建立概率模型

 建立概率模型
 建立概率模型

2.2 建立概率模型

1.进一步掌握古典概型的概率计算公式.(重点)

2.对于一个实际问题,尝试建立不同的概率模型来解决.(重点、难点)

[基础·初探]

教材整理概率模型

阅读教材P134~P137“思考交流”以上部分,完成下列问题.

由概率模型认识古典概型

(1) 一般来说,在建立概率模型时,把什么看作是一个基本事件是人为规定的.如果每次试验有一个并且只有一个基本事件出现,只要基本事件的个数是有限的,并且它们的发生是等可能的,就是一个古典概型.

(2)从不同的角度去考虑一个实际问题,可以将问题转化为不同的古典概型来解决,而所得到的古典概型的所有可能的结果数越少,问题的解决就变得越简单.

(3)树状图是进行列举的一种常用方法.

判断(正确的打“√”,错误的打“×”)

(1)古典概型中所有的基本事件的个数是有限个.()

(2)树状图是进行列举的一种常用方法.()

(3)在建立概率模型时,所得的结果越少,问题越复杂.()

(4)计算基本事件总数和事件A所包含的基本事件的个数时,所选择的观察角度必须统一.()

【解析】(1)√,由古典概型的特征知(1)正确.

(2)√,用树状图进行列举直观形象.

(3)×,结果越多问题就越复杂.

(4)√,由古典概型的概率公式易知正确.

【答案】(1)√(2)√(3)×(4)√

[小组合作型]

121

连续取两次.

【导学号:63580037】

(1)若每次取出后不放回,连续取两次,求取出的产品中恰有一件是次品的概率;

(2)若每次取出后又放回,求取出的两件产品中恰有一件是次品的概率.

【精彩点拨】利用列举法列举出所有可能出现的事件,找到符合要求的事件,利用概率公式求概率.

【自主解答】(1)每次取一件,取后不放回地连续取两次,其一切可能的结果为(a1,a2),(a1,b1),(a2,a1),(a2,b1),(b1,a1),(b1,a2),其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品.由6个基本事件组成,而且可以认为这些基本事件的出现是等可能的.用A表示“取出的两件中恰好有一件次品”这一事件,则A={(a1,b1),(a2,b1),(b1,a1),(b1,a2)}.

事件A由4个基本事件组成.因而P(A)=4

6=

2

3.

(2)有放回地连续取出两件,其一切可能的结果为(a1,a1),(a1,a2),(a1,b1),(a2,a1),(a2,a2),(a2,b1),(b1,a1),(b1,a2),(b1,b1)共9个基本事件.由于每一件产品被取到的机会均等,因此可以认为这些基本事件的出现是等可能的.用B表示“恰有一件次品”这一事件,则B={(a1,b1),(a2,b1),(b1,a1),(b1,a2)}.

事件B由4个基本事件组成,因而P(B)=4 9.

1.“有放回”与“无放回”问题的区别在于:对于某一试验,若采用“有放回”抽样,则同一个个体可能被重复抽取,而采用“不放回”抽样,则同一个个体不可能被重复抽取.

2.无论是“有放回”还是“无放回”抽取,每一件产品被取出的机会都是均等的.

[再练一题]

1.一个袋子中有红、白、蓝三种颜色的球共24个,除颜色外其他特征完全

相同,已知蓝色球3个.若从袋子中随机取出1个球,取到红色球的概率是1 6.

(1)求红色球的个数;

(2)若将这三种颜色的球分别进行编号,并将1号红色球,1号白色球,2号蓝色球和3号蓝色球这四个球装入另一个袋子中,甲乙两人先后从这个袋子中各取一个球(甲先取,取出的球不放回),求甲取出的球的编号比乙大的概率.

【解】(1)设红色球有x个,依题意得

x

24=

1

6,解得x=4,∴红色球有4个.

(2)记“甲取出的球的编号比乙的大”为事件A,所有的基本事件有(红1,白1),(红1,蓝2),(红1,蓝3),(白1,红1),(白1,蓝2),(白1,蓝3),(蓝2,红1),(蓝2,白1),(蓝2,蓝3),(蓝3,红1),(蓝3,白1),(蓝3,蓝2),共12个.

事件A包含的基本事件有(蓝2,红1),(蓝2,白1),(蓝3,红1),(蓝3,白1),(蓝3,蓝2),共5个,

∴P(A)=5 12.

察向上的点数.

(1)求两数之积是6的倍数的概率;

(2)设第一次、第二次抛掷向上的点数分别为x,y,则log x2y=1的概率是多

少?

【精彩点拨】列出一颗骰子先后抛掷两次的36种结果,然后根据题目要求找出所求事件所包含的基本事件的个数即可.

【自主解答】(1)此问题中含有36个等可能基本事件,记“向上的两数之积是6的倍数”为事件A,则由图①可知,事件A中含有其中的15个等可能基

本事件,所以P(A)=15

36=

5

12,即两数之积是6的倍数的概率为

5

12.

661218243036

551015202530

44812162024

3369121518

224681012

1123456

积123456

(2)此问题中含有36个等可能基本事件,记“第一次,第二次抛掷向上的点数分别为x,y,且log x2y=1”为事件B,则满足log x2y=1的x,y有(2,1),(4,2),

(6,3)三种情况,所以P(B)=3

36=

1

12,即第一次、第二次抛掷向上的点数分别为x,

y且满足log x2y=1的概率是1 12.

若问题与顺序有关,则(a1,a2)与(a2,a1)为两个不同的基本事件;若问题与顺序无关,则(a1,a2)与(a2,a1)表示同一个基本事件.

[再练一题]

2.任意投掷两枚质地均匀,六个面上分别标有数字1,2,3,4,5,6的骰子.

(1)求出现的点数相同的概率;

(2)求出现的点数之和为奇数的概率.

【解】(1)任意投掷两枚骰子,由于骰子质地均匀,因此可以看成是等可能事件.其结果可表示为数组(i,j)(i,j=1,2,…,6),其中i,j分别表示两枚骰子出现的点数,共有6×6=36(种),其中点数相同的数组为(i,i)(i=1,2,…,

6),共有6种结果,故出现点数相同的概率为6

36=

1

6.

(2)法一:出现的点数之和为奇数由数组(奇,偶)、(偶,奇)组成(如(1,2),(2,3)等).由于每枚骰子的点数中有3个偶数,3个奇数,因此出现的点数之和为奇数

的数组有3×3+3×3=18(个),从而所求概率为18

36=

1

2.

法二:由于每枚骰子的点数分奇、偶数各3个,而按第1枚、第2枚骰子出现的点数顺次写时有(奇数,奇数)、(奇数,偶数)、(偶数,奇数)、(偶数,偶数)

这四种等可能结果,因此出现的点数之和为奇数的概率为2

4=

1

2.

[探究共研型]

探究1

基本事件是什么?有多少个基本事件?其概率是多少?

【提示】基本事件为出现1,2,3,4,5,6点,共6个基本事件,这6个基本事

件出现的可能性相同.其概率都为1 6.

探究2掷一粒均匀的骰子,若考虑向上的点数是奇数还是偶数,则这个随机试验的基本事件是什么?有多少个基本事件?其概率是多少?

【提示】基本事件为“向上的点数是奇数”和“向上的点数是偶数”,有2个基本事件,这两个基本事件是等可能性的,所以发生的概率都为0.5.

探究3在古典概型中,同一个试验中基本事件的个数是不是永远一定的呢?为什么?

【提示】不一定,因为一般来说,在建立概率模型时,把什么看作是一个基本事件(即一个试验的结果)是人为规定的.只要基本事件的个数是有限的,每次试验只有一个基本事件出现,且发生是等可能的,就是一个古典概型.

有A,B,C,D四位贵宾,应分别坐在a,b,c,d四个席位上,现在这四人均未留意,在四个席位上随便就座.

(1)求这四人恰好都坐在自己的席位上的概率;

(2)求这四人恰好都没坐在自己的席位上的概率;

(3)求这四人恰有一位坐在自己的席位上的概率.

【思路点拨】 用树形图表示所求事件的可能性,利用概率模型计算便可. 【自主解答】 将A ,B ,C ,D 四位贵宾就座情况用如图所示的图形表示出来.等可能基本事件共有24个.

(1)设事件A 为“这四人恰好都坐在自己的席位上”,则事件A 只包含1个基本事件,所以P (A )=124.

(2)设事件B 为“这四人恰好都没坐在自己的席位上”,则事件B 包含9个基本事件,所以P (B )=924=3

8.

(3)设事件C 为“这四人恰有一位坐在自己的席位上”,则事件C 包含8个基本事件,所以P (C )=824=1

3.

A

???

????

—B —??

?

—C —D —D —C

—C —?

???

—B —D

—D —B —D —?

??

?

—B —C

—C —B

B

—???

????

—A —???

—C —D

—D —C —C —?

??

?

—A —D —D —A —D —?

???

—A —C —C —A

a 席位

b 席位

c 席位

d 席位 a 席位 b 席位 c 席位 d 席位

C —???

???? —A —???

—B —D

—D —B —B —?

??

?

—A —D —D —A —D —?

???

—A —B —B —A

D —???

????

—A —???

—B —C

—C —B —B —?

??

?

—A —C —C —A —C —?

???

—A —B —B —A

a 席位

b 席位

c 席位

d 席位

a 席位

b 席位

c 席位

d 席位

1.解答古典概型时,要抓住问题实质,建立合适的模型,以简化运算. 2

.本题属于对号入座问题,情况较为复杂,所包含的基本事件较多,为清楚地列举出所有可能的基本事件,可借助于树形图处理.

[再练一题]

3.甲、乙、丙、丁四名学生按任意次序站成一排,试求下列事件的概率. (1)甲在边上; (2)甲和乙都在边上; (3)甲和乙都不在边上.

【解】 利用树状图来列举基本事件,如图所示.

由树状图可看出共有24个基本事件. (1)甲在边上有12种情形:

(甲,乙,丙,丁), (甲,乙,丁,丙), (甲,丙,乙,丁), (甲,丙,丁,乙), (甲,丁,乙,丙), (甲,丁,丙,乙), (乙,丙,丁,甲), (乙,丁,丙,甲), (丙,乙,丁,甲), (丙,丁,乙,甲), (丁,乙,丙,甲), (丁,丙,乙,甲),

故甲在边上的概率为P=12

24=

1

2.

(2)甲和乙都在边上有4种情形:

(甲,丙,丁,乙), (甲,丁,丙,乙),(乙,丙,丁,甲), (乙,丁,丙,甲),

故甲和乙都在边上的概率为P=4

24=

1

6.

(3)甲和乙都不在边上有4种情形:(丙,甲,乙,丁),(丙,乙,甲,丁),(丁,甲,乙,丙), (丁,乙,甲,丙),

故甲和乙都不在边上的概率为P=4

24=

1

6.

1.一个家庭有两个小孩,则这两个小孩性别不同的概率为()

A.3

4B.

1

2

C.1

3 D.

1

4

【解析】这两个小孩的所有可能情况是(男,男),(男,女),(女,男),(女,

女),共4种,其中性别不同的有两种,所以两个小孩性别不同的概率为2

4=

1

2.

【答案】 B

2.一对年轻夫妇和其两岁的孩子做游戏,让孩子把分别写有“1”“3”“1”“4”的四张卡片随机排成一行,若卡片按从左到右的顺序排成“1314”,则孩子会得到父母的奖励,那么孩子受到奖励的概率为()

A.1

12B.

5

12

C.7

12 D.

5

6

【解析】由题意知基本事件个数有12个,满足条件的基本事件个数就一

个,故所求概率为P=1 12.

【答案】 A

3.甲乙两人随意入住两间空房,则两人各住一间房的概率是________. 【解析】 设两间房分别为A ,B ,则基本事件有(A ,A ),(A ,B ),(B ,A ),(B ,B )共计4种,则两人各住一间房包含(A ,B ),(B ,A )两个基本事件,故所求概率为12.

【答案】 1

2

4.有100张卡片(从1号到100号),从中任取一张卡片,则取得的卡号是7的倍数的概率是________.

【解析】 7的倍数用7n (n ∈N +)表示,则7n ≤100,解得n ≤142

7,即在100以内有14个数是7的倍数,所以概率为14100=7

50.

【答案】 7

50

5.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球, (1)从中一次随机摸出2只球,求这2只球颜色不同的概率; (2)若有放回地取球,取两次,求两次取得球的颜色相同的概率. 【解】 (1)设取出的2只球颜色不同为事件A .

基本事件有(白,红),(白,黄),(白,黄),(红,黄),(红,黄),(黄,黄)共6种,事件A 包含5种.故P (A )=56.

(2)设两次取得球的颜色相同为事件B .

基本事件有(白,白),(白,红),(白,黄),(白,黄),(红,红),(红,白),(红,黄),(红,黄),(黄,黄),(黄,白),(黄,红),(黄,黄),(黄,黄),(黄,白),(黄,红),(黄,黄),共16种,其中颜色相同的有6种,故所求概率为P (B )=616=38.

《数学模型》

《数学模型》考试大纲 适应专业:数学与应用数学、信息与计算科学、统计学、应用统计学专业 一、课程性质与目的要求 数学模型课亦称为数学建模课,它是数学与应用数学、信息与计算科学、统计学、应用统计学专业必修课或限选课,教育部1998年颁布的高等学校本科专业目录中,把“数学模型”课作为数学类专业的必开课。数学模型是架于实际问题与数学理论之间的桥梁。数学模型就是应用数学语言和方法,对于现实世界中的实际问题进行抽象、简化和假设所得到的数学结构。本课程是研究数学建模的理论、思想和方法,研究建立数学模型、简单的优化模型、数学规划模型、微分方程模型、代数方程与差分方程模型、稳定性模型、离散模型、概率模型等。 数学模型课需要用到数学分析、高等代数、微分方程、图论、概率统计、运筹学等数学知识,它是学生所学数学知识的综合应用,是培养学生综合素质以及应用数学知识解决实际问题的能力的良好课程。该课程的考试评价依据是按照课程目标、教学内容和要求,把握合适的难易程度出试卷,用笔试的方法对学生学习情况和学习成绩做出评价。 二、课程内容和考核要求 第一章建立数学模型 1、考核知识点: 数学建模的背景及重要意义、数学模型与数学建模、数学模型的分类与特点、数学建模的基本方法和步骤、数学建模举例等。 2、考核要求: (1)理解数学建模的背景及意义、原型、模型、数学模型、数学建模等概念。 (2)理解数学模型的各种分类、数学模型的特点。 (3)理解数学建模的基本方法和步骤、通过实例初步了解数学建模的思想和方法。 第二章简单的优化模型 1、考核知识点: 存储模型、生猪的出售时机、森林救火、冰山运输等。

2、考核要求: (1)掌握应用微积分理论建立存储问题模型。 (2)理解应用微积分理论建立生猪的出售时机模型和森林灭火模型。 (3)理解应用微积分理论建立冰山运输问题模型。 第三章数学规划模型 1、考核知识点: 数学规划问题的基本概念、数学规划问题图解法步骤、生产安排问题、奶制品的生产与销售等。 2、考核要求: (1)掌握数学规划问题的基本概念、数学规划问题图解法步骤。 (2)掌握生产安排问题的模型及图解法。 (3)理解奶制品的生产与销售的模型及求解。 第四章微分方程模型 1、考核知识点: 传染病模型、正规战与游击战、药物在体内的分布与排除、香烟过滤嘴的作用等。 2、考核要求: (1)理解传染病问题的建模及讨论。 (2)理解战争问题、房室问题的建模及讨论。 (3)了解香烟过滤嘴作用问题的建模及讨论。 第五章代数方程与差分方程模型 1、考核知识点: 量纲、量纲齐次原理、量纲分析法、差分方程的基本概念、市场经济中蛛网模型、节食与运动问题等。 2、考核要求: (1)掌握量纲、量纲齐次原理、量纲分析法建模及解法步骤。 (2)掌握市场经济中蛛网模型及解法步骤。 (3)理解理解差分方程的基本概念、减肥问题的建模思想。 第六章稳定性模型

高中数学《古典概型的特征和概率计算公式 建立概率模型》导学案

3.2.1古典概型的特征和概率计算公式 3.2.2建立概率模型 [航向标·学习目标] 1.理解古典概型的两个基本特征. 2.掌握古典概型的概念及概率的计算公式. [读教材·自主学习] 1.基本事件:一次试验中可能出现的□01每一个结果称为一个基本事件.2.基本事件的特点:(1)任何两个基本事件是不可能同时发生的.一次试验中,只可能出现一种结果,即出现一个基本事件.(2)任何事件都可以表示成基本事件的和. 3.古典概型:(1)□02有限个,每次试验只出现其中的一个结果.(2)每一个试验结果出现的可能性□03相同.我们把具有这样两个特征的随机试验的数学模型称为古典概型. 4.古典概型的计算公式:对于古典概型,通常试验中的某一事件A是由几个基本事件组成,如果试验的所有可能结果(基本事件)数为n,随机事件A包含 的基本事件数为m,那么事件A的概率规定为□04P(A)=m n. [看名师·疑难剖析] 1.古典概型试验有两个共同的特征 (1)有限性:在一次试验中,可能出现的结果是有限个,即只有有限个不同的基本事件.

(2)等可能性:每个基本事件发生的可能性是均等的. 2.古典概型的概率公式(等可能性事件的概率) (1)若试验的结果是由n个基本事件组成,并且每个基本事件的发生是等可能的,而随机事件A包含的基本事件数为m,则由互斥事件的概率加法公式可得: 所以古典概型中,P(A)=A包括的基本事件个数总的基本事件个数 . 这就是概率的古典定义. (2)用集合观点来理解事件A与基本事件的关系(如下图):在一次试验中,等可能出现n个结果组成一个集合I,这n个结果就是集合I的n个元素,各基本事件均对应于集合I的含有1个元素的子集,包含每个结果的事件A对应于I的含有m个元素的子集A.因此从集合的角度看,事件A的概率是子集A的元素个数(记 作card(A))与集合I的元素个数(记作card(I))的比值,即P(A)=card(A) card(I) = m n. 考点一基本事件的计数问题 例1一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出两只球. (1)共有多少个基本事件? (2)两只都是白球包含几个基本事件? [分析]由题目可获取以下主要信息: ①本次摸球事件中共有5只球,其中3只白球,2只黑球. ②题目中摸球的方式为一次摸出两只球,每只球被摸取是等可能的.

北师大版高中数学必修3教案备课建立概率模型

2.2建立概率模型 学习 目标核心素养 1.进一步掌握古典概型的概率计算公 式.(重点) 2.对于一个实际问题,尝试建立不 同的概率模型来解决.(重点、难点) 1.通过进一步运用古典概型的概率计算 公式求解概率,提升数学运算素养. 2.通过实际问题尝试建立不同的概率模 型来解决,培养数学建模素养. 由概率模型认识古典概型 (1) 一般来说,在建立概率模型时,把什么看作是一个基本事件是人为规定的.如果每次试验有一个并且只有一个基本事件出现,只要基本事件的个数是有限的,并且它们的发生是等可能的,就是一个古典概型. (2)从不同的角度去考虑一个实际问题,可以将问题转化为不同的古典概型来解决,而所得到的古典概型的所有可能的结果数越少,问题的解决就变得越简单. (3)树状图是进行列举的一种常用方法. 思考:若一个试验是古典概型,它需要具备什么条件? [提示]若一个试验是古典概型,需具备以下两点: (1)有限性:首先判断试验的基本事件是否是有限个,若基本事件无限个,即不可数,则试验不是古典概型. (2)等可能性:其次考查基本事件的发生是不是等可能的,若基本事件发生的可能性不一样,则试验不是古典概型. 1.一个家庭有两个小孩,则这两个小孩性别不同的概率为() A. 3 4 B. 1 2 C. 1 3 D. 1 4 B[这两个小孩的所有可能情况是(男,男),(男,女),(女,男),(女,女),

共4种,其中性别不同的有两种,所以两个小孩性别不同的概率为2 4= 1 2.] 2.一对年轻夫妇和其两岁的孩子做游戏,让孩子把分别写有“1”“3”“1”“4”的四张卡片随机排成一行,若卡片按从左到右的顺序排成“1314”,则孩子会得到父母的奖励,那么孩子受到奖励的概率为() A.1 12 B. 5 12 C. 7 12 D. 5 6 A[由题意知基本事件个数有12个,满足条件的基本事件个数就一个,故所 求概率为P=1 12.] 3.甲、乙两人下棋,两人下成和棋的概率是1 2,甲获胜的概率是 1 3,则甲不输 的概率为() A.5 6 B. 2 5 C.1 6 D. 1 3 A[先确定甲不输包含的基本事件,再根据概率公式计算.事件“甲不输” 包含“和棋”和“甲获胜”这两个互斥事件,所以甲不输的概率为1 2+ 1 3= 5 6.] 4.某班准备到郊外野营,为此向商店订了帐篷,如果下雨与不下雨是等可能的,能否准时收到帐篷也是等可能的,只要帐篷如期运到,他们就不会淋雨,则下列说法正确的是() A.一定不会淋雨B.淋雨机会为3 4 C.淋雨机会为1 2D.淋雨机会为 1 4 D[用A、B分别表示下雨和不下雨,用a、b表示帐篷运到和运不到,则所有可能情形为(A,a),(A,b),(B,a),(B,b),则当(A,b)发生时就会被雨淋到, ∴淋雨的概率为P=1 4.] “有放回”与“不放回”的古典

概率图模型研究进展综述

软件学报ISSN 1000-9825, CODEN RUXUEW E-mail: jos@https://www.360docs.net/doc/a18684941.html, Journal of Software,2013,24(11):2476?2497 [doi: 10.3724/SP.J.1001.2013.04486] https://www.360docs.net/doc/a18684941.html, +86-10-62562563 ?中国科学院软件研究所版权所有. Tel/Fax: ? 概率图模型研究进展综述 张宏毅1,2, 王立威1,2, 陈瑜希1,2 1(机器感知与智能教育部重点实验室(北京大学),北京 100871) 2(北京大学信息科学技术学院智能科学系,北京 100871) 通讯作者: 张宏毅, E-mail: hongyi.zhang.pku@https://www.360docs.net/doc/a18684941.html, 摘要: 概率图模型作为一类有力的工具,能够简洁地表示复杂的概率分布,有效地(近似)计算边缘分布和条件分 布,方便地学习概率模型中的参数和超参数.因此,它作为一种处理不确定性的形式化方法,被广泛应用于需要进行 自动的概率推理的场合,例如计算机视觉、自然语言处理.回顾了有关概率图模型的表示、推理和学习的基本概念 和主要结果,并详细介绍了这些方法在两种重要的概率模型中的应用.还回顾了在加速经典近似推理算法方面的新 进展.最后讨论了相关方向的研究前景. 关键词: 概率图模型;概率推理;机器学习 中图法分类号: TP181文献标识码: A 中文引用格式: 张宏毅,王立威,陈瑜希.概率图模型研究进展综述.软件学报,2013,24(11):2476?2497.https://www.360docs.net/doc/a18684941.html,/ 1000-9825/4486.htm 英文引用格式: Zhang HY, Wang LW, Chen YX. Research progress of probabilistic graphical models: A survey. Ruan Jian Xue Bao/Journal of Software, 2013,24(11):2476?2497 (in Chinese).https://www.360docs.net/doc/a18684941.html,/1000-9825/4486.htm Research Progress of Probabilistic Graphical Models: A Survey ZHANG Hong-Yi1,2, WANG Li-Wei1,2, CHEN Yu-Xi1,2 1(Key Laboratory of Machine Perception (Peking University), Ministry of Education, Beijing 100871, China) 2(Department of Machine Intelligence, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China) Corresponding author: ZHANG Hong-Yi, E-mail: hongyi.zhang.pku@https://www.360docs.net/doc/a18684941.html, Abstract: Probabilistic graphical models are powerful tools for compactly representing complex probability distributions, efficiently computing (approximate) marginal and conditional distributions, and conveniently learning parameters and hyperparameters in probabilistic models. As a result, they have been widely used in applications that require some sort of automated probabilistic reasoning, such as computer vision and natural language processing, as a formal approach to deal with uncertainty. This paper surveys the basic concepts and key results of representation, inference and learning in probabilistic graphical models, and demonstrates their uses in two important probabilistic models. It also reviews some recent advances in speeding up classic approximate inference algorithms, followed by a discussion of promising research directions. Key words: probabilistic graphical model; probabilistic reasoning; machine learning 我们工作和生活中的许多问题都需要通过推理来解决.通过推理,我们综合已有的信息,对我们感兴趣的未 知量做出估计,或者决定采取某种行动.例如,程序员通过观察程序在测试中的输出判断程序是否有错误以及需 要进一步调试的代码位置,医生通过患者的自我报告、患者体征、医学检测结果和流行病爆发的状态判断患者 可能罹患的疾病.一直以来,计算机科学都在努力将推理自动化,例如,编写能够自动对程序进行测试并且诊断 ?基金项目: 国家自然科学基金(61222307, 61075003) 收稿时间:2013-07-17; 修改时间: 2013-08-02; 定稿时间: 2013-08-27

2019-2020年高中数学 第三章 概率 3.2.2 建立概率模型教案 北师大版必修3

2019-2020年高中数学第三章概率 3.2.2 建立概率模型教案北师大版 必修3 教学分析 本节教科书通过例2的四种模型的所有可能结果数越来越少,调动起学生思考探究的兴趣;教师在教学中要注意通过引导学生体会不同模型的特点以及对各种方法进行比较,提高学生分析和解决问题的能力. 三维目标 1.使学生能建立概率模型来解决简单的实际问题,提高学生分析问题和解决问题的能力. 2.通过学习建立概率模型,培养学生的应用能力. 重点难点 教学重点:建立古典概型. 教学难点:建立古典概型. 课时安排 1课时 教学过程 导入新课 思路 1.计算事件发生概率的大小时,要建立概率模型,把什么看成一个基本事件是人为规定的.今天我们学习如何建立概率模型,教师点出课题. 思路 2.解决实际应用问题时,要转化为数学问题来解决,即建立数学模型,这是高中数学的重点内容之一,也是高考的必考内容,同样解决概率问题也要建立概率模型,教师点出课题. 推进新课 新知探究 提出问题 1.回顾解应用题的步骤? 2.什么样的概率属于古典概型? 讨论结果:1.解应用题的一般程序: (1)读:阅读理解文字表达的题意,分清条件和结论,理顺数量关系,这一关是基础. (2)建:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型.熟悉基本数学模型,正确进行建“模”是关键的一关. (3)解:求解数学模型,得到数学结论.一要充分注意数学模型中元素的实际意义,更要注意巧思妙作,优化过程. (4)答:将数学结论还原给实际问题的结果. 2.同时满足以下两个条件的概率属于古典概型: (1)试验的所有基本事件只有有限个,每次试验只出现其中一个基本事件; (2)每一次试验中,每个基本事件出现的可能性相等. 应用示例 思路1 例口袋里装有2个白球和2个黑球,这4个球除颜色外完全相同,4个人按顺序依次从中摸出一球.试计算第二个人摸到白球的概率. 分析:我们只需找出4个人按顺序依次摸球的所有可能结果数和第二个人摸到白球的可能结果数.为此考虑用列举法列出所有可能结果. 解法一:用A表示事件“第二个人摸到白球”.把2个白球编上序号1,2;2个黑球也编上序号1,2.于是,4个人按顺序依次从袋中摸出一球的所有可能结果,可用树状图直观地表示出来(如图1).

数学建模练习试题

1、放射性废料的处理问题 美国原子能委员会以往处理浓缩的放射性废料的方法,一直是把它们装入密封的圆桶里,然后扔到水深为90多米的海底。生态学家和科学家们表示担心,怕圆桶下沉到海底时与海底碰撞而发生破裂,从而造成核污染。原子能委员会分辨说这是不可能的。为此工程师们进行了碰撞实验。发现当圆桶下沉速度超过12.2 m/s 与海底相撞时,圆桶就可能发生碰裂。这样为避免圆桶碰裂,需要计算一下圆桶沉到海底时速度是多少? 这时已知圆桶重量为239.46 kg,体积为 0.2058m3,海水密度为1035.71kg/m3,如果圆桶速度小于12.2 m/s就说明这种方法是安全可靠的,否则就要禁止使用这种方法来处理放射性废料。假设水的阻力与速度大小成正比例,其正比例常数k=0.6。现要求建立合理的数学模型,解决如下实际问题: 1. 判断这种处理废料的方法是否合理? 2. 一般情况下,v大,k也大;v小,k也小。当v很大时,常用kv来代替k,那么这时速度与时间关系如何? 并求出当速度不超过12.2 m/s,圆桶的运动时间和位移应不超过多少? (的值仍设为0.6) 鱼雷攻击问题 在一场战争中,甲方一潜艇在乙方领海进行秘密侦察活动。当甲方潜艇位于乙方一潜艇的正西100千米处,两方潜艇士兵同时发现对方。甲方潜艇开始向正北60千米处的营地逃跑,在甲方潜艇开始逃跑的同时,乙方潜艇发射了鱼雷进行追踪攻击。假设甲方潜艇与乙方鱼雷是在同一平面上进行运动。已知甲方潜艇和乙方鱼雷的速度均匀且鱼雷的速度是甲方潜艇速度的两倍。 试建立合理的数学模型解决以下问题: 1) 求鱼雷在追踪攻击过程中的运动轨迹; 2) 确定甲方潜艇能否安全的回到营地而不会被乙方鱼雷击中 3、贷款买房问题 某居民买房向银行贷款6万元,利息为月利率1%,贷款期为25年,要求建立数学模型解决如下问题: 1) 问该居民每月应定额偿还多少钱? 2)假设此居民每月可节余700元,是否可以去买房? 4、养老保险问题 养老保险是保险中的一种重要险种,保险公司将提供不同的保险方案以供选择,分析保险品种的实际投资价值。 某保险公司的一份材料指出:在每月交费200元至60岁开始领取养老金的约定下,男子若25岁起投保,届时月养老金2282元;若35岁起投保,月养老金1056元;若45岁起投保,月养老金420元. 试求出保险公司为了兑现保险责任,每月至少应有多少投资收益率(也就是投保人的实际收益率)? 5、生物种群数量问题

读懂概率图模型:你需要从基本概念和参数估计开始

读懂概率图模型:你需要从基本概念和参数估计开始 选自statsbot作者:Prasoon Goyal机器之心编译参与:Panda 概率图模型是人工智能领域内一大主要研究方向。近日,Statsbot 团队邀请数据科学家Prasoon Goyal 在其博客上分两部分发表了一篇有关概率图模型的基础性介绍文章。文章从基础的概念开始谈起,并加入了基础的应用示例来帮助初学者理解概率图模型的实用价值。机器之心对该文章进行了编译介绍。 第一部分:基本术语和问题设定 机器学习领域内很多常见问题都涉及到对彼此相互独立的 孤立数据点进行分类。比如:预测给定图像中是否包含汽车或狗,或预测图像中的手写字符是0 到9 中的哪一个。 事实证明,很多问题都不在上述范围内。比如说,给定一个句子「I like machine learning」,然后标注每个词的词性(名词、代词、动词、形容词等)。正如这个简单例子所表现出的那样:我们不能通过单独处理每个词来解决这个任务——「learning」根据上下文的情况既可以是名词,也可以是动词。这个任务对很多关于文本的更为复杂的任务非常重要,比如从一种语言到另一种语言的翻译、文本转语音等。 使用标准的分类模型来处理这些问题并没有什么显而易见

的方法。概率图模型(PGM/probabilistic graphical model)是一种用于学习这些带有依赖(dependency)的模型的强大框架。这篇文章是Statsbot 团队邀请数据科学家Prasoon Goyal 为这一框架编写的一份教程。 在探讨如何将概率图模型用于机器学习问题之前,我们需要先理解PGM 框架。概率图模型(或简称图模型)在形式上是由图结构组成的。图的每个节点(node)都关联了一个随机变量,而图的边(edge)则被用于编码这些随机变量之间的关系。 根据图是有向的还是无向的,我们可以将图的模式分为两大类——贝叶斯网络(?Bayesian network)和马尔可夫网络(Markov networks)。 贝叶斯网络:有向图模型 贝叶斯网络的一个典型案例是所谓的「学生网络(student network)」,它看起来像是这样: 这个图描述了某个学生注册某个大学课程的设定。该图中有5 个随机变量:课程的难度(Difficulty):可取两个值,0 表示低难度,1 表示高难度 学生的智力水平(Intelligence):可取两个值,0 表示不聪明,1 表示聪明 学生的评级(Grade):可取三个值,1 表示差,2 表示中,3 表示优

用树状图求概率

用树状图求概率 【学习目标】 1.掌握用“树状图”求概率的方法. 2.会画“树状图”并利用其分析和解决有关三步求概率的实际问题. 【学习重点】 用“树状图”求概率的方法. 【学习难点】 画“树状图”分析和解决有关三步求概率的实际问题. 情景导入生成问题 旧知回顾: 1.小颖将一枚质地均匀的硬币掷一次,正面朝上的概率是;小颖将一枚质地均匀的硬币连续掷了两次,你认为两次都是正面朝上的概率是;连续掷三次正面朝上的概率是多少呢? 2.掷一枚硬币一次,这是一步试验,可用直接计算法求概率;掷两枚硬币(或一枚硬币掷两次),这是两步试验,可用列表法求概率;那么掷三枚硬币(或一枚硬币掷三次),这是三步试验.那么如何求三步试验的概率呢? 带着这个问题进入今天学习吧! 自学互研生成能力 【自主探究】 阅读教材P138~P139例3,完成下面的问题: 范例:“红灯停,绿灯行”是我们在日常生活中必须遵守的交通规则,这样才能保障交通顺畅和行人安全,小刚每天从家骑自行车上学都经过三个路口,且每个路口只安装了红灯和绿灯,假如每个路口红灯和绿灯亮的时间相同,那么小刚从家随时出发去学校,回答以下问题: 解:(1)补全下列“树状图”: (2)他遇到三次红灯的概率是多大?P(三次红灯)=. 归纳:当试验存在三步或三步以上时,用树状图法比较方便, 【合作探究】 变例:甲,乙,丙三人之间相互传球,球从一个人手中随机传到另外一个人手中,共传球三次. (1)若开始时球在甲手中,求经过三次传球后,球传回甲手中的概率是多少? 解:画树状图如图:

可看出:三次传球有8种等可能结果,其中传回甲手中的有2种. 所以P(传球三次回到甲手中)==. (2)若乙想使球经过三次传递后,球落在自己手中的概率最大,乙会让球开始时在谁手中?请说明理由. 解:由(1)可知:从甲开始传球,传球三次后球传到甲手中的概率为,球传到乙、丙手中的概率均为,所以三次传球后球回到乙手中的概率最大值为.所以乙会让球开始时在甲手中或丙手中. 交流展示生成新知 1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑. 2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”. 知识模块树状图法求概率 当堂检测达成目标 【当堂检测】 1.中考体育男生抽测项目规则是:从立定跳远、实心球、引体向上中随机抽一项,从50米、50×2米、100米中随机抽一项,恰好抽中实心球和50米的概率是(D) A.B.C.D. 2.学校团委在五四青年节举行“感动校园十大人物”颁奖活动中,九(4)班决定从甲、乙、丙、丁四人中随机派两名代表参加此活动,则甲乙两人恰有一人参加此活动的概率是(A) A. B. C. D. 3.在四边形ABCD中,①AB∥CD;②AD∥BC;③AB=CD;④AD=BC,在这四个条件中任选两个作为已知条件,能判定四边形ABCD是平行四边形的概率是多少? 解:画树状图如下: 由树状图可知,所有等可能的结果共12种,满足条件的结果有8种.所以能判定四边形ABCD是平形四边形的概率是=. 【课后检测】见学生用书 课后反思查漏补缺 1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________

数学建模实验答案_概率模型

实验10 概率模型(2学时) (第9章 概率模型) 1.(验证)报童的诀窍p302~304, 323(习题2) 关于每天报纸购进量的优化模型: 已知b 为每份报纸的购进价,a 为零售价,c 为退回价(a > b > c ),每天报纸的需求量为r 份的概率是f (r )(r =0,1,2,…)。 求每天购进量n 份,使日平均收入,即 1 ()[()()()]()()()n r r n G n a b r b c n r f r a b nf r ∞ ==+=----+ -∑∑ 达到最大。 视r 为连续变量,f (r )转化为概率密度函数p (r ),则所求n *满足 * ()n a b p r dr a c -= -? 已知b =0.75, a =1, c =0.6,r 服从均值μ=500(份),均方差σ=50(份)的正态分布。报童每天应购进多少份报纸才能使平均收入最高,这个最高收入是多少? [提示:normpdf, normcdf] 要求:

(1) 在同一图形窗口内绘制10 ()()n y n p r dr =?和2()a b y n a c -= -的图形,观察其交点。 [提示] 22 ()2()r p r μσ-- = ,0 () ()()n n p r dr p r dr p r dr -∞ -∞ =-??? ☆(1) 运行程序并给出结果: (2) 求方程0()n a b p r dr a c -= -?的根n *(四舍五入取整),并求G (n *)。

☆(2) 运行程序并给出结果: 2.(编程)轧钢中的浪费p307~310 设要轧制长l =2.0m 的成品钢材,由粗轧设备等因素决定的粗轧冷却后钢材长度的均方差 σ=0.2m ,问这时钢材长度的均值m 应调整到多少使浪费最少。 平均每得到一根成品材所需钢材的长度为 ()() m J m P m = 其中, 2()2()(), ()x m l P m p x dx p x σ-- ∞ == ? 求m 使J (m )达到最小。 等价于求方程 () ()z z z λ?Φ=- 的根z *。 其中:

高中数学 第三章 概率 3.2.1 古典概型的特征和概率计算公式 3.2.2 建立概率模型练习

2.1古典概型的特征和概率计算公式 2.2建立概率模型 课后篇巩固提升 A组 1.从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是() A.B. C.D. 解析随机选取的a,b组成实数对(a,b),有 (1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(5,1),(5,2),( 5,3),共15种,其中b>a的有(1,2),(1,3),(2,3),共3种,所以b>a的概率为. 答案D 2.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为() A.B. C.D. 解析从甲、乙等5名学生中选2人有10种方法,其中2人中包含甲的有4种方法,故所求的概率为 . 答案B 3.将一枚质地均匀的骰子抛掷两次,若先后出现的点数分别为b,c,则方程x2+bx+c=0有相等的实根的概率为() A.B. C.D. 解析基本事件总数为6×6=36,若方程有相等的实根,则b2-4c=0,满足这一条件的b,c的值只有两 种:b=2,c=1;b=4,c=4,故所求概率为. 答案D 4.20名高一学生、25名高二学生和30名高三学生在一起座谈,如果任意抽其中一名学生讲话,抽 到高一学生的概率是,抽到高二学生的概率是,抽到高三学生的概率是. 解析任意抽取一名学生是等可能事件,基本事件总数为75,记事件A,B,C分别表示“抽到高一学生”“抽到高二学生”和“抽到高三学生”,则它们包含的基本事件的个数分别为20,25和30. 故P(A)=,P(B)=,P(C)=. 答案 5.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3 m的概率为. 解析“从5根竹竿中一次随机抽取2根竹竿”的所有可能结果为 (2.5,2.6),(2.5,2.7),(2.5,2.8),(2.5,2.9),(2.6,2.7),(2.6,2.8),(2.6,2.9),(2.7,2.8),(2.7, 2.9),(2.8,2.9),共10种等可能出现的结果,又“它们的长度恰好相差0.3 m”包括 .8),(2.6,2.9),共2种结果,由古典概型的概率计算公式可得所求事件的概率为. 答案 ,则甲、乙两人相邻而站的概率为. 解析甲、乙、丙三人随机地站成一排有:(甲,乙,丙),(甲,丙,乙),(乙,甲,丙),(乙,丙,甲),(丙,甲,丙,乙,甲),共6种排法,其中甲、乙相邻有:(甲,乙,丙),(乙,甲,丙),(丙,甲,乙),(丙,乙,甲),共4种排法. . 答案

高中数学第三章概率2.2建立概率模型教案北师大版

2.2 建立概率模型 整体设计 教学分析 本节教材通过例2的四种模型的所有可能结果数越来越少,调动起学生思考探究的兴趣;教师在教学中要注意通过引导学生体会不同模型的特点以及对各种方法进行比较,提高学生分析和解决问题的能力. 三维目标 1.使学生能建立概率模型来解决简单的实际问题,提高学生分析问题和解决问题的能力. 2.通过学习建立概率模型,培养学生的应用能力. 重点难点 教学重点:建立古典概型. 教学难点:建立古典概型. 课时安排 1课时 教学过程 导入新课 思路1.计算事件发生概率的大小时,要建立概率模型,把什么看成一个基本事件是人为规定的.今天我们学习如何建立概率模型,教师点出课题. 思路2.解决实际应用问题时,要转化为数学问题来解决,即建立数学模型,这是高中数学的重点内容之一,也是高考的必考内容,同样解决概率问题也要建立概率模型,教师点出课题. 推进新课 新知探究 提出问题 1.回顾解应用题的步骤? 2.什么样的概率属于古典概型? 讨论结果: 1.解应用题的一般程序: ①读:阅读理解文字表达的题意,分清条件和结论,理顺数量关系,这一关是基础. ②建:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型.熟悉基本数学模型,正确进行建“模”是关键的一关. ③解:求解数学模型,得到数学结论.一要充分注意数学模型中元素的实际意义,更要注意巧思妙作,优化过程. ④答:将数学结论还原给实际问题的结果. 2.同时满足以下两个条件的概率属于古典概型: ①试验的所有基本事件只有有限个,每次试验只出现其中一个基本事件; ②每一次试验中,每个基本事件出现的可能性相等. 应用示例 思路1 例1 口袋里装有2个白球和2个黑球,这4个球除颜色外完全相同,4个人按顺序依次从中摸出一球.试计算第二个人摸到白球的概率. 分析:我们只需找出4个人按顺序依次摸球的所有可能结果数和第二个人摸到白球的可能结果数.为此考虑用列举法列出所有可能结果.

《用树状图求概率》教学案

课题:用树状图求概率 【学习目标】 1.掌握用“树状图”求概率的方法. 2.会画“树状图”并利用其分析和解决有关三步求概率的实际问题. 【学习重点】 用“树状图”求概率的方法. 【学习难点】 画“树状图”分析和解决有关三步求概率的实际问题. 情景导入 生成问题 旧知回顾: 1.小颖将一枚质地均匀的硬币掷一次,正面朝上的概率是12 ;小颖将一枚质地均匀的硬币连续掷了两次,你认为两次都是正面朝上的概率是14 ;连续掷三次正面朝上的概率是多少呢? 2.掷一枚硬币一次,这是一步试验,可用直接计算法求概率;掷两枚硬币(或一枚硬币掷两次),这是两步试验,可用列表法求概率;那么掷三枚硬币(或一枚硬币掷三次),这是三步试验.那么如何求三步试验的概率呢?带着这个问题进入今天学习吧! 自学互研 生成能力 知识模块一 树状图法求概率 【自主探究】 阅读教材P 138~P 139例3,完成下面的问题: 范例:“红灯停,绿灯行”是我们在日常生活中必须遵守的交通规则,这样才能保障交通顺畅和行人安全,小刚每天从家骑自行车上学都经过三个路口,且每个路口只安装了红灯和绿灯,假如每个路口红灯和绿灯亮的时间相同,那么小刚从家随时出发去学校,回答以下问题: 解:(1)补全下列“树状图”: (2)他遇到三次红灯的概率是多大?P(三次红灯)=18 . 归纳:当试验存在三步或三步以上时,用树状图法比较方便, 【合作探究】 变例:甲,乙,丙三人之间相互传球,球从一个人手中随机传到另外一个人手中,共传球三次. (1)若开始时球在甲手中,求经过三次传球后,球传回甲手中的概率是多少? 解:画树状图如图: 可看出:三次传球有8种等可能结果,其中传回甲手中的有2种.

概率图模型介绍与计算

概率图模型介绍与计算 01 简单介绍 概率图模型是图论和概率论结合的产物,它的开创者是鼎鼎大名的Judea Pearl,我十分喜欢概率图模型这个工具,它是一个很有力的多变量而且变量关系可视化的建模工具,主要包括两个大方向:无向图模型和有向图模型。无向图模型又称马氏网络,它的应用很多,有典型的基于马尔科夫随机场的图像处理,图像分割,立体匹配等,也有和机器学习结合求取模型参数的结构化学习方法。严格的说他们都是在求后验概率:p(y|x),即给定数据判定每种标签y的概率,最后选取最大的后验概率最大的标签作为预测结果。这个过程也称概率推理(probabilistic inference)。而有向图的应用也很广,有向图又称贝叶斯网络(bayes networks),说到贝叶斯就足以可以预见这个模型的应用范围咯,比如医疗诊断,绝大多数的机器学习等。但是它也有一些争议的地方,说到这就回到贝叶斯派和频率派几百年的争议这个大话题上去了,因为贝叶斯派假设了一些先验概率,而频率派认为这个先验有点主观,频率派认为模型的参数是客观存在的,假设先验分布就有点武断,用贝叶斯模型预测的结果就有点“水分”,不适用于比较严格的领域,比如精密制造,法律行业等。好吧,如果不遵循贝叶斯观点,前面讲的所有机器学习模型都可以dismiss咯,我们就通过大量数据统计先验来弥补这点“缺陷”吧。无向图和有向图的例子如(图一)所示: 图一(a)无向图(隐马尔科夫)(b)有向图 概率图模型吸取了图论和概率二者的长处,图论在许多计算领域中扮演着重要角色,比如组合优化,统计物理,经济等。图的每个节点都可看成一个变量,每个变量有N个状态(取值范围),节点之间的边表示变量之间的关系,它除了

概率论与数学建模

概率论与数学建模

概率论与数学建模 基础知识部分 一、概率论: 1、概率:刻化某一事件在一次试验中发生的可能性大小的数。 注:事件指随机事件(可重复、可预测、结果明确) 例如抛骰子,抛一枚硬币。 2、常见的随机变量:X (1)离散型: 泊松分布:k e P X k k k λ λ-(=)= ,=0、1、2、、、! 实际应用:时间t 内到达的次数; (小概率事件)一本书中一页中的印刷错误数; 某地区在一天内邮件遗失的信件数; 某一天内医院的急症病人数; 某一地区一个时间间隔内发生交通事故的次数; 一个时间间隔内某种放射性物质发出的经过计数器的α粒子数等等…… (2)连续型: 指数分布:x e x>0 f X λλ???-,()=0,其它 其中>0λ为常数 ,记为)(~λExp X 特点:无记忆性。即是P(/)()X s t X s P X t >+>=>

一个元件已经使用了s 小时,在此情形下,它总共能使用至少s+t 小时的概率,与开始使用时算起它至少能使用t 小时的概率相等,即元件对已使用过s 小时无记忆。 实际应用:(可靠性理论、排队论)许多“等待时间”都服从指数分布;一些没有明显“衰老”迹象的机械元器件(如半导体元件)的寿命也可也用指数分布来描述…… 正态分布:x e f X

“3σ“原则: “3σ“原则被实际工作者发现,工业生产上用的控制图和一 些产品质量指数都是根据3σ原则制定。 3、随机变量的特征数(数字特征): 均值(期望):k k k x p E X xf x dx ∞ ∞ ∞ ???????∑?=1 +-,(离散型)()=(),(连续型) 方差:22 D X = E X E X ()(())E X E X =-2()(-()) 中心极限定理:n X X ,,1 是独立同分布的随机变量序列,且 22(),(),0i i E X D X μσσ==> 则有:)(}{lim 1t t n n X X P n n Φ=≤-+∞ →σμ 模型一、轧钢中的浪费模型: 问题:将粗大的钢坯制成合格的钢材需要两道工序:粗轧(热轧),形成刚才的雏形;精轧(冷轧),得到规定长度的成品材料。由于受到环境、技术等因素的影响,得到钢材的长度是随机的,大体上呈正态分布,其均值可以通过调整轧机设定,而均方差是由设备的精度决定,不能随意改变。如果粗轧后的钢材长度大于规定长度,精轧时要把多余的部分切除,造成浪费; 而如果粗轧后的钢材长度小于规定长 2σ x 99.7% 6σ 4σ (1) (2) (3) μ

《数学建模》课程第一章自测练习及解答提示

《数学建模》课程第一章自测练习及解答提示 一、填空题: 1.设年利率为0.05,则10年后20万元的现值按照复利计算应为 . 解:根据现值计算公式: 10)05.01(20)1(+=+=n R S Q 2783.12212010 11≈=(万元) 应该填写:12.2783万元. 2.设年利率为0.05,则20万元10年后的终值按照复利计算应为 . 解:根据终值计算公式: 10 )05.01(20)1(+=+=n R P S =5779.322021910 =(万元) 应该填写:32.5779 3.所谓数学建模的五步建模法是指下列五个基本步骤,按一般顺序可以写出为 . 解:应该填写:问题分析,模型假设,模型建立,模型求解,模型分析. 4.设某种商品的需求量函数是,1200)(25)(+-=t p t Q 而供给量函数是3600)1(35)(--=t p t G ,其中)(t p 为该商品的价格函数,那麽该商品的均衡价格是 . 解: 由商品的均衡价格公式: 8035 2536001200)(=++=++=c a d b t p 应该填写:80. 5.一家服装店经营的某种服装平均每天卖出110件,进货一次的批发手续费为200元,存储费用为每件0.01元/天,店主不希望出现缺货现象,则最优进货周期与最优进货量分别为 . 解:根据经济订购批量公式: 19110 01.020022*≈??==R c c T s b 209701.011020022*≈??== s b c R c Q 应该填写:.2097,19**=≈Q T 二、分析判断题 1. 从下面不太明确的叙述中确定要研究的问题,需要哪些数据资料(至少列举3个),要做些甚麽建模的具体的前期工作(至少列举3个) ,建立何种数学模型:一座高层办公楼有四部电梯,早晨上班时间非常拥挤,该如何解决. 解:(1)要研究的问题:如何设置四部电梯的停靠方式,使之发挥最大效益.

“建立概率模型”教学设计

北师大版必修三第三章第二节第二讲 “建立概率模型”教学设计 【教材版本】北师大版 【教材分析】 《建立概率模型》是高中数学北师大版必修3第三章概率第二节古典概型的第二课时.古典概型是一种理想的数学模型,也是一种最基本的概率模型,通过建立概率模型将问题转化为不同的古典概型来解决,更直观的理解概率的意义. 【学情分析】 学生在学习了古典概型特征及概率公式后,已经了解了古典概型的意义,掌握了概率的计算公式,本节课从建立概率模型来进一步加深对其的理解. 【教学目标】 1、知识与技能 会用列举法计算一些随机事件所含的基本事件数及其事件发生的概率,学会运用数形结合、分类讨论的思想解决概率的计算问题.以学生动手为主要形式,通过解决具体问题来感知用模型来解决概率问题的思路,体会建立概率模型的意义. 2、过程与方法 这节课在解决概率的计算上,教师通过鼓励学生尝试列表和画出树状图等方法,让学生感受求基本事件个数的一般方法,从而化解由于没有学习排列组合而学习概率这一教学困惑,也符合培养学生的数

学应用意识的新课程理念. 3、情感、态度与价值观 树立从具体到抽象、从特殊到一般的辩证唯物主义观点,培养学生用随机的观察来理性的理解世界,使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神.鼓励学生通过观察类比提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度. 【重点难点】将实际问题转化为数学问题,建立概率模型,并解答.【教学环境】多媒体课件多媒体教室 【教学设计】

这个模型的所有可能结果数为 的所有可能结果数为6

数学建模常用算法模型

按模型的数学方法分: 几何模型、图论模型、微分方程模型、概率模型、最优控制模型、规划论模型、马氏链模型等 按模型的特征分: 静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型等 按模型的应用领域分: 人口模型、交通模型、经济模型、生态模型、资源模型、环境模型等。 按建模的目的分: 预测模型、优化模型、决策模型、控制模型等 一般研究数学建模论文的时候,是按照建模的目的去分类的,并且是算法往往也和建模的目的对应 按对模型结构的了解程度分: 有白箱模型、灰箱模型、黑箱模型等 比赛尽量避免使用,黑箱模型、灰箱模型,以及一些主观性模型。 按比赛命题方向分: 国赛一般是离散模型和连续模型各一个,2016美赛六个题目(离散、连续、运筹学/复杂网络、大数据、环境科学、政策) 数学建模十大算法 1、蒙特卡罗算法 (该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法) 2、数据拟合、参数估计、插值等数据处理算法 (比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)

3、线性规划、整数规划、多元规划、二次规划等规划类问题 (建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法 (这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法 (这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法 (这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法 (当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法 (很多问题都是从实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法 (如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法 (赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的这些图形如何展示,以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 算法简介 1、灰色预测模型(必掌握)

相关文档
最新文档