砂卵石地层盾构穿越建筑物

砂卵石地层盾构穿越建筑物
砂卵石地层盾构穿越建筑物

砂卵石地层盾构穿越建筑物

地面加固控制技术措施

中铁十一局城轨公司雷志彬摘要:根据砂卵石地层中盾构施工实例,简要阐述盾构穿越建筑物基础时各种加固控制技术措施。

关键词:盾构、砂卵石地层、基础、加固。

一、引言

受地质条件和施工工艺的限制,盾构掘进将对周围环境产生扰动,改变土体的初始应力状态引起土体位移。当土体位移超过一定范围时,会危及地铁结构本身以及邻近结构物的安全与正常使用,使邻近结构物倾斜、扭曲等,从而引起一系列环境效应问题。采取合理有效的技术措施控制建筑物变形是必须解决的技术问题。

二、影响机理

由于盾构法施工引起隧道周围地层的松动和沉陷,直观表现为地表沉降,受其影响,隧道附近地区的结构物将产生变形、沉降或变位,以至使结构物机能遭受破损或者破坏。邻近结构物的变形从本质上而言也是由于地层变形而引起的,因此,只有控制地层才能更好地控制邻近结构物的沉降和变形。按其发生原因主要分为以下几点:

①开挖面上的土水压力不平衡导致开挖面失去稳定性。此时,压力舱压力大于开挖面土压力和水压力时出现地基隆起,相反会出现地基沉降。

②盾构推进对围岩的扰动。盾构壳板和围岩的摩擦、以及围岩一的扰动会引起地基隆起和沉降。尤其在蛇曲修正、曲线推进时如采用超挖,会使围岩松动的范围变大加大地基的沉降量。

③盾尾空隙的发生和壁后注浆的不足。盾构施下必然产生盾尾空隙,这一空隙会引起地基的应力释放而产生弹塑性变形。一般可通过实施壁后注浆来控制,但壁后注浆的材料、注浆时间、位置、压力、注浆量都会影响地基的变形量。

④衬砌管片的变形和变位。管片从盾尾脱出后,受到围岩荷载作用发生一些变形或变位,造成地基沉降,但其量一般较小。

⑤地下水位下降。由于漏水或降水引起的地基沉降。

目前,我国确定了城市地面变形为“+10mm—-30mm”沉降(隆起)基准以确保地面建筑物的安全,并且规定当最大沉降大于15mm时,邻近建筑物的不均匀沉降应限制在1/500的基础倾斜之内。其中关于沉降引起的地表建筑物破坏规定都不是针对盾构法施上的,但由于目前国内没有关于盾构法施工对邻近建筑物破坏影响的规定,往往盾构施工中产生的地面沉降所引起的地表建筑物破坏准则都是按照其它规范参照执行。详见《建筑地基基础设计规范》。

三、控制措施

对于对地面变形比较敏感且影响后果比较严重的结构物,仅通过盾构各施工参数的优化可能不能满足安全控制标准,故还需要采取有效的工程保护措施。常见的措施主要有五种:

①土体加固

跟踪注浆法是一种治理土体移动的常用方法,利用土体损失影响地面沉降的滞后现象,在隧道开挖影响范围与被控制的基础之间设置补偿注浆层,即在土层沉降处注入适量的水泥或化学浆,以起到补偿土体的作用,然后通过施工过程中的监测数据,不断控制各注浆管的注浆量,实现隧道开挖与基础沉降的同步控制,从而减小土体的沉降。跟踪注浆根据隧道可能发生过大位移或在已经发生了部分位移后,通过注浆局部增大隧道外侧的荷载和改善土质,使其停止移动甚至产生反向位移。这种方法能够非常有效的弥补土体损失,提高结构物承载强度和刚度,使其受隧道开挖的影响降低到最低限度,因此在隧道开挖措施无法满足地表沉降要求时,注浆加固无疑是一种十分可行的方法。当地面具备施工条件,可采用从地面进行注浆或喷射搅拌的方式进行施工;当地面不具备施工条件或不便从地面施工时,可以采用洞内处理的方式,主要是洞内注浆。成都地铁2号线在盾构下穿省妇幼时,通过地面注浆的处理方式顺利通过了结构基础,且把最终沉降成功地控制在 17mm以内

②桩基托换

一般在下列情况下需要进行桩基托换:(l)盾构开挖通过桩基附近,从而削弱了桩的侧向约束,降低了桩的承载能力;(2)盾构开挖从距离桩端很近的地方穿过,使桩端承载力受到严重损失:(3)盾构开挖穿过桩体本身,导致桩的承载力大

幅下降或消失。桩基托换是以特定的桩取代原桩作为建筑物的传力杆件,与原有地基形成多元化桩基并共同分担上部荷载,缓解和改善原有地基的应力应变状态,直至取得控制沉降与差异沉降的预期效果。在隧道开挖过程中,往往会遇到建筑物桩基侵入隧道净空的情况,当地铁从建筑物底部穿越时,建筑物底部的地基土被开挖,洞体四周土体应力状态将发生变化,且并伴随着土体的变形,一直延伸到地表面,并对建筑物的基础产生作用。此时必须对桩基进行托换处理,将建筑物原来的基础托承到不受施工影响的新的桩基上,同时建筑物上部荷载通过托换结构也得到了可靠的转移,从而减少了隧道开挖中地层变形对建筑物的影响,解决了隧道穿越既有建筑物的安全问题。托换处理主要有门式桩梁、片筏基础、顶升及树根桩等方法。如成都地铁2号线盾构下穿四川省妇幼保健医院时,为了确保楼房的安全采取了桩基托换施工,保证了盾构的顺利施工和结构的正常使用,桩基托换技术经济合理,效果较好,而且通过改变力的传播途径来控制建筑物变形的发生,同时施工期间不会影响到建筑物的使用功能。但是桩基托换的机理比较复杂,托换技术难度大,综合性强,施工周期长,而且大部分基础托换工程工作在建筑物的室内进行,作业空间受到限制。

③隔断法

在建筑物附近进行地下工程施工时,通过在盾构隧道和建筑物间设置隔断墙等措施,阻止盾构机掘进造成的土体变形,以减少对建筑物的影响。避免建筑物产生破坏的工程保护法,称为隔断法。该法需要建筑物基础和隧道之间有一定的施工空间。隔断墙墙体可由密排钻孔灌注桩、高压旋喷桩和树根桩等构成,主要用于承受由隧道施工引起的侧向土压力和由土体差异沉降产生的负摩阻力,使之减小建筑物靠盾构隧道侧的土体变形。不过还需注意,隔断墙本身的施工也是邻近施工,故施工中要注意控制对周围土体的影响。

④建筑物本体加固措施

建筑物本体加固即对建筑物结构补强,提高结构刚度,以抵抗或适应由地表沉降引起的变形和附加内力。具体的加固措施有:

(a)增大截面法,该方法通过外包混凝土或增设混凝土面层加固混凝土梁、板、柱,通过增设砖扶壁柱加固砖墙:增大截面法可增大构件刚度,提高构件的承载能力,从而提高构件的抗变形能力。

(b)外包钢法,该方法通过在混凝土构件或砌体构件四周包以型钢、钢板从而提高构件性能;该方法可在基本不增大构件截面尺寸的情况下提高构件的承载力,提高结构的刚度和延度。

(c)外包混凝土法,该方法通过外包钢筋混凝土加固独立柱和壁柱,增设钢筋混凝土扶壁柱加固砖墙,增设钢筋网混凝土或钢筋网水泥砂浆(俗称夹板墙)加固砖墙;与外包钢法相比,这种方法可更好地实现新旧材料的共同工作。

(d)粘钢法和粘贴碳纤维法,该方法通过粘结剂将钢板或碳纤维粘贴于构件表面从而提高构件性能;该方法可在不改变构件外形和不影响建筑物使用空间的条件下提高构件的承载力和适用性能。

四、结束语

隔断法、桩基托换和注浆等作为砂卵石地层中盾构施工造成建筑物损害的治理措施,均有其特定的最佳使用条件,有些情况下也可以相互配合使用以减少建筑物保护代价。在盾构掘进靠近建筑物时,建筑物基础埋置较浅时,且场地受到限制,可以设置隔断墙来保护建筑物;在盾构穿越建筑物基础将建筑物的桩基切断或者使其产生过大的变形,施工现场、施工技术许可的情况下,建议采用桩基托换法。注浆法可以作为其他两种方法的补充和辅助手段,在盾构引起的地表位移不大时也可单独采用。

参考文献

【1】王梦恕.21世纪我国隧道及地下空间发展的探讨.铁道科学与土程学报.2004,1(1):7一8

【2】肖中平.地铁盾构隧道施工对环境的影响研究.成都:西南交通大学博士学位论文,2007

【3】成都市地铁办.成都市地铁二号线试验段水文、工程、环境地质条件,主要问题及对策专题研究报告,2001

【4】孙吉主.盾构机掘进对基础影响的工程分析法[J].武汉理工大学学报,2003,25(3):56一58

土卵石地层工程勘察报告

工程编号:JK-13-KC012-2 华夏?湖畔御苑5#楼裙房 岩土工程勘察报告 (详勘) 资质等级及证书编号:甲级122276-kj ?工程负责: ?编写: ?校对: ?审核: ?审定: ?总工程师: 毛辉 ?总经理:刘才根 江山市建设工程勘察有限公司 二○一四年三月

目录 一、前言 (一)工程概况 (4) (二)勘察目的与工作要求 (4) (三)勘察依据 (5) (四)勘察等级、勘察方法和工作量布置 (5) (五)完成工作量情况 (6) 二、场地工程地质条件 (一)区域自然地理与气象条件 (6) (二)场地工程地质条件 (7) 三、拟建场地岩土工程条件评价 (一)岩土参数的统计 (10) (二)岩土参数的确定 (10) (三)各岩土层工程特性评价 (11) (四)地基均匀性评价 (11) (五)不良地质作用评价 (12) (六)特殊性岩土评价 (12) 四、拟建场地的稳定性和适宜性评价 (12) 五、基础方案分析 (一)天然地基浅基础方案 (12) (二)桩基础方案 (13)

六、结论和建议 (13) 七、附件 ㈠附表 钻孔一览表 分层数据一览表 标贯数据一览表 动探数据一览表 岩石点荷载强度试验报告 土工试验报告 压缩试验成果图表 颗粒分析试验曲线 土工试验分层汇总表 综合成果表 ㈡附图 勘探点平面布置图 工程地质剖面图 钻孔柱状图

一、前言 (一)工程概况 宣城市华夏房地产开发有限公司拟在安徽省宣城市兴建湖畔御苑大型生活小区。该生活小区由高层住宅、商业用房和菜市场组成。本报告为其拟建的5#楼裙房的详细阶段岩土工程勘察成果。该拟建物层数3层,局部2层,框架结构,单柱最大荷载约2000KN。底面形状呈不规则矩形,设计室内±为米。拟建物拟采用桩基础。 (二)勘察目的与工作要求 根据本工程勘察依据及建筑规模和性质,其场址区岩土工程勘察目的和要求确定如下: 1.查明不良地质作用的类型、成因、分布范围、发展趋势和危害程度,提出整治方案的建议,并对场地的稳定性和建筑物的适宜性作出评价; 2.查明建筑场地各岩土层的成因、时代、地层结构和均匀性以及特殊性岩土的性质,尤其应查明基础下软弱和坚硬地层分布,以及各岩土层的物理力学性质。 3.查明场地地下水的类型、埋藏条件、补给及排泄条件、腐蚀性、水位埋深;提供地下水季节变化幅度;并对地下水对砼的腐蚀性作出评价; 4.查明场地埋藏的河道、沟浜、墓穴、防空洞、孤石等对工程不利的埋藏物; 5. 确定抗震设防烈度,建筑场地类别,对场地和地基的地震效应做出评价。

富水砂卵石地层中盾构施工的控制难点及措施

富水砂卵石地层中盾构施工的控制难点及措施 段浩 引言:随着中国经济的快速增长、城市人口数量迅速膨胀,机动车辆的数量呈级数比例增长,原有的市政道路难以满足交通的需要,为缓解城市交通压力、创造良好的生活和投资环境,国内各主要城市均选择修建地铁工程来提升城市形象和投资环境。隧道是地铁工程最主要的组成部分,隧道盾构法施工具有施工速度快、工期短、洞体工程质量易控制、质量比较稳定且良好的防渗水性能、施工安全系数高、对周边建筑物影响极小、基本不影响地面交通、适合地层范围广、地质情况复杂的施工作业环境等优点。随着我国各大城市地铁建设热情的高涨,隧道盾构施工方法必将在地铁建设中被广泛推广应用。盾构施工虽然有对地层的广泛适应性、施工安全系数高等优点,但因地质情况千变万化、施工环境的复杂性,在盾构施工中必然存在盾构机的适应性和施工方法、措施的调整。成都地铁穿越的地层主要为砂卵石地层并夹杂有粉细砂层透镜体,地下水丰富、水位高、补给迅速,国内、国际在该种地质条件下全面实施盾构施工隧道尚不多见,无较多经验可以借鉴,在地铁建设史上的应是一次重要技术性突破。截至目前成都地铁采用泥水盾构和土压平衡盾构施作的隧道,已经完成成型隧道1000余米,在施工中出现一些有别于其它地质情况下施工的难点,对这些难点的技术处理为在富水砂卵石地层中盾构施工积累了一些应对的经验。 成都地铁地质情况描述:

盾构隧道从<2-8>、< 3-4>、<3-7〉等砂卵石地层中通过。卵石成分主要为灰岩、砂岩、石英岩,卵石的含量达67%,中间夹杂大漂石。砂卵石具有分选性差,强度高的特点。 <2-8>卵石土(Q4al):黄灰色,黄褐色,中密~密实为主,部分密实,潮湿~饱和。卵石成分主要为中等风化的岩浆岩、变质岩、砂岩等硬质岩组成。磨圆度较好,以亚圆形为主,少量圆形,分选性差,卵石含量65~75%,粒径以30~70mm为主,钻探揭示最大粒径145mm,夹零星漂石,充填物为细砂及圆砾。 <3-4>粉、细砂(Q3fgl+al):灰绿色,饱和,中密,夹少量卵石。呈透镜体状分布。 <3-7>卵石土(Q3fgl+al):褐黄、黄色,以中密~密实为主,饱和。卵石成分主要为中等风化的岩浆岩、变质岩、砂岩等硬质岩组成。磨圆度较好,以亚圆形为主,少量圆形,分选性差,卵石含量60~75%,粒径以30~70mm为主,据钻探揭示,最大粒径150mm,夹零星漂石,充填物为砂及砾石,具弱泥质胶结或微钙质胶结。 隧道通过的地层含水丰富,根据钻孔揭示,隧道区间分布的卵石土及所夹透镜状砂层为地下水主要含水层,含水量丰富,含水层厚20~22.6m,区间范围内卵石土分选性差,渗透性强。

土压平衡盾构穿越富水砂层的掘进技术

1引言 盾构机的性能及其与地质条件、工程条件的适应性是盾构隧道施工成败的关键,所以采用盾构法施工就必须选择最佳的盾构施工方法和选择最适宜的盾构机。对于富含地下水的砂层,考虑到地下水的含量及水压,以及土的塑性流动性及透水性等问题,一般宜选用泥水盾构。但由于广州地区工程地质的复杂性,对于同一个盾构标段,可能出现某些部分适合选用土压平衡盾构,而其他部分又适合采用泥水盾构,但作为同一个施工标段,不可能中途更换盾构机,因此,只好选择一种类型的盾构机,这就需要综合考虑并分析不同选择的风险,最终择优选取。另外,城市地铁施工,由于施工场地的限制,导致泥水盾构的应用越来越少。土压平衡盾构穿越砂层,风险较大,但若施工措施得当,土压平衡盾构穿越砂层亦会取得成功,如广州市轨道交通三号线珠江新城站~客村站区间穿越约300m的砂层地段。 2盾构穿越富水砂层的风险 2.1易形成喷涌,导致地面塌方、建(构)筑物开裂损坏 由于富水砂层含水量丰富,渗透性好,且受扰动后易液化,因此土压平衡盾构在富水砂层中掘进很容易出现喷涌现象,一方面,需用大量时间进行盾尾清理,严重影响盾构施工进度,另外,大量泥砂喷出或砂遇水液化,均易引起地层沉降,从而最终导致地面建(构)筑物沉降变形,甚至损坏。 2.2地面沉降难以控制,易造成地面塌方、建(构)筑物开裂损坏 一旦发生喷涌现象,地面沉降肯定会很大,即使没有发生喷涌,控制地面沉降还是非常困难,主要原因是: 1)砂层自身自稳性差,而刀盘开挖直径比盾体外径一般至少大200mm,从刀盘开挖到注浆填充这需要一段较长时间,这期间不可避免产生砂层沉降; 2)掘进过程中,不可避免要造成砂层失水,且一定会对砂层产生扰动,这都会导致砂层产生沉降。 若沉降控制不好,极易造成地面塌方、建(构)筑物损坏。 3喷涌形成条件及防治方法 3.1喷涌形成条件 造成喷涌的原因多种多样,但无论何种原因,喷涌的发生都必须同时具备以下条件: 1)具有足够高水头压力的充足水源。水的来源主要有两个,即掌子面和盾构后方的汇水通道; 2)开挖下来的渣土本身不具有止水性,即渗透性好,这造成在螺旋输送器内无法形成土塞效应,导致高压力的水体穿越土仓和输送器形成集中渗流,并带动渣土颗粒一起运动; 3)渗流水在输送至螺旋输送器最终出口的一瞬间,由于其压力水头还没有递减到零,且前方是临空的隧道内部处于无压状态,带压的渗流水便携带砂土喷涌而出。 3.2防治方法 以上三个条件是缺一不可的,因此防治方法就是阻止其中某个或某几个条件的形成。防治方法主要有: 1)切断水的补充通道,或尽量减少土仓中积水。例如针对水的主要来源为盾构后方的汇水通道,可通过管片进行双液注浆,形成止水环,防止隧道后方的水进入土仓; 2)改善渣土的和易性,处理方法是添加适量的添加剂,例如膨润土、高分子聚合物等; 3)让渗流水在到达螺旋输送器最终出口之前,压力降低到零。这主要从设备上考虑,例如采用双螺旋输送器,或对螺旋输送器的出口进行改造等。 4盾构穿越富水砂层的施工措施 盾构通过砂层地段的关键是防止因喷涌、失水、扰动等原因造成的沉降,并做好上方建(构)筑物的保护。主要措施有: 1)在过砂层之前,对盾构机进行全面检查及维修保养。一方面,防止泥水、砂浆从盾尾密封冒出,一旦泥水大量从盾尾冒出,易造成失水沉降,而砂浆从盾尾冒出,将无法及时对管片背后进行填充,亦导致沉降难以控制;另一方面,防止因故障长时间停机,而导致土仓大量积水,且盾体外壳与开挖隧道之间的空隙无法及时填充。 2)进行土体改良。主要是采用聚合物添加剂、膨润土等来改良渣土,以改善渣土的和易性,增加止水效果,避免喷涌的发生。 3)做好同步注浆和二次注浆工作。一方面,防止隧道后方的水流入土仓;另一方面,及时填充管片背后空隙,防止沉降进一步扩大。 4)合理选择掘进模式和掘进参数。一般采用土压平衡模式,根据地下水位、地层条件、隧道埋深等合理选择土仓压力。合理选择掘进参数,例如:螺旋输送器的转速、闸门开度,刀盘转速,推进千斤顶的推力等。 5)控制好盾构机的姿态。若盾构机姿态不好,需要纠偏,这对控制沉降及其不利。 6)合理确定渣土的松散系数,严格控制出土量。要做到既不能多出,也不能少出。若少出,会造成土仓压力增大,掘进速度减慢;若多出,会造成地面沉降增大,甚至地面塌方。 7)尽量做到快速通过。应该尽量提高掘进速度,避免刀盘转动对地层扰动时间过长,造成上部砂层松动,同时掘进速度加快能够及早为管片背后注浆创造条件,有利于隧道稳定和控制地表沉降。 8)做好监测工作,及时反馈监测信息。适当加密监测频率,根据地表沉降和建筑物沉降的监测数据,结合地质情况,及时调整土仓压力、千斤顶推力等施工参数。 9)对附近建筑物进行原始鉴定,若有必要提前进行注浆加固或基础托换。 5工程实例:赤岗塔站~客村站区间盾构通过利安花园基坑 土压平衡盾构穿越富水砂层的掘进技术 孔少波朱六兵王晖 广州市地下铁道总公司建设事业总部广州510380 摘要:盾构机的性能及其与地质条件、工程条件的适应性是盾构隧道施工成败的关键,对于富水砂层地段,通常是选择泥水盾构,但由于整个标段的地质变化、施工场地的限制等等原因,有时也不得不采用土压平衡盾构。本文主要分析了土压平衡盾构穿越富水砂层的风险,并介绍了防治措施。风险之一就是容易产生喷涌,本文通过对喷涌现象的形成条件进行深入分析,讨论了防止喷涌的技术措施。赤岗塔站~客村站区间盾构成功通过利安花园基坑的实例说明,只要施工方案合理,组织到位,施工措施落实好,土压平衡盾构是完全可以顺利通过富水砂层地段的。 关键词:土压平衡盾构,富水砂层,喷涌,沉降

土压平衡盾构机长距离通过浅埋富水砂层的风险分析与应对策略

土压平衡盾构机长距离通过浅埋富水砂层的风险分析与应对策略 摘要:隧道在地下空间穿行于各种各样的地层,由于受各种客观条件的制约,在线路设计时,往往不可避免的需要将线路设计在埋深较浅的砂层中。然而,土压平衡盾构机在浅埋富水砂层中穿行将存在巨大的风险与较大的施工难度。 关键词:土压平衡盾构机、浅埋、富水砂层、风险 1 前言 随着我国经济的不断发展和城市化进程的加速,城市轨道交通建设在我国各大城市如火如荼的进行。在城市地铁工程施工中,盾构法因其受地面因素影响小、安全度高、施工速度快、对地面环境影响小等优势而得到广泛的应用。隧道在地下空间穿行于各种各样的地层,由于受各种客观条件的制约,在线路设计时,往往不可避免的需要将线路设计在埋深较浅的砂层中。然而,土压平衡盾构机在浅埋富水砂层中穿行将存在巨大的风险与较大的施工难度,譬如容易引起地层沉降大、隧道喷涌、盾构姿态难控制等问题,这些问题若控制不好,将导致管片出现错台、漏水等质量问题,甚至可能造成机毁人亡般的质量事故,损失更是不可估量。因此,如何在各种不利的情况下,使土压平衡盾构机在浅埋富水砂层中保持快速的掘进速度,同时确保施工的安全,并有效保证盾构隧道的质量成为了一项需要迫切解决的问题。 2 背景工程概况

珠江三角洲城际快速轨道交通广州至佛山段施工8标段土建工程由两个区间隧道及相关附属工程组成,盾构区间分别是虫雷岗站~千灯湖站区间、千灯湖站~金融高新区站区间,该工程盾构隧道双线总长4521.974m。 【虫雷岗站~千灯湖站】盾构区间沿佛山桂澜路南北走向,覆土深度约为7.8 m~14.3m之间,洞身通过的地层主要为<2-2>淤泥质粉细砂层,<2-3>海陆交互中粗砂层,<3-1>粉细砂层。根据地质勘探资料,上述几种砂层均为软弱的富水和透水地层。 根据地质统计分析资料,虫雷~千区间左线隧道通过富水砂层的长度为439.5米,约占该区间总长度的38.05%;右线隧道通过富水砂层的长度为609.5米,约占该区间总长度的52.78%。 3 风险分析 (1)地面沉降难以控制,易导致地面坍塌,建(构)筑物损坏1)砂层自身自稳性差,而刀盘开挖直径比盾体外径一般至少大200mm,从刀盘开挖到注浆填充这需要一段较长时间,这期间不可避免产生砂层沉降; 2)掘进过程中,不可避免要造成砂层失水,且一定会对砂层产生扰动,这都会导致砂层产生沉降。 若沉降控制不好,极易造成地面坍塌、建(构)筑物损坏,存在巨大的风险。[1] 图1 富水砂层中掘进引起的地面沉降较大

砂卵石层中钻孔桩成孔工艺研究

砂卵石层中钻孔桩成孔工艺研究 第1章工程概况 北京地铁9号线第1合同段工程位于北京市丰台区,线路呈南北走向。本合同段工程项目包括丰台科技园站、郭公庄站~丰台科技园站区间。丰台科技园车站包括2个风道、5个出入口(含1个安全出口)。1号风道位于车站东南端3号出入口以南,2号风道位于车站东北端4号出入口以北;1、2号出入口位于车站西侧,3、4号出入口位于车站东侧,5号出入口(安全出入口)位于车站东侧4号出入口及2号风道之间。车站主体结构设计为地下双层双柱岛式车站,明挖法施工。车站主体总长170.15m,标准段宽度20.9m,车站顶板覆土厚度4.6m,底板埋深18.2m,盾构井位置为19.7m。车站主体围护桩采用φ1000钻孔灌注桩223根,4160 m,桩端深度:25.6m 。车站附属围护桩采用φ1000钻孔灌注桩336根,5376 m。 1号风道为单层箱形框架结构,风道口及风道与主体接口位置宽12.87m,斜长17.42m,南北向长34.2m,基坑深13.8m,钻孔桩65根,东侧距离新改移马草河3.6~4.1m,围护结构采用围护桩+钢支撑体系。 2号风道为双层局部单层箱形框架结构,与主体接口位置宽15.35m,风道口宽15.1m,东西向长38.3m,南北向长32.65m,钻孔桩68根,双层段基坑深18.8m,单层段基坑深14.3m,周围场地开阔,风道施工范围内没有控制性管线,采用围护桩+钢支撑体系。 1号出入口与主体接口位置宽7.1m,出口位置宽6.7m,东西向长34.52m,南北向长38.16m。钻孔桩48根。 2号出入口与主体接口位置宽7.1m,出口位置宽6.7m,东西向长31.72m,南北向长41.64m。钻孔桩54根。 3号出入口与主体接口位置宽7.1m,出口位置宽6.7m,东西向长29.55m,南北向长39.6m,钻孔桩59根。基坑最深处为地面向下16.16m,宽11.4m;东侧距离新改移马草河约2.5~3m,4号出入口南侧为旧马草河,施工期间将废弃。为了减少对新改移马草河影响出入口围护结构主要采用围护桩+钢支撑支护体系,出入口地面位置采用土钉墙支护体系。 4号出入口与主体接口位置宽7.1m,出口位置宽6.7m,东西向长37.32m,南北向长37.76m,钻孔桩42根。基坑最深处为地面向下14.06m,宽11.4m;横向通道位置采用围护桩+钢支撑支护体系,出入口地面位置采用土钉墙支护体系。 车站附属结构采用明挖法施工。车站南侧为明挖区间,北侧为盾构区间,车站北端设盾构始发(左线)/接收(右线)井,左线盾构机始发时,后配套设施可放置于车站内。

最新富水砂卵石地层中盾构施工的控制难点及措施

富水砂卵石地层中盾构施工的控制难点及 措施

富水砂卵石地层中盾构施工的控制难点及措施 段浩 引言:随着中国经济的快速增长、城市人口数量迅速膨胀,机动车辆的数量呈级数比例增长,原有的市政道路难以满足交通的需要,为缓解城市交通压力、创造良好的生活和投资环境,国内各主要城市均选择修建地铁工程来提升城市形象和投资环境。隧道是地铁工程最主要的组成部分,隧道盾构法施工具有施工速度快、工期短、洞体工程质量易控制、质量比较稳定且良好的防渗水性能、施工安全系数高、对周边建筑物影响极小、基本不影响地面交通、适合地层范围广、地质情况复杂的施工作业环境等优点。随着我国各大城市地铁建设热情的高涨,隧道盾构施工方法必将在地铁建设中被广泛推广应用。盾构施工虽然有对地层的广泛适应性、施工安全系数高等优点,但因地质情况千变万化、施工环境的复杂性,在盾构施工中必然存在盾构机的适应性和施工方法、措施的调整。成都地铁穿越的地层主要为砂卵石地层并夹杂有粉细砂层透镜体,地下水丰富、水位高、补给迅速,国内、国际在该种地质条件下全面实施盾构施工隧道尚不多见,无较多经验可以借鉴,在地铁建设史上的应是一次重要技术性突破。截至目前成都地铁采用泥水盾构和土压平衡盾构施作的隧道,已经完成成型隧道1000余米,在施工中出现一些有别于其它地质情况下施工的难点,对这些难点的技术处理为在富水砂卵石地层中盾构施工积累了一些应对的经验。 成都地铁地质情况描述:

盾构隧道从<2-8>、< 3-4>、<3-7〉等砂卵石地层中通过。卵石成分主要为灰岩、砂岩、石英岩,卵石的含量达67%,中间夹杂大漂石。砂卵石具有分选性差,强度高的特点。 <2-8>卵石土(Q4al):黄灰色,黄褐色,中密~密实为主,部分密实,潮湿~饱和。卵石成分主要为中等风化的岩浆岩、变质岩、砂岩等硬质岩组成。磨圆度较好,以亚圆形为主,少量圆形,分选性差,卵石含量65~75%,粒径以30~70mm为主,钻探揭示最大粒径145mm,夹零星漂石,充填物为细砂及圆砾。 <3-4>粉、细砂(Q3fgl+al):灰绿色,饱和,中密,夹少量卵石。呈透镜体状分布。 <3-7>卵石土(Q3fgl+al):褐黄、黄色,以中密~密实为主,饱和。卵石成分主要为中等风化的岩浆岩、变质岩、砂岩等硬质岩组成。磨圆度较好,以亚圆形为主,少量圆形,分选性差,卵石含量60~75%,粒径以30~70mm为主,据钻探揭示,最大粒径 150mm,夹零星漂石,充填物为砂及砾石,具弱泥质胶结或微钙质胶结。 隧道通过的地层含水丰富,根据钻孔揭示,隧道区间分布的卵石土及所夹透镜状砂层为地下水主要含水层,含水量丰富,含水层厚20~22.6m,区间范围内卵石土分选性差,渗透性强。

盾构穿越砂层预防涌水涌砂的技术控制措施

消除砂土液化影响,盾构穿越砂层预防涌水涌砂的技术控制措施 重难点分析: 若盾构区间隧道底部部分位于淤泥层、淤泥质土层、淤泥质粉细砂层(液化砂层),由于砂层透水性强稳定性差,当砂层富水时,则盾构机推进时盾尾几乎直接受到水压力的作用,很容易发生盾尾漏水、漏砂情况,存在涌水、涌砂的危险。土压平衡盾构在砂土层中掘进施工时,因土的摩阻力大、渗透系数高、地下水丰富等原因,一般单靠掘削土提供的被动土压力常不足于抵抗开挖面的土、水压力,加之由于土体流动性差,使在密封舱内充满砂质土体后,原有的盾构推力和刀盘扭矩常不足以维持正常掘进切削的需要,密封舱内的渣土也不易于流入螺旋输送机并排出,而引起超挖。另外在砂层中一旦要进行开仓换刀,其作业过程是十分危险的。 针对性措施: 1、穿越砂层的技术措施 (1)做好对盾构机的维修保养。特别是对盾尾刷要进行检查和更换,同时充分压注盾尾油脂,以防止泥水砂土从盾尾冒出。 (2)改良土渣。土压平衡式盾构机的工作原理为:由刀盘切削下来的土体进入土仓后由螺旋输送机输出,在螺旋输送机内形成压力梯降,保持土仓压力稳定,使开挖面土层处于稳定。盾构向前推进的同时,螺旋输送机排土,使排土量等于开挖量,即可使开挖面的地层始终保持稳定。而砂层自稳能力差,盾构掘进如果处理不当,都会造成不同程度的地面沉陷,甚至是塌方。采用复合土压盾构机为防止工作面的坍塌和地面沉陷,必须选择合适的添加剂对砂层进行改良。 根据改良后的土渣具有一定和易性的要求和工程经验,尽量使用添加剂和膨润土来改良土渣,使改良后的土渣既有止水效果又有塑流性,避免喷涌的发生导致地面的沉陷。 (3)加强同步注浆。既要控制好注浆的压力,又要控制实际的注浆量,切

富水砂层掘进中的渣土改良及喷涌控制技术

富水砂层掘进中的渣土改良 及喷涌控制技术 哈尔滨地铁项目部刘华 【摘要】在富水砂层中选择土压平衡盾构机掘进施工,对渣土改良和喷涌控制有更高要求和难度,哈尔滨地铁【南直路站~哈东站站】区间地质构造为典型的富水砂层,本文结合哈尔滨地铁工程采用土压平衡盾构施工的成功案例,论述土压平衡盾构机在富水砂层掘进中的渣土改良及喷涌控制技术。 【关键词】土压平衡盾构机富水砂层渣土改良喷涌控制 引言 土压平衡盾构机穿越富水砂层具有较大的风险,由于砂层自身的不稳定性及土仓内砂质渣土易离析沉淀,极易造成盾构机前方地表塌方及构筑物开裂损坏,因此在富水砂层中掘进对渣土改良效果要求极高,只有渣土改良效果理想,才能在土仓内实现土压的动态平衡,避免喷涌现象发生,从而降低对前方土体的扰动。 1 工程概况 哈尔滨地铁【南直路站~哈东站站】区间全长514.943米,根据地质勘察报告和车站主体开挖情况,本工程盾构区间场地范围内主要为第四纪全新统堆积层,地处河谷漫滩及波状冲击平原,地层岩性为粉质粘土、砂类土,隧道开挖的地层主要为中砂层,部分区段含少量粗砂层和粉细砂层,地下水稳定水位为自然地面下2.5m,含水量较大,达到15%,有的地段可达30%。区间隧道埋深在9~14m。 2盾构机具有的渣土改良设备 哈尔滨地铁九标段使用的盾构机为维尔特产土压平衡盾构机,渣土改良剂由泵送设备通过中心回转轴连接刀盘注入到刀盘前方,刀盘辐条上均匀分布4个注射孔,两个为膨润土注射管道,另外两个为高分子聚合物注射管道。本标段项目工程主要采用膨润土浆液和高分子聚合物配合使用作为渣土改良剂。 2.1膨润土系统 整个膨润土系统分为两部分,一部分为拌合系统,一部分为注入系统。拌合系统在地面,主要进行膨润土浆液的拌合与发酵存储,拌合发酵完成后通过管道泵送到盾构机的膨润土存储罐里。 盾构机膨润土注入系统不属于维尔特原装配置,是为了满足哈尔滨地铁施工而专门增设的系统,注入系统所有构件都是后期添置,主要由存储罐、注入泵、变频器及管道组成。存储罐体积4.5 m3,另配有两组搅拌轴;注入泵为郑州瑞申产软管挤压泵,型号为RH65~770,最大排量13500 L/h,额定压力1.2MPa,介质最大颗粒8mm,电机功率11KW,由现场使用情况看,此泵完全满足膨润土注入要求。另外配置变频器以便根据渣土改良效果和掘进速度及时调整挤压泵转速从而改变膨润土注入量。 2.2高分子聚合物注入系统

富水砂卵石地层中盾构施工的控制难点及措施

富水砂卵石地层中盾构施工技术 成都地铁地质情况描述: 盾构隧道从<2-8>、< 3-4>、<3-7〉等砂卵石地层中通过。卵石成分主要为灰岩、砂岩、石英岩,卵石的含量达67%,中间夹杂大漂石。砂卵石具有分选性差,强度高的特点。 <2-8>卵石土(Q4al):黄灰色,黄褐色,中密~密实为主,部分密实,潮湿~饱和。卵石成分主要为中等风化的岩浆岩、变质岩、砂岩等硬质岩组成。磨圆度较好,以亚圆形为主,少量圆形,分选性差,卵石含量65~75%,粒径以30~70mm为主,钻探揭示最大粒径145mm,夹零星漂石,充填物为细砂及圆砾。 引言:随着中国经济的快速增长、城市人口数量迅速膨胀,机动车辆的数量呈级数比例增长,原有的市政道路难以满足交通的需要,为缓解城市交通压力、创造良好的生活和投资环境,国内各主要城市均选择修建地铁工程来提升城市形象和投资环境。隧道是地铁工程最主要的组成部分,隧道盾构法施工具有施工速度快、工期短、洞体工程质量易控制、质量比较稳定且良好的防渗水性能、施工安全系数高、对周边建筑物影响极小、基本不影响地面交通、适合地层范围广、地质情况复杂的施工作业环境等优点。随着我国各大城市地铁建设热情的高涨,隧道盾构施工方法必将在地铁建设中被广泛推广应用。盾构施工虽然有对地层的广泛适应性、施工安全系数高等优点,但因地质

情况千变万化、施工环境的复杂性,在盾构施工中必然存在盾构机的适应性和施工方法、措施的调整。成都地铁穿越的地层主要为砂卵石地层并夹杂有粉细砂层透镜体,地下水丰富、水位高、补给迅速,国内、国际在该种地质条件下全面实施盾构施工隧道尚不多见,无较多经验可以借鉴,在地铁建设史上的应是一次重要技术性突破。截至目前成都地铁采用泥水盾构和土压平衡盾构施作的隧道,已经完成成型隧道1000余米,在施工中出现一些有别于其它地质情况下施工的难点,对这些难点的技术处理为在富水砂卵石地层中盾构施工积累了一些应对的经验。 <3-4>粉、细砂(Q3fgl+al):灰绿色,饱和,中密,夹少量卵石。呈透镜体状分布。 <3-7>卵石土(Q3fgl+al):褐黄、黄色,以中密~密实为主,饱和。卵石成分主要为中等风化的岩浆岩、变质岩、砂岩等硬质岩组成。磨圆度较好,以亚圆形为主,少量圆形,分选性差,卵石含量60~75%,粒径以30~70mm为主,据钻探揭示,最大粒径150mm,夹零星漂石,充填物为砂及砾石,具弱泥质胶结或微钙质胶结。 隧道通过的地层含水丰富,根据钻孔揭示,隧道区间分布的卵石土及所夹透镜状砂层为地下水主要含水层,含水量丰富,含水层厚20~22.6m,区间范围内卵石土分选性差,渗透性强。

地铁盾构施工富水砂层盾构施工须注意事项

富水砂层盾构施工须注意事项 一、盾构机设计要考虑的关键因素 1、盾构密封系统 富水砂层中的土砂在高水头压力下可能从各种间隙涌入隧道,为此盾构设计必须有良好的密封系统,其中重点保证盾尾系统、铰接系统和螺旋输送机的密封防水性能。 (1)盾尾密封系统 盾构机盾尾设计不应少于3排环形弹性较好的钢丝刷,每排钢丝间距应合理均匀的构成盾尾油脂仓;油脂孔数量和位置的设置应能满足富水地层盾构掘进油脂仓油脂的及时填充的需要,掘进中自动或手动注入密封油脂以减少钢丝刷磨损和填充钢丝刷之间的空隙,防止砂水进入盾构机。 (2)铰接密封系统 铰接利于盾构曲线施工,其连接部位必须考虑防水措施。铰接部位除了采用弹性橡胶条,还设置了应急橡胶气囊。当橡胶止水条不能满足防水要求时,立即向橡胶气囊充气,使气囊膨胀暂时堵塞空隙,然后逐步缩回后体。 (3)螺旋输送机密封系统 为有效防止“喷涌”,螺旋输送机应设计双闸门。前闸门通过螺旋轴伸缩来实现关闭,后闸门随时能关闭。如果施工人员带压进行土

仓作业,关闭前闸门可进一步提高土仓的密封性。 2、盾构机刀盘系统 砂层软土地层中刀盘设计应考虑以切刀为主、刮刀辅助。刀盘开口率大小须根据标段具体地质情况和专家评审意见定夺,不得随意更改和使用原有刀盘。碴槽布置与土碴开挖量应对应,碴槽最好接近刀盘中心,以防止刀盘中心部位“泥饼”的形成,提高刀盘的开挖效率。为改善砂层的塑性及粘度、降低透水性及内摩擦力,刀盘及密封隔板还应设计足够的泡沫、泥浆注入管路,通过压注高性能泡沫和经过合理配比的泥浆,有效防止高水头水砂“喷涌”的发生。 二、盾构安全始发、到达的注意事项 一)盾构机始发注意事项 盾构始发或到达时须破除盾构井围护结构(一般是人工挖孔桩、钻孔桩或是连续墙等),盾构穿过围护结构抵达土体撑子面或进入盾构井。为了确保暴露出来的盾构撑子面稳定,在软土地层中必须对端头的土层进行加固。一般要求如下: 始发端头,富水砂层中沿着隧道纵向1倍盾构机主机长度,宽度为盾构直径左右两边各延长3m,深度为盾构下方3m至盾构上方3m;到达端头,加固宽度和深度与始发端头的相同,只是隧道纵向1倍盾构机主机长度加1环管片宽度。如果对端头土层加固仍无法满足富水砂层中的施工要求,必须采取其它有针对性的措施。 (1)盾构始发端头加固 必须注意封堵加固体与车站围护结构的间隙,即采用高压旋喷桩

砂卵石地层土钉墙支护实例

砂卵石地层土钉墙支护实例 作者:杨占山张文秀来源:中航勘察设计研究院网站阅读次数: 2257 发表日期: 2007-9-28 13:02:22 【摘要】通过工程实例,分析总结在砂卵石地层进行基坑支护时采用土钉墙方案的设计、施工经验。 【关键词】砂卵石地层;基坑支护;土钉墙 0 引言 现代土钉墙支护施工技术自20世纪70年代产生以来,因其造价较其他基坑围护体系低,施工周期短,安全性基本满足基坑稳定性及变形要求,在边坡工程、基坑工程中得到了广泛的认可和应用。由于土钉墙对地层的依赖性很大,通常仅适用于地下水位低、自立性好的地层。某些地区地层由砂卵石组成,由于其内聚力较小、内摩擦角大,基坑开挖后边坡自稳性能良好,但是如果长期裸露经雨水冲涮容易剥落而导致失稳,所以在开挖后保证边坡的稳定需要对其进行支护。采用土钉墙支护方式比较快捷,而且工程造价低廉,但是在该种地层基坑支护方案采土钉墙支护施工难度较大。下面介绍一工程实例,探讨在砂卵石地层完全采用土钉墙支护的设计、施工经验。 1 工程概况 工程位于北京市丰台区丰台北路北侧。拟建建筑物包括4栋住宅楼(28层)及一栋配套商业楼(3层),基础形式采用筏基,结构类型为剪力墙结构。拟建物地下部分为一整体地下车库,基底埋深-12.6m(局部14.7m),地面标高-0.3m,基坑深度12.3m。场地西侧为正在使用的京保路,南侧为丰体南路,东侧南部有居民楼。为保证结构施工时基坑边坡稳定及场地周边设施、建筑物安全,决定在基坑开挖时采用土钉墙进行支护。 2 工程地质、水文地质条件 2.1 工程地质条件 拟建场地地形较平坦,地貌属于永定河冲积扇中上部。地面标高50.06~50. 84m。根据勘察所揭露深度20.0m范围内地层,表层为人工填土,其下为第四纪冲洪积成因的砂类土和卵石层构成。各层土的岩性特征如下: 杂填土①层:杂色,稍湿,中密,以砖块、灰渣为主,粘性土充填,夹薄层细砂素填土① 层。人工填土厚度为1.5~3.2m。 1

富水砂卵石地层基坑降水研究

富水砂卵石地层基坑降水研究 发表时间:2018-07-18T15:11:53.693Z 来源:《建筑学研究前沿》2018年第7期作者:张磊[导读] 鉴于降水工程是基坑工程建设中的重要组成部分。基坑开挖深度大,降水井数量较多,要求降水设计方案科学合理 张磊 中铁十二局集团第四工程有限公司广东广州 510620 摘要:鉴于降水工程是基坑工程建设中的重要组成部分。基坑开挖深度大,降水井数量较多,要求降水设计方案科学合理,施工方案安全可靠,管理信息化程度高。通过降水及时疏干开挖范围内土层的地下水,使其得以压缩固结,以提高土层的水平抗力,防止开挖面的土体隆起。在基坑开挖施工时做到及时降低基坑中的地下水位,保证基坑干开挖施工的顺利进行。降水期间,深入分析抽水量、降深速度与周边土体、建筑物、管线等之间的相互关系,从而验证降水方案的合理性,总结出砂卵石地层降水施工的经验。关键词:砂卵石基坑降水井计算 一、工程概况 车站位于方元路和敬成路交叉口东侧,沿敬成路东西向敷设,为地下两层11.5m岛式站台车站。车站全长216.0m,基坑深度为17.5m,标准段宽度为20.6m,顶板覆土厚度3.0m。车站主体基坑围护结构采用φ1200@2200mm机械钻孔桩(端头局部采用φ1500@1800mm玻璃纤维筋)+三道φ609×16mm钢支撑,钢支撑间距一般为3m,基坑角部设钢筋混凝土角撑,桩间挡土挂网喷射C25早强混凝土,围护桩标准段嵌固深度为3.5米扩大端嵌固深度为4米。 二、工程地质和水文地质 2.1工程地质特征 本工程场属沱江水系一级阶地,场区内地形平坦,地势开阔,地面高程为513.22~514.62m,相对高差约1.40m。工程范围内地表覆盖第四系全新统人工填土,其下为第四系全新统冲积层粉质黏土、细砂、卵石,其岩性主要为卵石,地层稳定,岩性较为单一、均匀。砂卵石土层较厚,根据成都地区已有工程经验,再结合卵石层颗粒的组成情况,卵石层渗透系数k=21.0m/d。 2.2水文地质情况 本站地处沱江水系冲积平原一级阶地,地下水主要为赋存于黏性土层之上填土层中的上层滞水和第四系砂、卵石层的孔隙潜水。场地卵石层较厚,且成层状分布,局部夹薄层砂,其间赋存有大量的孔隙潜水,其水量较大、水位较高,大气降水和区域地表水为其主要补给源。卵石层中孔隙水形成贯通的自由水面。 三、水设计 考虑本工程的降水范围,通过对水文地质条件的分析。根据《建筑与市政降水技术规范》本工程决定采用深管井点降水方案,结合本场区地质情况,在基坑外围呈封闭状布置围降抽水管井,用以疏干、降低潜水水位;沿基坑外两侧(2m)设降水井,管井采用φ300钢筋混凝土管,管井伸入底板约10m,滤水管每根长度2.5m,滤水管总长为10m,纵向间距约25m左右。 图3-1 降水井管大样图 3.1降水井结构 本工程采用深井管井进行施工降水,井孔为旋挖钻成孔,孔径600mm。井管由多节钢筋混凝土管组成,内径300mm,外径360mm,井管由实管和滤水管组成,降水井自井口以下约15m为实管,井管与井壁间填充粘土;15m以下井管为滤水管(每根井管长度均为2.5米),最底节为实管。滤水段由φ300mm满布滤水孔的钢筋砼管,以及其外包的铁丝网、密网和疏网滤砂透水层组成(详见下图管井大样图)。井管吊放好后沿井管周围均匀投放滤料,滤料为直径10~20mm无棱角的卵(砾)石,滤料填至井口下1m左右时用粘性土填实夯平。 3.2基坑涌水量 3.2.1基坑涌水量计算 本站长度216米,基坑宽度20.6米,开挖深度17.3米。

卵石地层中施工的要点

旋挖钻机在卵石地层中的施工技术要点 卵石主要由颗粒大小不一、形状不规则、风化程度各异的岩石碎屑或石英、长石等原生矿物组成,成单粒结构及块状和假斑状构造,具有孔隙性大、压缩性低、透水性强、抗剪强度大的特点。正是由于卵石土颗粒结构松散,粒径不均匀, 胶结性差,钻进时冲击力强、摩阻力较大,在这地层中钻 进时钻具极容易出现磨损和断裂,还可能出现卡钻、埋钻、 孔壁坍塌、漏浆,个别地还有钻进困难的问题。因此在这 种地层中钻进时应该根据地层特点选择专用钻头采用分级 钻进的方法,可以对钻头进行改造或使用短螺旋钻头,减少对钻具的磨损和防止钻杆断裂。并且在钻进的过程中应该注意要严格控制每个工作循环进尺,避免发生埋钻事故;同时要适当控制钻斗的提升速度,升降速度宜控制在0.75—0.85m/s。提升速度过快,泥浆在回转斗与孔壁之间高速流过,冲刷孔壁,破坏孔壁泥皮,对孔壁的稳定性不利,引起掉块卡住钻头。 在卵石地层中钻进时引起漏浆和塌孔现象的原因有:①在钻进的过程中,由于卵石地层结构松散,胶结性差,卵石的比重远超过泥浆的比重,泥浆漏失严重,发生掉块塌孔。或者是由于钻斗旋转速度太快,带动孔内泥浆高速冲刷孔壁,破坏孔壁泥皮,导致孔壁坍塌。②在提放钻具的过程中,钻头刮碰孔壁,破坏泥皮导致孔壁塌方。③在下放钢筋笼的过程中没有保持好垂直度或钢筋笼发生变形,使钢筋笼与孔壁发生刮碰导致塌孔。 对于埋深较浅的卵石地层可采用护筒护臂的方式来预防漏浆和孔壁坍塌的发生。要根据卵石地层的厚度和钻孔的孔径来确定钢护筒的长度和厚度。在埋藏较深的卵石地层中,对于地下水位以上的塌孔必须在地下水位以上形成稳固的孔壁阻止泥浆渗漏,可以采用抛填粘土或干水泥的方式或者提高泥浆的粘稠度再加入一些膨胀土或黄泥或者适量防渗剂防止泥浆向卵石缝隙中渗漏来防止塌。而对于地下水位以下的塌孔可以适当的提高泥浆比重和粘稠度来保护卵石层,但当泥浆的比重远小于卵石层的比重时这种方法就不起作用了。这时如果发现大量漏浆可向孔内注浆以平衡孔壁侧向压力防止塌孔,同时及时向孔内投放片石、粘土和

卵石含量高、粒径大的富水砂卵石地层中盾构机选型研究(精)

现代隧道技术 卵石含量高、粒径大的富水砂卵石地层中盾构机选型研究 文章编号:1009-6582(2009)01-0057- 07MODERNTUNNELLINGTECHNOLOGY 卵石含量高、粒径大的富水砂卵石地层中 盾构机选型研究 李海峰 (中国铁建十三局集团有限公司,深圳518083) 摘要根据成都地铁一号线盾构机所选机型在施工过程中的经验和教训,通过对盾构机的掘进机理深入分析,提出了在富水砂卵石地层盾构机刀盘的合理结构形式。要求刀盘结构强、材质好、面板少、开口率大、开口尺寸适当,用网格结构控制;中心安装超前撕裂刀;滚刀刃间距根据所配置的螺旋输送机的排除卵石尺寸确定;以及刀盘的正、侧面备有耐磨保护装置措施等。 关键词砂卵石地层掘进机理盾构选型研究 中图分类号:U455.3+1文献标识码:A 1基本概况 地铁线路区域地处成都平原岷江冲洪积扇状平 原的南东边缘,区内地形较平坦,地势受扇状平原的 控制,总体上西高东低,北高南低。区域地层为第四 系全新统(Q4)、上更新统(Q3)和中更新统(Q2)的砂、 卵石土沉积层,无胶结,沉积密实,砂卵石级配较好。 三层砂卵石层含水极其丰富。隧道埋深为15~20m。 1.1工程地质特性 成都地铁隧道洞身主要位于卵石土〈2-8〉、图1卵石含量高 Fig.1Highpercentageofcobblecontent〈3-7〉、〈4-4〉夹砂层中,卵石含量分别是(68 ̄75)%、 (70 ̄85)%、(75 ̄85)%,围岩基本级别为Ⅴ级。 1.2盾构区间隧道穿越〈3-7〉、〈2-8〉、〈4-4〉卵石地 层的特点 (1)卵砾石多、粒径大 卵砾石含量约占50%~70%,粒径达30~550mm, 卵石硬,最大强度可达200MPa以上(图1,图2)。 (2)水压高和水量大 隧道顶面最大埋深为20m,地下水位线埋深2m。 卵石土综合含水层渗透系数K为12.53~27.4m/d,

成都地铁砂卵石地层盾构施工风险分析及对策

成都地铁砂卵石地层盾构施工风险分析及对策【摘要】针对成都地铁盾构施工的特点,提出风险分析在盾构施工中的重要性。对盾构施工中蕴含的风险源进行辨识与风险分析,并提出具体的风险控制对策。 【关键词】盾构施工;富水砂卵石;风险分析;对策随着城市化进程的加快和城市交通量急剧增长,发展城市地铁已成为必然的选择。因其自身的优势,盾构法施工在城市地铁隧道建设中正扮演越来越重要的角色。 我国上海、广州、北京等城市已经采用盾构法成功实施了不少工程。成都的地质情况与上述城市截然不同,成都地铁施工具有独特的“三高”特点,即地层具有高富水及砂卵石含量高、卵石和漂石强度高的特点。这种不良地质条件增大了盾构施工难度。因此,加强盾构施工技术风险分析并找出相应的对策是极其必要的。 本文以成都地铁某盾构区间隧道为例,对施工中存在的风险进行辨识,并提出相应的控制措施,以确保盾构在富水砂卵石地质条件下的顺利掘进。 1 工程概况 成都地铁某盾构区间隧道最大埋深13.5 m,最小坡度2‰,最大坡度26.99‰,左右线间距13~13.5m,最小曲线半径400 m。 隧道穿越的地层主要为卵石土层,含夹薄层粉细砂透镜体, 20~200 mm卵石含量约占55.0% ~75.4%,粒径一般以30~70mm为主,部分粒径80~120mm;填充物以细砂、中砂为主,夹少量黏性土及砾石,

含量约为10.0% ~25.0%;漂石含量一般为5% ~10%,随机分布,地勘揭露漂石最大粒径为340 mm。卵石单轴极限抗压强度为90.9~91.7 MPa,漂石单轴极限抗压强度为88.6~95.3MPa。 地下水系为第四系孔隙潜水和基岩裂隙水两种类型。孔隙潜水主要埋藏于砂卵石土层中,渗透系数k=20.0 m/d,为强透水层。地下水位埋藏较浅,丰水期地下水位正常埋深约为3 m,成都充沛的降雨量是地下水的重要补给源之一。基岩裂隙水主要赋存于泥岩强风化裂隙带中,透水性较差。隧道下穿南河与滨江路下穿隧道,并近距离水平穿越锦江大桥与开行大厦(26层)。 地层“三高”特点及沿线建(构)筑物,对隧道掘进主要有以下几个方面的影响。 (1)隧道围岩均为卵石土夹透镜体砂层,自稳能力差,透水性强,地下水位较高,水量十分丰富。区间隧道盾构施工,开挖面容易产生涌水、涌砂,造成细颗粒物质大量流失,引起开挖面失稳、地面沉降甚至塌陷。 (2)隧道顶部覆土为人工填筑土、粉质黏性土、卵石土夹透镜体砂层,均为松散土体,自稳能力差,盾构掘进可能引起地面沉降或塌陷。 (3)隧道围岩分布有高强度、大粒径的卵石、漂石,容易造成超挖和排碴困难,还造成对盾构设备磨损严重。这些都对盾构顺利施工有较大影响。 (4)盾构掘进需要先后穿越南河、滨江路下穿隧道,近距离通过开行大厦和锦江大桥。盾构掘进,对周围土体产生扰动,可能造成周围建(构)筑物变形和破坏。

浅谈土压平衡盾构机在富水砂层下穿风险源的施工技术_郭海

2015年6月 第44卷增刊施工技术 CONSTRUCTION TECHNOLOGY 浅谈土压平衡盾构机在富水砂层下穿风险源的施工技术 郭海 (中铁六局集团有限公司,北京100036) [摘要]在富水砂层中采用土压平衡盾构下穿河流及既有建筑物施工,具有较大的风险和难点。结合北京地铁6号线工程土压平衡盾构施工的成功实例,从盾构机设备的性能配置、施工工艺参数(掘进参数)、辅助措施(渣土改良)等方面,分析、论证了在富水砂层中采用土压平衡盾构机掘进施工的关键技术。[关键词]土压平衡盾构;富水砂层;掘进参数;渣土改良;沉降控制[中图分类号] U455.43[文献标识码]A [文章编号]1002- 8498(2015)S0-0251-05Construction Technology of EPB Shield Machine in Water-rich Sand Crossing Below Risk Sources Guo Hai (The Sixth Engineering Bureau of CREC ,Beijing 100036,China ) Abstract :Using EPB shield in the water-rich sands through rivers and undercrossing existing buildings has great risks and difficulties.This paper combining with successful examples of Beijing subway line six with EPB shield ,the key construction technology is introduced from the shield performance configuration ,construction process parameters (driving parameters )and supporting measures (ballast soil improvement ). Key words :EPB shield ;water-rich sands ;diving parameters ;ballast soil improvement ;settlement control [作者简介]郭海,高级工程师,工程管理部副处长, E-mail :8415720@qq.com [收稿日期]2015-03-15 引言 在地铁建设施工中,由于受到全线地质分布、场地条件、工程成本等方面的制约,土压平衡盾构机在下穿河道及既有建筑物施工中也广泛应用,但由于本身设备的适应性问题,在施工中往往会遇到掘进扭矩大、速度慢、渣土喷涌、沉降大、管片上浮和破损等很多棘手的问题,给工程建设带来很多困难,本文结合以上问题进行探讨,并针对性地采取了一系列措施,取得了较好的效果。1 工程概况 北京地铁六号线二期14标玉—郝区间线路西起玉带河大街站,线路出站后自西向东下穿滨河中路、北运河及北运河热力隧道、京哈铁路、杨坨村民房区、东六环路,到达运河东大街北侧的郝家府站,如图1所示。玉带河大街站—郝家府站区间段全长2210m ,采用盾构法施工,覆土厚度约为9 23m 。 盾构区间穿越地层主要为饱和的粉细砂⑤层、中粗砂⑤1层、 细中砂⑦层;局部穿越粉细砂②3层、圆砾⑤4层、中粗砂⑦1层,地层的标贯值N63.5=30 70。其中,粉细砂②3层地层颗粒级配不良,有轻微液化现象,颗粒级配曲线如图2所示。经勘察发现2层地下 图1玉带河大街站—郝家府站盾构区间平面示意 水,地下水类型为上层滞水(1)、潜水(2)。潜水(3)水位埋深约7 10m ,侧壁围岩土体的自稳能力差,再加上潜水(2)的影响,容易出现涌水涌砂和流土等不良现象,极易发生隧道坍塌。 图2颗粒级配曲线 2工程难点分析 2.1 水文地质情况复杂,土压平衡盾构掘进风险大根据盾构穿越的水文地质条件进行盾构机选型, 应该选用泥水平衡盾构机进行施工,但受场地条件和盾构设备资源的限制,只能采用土压平衡盾构机进行施工。 1 52

相关文档
最新文档