涡旋压缩机实用结构的理论吸排气容积计算

涡旋压缩机实用结构的理论吸排气容积计算
涡旋压缩机实用结构的理论吸排气容积计算

压缩机吸排气温度对空调机的影响分析

压缩机吸排气温度对空调机的影响分析 发表时间:2019-08-08T09:47:12.500Z 来源:《建筑模拟》2019年第26期作者:赵舜 [导读] 本文针对压缩机吸排气温度偏高或偏低对空调机造成的影响,结合空调系统及运行原理进行分析和阐述,并对生产及使用过程中可能存在的影响因素进行了分析总结,避免因操作不当或使用不当,致使影响空调机使用寿命或损坏。 赵舜 乐金电子(天津)电器有限公司天津 300134 摘要:科技在不断的发展,社会在不断的进步,本文针对压缩机吸排气温度偏高或偏低对空调机造成的影响,结合空调系统及运行原理进行分析和阐述,并对生产及使用过程中可能存在的影响因素进行了分析总结,避免因操作不当或使用不当,致使影响空调机使用寿命或损坏。 关键词:吸气温度;排气温度;过热度;润滑油 引言 随着国内经济的发展,人们生活水平逐步提高,空调已成为普通的家用电器,并且空调还成为耗电主力,根据相关统计得出:空调能耗占建筑工程能耗的三分之二,而建筑工程能耗占社会总能耗三分之一以上,并且还保持着强劲增长势头。空调能耗占社会总能耗20%左右,因此可通过提高空调能效来降低能源消耗。目前提高空调能效方法主要有以下几种:选择高能效压缩机是首要选择,压缩机作为空调核心部件,其对空调能效有至关重要的影响,目前多数压缩机厂家已开发出高能效的压缩机并应用到高能效空调系统上;其次通过使用内螺纹铜管和开窗翅片来提高空调内、外机换热器的换热效果;还有就是通过增加循环风量。采用太阳能给压缩机排气加热以提高空调能效,并将该技术应用到了实际工程中,但是其实际工程的空调系统为多联机系统,并且未对该技术在空调系统不同运行情况下的效果进行研究。本研究对一套变频风管机系统更改,通过外置加热装置给压缩机排气加热,研究空调系统在不同运行情况下能效、能力以及功率的变化规律。目前节能减排越来越重要,本研究发现提高空调能效一种新方法:变频空调系统在一定频率运行时可通过对压缩机排气加热来提高空调制冷能力和能效,可使用低品位能源给压缩机排气加热提高空调能效,如此就可以在低品位能源使用和空调能效提升两个方面对节能减排做出贡献。 1吸排气温度偏高的原因及影响 1.1吸排气温度偏高的原因分析 排气温度与冷凝压力和蒸发压力以及吸气温度成正比,吸气温度偏高则压缩比增大,排气温度随之升高,具体有以下原因:1)系统内缺少制冷剂,即使节流装置开到最大,制冷剂流量也不会有较大变化,制冷剂在蒸发器中过热致使吸气温度升高;2)节流装置打开度数过小,系统内循环的制冷剂不足,进人蒸发器的制冷剂量少,系统内存在一部分过热蒸汽,从而致使吸气温度偏高;3)吸气管路过长或管路保温措施防护不到位,引起吸气温度过高;4)冷凝器脏堵或者壳管水垢过多,水流量不足影响冷凝器换热效果,系统内制冷剂蒸汽过多,经过压缩机压缩后排出的气体温度升高。 1.2结构改型后排气口气流组织分析 利用GAMBIT建立排气口的二维有限元模型,通过FLUENT的耦合、隐式求解器计算排气定常流。对于一台几何容积排量及转速一定的压缩机而言,在不同工况下运行时,气体体积流量不变。由于气体流经内环槽时截面积变大,流速变小,根据气体流动的伯努利能量方程可知,气体的静压力得到提高。可以看出,涡旋压缩机排气口内环槽对制冷剂气体的流动起到了扩压的作用,所以排气阀前的静压力高于结构改型前排气阀前的静压力,使排气阀片开启瞬间发生的定容压缩现象得到削弱,减少了此过程产生的附加功损失,从而可以降低压缩机的排气温度。 1.3吸排气温度偏高故障案例 我们以1.5匹壁挂式空调为例分析,系统缺冷媒运行24个月,内机出现整机开机跳闸,压缩机无法启动异常现象。解剖发现压缩机内部油量只有20mL,油色发黄,有难闻气味。电机绕组高温发黄,漆包线与绝缘纸脆化。泵体表面金属色转为红褐色,分析漆包线与绝缘纸耐高温达220℃以上,泵体和电机颜色转变说明内部发生缓慢高温现象,油色发黄油量偏少,说明系统缺氟。造成电机烧坏原因分析,当系统泄漏时,压缩机内部缺氟产生的高温情况发生,电机会无法受到冷媒的冷却造成过热。此时压缩机的保护器因未满足动作条件(温度、电流均未达到动作条件),所以仍处于不动作状态,电机双重压力,得不到有效的冷却,使得压缩机内的热量大部分转变为温度的增升。而当温度上升到满足保护器动作条件后,保护器虽然会对压缩机有一定的保护,但在这种状态下,压缩机却会随着电压的变化会不断出现“停动”并始终处于通电状态。同时当压缩机“持续停动”会对电机有一个缓慢的劣化过程,并最终造成压缩机电机的烧毁。 2预防措施 2.1设计要严谨 为使空调机组在使用过程中在空调允许的工作范围内工作,防止吸排气温度过高或过低对压缩机造成的危害,在设计之初就应对机组进行多种保护措施条件以及控制输出比例等等一系列措施,如空调机组中的排气保护、高/低压保护、过流保护、压缩机内置保护等等。2.2压缩机频率25Hz时压焓图解析在压缩机频率为25Hz时对压缩机排气进行加热,冷媒的冷凝压力升高0.083MPa提升3.46%,蒸发压力升高 0.173MPa提升16.49%,蒸发压力升高幅度和比例明显大于冷凝压力升高幅度和比例。单位容积制冷量为:—单位容积制冷量,kJ/m3;q0—单位质量制冷量,kJ/kg;υ—压缩机吸气比容,m3/kg。加热时冷凝压力变化较小,单位质量制冷量h1-h5与未加热时的单位质量制冷量h1′-h4′基本一致,上式分子基本无变化,但加热时蒸发压力变化较大,压缩机吸气比容比υ1比未加热时的压缩机吸气比容υ1′降低,即上式分母较大改变,那么加热时单位容积制冷量比未加热时单位容积制冷量迅速增加,它意味着压缩机在25Hz运行对排气的加热时,蒸发压力大幅度上升、压缩机吸气比容降低使机组制冷能力和机组能效上升。 2.3生产要严格要求 空调机组虽有多种保护进行防护机组,但必须保证机组系统及各个部件本身处于正常状态,才能各司其职的按照空调控制要求动作。生产商为保证生产出来的空调机组都能经得起质量考验以及用户的认可,必须按照严格的生产工艺要求,做好每一个环节、每一个工序。

2011-3139基于实验的螺杆式压缩机容积效率计算方法

基于实验的螺杆式压缩机容积效率计算方法 李庆刚 王发忠 刘敬辉 周雷 (烟台顿汉布什工业有限公司,烟台264003) 摘要: 本文建立了一种基于实验数据的螺杆式压缩机容积效率计算模型,根据实测数据回归后的容积效率计算公式可以在很宽的运行工况范围内较准确的预测螺杆式压缩机的容积效率,在回归数据范围内,预测最大误差小于1%。 关键词:制冷,螺杆式压缩机,容积效率 A Model of V olumetric Efficiency Calculation for Screw Compressor Li Qinggang Wang Fazhong Liu Jinghui Zhou Lei (Dunham-Bush Yantai Co.,LTD ,Y antai 264003,China ) Abstract: A model of volumetric efficiency calculation for screw compressor was developed. The model can predict the volumetric efficiency in a wide running scope with a satisfactory precision. Compared with tested data, the maximal error is less than 1%. Keywords : Refrigeration, Screw compressor, V olumetric efficiency 1. 引言 在进行压缩机性能计算及制冷系统仿真中,压缩机容积效率是个必须用到的参数。文献[1]中对影响活塞式压缩机容积效率的因素进行分析,总结出影响压缩机容积效率的因素总体包括4个:压缩机的余隙容积、进出口的节流损失、吸气被加热引起的吸气量减小、压缩过程的泄漏。并给出如下形式的活塞式压缩机容积效率 v v p T l ηλλλλ= 活塞式压缩机由于其自身的结构特点,效率和性能较低,且体积较大,市场的使用量在逐年减少。螺杆式压缩机由于结构紧凑,能适用于大压比工况,对湿行程不敏感,有良好的输气量调节特性以及维护方便等特点,在制冷装置中应用越来越广泛,已占据了大容量活塞式压缩机的使用范围,并向中大容量范围迅速延伸。因此有关螺杆式压缩机及其系统的仿真的研究越来越多,而螺杆式压缩机的容积效率的研究是这些研究工作的基础。关于螺杆式压缩机容积效率的研究通常采用两种方法,一种是用于系统仿真的纯经验方程形式,如文献[3],这种形式虽然简单,但其准确性和对变工况的适用性受到很大限制。另一种是基于半理论半经验的形式,通常具有较高的精度,并较能准确的反映容积效率随工况变化的趋势,如文献[2]给出的基于半理论半经验的公式。本文是在文献[2]给出的公式形式的基础上,对其进行了进一步推导,给出了另一种形式的半理论半经验容积效率计算公式。 2.螺杆式压缩机容积效率模型 螺杆式压缩机属于回转式压缩机,由于没有余隙容积和吸排气阀,余隙系数和节流系 编号:2011-3139 收稿日期:2011-07-05 修回日期:2011-7-12

压缩机的热力性能和计算

§2.2.1压缩机的热力性能和计算 一、排气压力和进、排气系统 (1)排气压力 ①压缩机的排气压力可变,压缩机铭牌上的排气压力是指额定值,压缩机可以在额定排气压力以内的任意压力下工作,如果条件允许,也可超过额定排气压力工作。 ②压缩机的排气压力是由排气系统的压力(也称背压)所决定,而排气系统的压力又取决于进入排气系统的压力与系统输走的压力是否平衡,如图2-20所示。 ③多级压缩机级间压力变化也服从上述规律。首先是第一级开始建立背压,然后是其后的各级依次建立背压。 (2)进、排气系统 如图所示。

①图a的进气系统有气体连续、稳定产生,进气压力近似恒定;排气压力也近似恒定,运行参数基本恒定。 ②图b的进气系统有气体连续、稳定产生,进气压力近似恒定;排气系统为有限容积,排气压力由低到高逐渐增加,一旦达到额定值,压缩机停止工作。 ③图c的进气系统为有限容积,进气压力逐渐降低;排气系统压力恒定,一旦低于某一值,压缩机停止工作。

④图d的进、排气系统均为有限容积,压缩机工作后,进气压力逐渐降低;排气系统压力不断升高,当进气系统低于某一值或排气系统高于某一值,压缩机停止工作。

二、排气温度和压缩终了温度 (1)定义和计算 压缩机级的排气温度是在该级工作腔排气法兰接管处测得的温度,计算公式如下: 压缩终了温度是工作腔内气体完成压缩机过程,开始排气时的温度,计算公式如下: 排气温度要比压缩终了温度稍低一些。 (2)关于排气温度的限制 ①汽缸用润滑油时,排气温度过高会使润滑油黏度降低及润滑性能恶化;另外,空气压缩机中如果排气温度过高,会导致气体中含油增加,形成积炭现象,因此,一般空气压缩机的排气温度限制在160°C以内,移动式空气压缩机限制在180°C以内。

压缩机过热故障分析

压缩机过热故障分析 育龙网 WWW.CHINA-B.C0M 2009年06月15日来源:互联网 育龙网核心提示: 1.引言压缩机正常运转时的发热量不应该引起过热。正常的电机发热、压缩热以及摩擦热在设计压缩机时均做过认真的考虑,并有相应的冷 1.引言 压缩机正常运转时的发热量不应该引起过热。正常的电机发热、压缩热以及摩擦热在设计压缩机时均做过认真的考虑,并有相应的冷却措施。然而在实际使用中,由于超范围使用、电源不正常、电机过载、制冷剂泄漏、冷凝压力太高等问题引起的电机高温、排气温度过高、润滑油焦糊等过热现象比较常见,并已成为压缩机常见故障之一。 气缸排气温度是判断压缩机是否过热的重要指标之一。由于测量上的困难,实际应用中是通过测量排气管表面的温度(即排气管温度)来判断是否过热。由于润滑油到150°C 时会变得很稀薄,在175°C左右将开始分解变质,因此气缸排气温度应该控制在150°C 以内,而排气管温度通常比排气温度低10~40°C。因此,如果排气管温度超过135°C,一般认为压缩机已经处于严重过热状态;而如果排气温度低于120°C,压缩机温度正常。空调压缩机和冰箱压缩机的排气温度通常还要低一些。 2.危害 高温对压缩机电机和润滑油具有很大的危害。长时间过热,不仅会降低电机绝缘性能和可靠性,缩短电机寿命,而且还会降低润滑油的润滑能力,甚至引起润滑油碳化和酸解。 润滑油碳化后润滑能力大大降低,将引起曲轴、连杆、活塞、活塞环等严重磨损,甚至会出现抱轴、卡缸等堵转现象以及由堵转而引起的连杆折断事故。碳化油还会在阀片和阀板上结碳,引起阀片泄漏和阀片断裂。润滑油中的酸性物质会腐蚀绕组漆包线、降低绕组的绝缘性能。酸化润滑油还会引起镀铜现象。 实际中,润滑油碳化总是伴随着酸解,因而磨损和腐蚀总是行影相随。磨损产生的细小金属屑夹杂于润滑油中,一方面削弱了润滑油的润滑作用;另一方面,细小的金属屑由于磁性而聚集于电机绕组中,构成导电回路。漆包线绝缘层被腐蚀后就可能出现一些微小的裸露点,很容易引起局部放电。如果金属粒形成导电回路,立即会短路或击穿,烧毁电机。

离心式空压机排气温度高原因分析及解决方法

离心式空压机排气温度高原因分析及解决方法 摘要:介绍离心式空压机及冷芯的结构特点,离心机各级排气温度对生产的影响,分析造成离心机排气温度高的原因并提出解决方法。 关键词:离心式空压机;中间冷却器;排气温度 1.前言 某企业空压站现有四台离心式空压机(下简称离心机),一台英格索兰机和三台JOY机。离心机排气温度的高低直接影响着离心机的效率及安全生产,针对不同情况,采取不同方式进行处理。 2.离心机常用中间冷却器特点 离心机实现等温压缩,效率优化,保证出口压力和温度指标,各段间要配置中间冷却器。由于空压机对各段间允许的压力损失和进口温度的严格要求,决定了中间冷却器设计选型的特殊性,同时也是应对多种机型、大跨度工况范围的必然选择。 中间冷却器冷却效果和可靠性直接影响空压机的气动性能和整机效率。随着为离心空压机配套的中间冷却器的增多,一个适应各种工况和不同机型的冷却器系列也自然形成,在此作一简单概述。 为了更深入地理解中间冷却器的多样性和复杂性,了解其适用范围、特征和重要参数的取值依据是非常必要的。表一[1]是据此归纳的特性。 从表一中看出,温度范围、允许压力损失2 项指标数值变化较小,而空气的流量范围、压力范围、相对湿度3 项指标变化范围较大。热负荷(换热量)的大小是决定换热器面积的主要因素,而上述3 项指标的大范围工况跨度决定了热负荷(换热量)的差异很大。 中间冷却器的核心元件是换热管,换热管有两种型式:光管、翅片管。下面叙述以换热管组成的中间冷却器。 2.1 光管- 中间冷却器 光管制成的中间冷却器主要有固定管板式、浮头式、U 型管式、填料函式。换热管规格:Φ25,Φ20,Φ19,Φ16。材质为20 钢、不锈钢、铜及铜合金。当流量小于30000Nm3/h,进气压力小于1.6MPa,机组为双层布置时,压力损失要求不严格,机组作为动力站使用的场合,可采用。 2.2 翅片管式中间冷却器 在进气压力小于7MPa,对压力损失控制严格,要求中间冷却器体积小,结构紧凑,换热效率高,冷却水耗量小的场合,采用翅片管式中间冷却器。翅片管分为板翅、绕翅、复合翅片管及内翅片管等几种型式。中间冷却器通常由壳体、管束、前后水盖、内置式分离器组成。管材规格:Φ19、Φ18、Φ16、Φ12。材料为20钢、不锈钢、铜及铜合金。翅片厚度为0.15~0.4mm。上述中间冷却器的出口侧,都加装分离器,分离冷凝水,汇集到设备底部由输水器排出。翅片管式中间冷却器在离心空压机中大量应用,它的结构紧凑,低耗高效是其被选中的主要原因,但它翅片间的间距小,流道窄,易残留结垢,对气流的纯净度应予限定。 3.装置离心机及中间冷却器的结构特点 3.1 英格索兰机及冷芯的结构特点 英格索兰机的冷芯与涡壳连在一起,而且各级之间连接紧密,整台机的结构

压缩机制冷量、容积效率、能效比.

容积效率 容积效率(volumetric efficiency)指的是在进气行程时气缸真实吸入的混和气体积除以汽缸容积。这代表了引擎的吸气能力。容积效率对于扭力有决定性的影响,容积效率越大,引擎扭力越佳。影响容积效率的变因有很多,如引擎转速,汽缸头进气道的流量,气门截面积的大小,凸轮轴的设计,进气岐管的长度,燃料雾化的程度等等等。 现今采用喷射供油的四行程引擎,其容积效率皆已达到90%。若进气岐管的长度经过校调,便可以在特定的转速域达到超过100%的容积效率。在进气口处加装涡轮增压器(tu rbocharger),也可以增加容积效率。 某些汽车杂志常把容积效率定义为每升的排气量可以产生多少匹马力,这是错误的。真正的容积效率单位如同其他的效率单位,是百分比,而非hp/L。 容积效率表示液压泵或液压马达抵抗泄露的能力,等于泵(马达)的实际流量与泵(马达)的理论流量之比。它与工作压力、液压泵或马达腔中的摩擦副间隙大小、工作液体的粘度以及转速有关。 因液体的泄露、压缩等损失的能量称为容积损失。 活塞式压缩机的输气系数在一定意义上可以理解为容积效率。压缩机输气系数是这样定义的:压缩机实际容积流量与理论容积流量之比。 输气系数(λ)可以用下式表示: λ=λVλpλtλl 其中,λV——容积系数,与余隙容积有关; λp——压力系数,与吸气过程的压力损失有关; λt——温度系数,与压缩机气缸内温度有关; λl——气密系数,与压缩机的密封程度有关。 输气系数在一定意义上可以理解为容积效率。 能效比 能效比是在额定工况和规定条件下,空调进行制冷运行时实际制冷量与实际输入功率之比。这是一个综合性指标,反映了单位输入功率在空调运行过程中转换成的制冷量。空调能效比越大,在制冷量相等时节省的电能就越多。 1基本定义 1.1能效比数值定义 在制冷和降噪之外,在日益追求环保和节能的今天,用电量的多少也是大家所关注的。对于消费者来说,选择节能空调可将日后使用过程中的电费一点一滴的节省下来,无疑是精明的选择。在这方面涉及两个技术关键词:能效比和变频。能效比是指空调器在制冷运行时,

选择压缩机应注意问题

工作行为规范系列 选择压缩机应注意问题(标准、完整、实用、可修改)

编号:FS-QG-38090选择压缩机应注意问题 Pay attention to the problems when choosing a compressor 说明:为规范化、制度化和统一化作业行为,使人员管理工作有章可循,提高工作效率和责任感、归属感,特此编写。 选择空压机的基本准则是经济性、可靠性与安全性。 一是应考虑排气压力的高低和排气量大小。一般用途空气动力用压缩机排气压力为0.7MPa,老标准为0.8MPa。目前社会上有一种排气压力为0.5MPa的空压机,从使用角度看是不合理的,因为对风动工具而言其压力余量太小,输气距离稍远一些就不能使用。另外,从设计角度看,这种压缩机设计为一级压缩,压比太大,易引起排气温度过高,造成气缸积炭,导致事故发生。如果用户所用的压缩机大于0.8MPa,一般要特别制造,不能采取强行增压的办法,以免造成事故。 排气量是空压机的主要参数之一,选择空压机的气量要和所需的排气量相匹配,并留有10%的余量。如果用气量大而空压机排气量小,风动工具一开动,会造成空压机排气压力的大大降低,而不能驱动风动工具。当然盲目追求大排气

量也是错误的,因为排气量越大压缩机配的电机越大,不但价格高,而且浪费购置资金,使用时也会浪费电力能源。 另外,在选排气量时还要考虑高峰用量和通常用量及低谷用量。如果低谷用量较大,而通常用量和高峰用量都不大,国外通常的办法是以较小排气量的空压机并联取得较大的排气量,随着用气量增大而逐一开机,这样不但对电网有好处,而且能节约能源。 二是要考虑用气场合和条件。如用气场地狭小(船用、车用),应选立式;如用气场合有长距离的变化(超过500米),则应考虑移动式;如果使用场合不能供电,则应选择柴油机驱动式;如果使用场合没有自来水,就必须选择风冷式。 在风冷、水冷两种冷却方式上,用户常有错误的认识,认为水冷好,其实不然。国内外小型压缩机中风冷式大约占到90%以上,这是因为在设计上风冷简便,使用时无需水源。 而水冷式压缩机的致命缺点有四:必须有完备的上下水系统,投资大;水冷式冷却器寿命短;在北方冬季还容易冻坏气缸;在正常的运转中会浪费大量的水。 三是要考虑压缩空气质量。一般空压机产生的压缩空气

排气温度过高原因

排气温度过高原因

回气温度越高,气缸吸气温度和排气温度就越高。 经验数据:回气温度每升高1°C,排气温度将升高1~1.3°C。,所以吸气过热度大,必然会导致吸气温度高,进而导致排气温度急剧升高。 3压缩比过高 排气温度受压缩比影响很大,压缩比越大,排气温度就越高。 降低压缩比可以明显降低排气温度,具体方法包括提高吸气压力和降低排气压力。 这里我们详细看看吸气压力: 吸气压力由蒸发压力和吸气管路阻力决定。提高蒸发温度,可以有效提高吸气压力,迅速降低压缩比,从而降低排气温度。 一些用户偏面地认为,蒸发温度越低冷度速度越快,这种想法其实有很多问题。降低蒸发温度虽然可以增加冷冻温差,但压缩机的制冷量却减小了,因此冷冻速度不一定快。何况蒸发温度越低,制冷系数就越低,而负荷却有增加,运转时间延长,耗电量会增大。 降低回气管路阻力也可以提高回气压力,具体方法包括及时更换脏堵的回气过滤器、尽可能缩小蒸发管和回气管路的长度等。 此外,制冷剂不足也是吸气压力低的一个因素。制冷剂漏失后要及时补充。实践表明,通过提高吸气压力来降低排气温度,比其他方法更简单有效。 4电机加热 对于回气冷却型压缩机,制冷剂蒸气在流经电机腔时被电机加热,气缸吸气温度再一次被提高。 电机发热量受功率和效率影响,而消耗功率与排量、容积效率、工况、摩擦阻力等密切相关。 回气冷却型半封压缩机,制冷剂在电机腔的温升范围大致在15~45°C之间。空气冷却(风冷)型压缩机中制冷制不经过绕组,因而不存在电机加热问题。 我们也要考虑另外一个问题,就是制冷循环中是有冷冻油的,这个冷冻油会随着制冷剂吸气进入压缩机,起到冷却电机的作用;

制冷压缩机的基本性能参数计算

制冷压缩机的基本性能参数计算 一、实际输气量(简称输气量) 在一定工况下, 单位时间内由吸气端输送到排气端的气体质量称为在该工矿下的压缩机质量输气量 ,单位为。若按吸气状态的容积计算,则其 容积输气量为,单位为。于是 二、容积效率? 压缩机的容积效率是实际输气量与理论输气量之比值 (4-2) 它是用以衡量容积型压缩机的气缸工作容积的有效利用程度。 三、制冷量 制冷压缩机是作为制冷机中一重要组成部分而与系统中其它部件,如热交换器,节流装置等配合工作而获得制冷的效果。因此,它的工作能力有必要直观地 用单位时间内所产生的冷量——制冷量来表示,单位为,它是制冷压缩机 的重要性能指标之一。 (4-3) 式中 -制冷剂在给定制冷工况下的单位质量制冷量,单位为; -制冷剂在给定制冷工况下的单位容积制冷量,单位为。 为了便于比较和选用,有必要根据其不用的使用条件规定统一的工况来表示压缩机的制冷量,表4-1列出了我国有关国家标准所规定的不同形式的单级小型往复式制冷压缩机的名义工况及其工作温度。根据标准规定,吸气工质过热所吸收的热量也应包括在压缩机的制冷量内。 表4-1 小型往复式制冷压缩机的名义工况

四、排热量 排热量是压缩机的制冷量和部分压缩机输入功率的当量热量之和,它是通过系统中的冷凝器排出的。这个参数对于热泵系统中的压缩机来讲是一个十分重要的性能指标;在设计制冷系统的冷凝器时也是必须知道的。 图4-1 实际制冷循环 从图4-1a所示的实际制冷循环或热泵循环图可见,压缩机在一定工况下的 排热量为: 从图4-1b的压缩机的能量平衡关系图上不难发现 上两式中 -压缩机进口处的工质比焓; -压缩机出口处的工质比焓; -压缩机的输入功率; -压缩机向环境的散热量。 表2-2列举了美国制冷协会ARI520-85标准所规定的用于热泵中的压缩机的名义工况。 表2-2 热泵用压缩机的名义工况(美国制冷协会ARI520-85标准)环境温度35度 五、指示功率和指示效率

压缩机主要工作原理

主要工作原理 螺杆压缩机是利用一对相互啮合的阴阳转子来实现空气的持续吸气、压缩、排气等过程,主动转子为5纹螺旋,从动转子为6条齿槽,采用独特齿形,可产生高压缩效率。 1.空气从进气口吸入,充满封闭的齿轮间。 2.转子通过旋转的啮合使封闭的齿形的容积缩小,从而使空气得到压缩。 3.空气从敞开的齿间排出 以上过程随着转子不停的旋转啮合,不断产生脉动空气。 压缩空气中的水份来自何处? 一般大气中的水份皆呈气态,不易察觉其存在,但若经空气压缩机压缩及管路冷却后,则会凝结成液态水滴。举例说明:在大气温度30°c,相对湿度75%状况下,一台空气压缩机,吐出量3nm3/min,工作压力为0.7Mpa,运转24小时压缩空气中约含100l的水份。 为何须要干燥的空气? 假如没有使用任何可以除去水气的方法,立即可见的影响是造成产品品质不良,设备发生故障,严重影响生产流程,增加生产成本等不良后果,损失甚巨。 什么是露点温度? 即是一种检测压缩空气系统干燥度的温度,换句话说,就是空气中水份凝结成水滴的温度。露点温度愈低,压缩空气中所含的水份就愈少。 冷冻式压缩空气干燥机根据空气冷冻干燥原理,利用制冷设备将压缩空气冷却到一定的露点温度后析出相应所含的水分,并通过分离器进行气液分离,再由自动排水器将水排出,从而使压缩空气获得干燥。 离心压缩机:指气体在压缩机中的运动是沿垂直于压缩机轴的径向进行的。离心压缩机排气均匀,气流无脉冲,无油,性能曲线平坦,操作范围较宽。 压缩和压缩比 1、压缩 绝热压缩是一种在压缩过程中气体热量不产生明显传入或传出的压缩过程。在一个完全隔热的气缸内上述过程可成为现实。等温压缩是一种在压缩过程中气体保持温度不变的压缩过程。 2、压缩比:(R)

螺杆压缩机排气温度高原因分析

螺杆压缩机排气温度高原 因分析 The Standardization Office was revised on the afternoon of December 13, 2020

仪表风螺杆压缩机排气温度高原因分析 杨青树 (大庆油田化工有限公司甲醇分公司动力车间 黑龙江省大庆市马鞍山163411) 摘要:通过对EP200型仪表分螺杆压缩机排气温度高的现象进行分析,讨论了仪表风螺杆压缩机排气温度高的原因及影响因素,提出了具体的解决方法。 关键词:温控阀温度传感器控制器温度开关压力开关 一、前言 甲醇分公司动力车间现有4台仪表风压缩机,其中EP200型2台,NV110型2台,担负着给全分公司供给仪表风的任务。2011年2月11日其中正在运行的1台EP200型螺杆压缩机排气温度高联锁跳车,经过认真分析,最终解决了排气温度超温的问题。为了以后能准确地判断出口温度超温的原因,及时解决超温问题,特对螺杆压缩机的排气温度高的原因、影响因素进行分析,并提出具体解决办法。 二、故障现象及危害 现象:机组排气温度高(超过100℃),现场有刺鼻的油烟味,同时机组运行耗油量增大,排出气体含油量增大。 危害:(1)、排气温度越高,为考虑膨胀而留的间隙越大,压缩机的效率降低,导致电能依旧消耗,产气量下降;(2)、降低润滑油的使用寿命;(3)、高排气温度会导致更多的润滑油处于气相,增加油、气分离的困难,从而导致更多的油进入供气管网,不仅油耗大量增加,同时使供气品质下降,可能影响用气设备质量;(4)、设备长期处于高排气温度状态下运行,会导致使用寿命减少;(5)、使环境温度升高,引起吸气温度升高,在消耗相同功耗的情况下,吸气温度每升高3℃,产气量降低1%。 三、原因分析 为了便于分析螺杆压缩机排气温度高的原因,特绘制螺杆压缩机的空气、润滑油系统图,见图一: 1-进气滤清器;2-进气控制蝶阀;3-轴承回油离温开关;4-止逆阀;5-止逆阀;6-冷启动温度开关;7-油气混合气;8-盛油区;9-排污阀;10-回油节流孔;11-滤网;12-加油口;13-油分离器;14-窥镜;15-油分离器芯子;16-至压缩机进口;17-卸载状态进气阀控制缸缩进;18-至压缩机进口;19-负载电磁阀;20-最小压力阀;21-压差开关报警指示灯;22-旁通油路;23-断油电磁阀;24-温控阀;25-油冷却器 (一)、实际排气温度并不过高 1、温度探头、温度变送器或显示面板故障温度计显示不准确。 (二)、实际排气温度过高 1、润滑油使用时间过长变质或润滑油油位太低; 2、油过滤器堵塞导致润滑油流通不畅,进入主机的油量减少; 3、油分离器滤芯堵塞导致机组内压过大或油分离器芯击穿失效; 4、温控阀失效导致进入主机油温过高;

压缩机设计计算

制冷剂的选择 本设计使用R134a作为冷媒,因为R134a对大气层的破坏相对较小、安全性好、无色、无味、不燃烧、不爆炸、基本无毒性、化学性质稳定,是一种理想的制冷剂,表1是R134a的一些基本性质。 ①压缩机初选: a. 首先求出理论冷媒循环量: Q = G th ?Δie th = Q /Δie Q:制冷量(kcal/h) G th :理论冷媒循环量(kg/h) Δie:蒸发器吸热量(kcal/kg)已经求得Q = 3444.2kcal/h,Δie = 29.6 kcal/kg,代入上式得: G th = 116.4kg/h) b. 然后求出理论的排量: G th = (Vs / V 1 )?(N c ? N v ? 60 ? 10-6) s = G th V 1 /(N c ? N v ? 60 ? 10-6) V s :压缩机容量(cm3/r) N c :压缩机转速(rpm) N v :压缩机容积效率 V 1 :压缩机入口气体比体积(m3/kg) 已知G th = 116.4 kg/h、V 1 = 0.062m3/kg、Nc =1800rpm、Nv取0.7. V s = 116.4? 0.062 /(1800 ? 0.7 ? 60 ? 10-6) = 95.5(cm3/r) c. 压缩机动力: Pw = G ?Δis/(860 ?η c ?η m ) Pw:实际消耗功率(Kw) η c :隔热效率 ηm:机械效率 ηc约等于0.7,ηm的范围为0.65~0.9,这里取0.8,代入上式得:Pw = 116.4 ? 10.1/(860 ? 0.7 ? 0.8) = 2.44(Kw) d. COP值的计算: COP = COP (th)?η c ?η m = (Δie / Δis) ?η c ?η m = (29.6/10.1) ?0.7?0.8

空气压缩机排气量小压力不足的原因

空气压缩机排气量小/压力不足的原因 空气压缩机因电机功率和主机轴的长短,排气量会有大小,下面就用户提出的空气压缩机排气量不足的现象做一些简单的分析。 选型过小 很多用户刚刚开始不知道自己生产的具体用气情况,就根据自己的预估去盲目选型,造成排气压力上不来,低于额定的排气压力,不能满足工厂的正常用气。 可以先检查管路是否有漏气点,关闭储气罐后面的阀门,如果机组能够很快的升上压力,打开阀门,压力很快下降,并最终在一个压力点上,这时就可以确认,空气压缩机机组选型过小,机组排气量小于生产的实际用气量。 解决办法是增加新的机组,使空气压缩机的排气量大于用气量10-20%最科学。 工作压力(排气压力)的选型: 当用户准备选购空气压缩机时,首先要确定用气端所需要的工作压力,加上1-2 bar的余量,再选择空气压缩机的压力(该余量是考虑从空气压缩机安装地点到实际用气端管路距离的压力损失,根据距离的长短在1-2 bar之间适当考虑压力余量)。当然,管路通径的大小和转弯点的多少也是影响压力损失的因素,管路通径越大且转弯点越少,则压力损失越小;反之,则压力损失就越大。 因此,当空气压缩机与各用气端管路之间距离太远时,应适当放大主管路的通径。如果环境条件符合空气压缩机的安装要求且工况允许的话,可在用气端就近安装。 容积流量的选型: ① 在选择空气压缩机容积流量时,应先了解所有的用气设备的容积流量,把流量的总数乘以1.2(即放大20%余量);② 新项目上马可根据设计院提供的流量值进行选型;③ 向用气设备供应商了解用气设备的容积流量参数进行选型;④ 空气压缩机站改造可参考原来参数值结合实际用气情况进行选型。 合适的选型,对用户本身和空气压缩机设备都有益处。选型过大浪费,选型过小可能造成空气压缩机长期处于加载状态或用气不够或压力打不上去等弊端。 功率与工作压力、容积流量三者之间的关系: 在功率不变的情况下,当转速发生变化时,容积流量和工作压力也相应发生变化。例如:一台22kW的空气压缩机,在制造时确定工作压力为7bar,根据压缩机主机技术曲线计算转速,排气量为3.8m3/min;当确定工作压力为8bar时,转速必须降低(否则驱动电机会超负荷),这时,排气量为3.6m3/min。因为,转速降低了,排气也相应减少了,依此类推。 功率的选型是在满足工作压力和容积流量的条件下,供电容量能满足所匹配驱动电机的使用功率即可。 因此,选配空气压缩机的步骤是:先确定工作压力,再定相应容积流量,最后是供电容量。

降低压缩机排气温度的方法

仅供参考[整理] 安全管理文书 降低压缩机排气温度的方法 日期:__________________ 单位:__________________ 第1 页共4 页

降低压缩机排气温度的方法 压缩机排气温度已在设计时予以充分考虑,如果在实际运行中出现排气温度偏高,应该首先分析原因并采取相应措施。以下几项措施可供参考: 1、降低进气温度无疑可有效地降低排气温度。 而各级进气温度与中间冷却器的冷却不完善度有关,因此应尽力保证中间冷却器的冷却效果,或因地制宜采用一些特殊冷却措施以降低进气温度,力求降低排气温度。 2、气缸内的进气终了温度也是影响排气温度的因素之一。 压缩机的进气终了温度与进、排气压力损失有关,因此在压缩机维修中,应注意阀门的安装和弹簧的选择,在保障阀门正常运行的前提下,尽量减小进、排气压力损失,以达到降低排气温度的目的。 3、压缩过程指数也会影响排气温度。 在实际运行中,压缩过程指数主要与气缸冷却状况有关。冷却效果越好,指数越小,排气温度越低。因此,可通过强化气缸的冷却以降低排气温度。 4、实践表明,内泄漏是造成排气温度偏高、甚至过高的最重要原因之一。 特别是在压缩机某级膨胀及吸气过程中,如果该级排气阀门关闭不严,造成排气管内未来得及冷却的高温高压气体又回流(内泄漏)到气缸,将使该级排气温度急剧升高。为此,应特别注意防止此类情况的发生。 5、对于多级压缩机,要调整或降低某级排气温度,情况往往不是单一的。 第 2 页共 4 页

例如,若发现某级排气温度较高,如果用调整(加大)余隙容积的办法,适当降低该级的压力比,这样虽然可使该级排气温度下降,但将会使其前一级的压力比增加,排气温度上升;若企图用加强该级气缸冷却,降低压缩过程指数的办法来降低其排气温度,则同时会使该级压力比下降、后一级压力比上升和后一级排气温度增加;当采用加强该级级前的中间冷却器冷却效果时,虽然能通过降低进气温度以求降低排气温度,但该级的进气压力也相应降低,从而使该级压力比上升,因此降低排气温度的作用并不明显。所以需采取综合方法,例如在加强级前冷却的同时,又适当增加该级余隙容积,使该级压力比维持不变,则不仅可以有效地降低该级排气温度,而且也不影响其前、后级的排气温度。 第 3 页共 4 页

螺杆压缩机排气温度高原因分析

仪表风螺杆压缩机排气温度高原因分析 杨青树 (大庆油田化工有限公司甲醇分公司动力车间 黑龙江省大庆市马鞍山163411) 摘要:通过对EP200型仪表分螺杆压缩机排气温度高的现象进行分析,讨论了仪表风螺杆压缩机排气温度高的原因及影响因素,提出了具体的解决方法。 关键词:温控阀温度传感器控制器温度开关压力开关 一、前言 甲醇分公司动力车间现有4台仪表风压缩机,其中EP200型2台,NV110型2台,担负着给全分公司供给仪表风的任务。2011年2月11日其中正在运行的1台EP200型螺杆压缩机排气温度高联锁跳车,经过认真分析,最终解决了排气温度超温的问题。为了以后能准确地判断出口温度超温的原因,及时解决超温问题,特对螺杆压缩机的排气温度高的原因、影响因素进行分析,并提出具体解决办法。 二、故障现象及危害 现象:机组排气温度高(超过100℃),现场有刺鼻的油烟味,同时机组运行耗油量增大,排出气体含油量增大。 危害:(1)、排气温度越高,压缩机为考虑膨胀而留的间隙越大,压缩机的效率降低,导致电能依旧消耗,产气量下降;(2)、降低润滑油的使用寿命;(3)、高排气温度会导致更多的润滑油处于气相,增加油、气分离的困难,从而导致更多的油进入供气管网,不仅油耗大量增加,同时使供气品质下降,可能影响用气设备质量;(4)、设备长期处于高排气温度状态下运行,会导致使用寿命减少;(5)、使环境温度升高,引起吸气温度升高,在消耗相同功耗的情况下,吸气温度每升高3℃,产气量降低1%。 三、原因分析 为了便于分析螺杆压缩机排气温度高的原因,特绘制螺杆压缩机的空气、润滑油系统图,见图一:

1-进气滤清器;2-进气控制蝶阀;3- 轴承回油离温开关;4-止逆阀;5-止 逆阀;6-冷启动温度开关;7-油气混 合气;8-盛油区;9-排污阀;10-回 油节流孔;11-滤网;12-加油口;13- 油分离器;14-窥镜;15-油分离器芯 子;16-至压缩机进口;17-卸载状态 进气阀控制缸缩进;18-至压缩机进口;19-负载电磁阀;20-最小压力阀;21-压差开关报警指示灯;22-旁通油路;23-断油电磁阀;24-温控阀;25-油冷却器 (一)、实际排气温度并不过高 1、温度探头、温度变送器或显示面板故障温度计显示不准确。 (二)、实际排气温度过高 1、润滑油使用时间过长变质或润滑油油位太低; 2、油过滤器堵塞导致润滑油流通不畅,进入主机的油量减少; 3、油分离器滤芯堵塞导致机组内压过大或油分离器芯击穿失效; 4、温控阀失效导致进入主机油温过高; 5、环境温度过高; 6、风扇故障; 7、油冷却器换热效果不好导致进入主机油温过高; 8、最小压力阀故障导致油分离器内压升高; 9、止逆阀卡住; 10、断油电磁阀故障导致润滑油不能进入机头; 11、阴阳转子间隙过大造成出现内循环。 四、采取措施

制冷压缩机排气温度过热主要原因

制冷压缩机排气温度过热主要原因 制冷压缩机在使用范围内正常运转不应该有电机高温和排汽温度过高等过热现象。压缩机过热是一个重要的故障信号,表明制冷系统存在较严重的问题,或者压缩机的使用和维护不当。 压缩机过热的根源在于制冷系统,只能从改进制冷系统设计和维护方面着手解决问题。换一台新压缩机上去不能从根本上消除过热问题。 压缩机排气温度过热的原因主要有以下几种:回气温度高、电机加热量大、压缩比高、冷凝压力高、制冷剂选择不当。 (1)压缩机回气温度高 回气温度高低是相对于蒸发温度为而言的。为了防止回液,一般回气管路都要求20°C的回气过热度。如果回气管路保温不好,过热度就远远超过20°C。 回气温度越高,气缸吸气温度和排气温度就越高。回气温度每升高1°C,排气温度将升高1~1.3°C。 型半封压缩机,制冷剂在电机腔的温升范围大致在15~45°C之间。空气冷却(风冷)型压缩机中制冷制不经过绕组,因而不存在电机加热问题。 (2)电机加热 对于回气冷却型压缩机,制冷剂蒸气在流经电机腔时被电机加热,气缸吸气温度再一次被提高。电机发热量受功率和效率影响,而消耗功率与排量、容积效率、工况、摩擦阻力等密切相关。

回气冷却型半封压缩机,制冷剂在电机腔的温升范围大致在15~45°C之间。空气冷却(风冷)型压缩机中制冷制不经过绕组,因而不存在电机加热问题。 (3)压缩比过高 排气温度受压缩比影响很大,压缩比越大,排气温度就越高。降低压缩比可以明显降低排气温度,具体方法包括提高吸气压力和降低排气压力。 吸气压力由蒸发压力和吸气管路阻力决定。提高蒸发温度,可以有效提高吸气压力,迅速降低压缩比,从而降低排气温度。一些用户偏面地认为,蒸发温度越低冷度速度越快,这种想法其实有很多问题。降低蒸发温度虽然可以增加冷冻温差,但压缩机的制冷量却减小了,因此冷冻速度不一定快。何况蒸发温度越低,制冷系数就越低,而负荷却有增加,运转时间延长,耗电量会增大降低回气管路阻力也可以提高回气压力,具体方法包括及时更换脏堵的回气过滤器、尽可能缩小蒸发管和回气管路的长度等。 此外,制冷剂不足也是吸气压力低的一个因素。制冷剂漏失后要及时补充。实践表明,通过提高吸气压力来降低排气温度,比其他方法更简单有效。 排气压力过高的主要原因是冷凝压力太高。冷凝器散热面积不足、积垢、冷却风量或水量不足、冷却水或空气温度太高等均可导致冷凝压力过高。选择合适的冷凝面积、维持充足的冷却介质流量是非常重要的。高温和空调压缩机设计的运转压缩比较低,用于冷冻后压缩比成倍提高,排气温度很高,而冷却跟不上,造成过热。因该避免超范围使用压缩机,并使压缩机工作在可能的最小压比下。在一些低温系统中,过热是压缩机故障的首要原因。 (4)反膨胀与气体混合

涡旋压缩机设计说明书

毕业设计(论文) 题目空调用涡旋式压缩机结构设计 学院机电与汽车工程学院 专业机械设计制造及其自动化(机械设计制造)学生向涛 学号 指导教师孙鹏飞

摘要 本设计为空调用涡旋式压缩机结构设计,主要零部件包括动涡盘、静涡盘、支架体、偏心轴、防自传机构及平衡机构,动静涡旋盘应用圆的渐开线及其修正曲线的线型。 首先,确定了涡旋压缩机的重要结构参数,其次确定了涡旋压缩机的各个重要零件的结构尺寸,然后确定了涡旋线圆的渐开线线型并且对涡旋线进行修正,而后选择涡旋压缩机的各种附件,最后利用对涡旋压缩机的主轴进行有限元分析,最终说明了涡旋压缩机结构设计中的有关问题。在涡旋齿线型的设计中,不仅说明了渐开线的特征和涡旋线的成形过程,而且还对涡旋线线型进行了修正。 通过以上设计的设计过程,最终得到了涡旋压缩机。 关键词:涡旋压缩机,动涡盘,静涡盘,偏心轴

ABSTRACT The design is designing the structure of air conditioning scroll compressor , the main parts including moving vortex disc, static vortex disc, bracket dody, eccentric shaft ,anti rotation mechanism and balance mechanism,the application of static and moving vortex disc involve circle and linear correction curve. First of all, the important structural parameters of scroll compressor is determined, then determined the structure size of each important part of scroll compressor, and then determine the involute type vortex line round and the vortex line is modified, and then choose a variety of accessories of the scroll compressor, the spindle of scroll compressor for finite element analysis, the final show the problem in the design of structure of scroll compressor. In the design of scroll profile, not only describes the forming process of involute characteristics and vortex lines, but also to carry on the revision to the vortex line. Through the above design, we finally got the scroll compressor. KEY WORDS: scroll compressor, moving vortex disc, static vortex disc, eccentric shaft

相关文档
最新文档