度升高到t≥tg时,模量急剧下降,然后又到达一个平台(模量为107帕斯卡数量级)这时材料模量较低,容易变形,变成橡胶状具有弹性,通常称为高弹态或橡胶态。玻璃态与高弹态的转变温度便是玻璃化温度tg。当温度进一步升到足以使分子间的相对运

动速度与观察时间相当时,便进入粘流态,即液态。高弹态和玻璃态被称为固态。玻璃态的高聚物力学性质还可随温度的高低分为“硬”玻璃态和“软”玻璃态两个区,两个区的分界温度称为脆折温度tb。低于tb温度时,聚合物材料是脆性的;高于tb的玻璃态聚合物材料具有延展性或称韧性,外力作用下可发生较大的形变,除去外力,试样的大形变不能完全回复,除非将试样升温至tg以上。这种在软玻璃态发生的大形变称为强迫高弹形变,它和在高弹态发生的高弹形变本质上是相同的。在tb以下只能发生普弹形变,若外力过大,便发生脆裂。漆膜的使用最低温度应高于tb。

②粘弹性与力学松弛

一个理想的弹性体,受外力作用,平衡形变是瞬时达到的,与时间无关(普弹形变);一个理想的粘流体,受外力作用,形变随时间而变化;无定形聚合物材料介于两者之间,属粘弹性材料。由于聚合物的链段运动和链的整体运动都需要一定的时间,因此聚合物在受外力作用时,不能立即到达平衡,形变的建立需要一定的时间,当外力保持恒定时,形变随时间的延长而增大,这种现象叫做蠕变。形变发生以后,撤除外力,聚合物材料不能立刻回复到无应力状态,应力的消除也需要时间,因此聚合物材料的力学性能往往同它的“历史”有关。另一方面,如果使聚合物的形变固定不变,可以观察到其应力随作用时间的延长而下降,这种现象称为应力松弛。蠕变和应力松弛都属于

力学松弛,即力学性质随时间而改变。右图是不同材料在恒定应力下形变与时间的关系。从图中可以看出,交联聚合物和线性聚合物都属粘弹形变,但也有不同。线性聚合物由于分子间没有化学交联而可相对滑移,产生粘性流动(或称塑性形变),一旦产生粘性流动,形变不同材料在恒定应力下形变与时间的关系便不能恢复;交联的聚合物则因分子间互相牵制,其形变在外力撤销后可逐渐恢复。力学松弛和温度有关,它在材料的玻璃化转变区表面得最为明显。力学松弛也和时间有关,如果固定温度,以模量对作用时间作图,也可得到如上…无定形聚合物的温度-模量曲线图?那样的曲线。因此,对于聚合物材料来说,延长作用时间和提高温度有相似的效果。已经证明,作用时间和温度之间可以进行等效的交换,利用这种等效应性,可以根据较高温度下的实验结果来推断很长作用时后的聚合物材料的力学性能。

③动态力学松弛

聚合物材料往往受到交变应力(应力大小周期地变化)作用,例如木器漆膜受到膨胀与收缩的反复作用。在交变应力作用下,相应的形变也会有周期性变化。将两者并不同步的变化记录下来可得两条波形相似但有位差的曲线,如右图

应力曲线1的数学表示式为

ζ(t)=ζ0sinωt(1)

应变曲线2为

ε(t)=ε0sin(ωt-δ)(2)

式中(1)和(2)中的ω为应力变化的角频率,ζ0为峰值应力,

ε0为峰值应变,两个波形的相位差,即应力峰与应变峰间交变应力应变曲线

的距离为δ,它们间可得出如下关系:

ζ0cosδ/ε0=e′⑶

ζ0sinδ/ε0=e″⑷

e″/e′=tanδ⑸

其中e′称为贮能模量;e″称为损耗模量;tanδ称为正切损耗或称内耗,是材料在交变应力作用下弹性能换变为热能的分数。

从上面的…交变应力应变曲线?图可以看出,形变发生总是落后于应力的变化,这种现象称为滞后现象。滞后现象来源于分子之间的内摩擦。形变回复到原状时要克服内摩擦做功,所做的功被转化为热能。

2、漆膜的强度

①应力-应变曲线与聚合物的强度

聚合物材料受拉伸力作用而发生伸长,在拉伸至断裂发生之前的应力-应变(以伸长率表示)曲线称为拉伸曲线,曲线的终点是材料断裂的点,即为材料强度的表示。

在右图中曲线1—3为典型的玻璃态聚合物拉伸曲线。曲线3上的c点为断裂点,该点的应力称为断裂应力或抗张强度,a点为弹性极限,在a点和原点之间应变与应力成直线关系,oa直线的斜率为其模量,此时聚合物的形变来自高分子链的键长与键角的变化,应力除去后可迅速回复,为普弹形变,具有高模量低形变的性质,曲线在b点时应力出现极大值,称屈服应力或屈服强度ζy,过了b点应力反应变曲线面降低,在b点前的断裂称为脆性断裂,如图曲线1所示。在屈服点后的断裂如图曲线2则称为韧性断裂。材料在屈服后,出现较大形变,这便是强迫高弹形变,这时玻璃态聚合物被冻结的分子链段在强大外力作用下开始运动,这种运动导致链的伸展,因而发生较大

形变,由于聚合物处于玻璃态,在外力除去后,舒展的分子不会自动恢复原状。分子链伸展后,便形成了一定的取向,使强度进一步提高,欲使发生进一步的形变,便要有更强大的力,因此应力回升直至断裂。曲线1发生在温度远远低于tg的情况,最后应变不到10%,表现为硬而脆的性质。曲线2代表了温度低于tg,但高于tb的情况总的应变不超过20%,呈硬而强的性质。曲线3发生在温度稍低于tg的情形,表现出强韧的性质,有很大的形变。曲线4代表了处于高弹态聚合物的情况,由于在高弹态,分子链段可以自由运动,因此在低的外力作用下便可发生大形变,它具有低模量,大形变特点,有很高的断裂伸长率。聚合物在屈服点后,经取向的聚合物分子,在外力作用下还可发生分子间的相对滑动,这种滑动形成的形变,便是所谓的塑性形变,是不可逆的形变。交联聚合物由于分子间受到化学键的限制,塑性形变难以发生。

为了得到硬而强的聚合物材料,聚合物分子不应是柔性的,由于在玻璃态发生强迫高弹形变要求分子链段运动比较容易,柔性聚合物在玻璃态分子间堆积紧密,要使其链段运动需要很大的外力,甚至超过材料的强度,这和为了使材料具有很好的高弹态性质是不同的,高弹体要求分子有很好的柔性链结构。柔性很好的聚合物在玻璃态是脆性的,它们的tb和tg很接近。

②漆膜的展性

用于卷钢,罐头等涂料在金属表面成膜后要经受加工成形时的各种考验,要求漆膜在加工成形时,即使受到很大的形变,不至断裂,也不至过分的减薄。在加工时,不仅拉伸力,而且还有压缩力,而且位置不同,受力也不同,因此很难有相应的测试方法来准确地予以描述。但是,无疑聚合物材料是否适应这种要求,是和其应-应变曲线相关的,而最重要的又是拉伸曲线的情况,其中断裂伸长是一个重要量度。如果聚合物膜处于硬玻璃态,即在脆折温度以下,断裂伸长很低,漆膜是硬而脆的,在加工中必然脆裂。如果漆膜是在高弹态,漆膜尽管有很大的伸长,在外力撤销后有很大的回弹力,但漆膜很软。理想的情况是漆膜处于软玻璃态,即处于脆折温度tb以上和玻璃温度tg以下。此时漆膜在外力作用下有相当大的伸长(强迫高弹形变),而且这种形变可保留下来,即漆膜有一定的展性,漆膜表现出硬和韧的性质。因此选择涂料的成膜物时,不仅要注意其tg而且要注意tb,通常将tg和tb之差除以tg所得之值q作为展性高低的衡量。式:q=(tg—tb)/tg聚甲基丙烯酸甲酯(pmma)和聚苯乙烯(ps)玻璃化温度很接近,但pmma比ps具有更好的加工性质,其原因在于pmma的tb远远低于ps的tb。在tb和tg之间的聚合物分子虽然不能有链段的自由运动,但它们的基团仍可进行转动,ps上的苯基转动困难,而pmma的酯基转动比较容易,因此ps比pmma表现得更为脆性。下表列举了几种典型聚合物材料tg,tb和q值,以供比较。

③漆膜的伸长与复原

木器对涂料的要求是多方面的,但很重要的是其伸长与复原性质,漆膜必须能随木器的吸水膨胀而伸长,又能随木器的干燥收缩而复原。通常伸长不够可引起漆膜沿木器纹理方向产生裂纹,因此断裂伸长和裂纹有密切关系。另外,如果伸长后的漆膜不能随木器的收缩而恢复的话,则可产生皱纹。如果漆膜处于软玻璃态,即有展性的状态,它在木器膨胀时,可因强迫高弹形变而有较大的伸长,这种形变,如前所述,是链段运动引起分子取向的结果,外力撤销后,不能完全复原,即使对其加反方向的力(即收缩时的力),也不可能复原。如果漆膜处于tg以上的高弹态,可有很高的伸长率,由于形变发生在链段可以自由运动的情况下,撤除外力,特别是有反向收缩作用时,形变易于恢复。另一方面,当木器膨胀引起的漆膜形变被长期保持时,由于力学松弛,应力可逐渐减小。木器的膨胀与收缩的速度不同,漆膜的断裂情况也不同,这可从右图的聚合物在不同应变速度下的应力-应变曲线中了解这一特点:图中最低的应力-应变曲线是在极慢的应变速度下测定的,可以认为此曲线是和时间无关的平衡线。随着应变速度的增加断裂伸长也逐渐增加,最后可达一个最大值(h);应变速度再高时,断裂伸长又减少,断裂点的轨迹形成扇形曲线。如果形变以某一恒定速度到达a点然后保持形变不变,由于应力松弛,应力逐渐下降,直至到达底部曲线相交的c点,由于c点不在断裂扇形曲线上,因此聚合物材料不会断裂。但如果应变不是在a点,而是发展到

b点,当固定应变时,应力一定时间后要降至d点,即与断裂扇形曲线的交点,此时聚合物便会断裂。要据上述讨论,木器的漆膜最好是处于高弹态,特别是tg转变区附近。因此一般木器漆漆膜的tg应低于室温。

④漆膜的耐磨性

涂料的耐磨性和漆料的磨擦系数、脆性、弹性有关。实验结果证实,耐磨性和断裂功有密切关系,断裂功可以由应力-应变曲线所包围的面积来衡量。已经讨论过,应力和应变曲线的形成是和应变的速度相关的,为了衡量耐磨性,应该是用相应于磨擦速度的断裂功。由于测试方法的限制,有时在室温测得的耐磨性数据往往和实际结果不符,其原因可能是应变速度和应力时间不匹配,有时将试样在较低温度下测量,则可得到较好的结果,按照温度-时间等效性原则,降低测试温度相当于提高了应变速度。涂料中以聚氨酯涂料的耐磨性为最好,这可能是因为聚氨酯分子间可形成氢键的缘故,在应力下,聚氨酯由于氢键的作用,表现出较高的硬度;当应力较高时,氢键断裂吸收能量,从而保护了共价键;一旦外力撤销,氢键又可形成。耐耐磨性也和摩擦系数大小有关。涂料中加入石腊或含氟表面活性剂可以降低摩擦系数,增加耐摩擦性。涂料中大颗粒的惰性颜料粒子也可增加耐摩擦性,其原因可能是减少了漆膜的接触面积,从而减少了表面与表面间的力的传递。

⑤漆膜的抗冲击

冲击强度是在高速冲击条件下的耐断裂性。在应力-应变曲线上,冲击强度也和断裂功有关,但相应的应力-应变曲线应该是高速条件下的曲线。高抗冲击的聚合物膜依赖于将能量吸收和转化的情况,因为内耗是将机械能转化为热的一种量度,内耗愈大,吸收冲击能量愈大,所以内耗也是抗冲击性的一种重要量度,聚合物在玻璃化温度转变区内耗有一峰值,玻璃态的抗冲击强度趋于极大。由于冲击作用极为急速,聚合物分子链段往往在完成松弛运动和分散应力之前便出现断裂,只有分子链柔顺的聚合物处于高弹态时,才有较好的抗冲击性,因此一般认为玻璃化温度的高低和抗冲击性有密切的关系。但要注意玻璃化温度并非衡量抗冲击性的可靠标准,例如聚苯乙烯tg为100℃,聚碳酸酯的tg为150℃,但聚苯乙烯的抗冲击强度要比碳酸酯差的多,这是因为聚碳酸酯在—60℃有一个很大的β内耗峰,而聚苯乙烯在室温以下没有β转变,对抗冲击无贡献,其它次级峰都很小,对抗冲击都不起大的作用。由此可知,玻璃态的聚合物在低温具有强的次级内耗峰者,则有较好的抗冲击性。如前面所述聚合物的力学谱上往往有多个次级峰出现,聚合物在对应于峰值温度下比无峰值的邻近温度下具有较好的抗冲击性。

⑥影响聚合物材料强度的因素

从微观上来看,聚合物材料的断裂破坏都意味着外力破坏或克服了化学键、氢键及范德华力。因此聚合物材料强度可根据其结构进行理论计算。因为计算是在非常理想的情况下进行的,所得结果和实际强度差距非常之大,实际强度要比理论强度差很多。弄清楚理论计算与实际结果差异的原因,对于如何提高材料强度意义很大。影响聚合物实际强度的因素很多,有些因素如温度、作用力速度,以及颜料和聚合物共混等对漆膜强度的影响,已作过讨论。结晶和取向对于塑料、纤维、橡胶的强度影响很大,但在漆膜中所起作用不是很重要,下面仅对一些对涂料较为重要的因素作简单介绍:

聚合物分子结构:

由于聚合物材料的强度主要决定于主链的化学键力和分子间的作用力,增加主链的强度或增加分子间的作用力都可使聚合物的强度增加,聚合物的极性和分子间的氢键可增加分子间的作用力,因而可增加强度,例如低压聚乙烯的拉伸强度只有15—16兆帕斯卡,聚氯乙烯因有极性基团,拉伸强度为50兆帕斯卡,尼龙6-10因有氢键,拉伸强度为60兆帕斯。分子链支化程度增加,使链分子间的距离增加,分子间的作用力减少,因而拉伸强度降低。适度交联,使分子链不易发生相对滑移,增加了分子链间的作用,因而强度增加。在考虑分子间力或主链化学键强度对强度贡献时,不能忽略了由于力学松弛或内

耗对聚合物强度的贡献,这两者往往是矛盾的,例如极性基团过密,或取代基过大,阻碍了链段运动,不能实现强迫高弹形变,聚合物会变脆,即拉伸强度虽然大了,但冲击强度下降。支链减少了分子间作用力,可使链段活动较为自由,因而冲击强度增加。一般说来,取代基小,数量少,极性弱,分子间作用力小的大分子链,柔顺性好,有利于大分子链段运动,可提高抗部击性,但相应地会使拉伸强度变低,硬度变低。增加主链的化学键强度,如使主链含有苯环、杂环等,可使材料的强度增加。共聚合可以用于调节分子链的结构,因而改善聚合物强度的重要手段。

缺陷与应力集中:

如果材料中存在缺陷,受力时材料内部的应力平均分布的状态将发季变化,使缺陷附近局部的应力急剧增加,远远超过应力平均值,这种现象称为应力集中。缺陷包括裂纹、空隙、缺口、银纹和杂质。各种缺陷在漆膜形成过程中是普遍存在的,例如,颜料分散过程不理想,颜料体积浓度pvc超过cpvc,溶剂挥发时产生的气泡,成膜时体积的收缩导致的内应力引起的细小的银纹或裂缝,缺陷是材料破坏的薄弱环节,当局部应力超过局部强度时,缺陷就发展,最终导致断裂,因而可严重地降低材料的强度,它是造成聚合物实际强度下降的主要原因。

每一聚合物链的末端可以说也是一个微小的缺陷,因此分子量愈低,缺陷愈多,强度也愈低,减少缺陷是提高强度的一个重要措施。

形态的影响:

聚合物的强度和聚合物的凝聚态的形态有很大的关系,聚合物形态往往可以影响裂缝发展的速度。例如,氯乙烯-乙酸乙烯共聚物用纯甲基异丁酮(mibk)为溶剂所得的薄膜,其断裂伸长很低,脆性很大。mibk是氯乙烯-乙酸乙烯共聚物的良溶剂,当在mibk中混入少量不良溶剂〔如甲氧基丁醇(mob)〕后,所得薄膜的断裂伸长明显增加,特别是当mibk和mob的比例为90:10时,情况最为明显(如不良溶剂过多,强度又会明显下降),其原因在于有适量的不良溶剂时,所得薄膜中可形成大量极细小的空隙,这种空隙可以控制住裂缝发展的速度,减缓了应力集中强度。由此可见,合适的形态,使裂缝在较大的区域内缓慢发展,而不使应力高度集中到少数部位,可避免断裂,这是设计抗冲击涂料配方需予考虑的。

另一方面,在无定形漆膜中的微观多相性也可使漆膜的韧性增加。用接枝、嵌段共聚合,或者用共混方法可以得到具有微观多相性的材料。如和橡胶共混的abs或聚苯乙烯,其中橡胶以微粒状分散于连续的塑料相之中,由于塑料相的存在,使材料的弹性模量和硬度不至于有过分的下降,而分散的橡胶微粒则作为大量的应力集中物,当材料

受到冲击物时,它们可引发大量的银纹,从而吸收大量冲击能量,同时由于大量银纹之间应力场的相互干扰,又可阻止银纹的进一步发展,从而可以大大提高聚合物材料的韧性。涂料也可用类似的方法形成增韧的薄膜,例如利用核壳结构的乳胶,便可得到连续相为硬而强的聚合物,分散相为软而韧的聚合物的结构。加入颜料也是形成多相体系的手段,它可提供大量使单个的银纹发生分枝的位置,也可使银纹的发展方向偏转,从而提高漆膜的强度。

附着力的影响:

漆膜与底材的附着力如果很好,作用在漆膜上的应力可以较好地得到分散,因而漆膜不易被破坏。

3、漆膜的附着力

⑴粘附的理论

漆膜与基材之间可通过机械结合,物理吸附,形成氢键和化学键,互相扩散等作用接合在一起,由于这些作用产生的粘附力,决定了漆膜与基材间的附着力。根据理论计算,任何原子、分子间的范德华力便足以产生很高的粘附强度,但实际强度却远远低于理论计算,这各上节讨论的聚合物材料强度一样,缺陷和应力集中是这种差距的主要

原因,而且界面之间容易有各种缺陷。因此为了使漆膜有很好的附着力,需要考虑多种因素的作用。下面分别简单地予以介绍。

①机械结合力

任何基材的表面都不可能是光滑的,即使用肉眼看起来光滑,在显微镜下也是十分粗糙的,有的表面如木材、纸张、水泥,以及涂有底漆的表面(pvc≥cpvc)还是多孔的,涂料可渗透到这些凹穴或孔隙中去,固化之后就象有许多小钩子和楔子把漆膜与基材连结在一起。

②吸附作用

从分子水平上来看,漆膜和基材之间都存在着原子、分子之间的作用力。这种作用力包括化学键、氢键和范德华力。根据计算,当两个理想平面距为10时,由范德华力的作用,它们之间的吸引力便可达103—104n/cm2,距离为3—4时可达104—105n/cm2,这个数值远远超过了现在最好的结构胶粘剂所能达到的强度,但是两个固体之间很难有这样的理想的情况,即使经过精密抛光,两个平面之间的接触还不到总面积的百分之一。当然如果一个物体是液体,这种相互结合的要求便易于得到,其条件是液体完全润湿固体表面,因此涂料在固化之前完全润湿基材表面,则应有较好的附着力,即使如此,其粘附力也远比理论强度低得多,这是因为在固化过程总是有缺陷发生的,粘

附强度不是决定于原子、分子作用力的总和,而是决定于局部的最弱的部位的作用力。两个表面之间仅通过范德华力结合,实际便是物理吸附作用,这种作用很容易为空气中的水汽所取代。因此为了使漆膜与基材间有强的结合力,仅靠物理吸附作用是不够的。

③化学键结合

化学键(包括氢键)的强度要比范德华力强的多,因此如果涂料和基材之间能形成氢键或化学键,附着力要强得多。如果聚合物上带有氨基、羟基和羧基时,因易与基材表面氧原子或氢氧基团等发生氢键作用,因而会有较强的附着力。聚合物上的活性基团也可以和金属发生化学反应,如酚醛树脂便可在较高温度下与铝、不锈钢等发生化学作用,环氧树脂也可和铝表面发生一定的化学作用。化学键结合对于粘结作用的重要意义可从偶联剂的应用得到说明,偶联剂分子必须具有能与基材表面发生化学反应的基团,而另一端能与涂料发生化学反应,例如,最常用的硅烷偶联剂,x3si(ch2)ny,x是可水解的基团,水解之后变成羟基,能与无机表面发生化学反应,y是能够与涂料发生化学反应的官能团。

④扩散作用

涂料中的成膜物为聚合物链状分子,如果基材也为高分子材料,在

一定条件下由于分子或链段的布朗运动,涂料中的分子和基材的分子可相互扩散,相互扩散的实质是在介面中互溶的过程,最终可导致界面消失。高分子间的互溶首先要考虑热力学的可能性,即要求两者的溶解度参数相近,另一方面,还要考虑动力学的可能性,亦即两者必须在tg以上,即有一定的自由体积以使分子可互相穿透。因此塑料涂料或油墨的溶剂最好能使被涂塑料溶胀,提高温度也是促进扩散的一个方法。

⑤静电作用

当涂料与基材接的电子亲合力不同时,便可互为电子的给体和受体,形成双电层,产生静电作用力。例如,当金属和有机漆膜接触时,金属对电子亲合力低,容易失去电子,而有机漆膜对电子亲合力高,容易得到电子,故电子可从金属移向漆膜,使界面产生接触电势,并形成双电层产生静电引力。

⑵影响实际附着力的因素

漆膜和基材之间的作用是非常复杂的,很难用上节单一因素的影响来表述,它是多种因素综合的结果。因此实际附着力和理论分析有着巨大的差异。聚合物分子结构、形态、温度等都和附着力实际强度有关,但由于附着力是两个表面间的结合,比聚合物材料的情况更为复

杂。下面仅讨论几个重要的因素:

①涂料粘度的影响

涂料粘度较低时,容易流入基材的凹处和孔隙中,可得到较高的机械力,一般烘干漆具有比气干漆更好的附着力,原因之一便是在高温下,涂料粘度很低。

②基材表面的润湿情况

要得到良好的附着力,必要的条件是涂料完全润湿基材表面。通常纯金属表面都具有较高的表面张力,而涂料一般表面张力都较低,因此易于润湿,但是实际的金属表面并不是纯的,表面易形成氧化物,并可吸附各种的有机或无机污染物。如果表面吸附有有机物,可大大降低表面张力,从而使润湿困难,因此基材在涂布之前需进行处理。对于低表面能的基材,更要进行合适的处理,如在塑料表面进行电火花处理或用氧化剂处理。

③表面粗糙度

提高表面粗糙度可以增加机械作用力,另一方面也有利于表面的润湿。

④内应力影响

漆膜的内应力是影响附着力的重要因素,内应力有两个来源:一、涂料固化过程中由于体积收缩产生的收缩应力;二、涂料和基材的热膨胀系数不同,在温度变化时产生的热应力。涂料不管用何种方式固化都难免发生一定的体积收缩,收缩不仅可因溶剂的挥发引起,也可因化学反应引起。缩聚反应体积收缩最严重,因为有一部分要变成小分子逸出。烯类单体或低聚物的双键发生加聚反应时,两个双链由范德华力结合变成共价键结合,原子距离大大缩短,所以体积收缩率也较大,例如不饱和聚酯固化过程中体积收缩达10%。开环聚合时有一对原子由范德华作用变成化学键结合,另一对原子却由原来的化学键结合变成接近于范德华力作用,因此开环聚合收缩率较小,有的多环化合物开环聚合甚至可发膨胀。环氧树酯固化过程中收缩率较低,这是环氧涂料具有较好的附着力的重要砂因。降低固化过程中的体积收缩对提高附着力有重要意义,增加颜料、增加固含量和加入预聚物减少体系中官能团浓度是涂料中减少收缩的一般方法。

岩体力学习题及答案

一、绪论 一、解释下例名词术语 岩体力学:研究岩体在各种力场作用下变形与破坏规律的科学。. 二、简答题 1.从工程的观点看,岩体力学的研究内容有哪几个方面? 答:从工程观点出发,大致可归纳如下几方面的内容: 1)岩体的地质特征及其工程分类。 2)岩体基本力学性质。 3)岩体力学的试验和测试技术。 4)岩体中的天然应力状态。 5)模型模拟试验和原型观测。 6)边坡岩体、岩基以及地下洞室围岩的变形和稳定性。 7)岩体工程性质的改善与加固。 2.岩体力学通常采用的研究方法有哪些? 1)工程地质研究法。目的是研究岩块和岩体的地质与结构性,为岩体力学的进一步研究提供地质模型和地质资料。 2)试验法。其目的主要是为岩体变形和稳定性分析提供必要的物理力学参数。 3)数学力学分析法。通过建立岩体模型和利用适当的分析方法,预测岩体在各种力场作用下变形与稳定性。 4)综合分析法。这是岩体力学研究中极其重要的工作方法。由于岩体力学中每一环节都是多因素的,且信息量大,因此,必须采用多种方法考虑各种因素进行综合分析和综合评价才能得出符合实际的正确结论,综合分析是现阶段最常用的方法。 二、岩块和岩体的地质基础 一、解释下例名词术语 1、岩块:岩块是指不含显著结构面的岩石块体,是构成岩体的最小岩石单元体。有些学者把岩块称为结构体、岩石材料及完整岩石等。 2、波速比k v:波速比是国标提出的用来评价岩的风化程度的指标之一,即风化岩块和新鲜岩块的纵波速度之比。 3、风化系数k f:风化系数是国标提出的用来评价岩的风化程度的指标之一,即风化岩块和新鲜岩块饱和单轴抗压强度之比。 4、结构面:其是指地质历史发展过程中,在岩体内形成的具有一定的延伸方向和长度、厚度相对较小的地质面或带。它包括物质分异面和不连续面,如层面、不整合、节理面、断层、片理面等,国内外一些文献中又称为不连续面或节理。 5、节理密度:反映结构发育的密集程度,常用线密度表示,即单位长度内节理条数。 6、节理连续性:节理的连续性反映结构面贯通程度,常用线连续性系数表示,即单位长度内贯通部分的长度。 7、节理粗糙度系数JRC:表示结构面起伏和粗糙程度的指标,通常用纵刻面仪测出剖面轮廓线与标准曲线对比来获得。 8、节理壁抗压强度JCS:用施密特锤法(或回弹仪)测得的用来衡量节理壁抗压能力的指标。 9、节理张开度:指节理面两壁间的垂直距离。 10、岩体:岩体是指在地质历史过程中形成的,由岩块和结构面网络组成的,具有一定的结构,赋存于一定的天然应力状态和地下水等地质环境中的地质体。 11、结构体:岩体中被结构面切割围限的岩石块体。 12、岩体结构:岩体中结构面与结构体的排列组合特征。

常用岩土材料参数和岩石物理力学性质一览表

(E, ν) 与(K, G)的转换关系如下: ) 21(3ν-= E K ) 1(2ν+= E G (7.2) 当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。 表7.1和7.2分别给出了岩土体的一些典型弹性特性值。 岩石的弹性(实验室值)(Goodman,1980) 表7.1 土的弹性特性值(实验室值)(Das,1980) 表7.2 各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5 中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。这些常量的定义见理论篇。 均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3.7给出了各向异性岩石的一些典型的特性值。 横切各向同性弹性岩石的弹性常数(实验室) 表7.3

流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。在FLAC 3D 中用到的流动时间步长,? tf 与孔隙度n ,渗透系数k 以及K f 有如下关系: ' f f k K n t ∝ ? (7.3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。 f 'K n m k C + = νν (7.4) 其中 3 /4G K 1 m += ν f 'k k γ= 其中,' k ——FLAC 3D 使用的渗透系数 k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量 考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9 102?)减少,利用上面得表达式看看其产生的误差。 流动体积模量还会影响无流动但是有空隙压力产生的模型的收敛速率(见1.7节流动与力学的相互作用)。如果K f 是一个通过比较机械模型得到的值,则由于机械变形将会产生孔隙压力。如果K f 远比k 大,则压缩过程就慢,但是一般有可能K f 对其影响很小。例如在土体中,孔隙水中还会包含一些尚未溶解的空气,从而明显的使体积模量减小。 在无流动情况下,饱和体积模量为: n K K K f u + = (7.5) 不排水的泊松比为:

聚合物材料的动态力学性能测试

DMA 测量形状记忆高聚物性能原理及应用 聚合物材料的动态力学性能测试 在外力作用下,对样品的应变和应力关系随温度等条件的变化进行分析,即为动态力学分析。动态力学分析能得到聚合物的动态模量( E′)、损耗模量(E″)和力学损耗(tanδ)。这些物理量是决定聚合物使用特性的重要参数。同时,动态力学分析对聚合物分子运动状态的反应也十分灵敏,考察模量和力学损耗随温度、频率以及其他条件的变化的特性可得到聚合物结构和性能的许多信息,如阻尼特性、相结构及相转变、分子松弛过程、聚合反应动力学等。 实验原理 高聚物是黏弹性材料之一,具有黏性和弹性固体的特性。它一方面像弹性材料具有贮存械能的特性,这种特性不消耗能量;另一方面,它又具有像非流体静应力状态下的黏液,会损耗能量而不能贮存能量。当高分子材料形变时,一部分能量变成位能,一部分能量变成热而损耗。能量的损耗可由力学阻尼或内摩擦生成的热得到证明。材料的内耗是很重要的,它不仅是性能的标志,而且也是确定它在工业上的应用和使用环境的条件。 如果一个外应力作用于一个弹性体,产生的应变正比于应力,根据虎克定律,比例常数就是该固体的弹性模量。形变时产生的能量由物体贮存起来,除去外力物体恢复原状,贮存的能量又释放出来。如果所用应力是一个周期性变化的力,产生的应变与应力同位相,过程也没有能量损耗。假如外应力作用于完全黏性的液体,液体产生永久形变,在这个过程中消耗的能量正比于液体的黏度,应变落后于应力90o,如图2-61(a)所示。聚合物对外力的响应是弹性和黏性两者兼有,这种黏弹性是由于外应力与分子链间相互作用,而分子链又倾向于排列成最低能量的构象。在周期性应力作用的情况下,这些分子重排跟不上应力变化,造成了应变落后于应力,而且使一部分能量损耗。图2-61(b)是典型的黏弹性材料对正弦应力的响应。正弦应变落后一个相位角。应力和应变可以用复数形式表示如下。 σ*=σ0exp(iωt) γ*=γ0 exp[i (ωt-δ) ] 式中,σ0和γ0为应力和应变的振幅;ω是角频率;i是虚数。用复数应力σ*除以复数形变γ*,便得到材料的复数模量。模量可能是拉伸模量和切变模量等,这取决于所用力的性质。为了方便起见,将复数模量分为两部分,一部分与应力同位相,另一部分与应力差一个90o的相位角,如图2-61(c)所示。对于复数切变模量 E*=E′+iE″ (2-60)

常用材料力学性能.

常用材料性质参数 材料的性质与制造工艺、化学成份、内部缺陷、使用温度、受载历史、服役时间、试件尺寸等因素有关。本附录给出的材料性能参数只是典型范围值。用于实际工程分析或工程设计时,请咨询材料制造商或供应商。 除非特别说明,本附录给出的弹性模量、屈服强度均指拉伸时的值。 表 1 材料的弹性模量、泊松比、密度和热膨胀系数 材料名称弹性模量E GPa 泊松比V 密度 kg/m3 热膨胀系数a 1G6/C 铝合金-79 黄铜 青铜 铸铁 混凝土(压 普通增强轻质17-31 2300 2400 1100-1800

7-14 铜及其合金玻璃 镁合金镍合金( 蒙乃尔铜镍 塑料 尼龙聚乙烯 2.1-3.4 0.7-1.4 0.4 0.4 880-1100 960-1400 70-140 140-290 岩石(压 花岗岩、大理石、石英石石灰石、沙石40-100 20-70 0.2-0.3 0.2-0.3 2600-2900 2000-2900 5-9 橡胶130-200 沙、土壤、砂砾钢

高强钢不锈钢结构钢190-210 0.27-0.30 7850 10-18 14 17 12 钛合金钨木材(弯曲 杉木橡木松木11-13 11-12 11-14 480-560 640-720 560-640 1 表 2 材料的力学性能 材料名称/牌号屈服强度s CT MPa 抗拉强度b CT

MPa 伸长率 5 % 备注 铝合金LY12 35-500 274 100-550 412 1-45 19 硬铝 黄铜青铜 铸铁( 拉伸HT150 HT250 120-290 69-480 150 250 0-1 铸铁( 压缩混凝土(压缩铜及其合金 玻璃

聚合物动态力学性能的测定.

实验7 聚合物动态力学性能的测定 聚合物材料,如塑料、橡胶、纤维及其复合材料等都具有粘弹性,用动态力学的方法研究聚合物材料的粘弹性,已证明是一种非常有效的方法。材料的动态力学行为是指材料在振动条件下,即在交变应力(或交变应变)作用下作出的力学响应。测定材料在一定温度范围内的动态力学性能的变化即为动态力学分析(dynamic mechanical thermal analysis, DMTA ) 一、二、实验目的 了解动态力学分析的测量原理及仪器结构。了解影响动态力学分析实验结果的因素,正确选择实验条件。掌握动态力学分析的试样制备及测试步骤。掌握动态力学分析在聚合物分析中的应用。 实验原理 聚合物的粘弹性是指聚合物既有粘性又有弹性的性质,实质是聚合物的力学松弛行为。研究聚合物的粘弹性常采用正弦的交变应力,使试样产生的应变也以正弦方式随时间变化。这种周期性的外力引起试样周期性的形变,其中一部分所做功以位能形式贮存在试样中,没有损耗,而另一部分所做功,在形变时以热的形式消耗掉。应变始终落后应力一个相位,以拉伸为例,当试样受到交变的拉伸应力作用时,其交变应力和应变随时间的变化关系如下: 应力 )sin(0δ?σσ+=t (7-1) )900(0<<δ应变 t ?εεsin 0= (7-2) 式中0σ和0ε为应力和形变的振幅;ω是角频率;δ是应变相位角。

式(7-1)和式(7-2)说明应力变化要比应变领先一个相位差δ,见图7.1。 图7.1 应力应变和时间的关系 将式(7-1)展开为: δ?σδωσσsin cos cos sin 00t t += (7-3) 即认为应力由两部分组成,一部分)cos sin (δ?σt 与应变同相位,另一部分)sin cos (0δ?σt 与应变相差2/π。根据模量的定义可以得到两种不同意义的模量,定义'E 为同相位的应力和应变的比值,而''E 为相位差2/π的应力和应变的振幅的比值,即 t E t E ?εωεσcos ''sin '00+= (7-4) 此时模量是一个复数,叫复数模量*E 。 '''*iE E E += (7-5) 'E 为实数模量又称储能模量,表示材料在形变过程中由于弹性形变而储存的能量;''E 为虚数模量也称损耗模量,表示在形变过程中以热的方式损耗的能量。 ' ''tan E E =δ (7-6) 式(7-6)中,δtan 为损耗角正切或称损耗因子。 研究材料的动态力学性能就是要精确测量各种因素(包括材料本身的结构参数及外界条件)对动态模量及损耗因子的影响。 聚合物的性质与温度有关,与施加于材料上外力作用的时间有关,还与外力作用的频率有关。当聚合物作为结构材料使用时,主要利用它的弹性、强度,要求在使用温度范围内有较大的贮能模量。聚合物作为减震或隔音材料使用时,则主要利用它们的粘性,要求在一定

岩体力学

岩块:不含显著结构面的岩石块体,是构成岩石的最小岩石单元体。岩体:通常是指一定工程范围内的自然地质体。 结构面:指地质历史发展过程中,在岩体内形成的具有一定的延伸方向和长度,厚度相对较小的地质界面或带。 岩石的结构:矿物颗粒的形状、大小和联结方式所决定的结构特征。 岩石的构造:各种不同结构的矿物集合体的各种分布和排列方式。 岩石的水理性质:岩石在含水或者浸水等条件下体现主来的的与水作用有关的性质。包括:吸水性,软化性,崩解性,膨胀性,抗冻性和渗透性。表征吸水率的指标:含水率、吸水率、饱和吸水率、饱水系数。 含水率:岩石空隙中含水的质量与固体质量之比。 吸水率:一定实验条件下岩石吸入水的质量和岩石固体质量之比,用百分数表示。 软化性:岩石在保水状态下强度相对降低的性能,用软化系数来表征。 软化系数:饱和岩石单轴抗压强度与干燥岩石单轴抗压强度的比值。 崩解性:岩石与水相互作用时失去粘结性并且变成完全丧失强度松散物质的性能。 膨胀性:岩石浸水后体积增大的性质。抗冻性:岩石地抗冻融破坏的能力。 岩石密度:单位体积内岩石的质量。岩石颗粒密度:岩石固体部分的质量与固体体积比值。 岩体和岩块的区别:块,强度高,无结构面,体积小,连续性均匀介质,研究方法简单,反应工程实际较差。体相反。 岩石应力应变全过程曲线:孔隙裂隙压密阶段 OA,弹性变形阶段 A B,微弹性裂隙稳定发展阶段 BC,非稳定破裂阶段 CD,破坏后阶段 DE。 岩石的拉伸破坏实验分为:直接拉伸实验法、抗弯法、劈裂法、点载荷实验法。后两种常用。 单轴抗压强度:岩石在单轴压缩荷载作用下所能承受的最大压应力。 单轴抗拉强度:岩石在单轴拉伸荷载作用下达到破坏是所能承受的最大拉应力。 泊松比:在材料的比例极限内,由均匀分布的纵向应力所引起的横向应变与相应的纵向应变之比的绝对值。 变形模量:在部分侧限条件下,其应力增量与相应的应变增量的比值。 残余强度:达到峰值强度之后,强度急剧下降并且不等于 0 的强度值。 岩石三周抗压强度:岩石在三周荷载作用下,达到破坏时所能承受的最大压应力。 脆性:在外力作用下(如拉伸、冲击等)仅产生很小的变形即断裂破坏的性质。 延性:结构,构件或构件的某个截面从屈服开始到达最大承载能力或到达以后而承载能力还没有明显下降期间的变形能力。 弹性:物体在外力作用下发生形变,当外力撤消后能恢复原来大小和形状的性质。 塑性:一种在某种给定载荷下,材料产生永久变形的材料特性。粘性:度量流体粘性大小的物理量。 抗剪强度:岩石的剪切荷载作用下达到剪切破坏前所能承受的最大切应力。岩石剪切试验分为:岩石抗剪实验、抗切试验以及弱面剪切试验。 抗剪断强度:一定正应力作用下的岩石试件沿预定剪切面剪断时的最大切应力。是岩石内聚力和内摩擦力的综合体现。岩石抗切试验通常有单(双)面剪切及冲孔试验。取决于岩石内聚力。 岩石流变包括:蠕变、松弛、弹性后效和粘性流动。 蠕变:应力保持不变应变随时间增长而增加的现象。 松弛:应变保持不变应力随时间增加而减小的现象。

岩体的力学性质及分类doc

―――岩体力学作业之二 一、名词释义 l.结构面:①指在地质历史发展过程中,岩体内形成的具有一定的延伸方向和长度,厚度相对较小的宏观地质界面或带。 ②又称弱面或地质界面,是指存在于岩体内部的各种地质界面,包括物质分异面和不连续面,如假整合、不整合、褶皱、断层、层面、节理和片理等。 2.原生结构面:在成岩阶段形成的结构面,根据岩石成因的不同,可分为沉积结构面、岩浆(火成)结构面和变质结构面三类。 3.构造结构面:指在构造运动作用下形成的各种结构面,如劈理、节理、断层面等。 4.次生结构面:指在地表条件下,由于外力(如风力、地下水、卸荷、爆破等)的作用而形成的各种界面,如卸荷裂隙、爆破裂隙、风化裂隙、风化夹层及泥化夹层等。 5.结构面频率:即裂隙度,是指岩体中单位长度直线所穿过的结构面数目。 6.结构体:结构面依其本身的产状,彼此组合将岩体切割成形态不一、大小不等以及成分各异的岩石块体,被各种结构面切割而成的岩石块体称为结构体。 7.结构效应:是指岩体中结构面的方向、性质、密度和组合方式对岩体变形的影响。 8.剪胀角(angle of dilatancy):岩体结构面在剪切变形过程中所发生的法向位移与切向位移之比的反正切值。 9.节理化岩体:是指被各种节理、裂隙切割呈碎裂结构的岩体。 10.结构面产状的强度效应:指结构面与作用力之间的方位关系对岩体强度所产生的影响。 11.结构面密度的强度效应:指结构面发育程度(数量)对岩体强度所产生的影响。 12.岩体完整性指标:是指岩体弹性纵波与岩石弹性纵波之比的平方。 13.岩体基本质量:岩体所固有的、影响工程岩体稳定性的最基本属性,岩体基本质量由岩石坚硬程度和岩体完整程度决定。 14.自稳能力:在不支护条件下,地下工程岩体不产生任何形式破坏的能力。 15.体积节理数:是指单位岩体体积内的节理(结构面)数目。 16.岩石质量指标(RQD):长度在10cm(含10 cm)以上的岩芯累计长度占钻孔总长的百分比,称为岩石质量指标RQD(Rock Quality Designation)。 二、填空题 1.岩体是指经历过多次反复地质作用,经受过变形,遭受过破坏,形成了一定的岩石成分和结构,赋存于一定地质环境中的地质体。因此,岩体力学性质与岩体中的、以及 2 密切相关。 2.岩体由结构面和结构体组成,结构面根据形成原因通常可分为三种类型:、 和。 3.在工程岩体范围内,结构面按贯通情况可分为、以及三种类型。 4.在岩体中被各种结构面切割而成的岩石块体称为结构体。结构体的形状主要有、、1 以及菱形和锥形等,如果风化强烈或挤压严重,也可形成、、 1 等。 5.岩体抵抗外力作用的能力称为岩体的力学性质。它包括岩体的特征、特征和1 特征等。 6.岩体结构面的剪切变形与、和有关。 7.岩体结构面的几何特性是反映节理的外貌,它的组成要素包括:、、、 以及和。 8.岩体的力学性质不仅取决于岩石本身及结构面的力学性质,也与密切相关。 9.岩体的强度不仅与组成岩体的的性质有关,而且与岩体内的有关,此外还与岩体有关。 10.岩体中存在各种结构面,结构面的变形大小主要由和控制的。

材料的常用力学性能有哪些

材料的常用力学性能有哪些 材料的力学性能是指材料在不同环境(温度、介质、湿度)下,承受各种外加载荷(拉伸、压缩、弯曲、扭转、冲击、交变应力等)时所表现出的力学特征。1强度 强度是指材料在外力作用下抵抗塑性变形或断裂的能力。强度用应力表示,其符号是σ,单位为MPa,常用的强度指标有屈服强度和抗拉强度,通过拉伸试验测定。 2塑性 塑性是指材料在断裂前产生永久变形而不被破坏的能力。材料塑性好坏的力学性能指标主要有伸长率和收缩率,值越大,材料的塑性就越好,通过拉伸试验可测定。 3硬度 硬度是指金属材料抵抗硬物压入其表面的能力。材料的硬度越高,其耐磨性越好。常用的硬度指标有布氏硬度(HBS)和洛氏硬度(HRC)。 1)布氏硬度 表示方法:布氏硬度用HBS(W)表示,S表示钢球压头,W表示硬质合金球压头。规定布氏硬度表示为:在符号HBS或HBW前写出硬度值,符号后面依

次用相应数字注明压头直径(mm)、试验力(N)和保持时间(s)。如120 HBS 10/1000/30。 适用范围:HBS适用于测量硬度值小于450的材料,主要用来测定灰铸铁、有色金属和经退火、正火及调质处理的钢材。 根据经验,布氏硬度与抗拉强度之间有一定的近似关系: 对于低碳钢,有σ=0.36HBS; 对于高碳钢:有σ=0.34HBS。 2)洛氏硬度 表示方法:常用HRA、HRB、HRC三种,其中HRC最为常用。洛氏硬度的表示方法为:在符号前面写出硬度值。如62HRC。 适用范围:HRC在20-70范围内有效,常用来测定淬火钢和工具钢、模具钢等材料,1HRC相当于10HBS。 4冲击韧性 冲击韧性是指材料抵抗冲击载荷而不被破坏的能力,材料的韧性越好,在受冲击时越不容易断裂。 5疲劳强度 疲劳强度是指材料经过无数次应力循环仍不断裂的最大应力。

岩体力学重点

概念 岩石:是由矿物或岩屑在地质作用下按一定的规律聚集而成的自然体。 岩石结构:是指岩石中矿物颗粒间的关系,包括颗粒大小、形状、排列、结构连结特点以及岩石中的微结构面。 岩石构造:岩石中不同矿物集合体之间及其与其他组成部分之间在空间的排列方式及充填方式。 岩石块体密度:单位体积岩石(包括岩石孔隙体积)的质量。 颗粒密度:岩石固相物质的质量与其体积的比值(不包括岩石孔隙体积)。 孔隙率:孔隙体积与总体积(包含孔隙)之比。 渗透系数:表征岩石透水性的重要标志,在数值上等于水力梯度为1时的渗流速度。 软化系数:岩石浸水后的饱和抗压强度与岩石干抗压强度之比。 膨胀性:岩石侵水后发生体积膨胀的性质。 岩石吸水性:岩石在一定的实验条件下吸收水分的能力。 扩容:岩石在外力作用下,形变过程中发生的非弹性的体积增长(岩石破坏的前兆)。 弹性模量:单向压缩条件下,弹性变形范围为轴向应力与试件轴向应变之比。 变形模量:岩石在单轴压缩条件下,轴向应力与总应变(弹性应变与塑性应变之和)的比值。泊松比:横向应变与纵向应变之比,也叫横向变形系数。 脆性度:对脆性程度的一种度量,脆性度愈小,材料抗断裂的抗力愈高;反之愈大。 尺寸效应:岩石试件尺寸越大,则强度越低,反之越高,这一现象。 常规三轴试验:试件处于σ1 >σ2=σ3应力状态下。 真三轴试验:试件处于σ1 >σ2 >σ3应力状态下。 岩石三轴压缩强度:岩石在三轴压缩荷载作用下,试件破坏时所承受的最大轴向压应力。流变性:介质在外力不变的条件下,应力与应变随时间而变化的性质。 蠕变:介质在大小和方向均不改变的外力作用下,其变形随时间变化而增大的现象。 松弛:介质的变形(应变)保持不变时,内部应力随时间变化而降低的现象。 弹性后效:介质加载或卸载时,弹性应变滞后于应力的现象。它是一种延迟发生的弹性变形和弹性恢复,外力卸除后最终不留下永久变形。 岩石长期强度:岩石的强度是随外载作用时间的延长而降低,作用时间t趋向于正无穷的强度(最低值)。 强度准则:表征岩石破坏条件的应力状态与岩石强度参数间的函数关系,通过它来判断岩石在什么样的应力应变条件下破坏。 岩石抗拉强度测定方法:直接拉伸法、抗弯法、劈裂法、点载荷法。 简答论述 1、岩石结构与岩石构造有什么区别?并举例加以说明。 岩石结构:是指岩石中矿物颗粒间的关系,包括颗粒大小、形状、排列、结构连结特点以及岩石中的微结构面。岩石构造:岩石中不同矿物集合体之间及其与其他组成部分之间在空间的排列方式及充填方式。如岩浆岩中的流线、流面、块状构造,沉积岩中的层理、叶片状构造,变质岩中的片理、片麻理和板状构造等。 2、岩石颗粒间的连接方式有哪几种? 结晶连结:岩石中矿物颗粒通过结晶相互嵌合在一起,如岩浆岩、大部分变质岩以及部分沉积岩的结构连结。胶结连结:指颗粒与颗粒之间通过胶结物质连结在一起的连结。如沉积碎屑岩、部分粘土岩的结构连

(重)常见材料的力学性能

附录常用材料的力学及其它物理性能 一、玻璃的强度设计值 f g(MPa) JGJ102-2003表5.2.1 二、铝合金型材的强度设计值 (MPa) GB50429-2007表4.3.4 三、钢材的强度设计值(1-热轧钢材) f s(MPa) JGJ102-2003表5.2.3 四、钢材的强度设计值(2-冷弯薄壁型钢) f s(MPa) 五、材料的弹性模量E(MPa) JGJ102-2003表5.2.8、JGJ133-2001表5.3.9

六、 材料的泊松比υ JGJ102-2003表5.2.9、JGJ133-2001表5.3.10、GB50429-2007表4.3.7 七、 材料的膨胀系数α(1/℃) JGJ102-2003表5.2.10、JGJ133-2001表5.3.11、GB50429-2007表4.3.7 八、 材料的重力密度γg (KN/m ) JGJ102-2003表5.3.1、GB50429-2007表4.3.7 九、 板材单位面积重力标准值(MPa ) JGJ133-2001表5.2.2 十、 螺栓连接的强度设计值一(MPa) JGJ102-2003表B.0.1-1

十一、螺栓连接的强度设计值二(MPa) 十二、焊缝的强度设计值(MPa) JGJ102-2003表B.0.1-3

十三、不锈钢螺栓连接的强度设计值(MPa) JGJ102-2003表B.0.3 十四、楼层弹性层间位移角限值 GB/T21086-2007表20 十五、部分单层铝合板强度设计值(MPa)JGJ133-2001表5.3.2

十六、铝塑复合板强度设计值(MPa) JGJ133-2001表5.3.3 十七、蜂窝铝板强度设计值(MPa) JGJ133-2001表5.3.4 十八、不锈钢板强度设计值(MPa) 附录常用材料的力学及其它物理性能十九、玻璃的强度设计值 f g(N/mm2) 二十、铝合金型材的强度设计值 f a(N/mm2)

岩体力学和土力学dpo

第一讲岩石的基本物理力学性质及其试验方法(之一) 一、内容提要: 本讲主要讲述岩石的物理力学性能等指标及其试验方法,岩石的强度特性。 二、重点、难点: 岩石的强度特性,对岩石的物理力学性能等指标及其试验方法作一般了解。 一、概述 岩体力学是研究岩石和岩体力学性能的理论和应用的科学,是探讨岩石和岩体对其 周围物理环境(力场)的变化作出反应的一门力学分支。 所谓的岩石是指由矿物和岩屑在长期的地质作用下,按一定规律聚集而成的自然体。由于成因的不同,岩石可分成火成岩、沉积岩、变质岩三大类。岩体是指在一定工程范围内的自然地质体。通常认为岩体是由岩石和结构面组成。所谓的结构面是指没有或者具有极低抗拉强度的力学不连续面,它包括一切地质分离面。这些地质分离面大到延伸几公里的断层,小到岩石矿物中的片理和解理等。从结构面的力学来看,它往往是岩体中相对比较薄弱的环节。因此,结构面的力学特性在一定的条件下将控制岩体的力学特性,控制岩体的强度和变形。 【例题1】岩石按其成因可分为( )三大类。 A. 火成岩、沉积岩、变质岩 B. 花岗岩、砂页岩、片麻岩 C. 火成岩、深成岩、浅成岩 D. 坚硬岩、硬岩、软岩答案:A 【例题2】片麻岩属于( )。 A. 火成岩 B. 沉积岩 C. 变质岩 答案:C

【例题3】在一定的条件下控制岩体的力学特性,控制岩体的强度和变形的是 ( )。 A. 岩石的种类 B. 岩石的矿物组成 C. 结构面的力学特性 D. 岩石的体积大小答案:C 二、岩石的基本物理力学性质及其试验方法 (一)岩石的质量指标 与岩石的质量有关的指标是岩石的最基本的,也是在岩石工程中最常用的指标。 1 岩石的颗粒密度(原称为比重) 岩石的颗粒密度是指岩石的固体物质的质量与其体积之比值。岩石颗粒密度通常采用比重瓶法来求得。其试验方法见相关的国家标准。岩石颗粒密度可按下式计算 2 岩石的块体密度 岩石的块体密度是指单位体积岩块的质量。按照岩块含水率的不同,可分成干密度、饱和密度和湿密度。 (1)岩石的干密度 岩石的干密度通常是指在烘干状态下岩块单位体积的质量。该指标一般都采用量积法求得。即将岩块加工成标准试件(所谓的标准试件是指满足圆柱体直径为48~54mm,高径比为2.0~2.5,含大颗粒的岩石,其试件直径应大于岩石最大颗粒直径的10倍;并对试件加工具有以下的要求;沿试件高度,直径或边长的误差不得大于0.3mm;试件两端面的不平整度误差不得大于0.05mm;端面垂直于试件轴线,最大偏差不得大于0.25。)。测量

材料的常用力学性能有哪些

材料的常用力学性能有哪些 材料的常用力学性能指标有哪些 材料在一定温度条件和外力作用下,抵抗变形和断裂的能力称为材料的力学性能.锅炉、压力容器用材料的常规力学性能指标主要包括:强度、硬度、塑性和韧性等. (1)强度强度是指金属材料在外力作用下对变形或断裂的抗力.强度指标是设计中决定许用应力的重要依据,常用的强度指标有屈服强度σS或σ0.2和抗拉强度σb,高温下工作时,还要考虑蠕变极限σn和持久强度σD. (2)塑性塑性是指金属材料在断裂前发生塑性变形的能力.塑性指标包括:伸长率δ,即试样拉断后的相对伸长量;断面收缩率ψ,即试样拉断后,拉断处横截面积的相对缩小量;冷弯(角)α,即试件被弯曲到受拉面出现第一条裂纹时所测得的角度. (3)韧性韧性是指金属材料抵抗冲击负荷的能力.韧性常用冲击功Ak和冲击韧性值αk表示.Αk值或αk值除反映材料的抗冲击性能外,还对材料的一些缺陷很敏感,能灵敏地反映出材料品质、宏观缺陷和显微组织方面的微小变化.而且Ak对材料的脆性转化情况十分敏感,低温冲击试验能检验钢的冷脆性. 表示材料韧性的一个新的指标是断裂韧性δ,它是反映材料对裂纹扩展的抵抗能力. (4)硬度硬度是衡量材料软硬程度的一个性能指标.硬度试验的方法较多,原理也不相同,测得的硬度值和含义也不完全一样.最常用的是静负荷压入法硬度试验,即布氏硬度(HB)、洛氏硬度(HRA、HRB、HRC)、维氏硬度(HV),其值表示材料表面抵抗坚硬物体压入的能力.而肖氏硬度(HS)则属于回跳法硬度试验,其值代表金属弹性变形功的大小.因此,硬度不是一个单纯的物理量,而是反映材料的弹性、塑性、强度和韧性等的一种综合性能指标. 力学性能主要包括哪些指标 材料的力学性能是指材料在不同环境(温度、介质、湿度)下,承受各种外加载荷(拉伸、压缩、弯曲、扭转、冲击、交变应力等)时所表现出的力学特征. 性能指标 包括:弹性指标、硬度指标、强度指标、塑性指标、韧性指标、疲劳性能、断裂韧度. 钢材的力学性能是指标准条件下钢材的屈服强度、抗拉强度、伸长率、冷弯性能和冲击韧性等,也称机械性能. 金属材料的力学性能指标有哪些 一:弹性指标

第十章 织物的结构与基本性能(讲习要点Print)

第十章织物的结构与性能 概述 ?纺织材料直接和主要的产品是织物,柔性平面薄层状的物质?织物的成形:纤维经成网固着;成纱织、编而成 ?织物的轴与维:一维结构、二维结构、三维结构;单轴和多轴?一般织物:机织物、针织物、非织造布、编织物等 ?特种织物:三维结构或三维成形织物、层合或混合复合织物、 可呼吸织物、电子织物等 ?织物的应用:建筑(architectured and construction)、土工 (geotextile)、防护(safety and protective)、运动(sports and recreation)、运输(automotive and transportation)、航空航天(aviation and spaceflight )、医用(medical)、军用(military and defence)、产业(industrial),以及人类穿着用的重要的高科技纺织品(high-tech textiles)的基础用材。 ?问题:单一或复合、二维或三维织物的结构均有定性的阐述, 对结构与常用性能间的关系也有讨论,但对织物结构、性能、成形及其相互间关系的定量描述还显得比较粗浅,尤其是对复杂结构织物及其定量表征与实际存在较大差距。 章节分配(3~4学时) 本章仅对已有的理论和传统织物结构及其常用性能作简要介绍,并较多地限于服用织物结构和性能的描述。 §1. 织物的类型与结构表征 §2. 纤维的介电性能 §3. 纤维的静电性质 §4. 导电高聚物的导电性质

第一节织物的类型与结构表征 一、织物的结构分类与名称 织物的分类方法众多,可以根据加工方法、成形方式、基本性能、选用纤维或纱线、织物组织和结构、厚度和轻重、用途和功能等进行分类。但作为织物结构、性能和成形的相互关系讨论,则较多地运用直接相关结构特征和成形方式进行分类。 1.A类织物:A类为纱线按一定的排列组合结构形成织物。 2.B类织物:B类结构中,纱线以粘结的方式成形。 3.C类织物:C类织物为非织造布。 4.纤维类和非纤维类片状物 D类为胶质物质将纤维粘结在一起,并与微孔共同构成稳定的结构。E类薄片一般为均匀结构膜,可以是“合金”物质,亦可为多孔结构,一般较多地以涂层和覆膜成形。 二、复合和层合织物 各类织物简单层合构成复合织物,以及混合、组合、交叉等方式构成复杂复合织物。 三、常用织物的结构特征 常用织物主要是指一般民用的普通机织物、针织物、编织物和非织造布。 纱线相互交织成形(interweaving),如机织物; 纱线相互圈结成形(interlooping),如纬编和经编织物; 纱线相互缠绕扭结成形(intertwining or interlacing),如编结织物; 纤维相互粘结或纠缠成形,如毛毡和非织造布; 基布表面成圈或簇绒成形(terry-looping or tufting),如机织、针织起绒织物和地毯。 四、特殊织物的结构 这里所指的特殊织物是在成形方式和结构上,为非常规方法直接所得的织物,这类织物主要为多层复合织物,如柔性建筑顶蓬

同济大学出版岩体力学考试复习资料

岩体力学考试复习资料(2011/04/17) 一、名词释义 结构面:指地质历史发展过程中,在岩体内形成的具有一定的延伸方向和长度,厚度相对较小的地质界面或带. 岩体:在地质历史过程中形成的,由岩石单元体和结构面网络组成的,具有一定的结构并赋存于一定的天然应力状态和 地下水等地质环境中的地质体. 颗粒密度:岩石固体相部分的质量与其体积的比值。块体密度(岩石密度):指岩石单位体积内的质量。 弹性;在一定的应力范围内物体受外力作用产生的全部变形去除外力后能立即恢复原有形状和尺寸。塑性;物体受力后产生变形,在外力去除后不能完全回复的性质。 粘性;物体受力后变形不能再瞬时完成,且应变速率随应力增加而增加的性质。脆性; 物体受力后变形很小时就发生碎裂的性质。 延性;物体能承受较大塑性变形而不丧失其承载力的性质。 流变;在外部条件不变的情况下,岩石的变形或应力随时间的变化的现象弹性后效:应变恢复总是落后于应力的现象 单轴抗压强度:在单向压缩条件下,岩块能承受的最大压应力 法向刚度:在法向应力作用下,结构面产生单位法向变形所需的应力 剪切强度:岩体内任一方向剪切面在法向应力作用下所能抵抗的最大剪应力天然应力:人类工程活动之前存在于岩体中的应力重分布应力:岩体中由于工程活动改变后的应力 天然应力比值系数:岩体中天然水平应力与铅直应力之比 岩爆:高地应力地区由于洞壁围岩中应力高度集中使围岩产生突发性变形破坏的现象 围岩压力:地下洞室在重分布应力作用下产生过量的塑性变形或松动破坏,进而引起施加于支护衬砌上的压力围岩抗力:围岩对衬砌的反力 围岩抗力:使洞壁围岩产生一个单位径向变形所需要的内水压力蠕变:岩石在恒定的荷载作用下,变形随时间逐渐增大的性质尺寸效应:试件尺寸越大,岩块强度越低剪胀角:剪切位移线与水平的夹角 岩(体)石力学:是力学的一个分支学科,是研究岩(体)石在各种力场作用下变形与破坏规律的理论及其实际应用 的一门基础学科。 工程岩体力学:为各类建筑工程及采矿工程等服务的岩体力学 RQD(岩体质量指标):指大于10cm的岩芯,累计长度与钻孔进尺长度之比的百分比软化性:岩石浸水饱和后强度降低的性质。 二、填空 岩体力学主要分支学科:工程岩体力学、构造岩体力学、破碎岩体力学。 岩体力学研究对象是:在各种地质作用下形成的天然岩体。 结构面连续性指标:线连续性系数、迹长、面连续性系数。 按充填厚度和连续性,结构面充填分为:薄膜充填、断续充填、连续充填、厚层充填。岩石软化性取决于岩石的:矿物组成、空隙性。流变包括:蠕变、松弛、弹性后效。 岩块抗拉强度测定方法:直接拉伸法和间接法;间接法有:劈裂法、抗弯法、点荷载法。影响抗剪强度因素:结构面的形态、连续性、胶结充填特征、壁岩性质。 岩体法向变形曲线分为:直线型、上凹型、上凸型、复合型;又称为弹性、弹-塑性、塑-弹性、塑-弹-塑性岩体。岩石天然应力测量方法:水压致裂法、扁千斤顶法、钻孔套应力解除法。铅直天然应力σv等于上覆岩体自重,σv=ρgh 水平天然应力σh=λσv,λ=μ/

岩石力学性质试验指导书

实验一岩石单轴抗压强度试验 1.1 概述 当无侧限岩石试样在纵向压力作用下出现压缩破坏时,单位面积上所承受的载荷称为岩石的单轴抗压强度,即试样破坏时的最大载荷与垂直于加载方向的截面积之比。 在测定单轴抗压强度的同时,也可同时进行变形试验。 不同含水状态的试样均可按本规定进行测定,试样的含水状态用以下方法处理: (1)烘干状态的试样,在105~1100C下烘24h。 (2)饱和状态的试样,使试样逐步浸水,首先淹没试样高度的1/4,然后每隔2h分别升高水面至试样的1/3和1/2处,6h后全部浸没试样,试样在水下自由吸水48h;采用煮沸法饱和试样时,煮沸箱内水面应经常保持高于试样面,煮沸时间不少于6h。 1.2 试样备制 (1)试样可用钻孔岩芯或坑、槽探中采取的岩块,试件备制中不允许有人为裂隙出现。按规程要求标准试件为圆柱体,直径为5cm,允许变化范围为4.8~5.2cm。高度为10cm,允许变化范围为9.5~10.5cm。对于非均质的粗粒结构岩石,或取样尺寸小于标准尺寸者,允许采用非标准试样,但高径比必须保持=2:1~2.5:1。 (2)试样数量,视所要求的受力方向或含水状态而定,一般情况下必须制备3个。 (3)试样制备的精度,在试样整个高度上,直径误差不得超过0.3mm。两端面的不平行度最大不超过0.05mm。端面应垂直于试样轴线,最大偏差不超过0.25度。 1.3 试样描述 试验前的描述,应包括如下内容: (1)岩石名称、颜色、结构、矿物成分、颗粒大小,胶结物性质等特征。 (2)节理裂隙的发育程度及其分布,并记录受载方向与层理、片理及节理裂隙之间的关系。 (3)测量试样尺寸,并记录试样加工过程中的缺陷。 1.4 主要仪器设备 试样加工设备:钻石机、锯石机、磨石机或其他制样设备。 量测工具与有关检查仪器: 游标卡尺、天平(称量大于500g,感量0.01g),烘箱和干燥箱,水槽、煮沸设备。 加载设备: 压力试验机。压力机应满足下列要求: (1)有足够的吨位,即能在总吨位的10%~90%之间进行试验,并能连续加载且无冲击。 (2)承压板面平整光滑且有足够的刚度,其中之一须具有球形座。承压板直径不小于试样直径,且也不宜大于试样直径的两倍。如大于两倍以上时需在试样上下端加辅助承压板,辅助承压板的刚度和平整光滑度应满足压力机承压板的要求。 (3)压力机的校正与检验应符合国家计量标准的规定。 1.5 试验程序 (1)根据所要求的试样状态准备试样。 (2)将试样置于压力机承压板中心,调整有球形座的承压板,使试样均匀受力。

织物基本力学性质

第12章 织物基本力学性质 拉伸性能 撕裂性能 顶破性能 弯曲性能 耐疲劳性能 磨损性能 勾丝性能 第1节 织物的拉伸性质 1. 拉伸性能的测试方法 1.1 机织物 (1)条样法(Raveled-Strip Method) 将织物扯去边纱到规定的宽度,并全部夹入夹持器内的测试方法,按照规定条件进行测试。 (2) 抓样法(Grab Method):将一规定尺寸的织物试样仅一部分宽度被夹入夹钳内的试验方法 (3) 切割条样法(Cut-Strip Method):将剪切成规定尺寸的织物试样全部夹入夹钳内的实验方法。 (a) (b) 1.2 针织物 不宜采用上述矩形试样作拉伸试验。 原因:会出现显著的横向收缩,在夹头钳口处产生的剪切应力集中,使大多试样在钳口附近撕断,影响准确性。

试样形式:梯形或环形试样 优点:改善钳口处的应力集中现象,且伸长均匀性也比矩形试条好。 2. 织物的拉伸曲线 伸长(cm) 拉伸力(N ) (a) 纯纺织物 (b) 方向和混纺织物 织物拉伸曲线特征与组成织物的纤维和纱线拉伸曲线基本相似 混纺织物的拉伸曲线保持所用混纺纤维的特性曲线形态(接近比例大的纤维) 织物结构不同。拉伸曲线有差异 与织缩率有关。越大,在拉伸开始阶段伸长较大的现象越明显 3. 织物拉伸性能指标 (1)断裂强度和断裂伸长率 (2)断裂功、断裂比功 注意:断裂强度和断裂比功计算

(b) (c) 4. 织物的拉伸断裂机理 4.1 拉伸过程 (1)机织物 初始阶段,织物的伸长变形主要是由受拉系统纱线屈曲转向伸直引起的 后阶段,受拉系统纱线已基本伸直,伸长主要是纱线和纤维的伸长与变细 (2)针织物 线圈取向变形,在较小受力下呈较大地伸长 取向变形完成以后,纱线段和其中的纤维开始伸长 4.2 拉伸特点 (1)初始模量较低 (2)拉伸曲线有陡增现象 (3)织物破坏首先是纱线断裂,直至织物结构解体 (4)织物受拉过程中有束腰现象 问题:机织物纱线强度利用系数大于1? 机织物在拉伸过程中,经纬纱线在交织点处产生挤压,相互之间切向阻力增大,有助于织物强力增加,降低纱线强伸性能不匀的作用 针织物和无纺布不存在。

岩石的基本物理力学性质

岩石的基本物理力学性质 岩石的基本物理力学性质是岩体最基本、最重 要的性质之一,也是岩体力学中研究最早、最完善 的力学性质。 岩石密度:天然密度、饱和密度、 质量指标密度、重力密度 岩石颗粒密度 孔隙性孔隙比、孔隙率 含水率、吸水率 水理指标 渗透系数 抗风化指标软化系数、耐崩解性指数、膨胀率 抗冻性抗冻性系数 单轴抗压强度 单轴抗拉强度 抗剪强度 三向压缩强度 岩石的基本物理力学性质 ◆岩石的变形特性 ◆岩石的强度理论 试验方法参照标准:《工程岩体试验方法标准》(GB/T 50266-99)。 第二章岩石的基本物理力学性质 第一节岩石的基本物理性质 第二节岩石的强度特性 第三节岩石的变形特性

第四节岩石的强度理论 回顾----岩石的基本构成 岩石是自然界中各种矿物的集合体,是天然地质作用的产物,一般而言,大部分新鲜岩石质地均坚硬致密,空隙小而少,抗水性强,透水性弱,力学强度高。 岩石是构成岩体的基本组成单元。相对于岩体而言,岩石可看作是连续的、均质的、各向同性的介质。 岩石的基本构成:由组成岩石的物质成分和结构两大方面来决定的。 回顾----岩石的基本构成 一、岩石的物质成分 ●岩石是自然界中各种矿物的集合体。 ●岩石中主要的造岩矿物有:正长石、斜长石、石英、黑云母、角闪石、辉石、方解石、白云石、高岭石等。 ●岩石中的矿物成分会影响岩石的抗风化能力、物理性质和强度特性。 ●岩石中矿物成分的相对稳定性对岩石抗风化能力有显著的影响,各矿物的相对稳定性主要与化学成分、结晶特征及形成条件有关。 回顾----岩石的基本构成 二、岩石的结构 是指岩石中矿物(及岩屑)颗粒相互之间的关系,包括颗粒的大小、性状、排列、结构连结特点及岩石中的微结构面(即内部缺陷)。其中,以结构连结和岩石中的微结构面对岩石工程性质影响最大。 回顾----岩石的基本构成 ●岩石结构连结 结晶连结和胶结连结。 结晶连结:岩石中矿物颗粒通过结晶相互嵌合在一起,如岩浆岩、大部分变质岩及部分沉积岩的结构连结。这种连结结晶颗粒之间紧密接触,故岩石强度一般较大,但随结构的不同而有一定的差异。 胶结连结:指颗粒与颗粒之间通过胶结物在一起的连结。对于这种连结的岩石,其强度主要取决于胶结物及胶结类型。从胶结物来看,硅质铁质胶结的岩石强度较高,钙质次之,而泥质胶结强度最低。 回顾----岩石的基本构成 ●岩石中的微结构 岩石中的微结构面(或称缺陷),是指存在于矿物颗粒内部

相关文档
最新文档