中北大学 高分子材料与工程 塑料填充改性综合实验

中北大学 高分子材料与工程 塑料填充改性综合实验
中北大学 高分子材料与工程 塑料填充改性综合实验

中北大学

高分子材料与工程专业实验

塑料填充改性综合实验

实验报告

班级: 09030342班

组别:第16组

塑料填充改性综合实验

一、实验目的

1、进一步了解塑料填充改性的方法,掌握基本配方的配制,加深对偶联剂的作用机理的理解;

2、掌握填充物的含量对复合材料力学性能的影响规律;

3、掌握数据处理和分析的方法。

二、实验原理

通过物理和机械的方法在高分子聚合物中加入无机或有机物质,或将不同类的高分子聚合物共混,或用化学方法实现高聚物的共聚、接枝、交联、或将上述方法连用、并用,已达到使材料的成本降低、成型加工性能或最终性能改善,或在磁、光、热、声、燃烧等方面被赋予独特功能等效果,称之为高聚物的改性。填充改性就是在塑料成型加工过程中加入无机填料或有机填料,使塑料制品的原料成本降低达到增量的目的,或使塑料制品的性能有明显的改善,即在牺牲某些性能的同时,使人们所希望的另一方面的性能得到明显提高或各种性能都得到提高。本实验将不同质量分数的表面处理的碳酸钙粒子填充到聚乙烯中,在双昂螺杆挤出机的压力和剪切力作用下混合均匀,经冷却、吹干、造粒得到填充改性的粒料。将经过干燥的粒料用注射机注射成测试样条,然后测试材料的缺口悬臂梁冲击强度、拉伸强度和断裂伸长率。找出填料含量对材料力学性能的额影响规律。

三、实验用原材料及仪器、设备

1、实验用原料及配方

表3.1实验用原料及配方

原料名称质量分数

高密度聚乙烯(5000s)100

碳酸钙10~40

钛酸酯偶联剂(NDZ-101)0.5%~ 3%(以填料含量记)

2、试验用仪器设备

(1)平行双螺杆混炼挤出机(SHJ-36型)螺杆直径36,螺杆长径比36:1;

(2)基础辅机包括冷却水槽、风干机、切粒机;

(3)高速混合机(GH-10)总容积10升,有效容积7升,主轴转速600~3000转/分;(4)悬臂梁冲击试验机(XJU-22J);

(5)万能拉伸测试仪;

(6)注射机(SZ-100/80);

(7)机械拉力机(LJ-10000);

四、试验配方、工艺条件的预定

1、材料配方的确定

本实验采用五个配方,其中第一组为空白对照组,五组配方如表4.1所示:

表4.1实验用配方(%)

HDPE(5000S)/g 碳酸钙酞酸酯偶联剂(NDZ-101) 组别

质量/g 质量分数质量/g 质量分数质量/g 质量分数第一组400 100% 0 0% 0 0% 第二组400 100% 40 10% 4 1% 第三组400 100% 80 20% 6 1.5% 第四组400 100% 120 30% 8 2% 第五组400 100% 160 40% 10 2.5% 2、混合工艺条件的确定

混合时间:10min;

混合式混合机转速:1500r/min。

3、挤出工艺条件的确定

表4.2料筒各段的温度及部分参数

第一段第二段第三段第四段第五段第六段第七段第八段181℃182℃187℃196℃201℃203℃198℃191℃

机头温度口模温度螺杆转速牵引速度喂料速度主机电流料压/MPa

181℃229℃7.05×

300r/min 4.4HZ 11.5A 0.78

12r/min

4、注射工艺条件的确定

表4.3 料筒温度及各部分参数

喷嘴温度熔体温度一段温度二段温度三度温度四段温度注射速度230°C 210°C 210°C 210°C 220°C 210°C 30 mm/s

注射时间注射压力保压压力保压时间冷却时间成型周期

4 s 50 MPa 50 MPa 1 s 30 s 60 s

五、实验内容及操作步骤

1、将物料混合,挤出造粒

(1)称量及混合

以400gHDPE为单位,按实验配方称取各组分的物料,将碳酸钙和钛酸酯加入高速混合机中。盖紧混合机的上盖以接通安全开关,转动定时器指针到拟定时间线,开动混合机以拟定的转速对物料进行混合搅拌,待时间自动报警器响后,停止搅拌,关闭电源开关,打开混合机上盖,拉开混合机下料口,将物料倒入搪瓷盘中,将HDPE加入搪瓷盘中混合均匀,备用。

(2)挤出造粒

①将总开关推上启动;

②将加热控制开关推上启动;

③将电磁阀开关推上启动;

④按预定温度调整各区段温控表加热温度,加热温度到达设定值后,持续温度20~30分钟再检查各区段温控表和各区段冷却管道电磁阀是否正常;

⑤启动润滑油泵开关,观察机尾部油压表,应在0.1~0.2Mpa(始终保持0.1~0.2Mpa 应立即停机检查油路、油泵、油泵电机和线路);

⑥打开润滑油冷却器冷却水开关;

⑦以上操作完毕,正确无误,方可进行主机操作;

⑧先用手盘转动主机与传动箱连轴器正常转动数圈启动主电机控制系统缓慢提高螺杆转速,先不加物料螺杆空转时不得高于30~40r/min,时间短于一分钟;

⑨主机转动若无异常,即可将混合好的物料加入,要以尽量低的转速开始喂料,待机头有物料排出后,开动风干机和切粒机,人工将挤出物牵引依次通过冷却水槽、风干机和切粒机,使生产过程实现连续;

⑩缓慢升高喂料螺杆转速和主螺杆转速至设定值,并相应提高牵引速度,对实验各工艺条件作出详细记录。

2、将上面造好粒注射成标准样条

1、开车前的准备

(1)加润滑油清洁注射机运动各部件的表面。

(2)通冷却水对液压工作油进行冷却。

(3)料筒预热在低于拟定的料筒温度10°C温度下预热料筒30分钟,如无异常即可将温度调到工艺要求的温度。

(4)检查设备各动作的可靠性

(5)模具安装和锁模力的调节

(6)顶出杆的位置调整

(7)螺杆式注射机的调距螺杆的转速和背压调节对于螺杆式注射机,预塑螺杆的转速一般控制在30~60转/分,背压控制在3~10kgf/cm2.

2、实验内容

(1)待实验准备工作完成后,首先检查料筒和喷嘴温度是否合适,具体方法食杂较低的注射压力和注射速度下自由对空注射,观察流料是否稳定,是否具有合适的粘度,表面是否光滑明亮,有无变色、银丝、气泡等。如温度不稳定,应作相应的调整。变动温度以5~10°C的范围变化为宜,每变动一次需恒温15分钟左右,温度调整合适后,激励各温度数据

(2)料温测定方法中温度计从喷嘴中插入熔体中,并均匀来回移动数次,待温度计读书稳定后在记录数据。

(3)注射速度是柱塞或螺杆在注射时移动速度,可通过秒表测定推料杆在标尺上移动一定距离所用时间计算而得。

(4)注射压力可通过注射压力调节阀调整,其大小应能使塑件外形完整,密度合适并不产生溢边为准,注射压力的数值可有压力表直接读出。

(5)成型试样要求外形完整、表面平整、无气泡、裂纹、分层、明显杂质和加工损伤等缺陷。制取试样时一定要在基本稳定的工艺条件下进行,至少舍去5模后在开始取样。

(6)成型周期是指从成型循环的某一特征点到下一循环该点再次出现时所需时间,即完成一个完整的成型循环过程所需的时间。用秒表测定数次求平均值。

(7)对各工艺条件作出详细记录,写出实验报告并讨论相关问题。

3、测试其悬臂梁缺口冲击实验,拉伸强度和断裂伸长率

1、冲击实验

(1)按标准要求制备冲击试样。本实验材料为HDPE ,宽度15mm,厚度10mm ,缺口深度5mm ;

(2)测量试样中部的宽度和厚度,缺口试样应测量缺口厚度和宽度,准确至0.05mm ; (3)根据试样的冲击韧性,选用适当能量的摆锤所选用的摆锤,应使试样断裂所消耗的能量在摆锤总储量的l0%一80%范围内;

(4)检查摆锤铅垂位置;检查被动指针与主动指针靠紧时,指针指示位置应与0°角度重合(目视);

(5)求空击能量损失值A0:将摆锤置于预仰角位置,释放摆锤后,由被动指针读出摆锤空击的能量损失值A0和相应的空击能量损失角βo ;

(6)夹持试样:松开旋转手轮,在右侧摆锤打击缺口的方向上用对中样板将试样对中并保证垂直,用适宜的力旋转手轮,使试样夹紧;

(7)冲击实验:将摆锤从预仰角位置释放,读出试样的冲击能量消耗指示值AK 和升角β,并根据β和空击实验所得A0和β0,根据公式求得冲击能量修正值Ax 。

冲击强度计算公式:

b

A A x

k -=

α

式中α为冲击强度,J/m 、Ax 为冲击损失值,J 、Ak 为刻度盘上读出的冲击消耗值,J 、b 为试样厚度,mm ;

能量损失修正值的计算公式:

0160160βββαβα++=++?

=A A A x

式中:

A ——空击能量损失值,J ;

0β——为空击能量损失角,°; β——冲断试样后的升角,°;

从刻度盘上读出的冲击消耗能A ,减去能量损失修正值Ax 就是真正的冲断试样所消耗的能量,简称冲断能,缺口处单位厚度的冲断能即为冲击强度。

拉伸强度和断裂伸长率

1、检查设备运转情况及速度转速是否正常;

2、根据材料的强度和试样的种类、大小,选择合适的砝码的数量;

3、开启记录仪,调好零点,用标准砝码校正力值读书;

4、测量试样中间平直部分的宽度和厚度,精确至0.01mm ,Ⅱ型试样中间平直部分的宽度精确至0.05mm ,每个试样测量三次取平均值;

5、测量伸长率时,应在试样平行部分做标线,此标线对测量结果应无影响;

6、调试实验机的速度为所需要的速度;

7、将试样夹持在实验机的夹具上,使试样纵轴与上下夹具的中心线相重合,且松紧要合适。

拉伸强度、拉伸屈服应力计算公式:

bd P t =

σ

式中 t σ——拉伸强度或拉伸屈服应力,MPa ; P ——最大负荷或屈服负荷,N ; b ——试样宽度,mm ; d ——试样厚度,mm 。

断裂伸长率公式: 0

L L L t -=

ε

式中, t ε——断裂伸长率,%;

L ——试样断裂时标线间距离,mm ; 0L ——试样原始标距,mm 。

六、实验数据的记录

1、悬臂梁缺口冲击强度的测试

空击的能量损失角β0= , 空击能量损失能A 0=

其中各数据是每个配方中五个样条的平均值,冲击强度由公式计算而得。 冲击强度计算公式:

b

x

k A A -=

α

式中α为冲击强度,J/m 、x A 为冲击损失值,J 、k A 为上读出的冲击消耗值,J 、b 为试样厚度,mm ;

能量损失修正值的计算式:

0160160βββαβα++=++?

=A A A x

式中:

A ——空击能量损失值,J ;

0β——为空击能量损失角,°;

β——冲断试样后的升角,°。

配方1: 试样

平均宽度/mm

缺口厚度/mm

缺口深度/mm

冲击后的升角β/°

冲击消耗值k A /J

能量损失修正x A /J

冲击强度a(J/m)

1

2 3 4 5

配方2: 试样

平均宽度/mm

缺口厚度/mm

缺口深度/mm

冲击后的升角β/°

冲击消耗值k A /J

能量损失修正x A /J

冲击强度a(J/m)

1

2 3 4 5

配方3: 试样

平均宽度/mm

缺口厚度/mm

缺口深度/mm

冲击后的升角β/°

冲击消耗值k A /J

能量损失修正x A /J

冲击强度a(J/m)

1

2 3 4 5

配方4: 试样

平均宽度/mm

缺口厚度/mm

缺口深度/mm

冲击后的升角β/°

冲击消耗值k A /J

能量损失修正x A /J

冲击强度a(J/m)

1

2 3 4 5

配方5: 试样

平均宽度/mm

缺口厚度/mm

缺口深度/mm

冲击后的升角β/°

冲击消耗值k A /J

能量损失修正x A /J

冲击强度a(J/m)

1

2 3 4 5

2、试样拉伸强度和断裂伸长率的测定

按GB/71040-92测定试样的拉伸强度、断裂伸长率。实验速度:50mm/min ,每个配方测量5个试样,实验结果以每个配方中试样测定的算术平均值表示。

拉伸强度、拉伸屈服应力计算公式:

bd P t =

σ

式中 t σ——拉伸强度或拉伸屈服应力,MPa ; P ——最大负荷或屈服负荷,N ; b ——试样宽度,mm ;

d ——试样厚度,mm 。

断裂伸长率计算公式:

L L L t -=

ε

式中, t ε——断裂伸长率,%;

L ——试样断裂时标线间距离,mm ; 0L ——试样原始标距,mm 。(取25mm)

配方1: 配方2: 配方3: 试样

平均宽度

/ mm

平均厚度/

mm

位移/mm

大变形/mm 峰值力/KN 拉伸强度

/MPa

断裂伸长率%

1

2 3 4 5

试样

平均宽度/ mm

平均厚度/

mm

位移/mm

大变形/mm 峰值力/KN 拉伸强度

/MPa

断裂伸长率%

1

2 3 4 5

试样

平均宽度/ mm

平均厚度/

mm

位移/mm

大变形/mm 峰值力/KN 拉伸强度

/MPa

断裂伸长率%

1

2 3 4 5

配方4: 配方5:

七、实验数据的处理

八、实验结果分析

九、实验结论

试样

平均宽度/ mm

平均厚度/

mm

位移/mm

大变形/mm 峰值力/KN 拉伸强度

/MPa

断裂伸长率%

1

2 3 4 5

试样

平均宽度

/ mm

平均厚度/

mm

位移/mm

大变形/mm 峰值力/KN 拉伸强度

/MPa

断裂伸长率%

1

2 3 4 5

高分子改性材料的应用

天 然 高 分 子 改 性 材 料 的 发 展 以 及 运 用 景 姓名:李毅 学号:5404310016 专业班级:工业工程101

天然高分子改性材料的发展以及运用 姓名:李毅学号:5404310016 班级:工业工程101 摘要:本文介绍了淀粉、木质素、甲壳素、壳聚糖及瓜尔胶等几种天然高分子材料的研究进展以及改性方法,同时通过几种不同的化学反应详细介绍了壳聚糖的应用,同时介绍了其他几种在当代生活不同领域的应用。 关键词:天然高分子,改性,羧甲基化反应,酯化反应,酰化反应,接枝反应,运用,阻燃和耐热。 正文部分: 1.引言 近年来基于石油产品的合成高聚物材料也已广泛应用于包装、日用品、医用、建材、宇航、工业和农业各个领域,。然而,基于石油资源的合成高分子材料大量使用不仅造成环境污染,而且以后将面临石油资源逐渐枯竭的威胁。而天然高分子来源于自然界中动物、植物和微生物,它们是取之不尽,用之不竭的可再生资源。所以在石油资源日益匮乏和价格持续高涨之际,天然高分子的研究和利用出现新的发展机遇。天然高分子中含量最丰富的资源包括纤维素、木质素、甲壳素、淀粉、各种动植物蛋白质以及多糖等,它们具有多种功能基团,可通过化学、物理方法改性成为新材料,也可通过化学、物理及生物技术降解成单体或低聚物用作能源以及化工原料。因此,近年在该领域的基础和应用研究的优秀成果以及日益增强的全球环境法则的压力共同作用下已孵化出这一新兴行业。 2.天然高分子材料的研究进展以及运用 2.1 淀粉 天然淀粉资源十分丰富,如土豆、玉米、木薯、菱角、小麦等均有高含量的淀粉,据统

计,自然界中含淀粉的天然碳水化合物年产量达5000亿t,是人类可以取用的最丰富的有机资源。淀粉及其衍生物是一种多功能的天然高分子化合物,具有无毒、可生活降解等优点。它是一种六元环状天然高分子,含有许多羟基,通过这些羟基的化学反应生产改性淀粉,另外,淀粉还能与乙烯类单体如丙烯腈、丙烯酸、丙烯酰胺等通过接枝共聚反应生成共聚物。这些共聚物可用作絮凝剂、增稠剂、黏合剂、造纸助留剂等。近年来淀粉的接枝共聚研制新型絮凝剂在国内也取得长足进展,有人用淀粉与二甲基二烯丙基氯化铵接枝共聚制得阳离子淀粉,实验对炼油废水、生活废水有较好的处理效果,COD去除率可达70%以上,色度残留率低于20%,是一种较好的絮凝剂。淀粉-聚丙烯酰胺接枝共聚物作为有机高分子絮凝剂的研究早巳受到人们的重视,并有不少成果问世。我国尹华等以淀粉为基本原料,加入丙烯酰胺、三乙胺、甲醛和适量的盐酸进行接枝共聚反应,合成出一种阳离子型高分子絮凝剂FNQE,该药剂具有独特的分子结构和较高的相对分子质量分布。FNQE对高岭土悬浊液有良好的絮凝除浊效果,对城市污水在投药量为10mg/L时即能达到理想的净化效果,浊度、色度的去除率均在90%以上。 2.2 ,木质素 木质素与纤维素、半纤维素粘结在一起形成植物的主要结构,是植物界中非常丰富的天然高分子。相对于其它天然高分子,木质素具有更为复杂的组成及多级结构,是最难认识和应用的天然高分子之一。但是,木质素分子具有众多不同种类的活性官能基,兼具可再生、可降解、无毒等优点,而且工业木质素来源于造纸黑液,成本低廉,因而被视为优良的绿色化工原料,其综合利用备受关注。在应用和研究较为活跃的木质素高分子材料领域,可通过化学反应和物理共混将木质素与酚醛树脂、聚氨酯、聚烯烃、橡胶、聚酯、聚醚、淀粉、大豆蛋白等复合,提高材料的性能并降低成本。木质素是一种与工程塑料极为相似的,具有高

各种聚合物改性剂介绍

我国从上世纪80 年代开始探索道路改性沥青。目前,所使用的改性沥青多为 聚合物改性沥青,改性剂主要有热塑性橡胶类苯乙烯丁二烯嵌段共聚物(SBS)、橡 胶类丁苯橡胶(SBR)、热塑性树脂类聚乙烯(PE)与乙烯-醋酸乙烯共聚物(EV A) 及 废旧橡胶粉等。 SBS 改性沥青以优良的高、低温性能和回弹性能,应用最为普遍,但改性成 本也较高,一般只应用于高等级公路建设,限制了其应用范围。同时,由于SBS 改性沥青是通过搅拌、剪切等物理方法将SBS 分散于沥青中,SBS 与沥青之间并未发生明显的化学反应,仅仅是物理意义上的混溶,而SBS 与沥青之间的密度、 极性、分子量以及溶解度等参数的性质的差异又较大,使得绝大部分SBS 与沥青 热力学不相容,高温储存容易分层变质。需要对其进一步改性以提高相容性和储 存稳定性,这无疑又增加了工艺的复杂性。 SBR 能够改善沥青的高、低温性能,并以其较为突出的低温延展性在寒区公 路应用最为广泛。而利用废旧橡胶粉改性沥青还可以减少固体废弃物的污染,有 利于环境保护和资源节约型社会的建设。 改性沥青用PE 一般是指低密度聚乙烯和线型低密度聚乙烯,其改性沥青具有良好的高温稳定性,而且价格低廉,尤其是利用回收废旧塑料(农用地膜、食品袋等) 改性沥青不仅利于环保,减少“白色污染”,而且具有良好的社会效益和经济 效益。但PE 改性沥青的储存稳定性差,需要现配现用,并需要使用昂贵的大型细化分散设备将其送至施工现场,这就造成使用不便并增加额外投入,影响到聚乙 烯改性沥青的推广应用。 EV A 和沥青的溶解度参数非常接近,与沥青具有良好的相容性,能有效地改 善沥青的高温性能,在改善沥青低温性能方面优于PE。 在聚合物改性沥青中,改性剂如热塑性橡胶类SBS、橡胶类SBR、热塑性树 脂类PE、EV A 等都是石油化工产品,随着石油资源的逐渐耗尽,油价不断上涨,势必使得聚合物改性沥青的价格不断上涨,路面造价不断提高。因此,为降低工 程造价,寻找价格相对较低、改性效果较好的新型改性剂成为目前改性沥青的重 要研究方向。 相对于成本较高、改性工艺较为复杂的聚合物改性沥青,酸改性沥青具有价 格低廉、加工简单、沥青性能改善明显等优点,有着良好的应用前景。 酸改性方法在美国路易斯安娜州已经用了20 年左右来生产AC-30 和AC-40 沥青。在1992-1993 年,酸改性和酸加聚合物改性沥青在整个美国开始使用。美 国AMAP 在2004-2005 曾对改性沥青做过一项调查,其调查选项是多选,调查 结果显示:SBS 改性的为67%,SB 改性的为48%,SBR 胶乳改性的为39%,其他聚合物改性的为3%,化学改性的(含酸改性)为12%,18%是其他改性。而 其在2005-2006 的调查结果为:SBS 改性的为80%,SB 改性的为45%,SBR 胶乳改性的为45%,其他聚合物(EV A 等)改性的为19%,化学改性的为12%,酸2我国从上世纪80 年代开始探索道路改性沥青。目前,所使用的改性沥青多为 聚合物改性沥青,改性剂主要有热塑性橡胶类苯乙烯丁二烯嵌段共聚物(SBS)、橡 1改性的为16%,16%是其他改性。 在2004-2005的调查中,化学改性与酸改性是放在一起统计的,而在2005-2006 的调查中,化学改性与酸改性被分开统计,酸改性的比例增加为16%。由此可见,酸改性在美国沥青改性中的使用比例在逐渐提高。

高分子聚合物改性概述

高分子聚合物改性概述 1概述 高分子聚合物作为20世纪发展起来的新材料,因其综合性能优越、成形工艺相对简便以及应用领域极其广泛,因而获得了较为快速的发展。 然而.高分子材料又有诸多需要克服的缺点。以塑料为例,有许多塑科品种性脆而不耐冲击,有些耐热性差而不能在高温下使用。还有一些新开发的耐高温聚合物又因为加工流动性差而难以成形。再以橡胶为例,提高强度、改善耐老化性能、改善耐油性等都是人们关注的问题,诸如此类的同题都要求对聚合物进行改性。用以强化或展现聚合物某些或某一特定性能为目标的工艺方法.通称为聚合物改性(poly-mermodification)。可以说,聚合物科学与工程这门学科就是在不断对聚合钧进行改性中发展起来的。聚合物改性使聚合物材料的性能大幅度提高,或者被赋予新的功能,进一步拓克了高分子聚合物的应用领域.大大提高了聚合物的工业应用价值。 聚合物的改性方法多种多样,总体上可划分为共混改性、填充改性及纤维增强复合改性、化学改性、表面改性及其他方法改性。 聚合物改性的目标如下。

1)功能性使某一聚合物具有特定的功能性,而成为功能高分子材料,如磁性高分子、导电高分子、含能高分子、医用高分子、高分子分离膜等。 2)高性能使聚合物的力学性能.如拉伸强度、弹性模量、抗蠕变、硬度和韧性等,获得全面或大部分提高。 3)耐久性使聚合物的某些性能,如耐热性、耐寒性、耐油性、耐药溶剂性、耐应力开裂性、耐气候性等,得到持久的提高或改善。而成为特种高分子材料。 4)加工性许多高性能聚合物,因其熔融温度高,熔体流动性差,难以成形加工,采用改性技术,可成功地解决这一难题。 5)经济性在不影响使用性能的前题下,采用较低廉的有机材料或无机材料,与聚合物共混或填充改性,可降低材料成本,增强产品竞争能力;另外采用共混或填充改性手段,还可提高某些一般聚合物的工程特性.如采用聚烯烃与PA、ABS、PC等共混,或玻璃纤维填充PA、PP、PC等就是典型的范例。 2共混改性 聚合物的共混改性的产生与发展,与冶金工业的发展颇有相似之处。尽管已经合成的裹台物达到了数千种之多,但能够有工业应用价值的只有几百种,而能够大规模工业生产的以及广泛应用的只有

高分子材料改性(郭静主编)课后习题标准答案剖析

第一章绪论 第二章高分子材料共混改性 1.什么是相容性,以什么作为判断依据? 是指共混无各组分彼此相互容纳,形成宏观均匀材料的能力,其一般以是否能够产生热力学相互溶解为判据。 2.反应性共混体系的概念以及反应机理是什么? 是指在不相容或相容性较差的共混体系中加入(或就地形成)反应性高分子材料,在混合过程中(例如挤出过程)与共混高分子材料的官能团之间在相界面上发生反应,使体系相容性得到改善,起到增容剂的作用。 3.高分子材料体系其相态行为有哪几种形式,各自有什么特点,并举例加以说明。 (1)具有上临界混溶温度UCST,超过此温度,体系完全相容,为热力学稳定的均相体系;低于此温度为部分相容,在一定的组成范围内产生相分离。如:天然橡胶-丁苯橡胶。 (2)具有下临界混溶温度LCST,低于此温度,体系完全相容,高于此温度为部分相容。如:聚苯乙烯-聚甲基乙烯基醚、聚己内酯-苯乙烯/丙烯腈共聚物。 (3)同时出现上临界混溶温度UCST和下临界混溶温度LCST,如苯乙烯/丙烯腈共聚物-丁腈橡胶等共混体系。 (4)UCST和LCST相互交叠,形成封闭的两相区 (5)多重UCST和LCST 4.什么是相逆转,它与旋节分离的区别表现在哪些方面? 相逆转(高分子材料A或高分子材料B从分散相到连续相的转变称为相逆转)也可产生两相并连续的形态结构。 (1)SD起始于均相的、混溶的体系,经过冷却而进入旋节区而产生相分离,相逆转主要是在不混溶共混物体系中形态结构的变化。 (2)SD可发生于任意浓度,而相逆转仅限于较高的浓度范围 (3)SD产生的相畴尺寸微细,而相逆转导致较粗大的相畴, 5.相容性的表征方法有哪些,试举例加以说明。 玻璃化转变法、红外光谱法、差热分析(DTA)、差示扫描量热法(DSC) 膨胀计法、介电松弛法、热重分析、热裂解气相色谱等。 玻璃化转变法:若两种高分子材料组分相容,共混物为均相体系就只有一个玻璃化温度,

高分子材料

高分子材料在生活中的重要性 1定义 高分子材料:以高分子化合物为基础的材料。高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,高分子是生命存在的形式。所有的生命体都可以看作是高分子的集合。 2来源 高分子材料按来源分为天然、半合成(改性天然高分子材料)和合成高分子材料。天然高分子是生命起源和进化的基础。人类社会一开始就利用天然高分子材料作为生活资料和生产资料,并掌握了其加工技术。如利用蚕丝、棉、毛织成织物,用木材、棉、麻造纸等。19世纪30年代末期,进入天然高分子化学改性阶段,出现半合成高分子材料。1907年出现合成高分子酚醛树脂,标志着人类应用合成高分子材料的开始。现代,高分子材料已与金属材料、无机非金属材料相同,成为科学技术、经济建设中的重要材料。 3高分子材料的现状 4分类 高分子材料按来源分为天然、半合成(改性天然高分子材料)和合成高分子材料。 天然高分子是生命起源和进化的基础。人类社会一开始就利用天然高分子材料作为生活资料和生产资料,并掌握了其加工技术。如利用蚕丝、棉、毛织成织物,用木材、棉、麻造纸等。19世纪30年代末期,进入天然高分子化学改性阶段,出现半合成高分子材料。1870年,美国人Hyatt用硝化纤维素和樟脑制得的赛璐珞塑料,是有划时代意义的一种人造高分子材料。1907年出现合成高分子酚醛树脂,真正标志着人类应用化学合成方法有目的的合成高分子材料的开始。1953年,德国科学家Zieglar和意大利科学家Natta,发明了配位聚合催化剂,大幅度地扩大了合成高分子材料的原料来源,得到了一大批新的合成高分子材料,使聚乙烯和聚丙烯这类通用合成高分子材料走人了千家万户,确立了合成高分子材料作为当代人类社会文明发展阶段的标志。 高分子材料按特性分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。 ①橡胶是一类线型柔性高分子聚合物。其分子链间次价力小,分子链柔性好,在外力作

高分子改性

二氧化硅粒子的表面化学改性—方法、原理 姓名:孙文建学号2012020472 一.引言: 二氧化硅( SiO2) 又称硅石,是一种常用的无机材料,属非金属氧化物,具有优良的化学稳定性和热稳定性。实验室中常以溶胶-凝胶( sol-gel) 法制备SiO2微球,也有报道用微乳液和聚苯乙烯( PS) 模板“一步法”制备中空的SiO2微球. 通过与有机基体的复合,SiO2可将自身的优异性能赋予复合材料。但由于其表面大量的羟基和不饱和键,使其表面能较高、易团聚,影响了在有机基体中分散的均匀性,致使复合材料内部产生缺陷。因此,SiO2与基体复合前,需要进行表面改性,以降低表面能、提高分散性; 同时,可通过表面接枝聚合物增加与基体的相容性,赋予复合材料优异的性能。 SiO2粒子的改性方法很多,按原理可分为表面物理修饰和化学修饰两大类。表面物理修饰主要是通过吸附、涂覆及包覆等物理作用对粒子表面进行改性,利用紫外线、等离子体等对粒子表面的改性也属于物理修饰。表面化学修饰即通过无机粒子表面和改性剂之间的化学反应,改变SiO2粒子的表面结构,达到表面改性的目的。表面化学修饰主要包括3 种方法: 偶联剂法、表面接枝法和一步法。 二.化学修饰方法及机理 2.1 偶联剂法 偶联剂法主要包括后嫁接法( post synthesis grafting

method ) 和共缩聚法( co-condensation method)。后嫁接法指先制备SiO2粒子,然后通过偶联剂与SiO2表面的羟基反应,在SiO2表面接上有机基团,得到有机功能化的SiO2。共缩聚法指在SiO2制备过程中,在模板剂作用下,将含有特定有机基团的偶联剂与正硅酸乙酯( TEOS) 同时加入体系中共缩聚,一步直接合成有机功能化的SiO2。 ,硅烷偶联剂通式可表示为:Y(CH2)nSiX3其中n = 0—3; X 代表不同的可水解基团,通常是氯基、烷氧基等,X 影响水解速率,对复合材料的性能影响不大; Y 代表不同的有机官能团,多指乙烯基、氨基等,Y 能与树脂反应形成“分子桥”,增强与有机基体之间的作用力,同时Y 可为SiO2的进一步修饰提供可反应基团。 根据反应条件,硅烷偶联剂对SiO2的修饰可分成有水反应和无 水反应,如图式1 所示。有水存在的条件下,硅烷偶联剂上的X 基团水解生成羟基,形成Si—OH,此Si—OH 再与SiO2表面的Si—OH发生 缩水反应生成Si—O—Si,同时硅烷偶联剂的分子间也发生脱水缩合 反应,形成不规则的多分子层;无水条件下,基团X直接与SiO2表面的Si—OH 发生缩醇反应生成Si—O—Si,形成较规则的单分子层。偶联剂法对SiO2的修饰一般选择在有水条件下进行。

高分子材料助剂

高分子材料助剂 高分子助剂是专用于高分子工业为使聚合物配料能顺利加工及获得所需应用性能而添加到高分子基材——树脂中的化学品。它与树脂、装备一起构成了高分子制品的三大要素。助剂的功能包括改善成型加工性能使材料顺利加工;提高产量;赋予制品特定功能;改善制品的应用性能如弥补通用树脂的性能缺陷或降低成本。其中高分子助剂在制品的成型加工中用量微不足道,但其对制品的加工和应用性能的改善和提高却举足轻重。可以认为,助剂的选择和应用时决定制品成败的关键。 高分子材料助剂可以分为工艺性助剂和功能性助剂。 1、工艺性助剂 工艺性助剂用于高分子的加工过程中,改善高分子的加工性能,使之能够顺利通过成型过程并起到降低能耗、缩短成型周期并提高产量和生产效率等作用,常常包括润滑剂、脱模剂、加工改性剂、分散剂等。 1.1 润滑剂与脱模剂润滑剂与脱模剂是配合在高分子树脂中,旨在降低树脂粒子、树脂熔体与加工设备之间以及树脂熔体内分子之间摩擦,改善其成型时流动性和脱模性的助剂,它又可以分为外润滑剂和内润滑剂。主要产品有烃类(石蜡、聚乙烯蜡)、脂肪酸酯类、脂肪酸皂类等。 1.2 加工改性剂主要用于在高分子制品加工过程中旨在改善塑化性能、提高树脂粘弹性和促进树脂熔融流动的助剂。例如丙烯酸酯共聚物和含氟聚合物加工助剂-PPA等 1.3 分散剂主要用于促进各类助剂在高分子树脂中均匀分散的助剂,多用于母料、着色制品和高填充制品。主要产品有烃类(石蜡、聚乙烯蜡)、脂肪酸酯类、脂肪酸皂类等 2. 功能性助剂 功能性助剂可以赋予材料特殊功能同时改善性能。 2.1 稳定化助剂 稳定化助剂能抑制或者延缓聚合物在贮存、运输、加工和应用中的老化降解,延长制品使用寿命的助剂,其中又包括抗氧剂、光稳定剂、热稳定剂和防酶剂等。抗氧剂用以抑制或者延缓聚合物树脂热氧化降解为主要功能的助剂,分为主抗氧剂、辅助抗氧剂、重金属离子钝化剂、碳自由基捕获剂;光稳定剂又称之为紫外线稳定剂,是用来抑制聚合物树脂的光氧降解,降低紫外线对高分子破坏的助剂,如紫外线光屏蔽剂、紫外线吸收剂、紫外线猝灭剂、自由基捕获剂。热稳定剂是用于抑制或延缓高分子树脂在加工或使用过程中受热而降解的助剂。早期主要针对PVC树脂、近年来多关注生物降解聚酯;包括主稳定剂(铅盐类、金属皂类、有机锡类等)、辅助稳定剂(环氧化合物类、亚磷酸酯类、多元醇类等)、复合热稳定剂;防酶剂又称之为微生物抑制剂,是一类抑制霉菌等微生物生长,防止聚合物树脂被微生物侵蚀而降解的助剂。 2.2 物理机械性能改性剂 可以改善或者提高高分子制品物理力学性能的助剂。力学性能包括拉伸、冲击、弯曲、剪切、硬度、热变形温度等。 2.2.1 填充增强剂是提高制品物理力学性能和降低配合成本的重要途径,填充剂包括碳酸钙、滑石粉、陶土、云母、二氧化硅、粉煤灰、硅酸盐等矿物;增强剂包括玻璃纤维、碳纤维、晶须等。 2.2.2 偶联剂又称之为表面处理剂,是一种通过化学(或)物理作用将两种性质差别较大,不易结合起来的有机高分子-无机填料牢固结合起来的助剂。如硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂、稀土类偶联剂。 2.2.3 抗冲剂用于改性某些热塑性高分子冲击性能的助剂,冲击性能低是某些热塑性聚合物的缺点,如PVC、PP、PS、PLA、PET等的缺口和无缺口冲击强度都很低,尤其是低温冲击

高分子材料改性

1填充改性:在聚合物基体中或在聚合物加工成型过程中加入一系列在组成结构不同固体添加物。 2混杂增强:是一种以上不同品种的增强纤维或其他增强材料匹配在一起用于聚合物得到复合材料。3纤维的临界长度lc:以基体包裹纤维的复合物在顺纤维轴上拉伸。当从整体传到纤维上的应力刚能使纤维断裂时纤维的应有长度。 4IPN:是两种或两种以上的共混聚合物,分子链相互贯穿并至少一种聚合物分子链以化学键的方式交联而形成的网络结构。 5高分子合金:在显微镜下观察可以聚合物共混物具有类似金属合金的相结构(即宏观不分离,微观非均相结构)称为高分子合金。 6相容性:指聚合物彼此互相容纳,形成宏观均匀材料的能力。 7纳米复合材料:指其中至少有一相物质是纳米级(1—100nm)范围内的多相复合材料。 8海-岛结构:是一种两相体系,且一项为连续相,一相为分散相,分散相分散在连续相中,就好像海岛分散在大海中一样。 9等粘点:A组分与B组分熔体黏度相等的这一点,称为“等黏点” 问答可能题 1.熔融态化学反应类型及各自的影响因素? 答:类型:交联反应、接枝反应、降解反应、官能团反应。 影响交联因素:1过氧化物的品种与用量2交联时 间与温度3环境气氛4抗氧剂5酸性物质6填充剂 7助交联剂 影响接枝因素:1接枝单体的含量2引发剂3反应 温度4反应时间5交联或降解的控制6共单体 2填料的性质? 答:(1)几何形态特征:球状(加工流动性):玻璃微珠片状(刚性):云母、滑石粉 (2)粒径小,填充效果好(分散均匀) 粒径表示方法:1.平均粒径() 2.目数(每平方英寸筛网上的筛孔数) 3.比表面积()(3)表面形态与性质:光滑(加工流动性)、粗糙(机械互锁、有大量微孔(有一定互锁作用) 3.填料的分散混合过程? 答:大致分四个过程。<1>使聚合物添加剂粉碎。将聚合物和填料加入到体系中,在外界作用下将大块聚合物和添加剂破碎成较小粒子。 <2>使添加剂渗入到聚合物中。聚合物在剪切热和传导热作用下,降到黏流状时,使速度加快,较小粒子克服聚合物内聚力,渗入到聚合物中。、 <3>分散。较小粒子进一步减小,直到粒子大小,固相粒子逐渐分散。 <4>分布均化。分散固相粒子逐渐混合,直至均匀分散到聚合物中。 5增强纤维种类及各有那些常用的表面处理方法?答:玻璃纤维、碳纤维和植物纤维等。 玻璃纤维的表面处理方法:硅烷偶联剂处理、表面接枝处理、酸碱刻蚀处理。 碳纤维表面处理法:气相氧化法、液相氧化法、阳极氧化法、等离子体氧化法。 植物纤维的表面处理方法:热处理法、碱处理法、改变表面张力法、偶联法、表面接枝法。 7纤维状加工过程易碎问题?措施:1.后期加入纤 维 2.提高熔融温度 3.降低剪切力 8简述制造纤维增强材料片材的常用方法? (1)熔融浸渍法。首先将连续纤维或短切纤维制成毡或针刺毡,经预热与挤出机挤出的热塑性树脂薄层,通过浸渍,冷却固化,最后切割。 (2)悬浮沉积法。将纤维和树脂均匀分布在水中,使纤维釜单丝分散,树脂单粒分散,通过流浆箱和成型网加入絮凝剂,凝聚与水分离形成湿片,通过干燥,黏合,压扎成片材。 (3)静电吸附热压法。将热塑性树脂制成薄膜带电,通过短纤维槽时,纤维吸附在薄膜上,然后压合。(4)液态化床法。将一定粒度粉末树脂放在流动床的孔床上,使其带一定量静电荷,并翻腾是树枝附在接地纤维上通过切断器被切成定长再通过热轧区和冷却区而制成片材。 9影响共混物结构形态的因素? 答:1相容性。相容性越好,聚合物越容易扩散而 达到均匀混合。2配比与黏度的综合影响。(P157. 图4-16)3.内聚能密度。内聚能密度大的聚合物,其分子间作用力大,不易分散,因此在共聚物体系 中更趋于分散相。4制备方法不同的制备方法会产 生不同的形态结构。 10提高共混物相容性的方法? 答:(1)对聚合物进行化学改性(2)加入增溶剂(3) 改善共混加工工艺(4)在共混组分间交联(5)共 溶剂法和IPN法。 12.聚合物的填充效果通过哪几方面评价?为什么 答:1聚合物填充改性的经济效果利用填料实现 聚合物的填充改性,其目的是降低成本改善材料的 某些性能。2填充聚合物的力学性能作为材料使 用强度是应用的基础。3填充聚合物的热性能。 12.无机纳米粒子增韧机理? 答1.刚性无机粒子产生应力集中效应,引发周围树 脂产生微开裂,吸引一定的变形功: 2.刚性粒子存在使基体树脂裂纹扩展受阻和钝化, 终止裂纹继续开裂: 3.填料的微细化,例子比表面积增大,产生微开裂, 吸引更多冲击能量阻止材料的断裂: 6界面结合对力学性能的影响? 界面强度高低,对聚合物各方面的影响显著,最突 出的是力学性能。(1)拉伸强度:在平行于取向方 向,拉伸强度提高。垂直于取向方向时,若纤维与 聚合物结合强度比较好时,则强度提高,否则不提 高。当纤维无取向时,则各同性时,各方向强度均 有所提高。(2)韧性与冲击强度:当纤维自身的强 度小于界面强度与摩擦力之和时,即受到作用时, 纤维发生断裂。此时对其冲击性能不利,当纤维自 身的强度大于两者之和时,则会发生脱出,对冲击 作用有吸收作用,提高其冲击强度。 11层状纳米材料的性能? 答:1.力学性能和耐热性 2.高阻隔特性 3.阻燃性 4.导电功能 5.抗菌功能 6.吸波特性 7.各向异性 14什么是混杂增强、是混杂效应?混杂方式有哪 些? 答:增强聚合物复合材料是由两种或两种以上不同 品种的增强纤维或其他增强材料匹配在一起用于 聚合物二得到的材料。混杂效应:混杂效应是由 于多种纤维货增强材料与树脂基体的相互作用产 应的结果,有正效应和负效应。常见的形式:(1) 纤维——纤维混杂 2)纤维——无机离子混杂增强(3)纤维原位混杂 增强如 4填料体积成体的计算?P76 22配比与黏度的综合影响。(P157.图4-16) 高概率填空题 1充母料的理想横型:1填料核2偶联层3分散层4 增混层填充母料的方法1挤出法2密炼法3造粒法 4 开炼法 1改性的分类:物理改性:共混、填充、增强 化学改性:接枝、交联、嵌段、降解 2交联分为:物理交联:结晶或缠结 化学交联:以化学键形成交联 3化学反应形式:溶液形式,熔融形式(多数) 4熔融态化学反应器:密炼机、螺杆挤出机、高校 连续混合机组 5熔融态化学反应类型:交联、接指、断链、能团 反应 7填料的作用:增量,增强,赋予功能 8填料的种类:1.阻燃性的;2.增大硬度,石英 3. 减小硬度,滑石粉 9填料处理的目的:1.增加与聚合物的相容性 2. 提高界面粘合不产生分离 10常用的表面处理剂:1.表面活性剂 2.偶联剂(钛 酸酯,铝酸酯)3.有机高分子处理剂 4.无机物处 理剂 5.其他 11填充改性交联:1.经济效果 2.力学性能 3.热性 能 4.电性能,光学性能,加工性能 12加入纤维的作用:增强 13增强纤维种类:1.玻璃纤维 2.碳纤维 3…. 14纤维表面处理原则:1.极性相近原则 2.界面酸 碱匹配原则 3.形成界面化学键原则 4.引入可塑 界面原则 17共混改性方法:物理方法:机械共混法,干粉共 混法,熔融共混法,溶液共混法,乳液共混法。 化学方法:共聚-共混法,反应共混法,IPN法 18共混物的形态,结构 1.均相结构 2.非结晶聚 合物构成的多相共混体系 3.两相互锁成交错结构 4.相互贯穿的两相连续结果 5.结晶非结晶聚合物 共混物的形态,结构 19增溶剂类型 1.非反应型增溶剂 2.反应型增溶 剂 3.低分子增溶剂 20热塑性弹性体是由塑料和橡胶构成的,其中塑料 是连续的,橡胶是分散的。 21改善共混物透明性的方法 1.使参与共混的分散 相与连续相折射率相同 2.使共混物分散粒径小于 可见光波长 22在硬质PVC中加氯化PE起增韧改性作用:在软 质PVC中加氯化PE起增塑改性作用 23纳米复合材料的制备方法 1.溶胶-凝胶法 2.原 位聚合法 3.插层法 4.共混法 24共混物的形态首先划分为均相体系和两相体系。 两相体系又分:海-岛与海-海结构

高分子助剂汇总

从原理到应用,相容剂知识大全! 所谓相容剂,比如说,两个毫无相干的人,怎么拉在一起?A想找到C,在中国就是要点关系,而这点关系就是C,C就是相容剂(此种说法仅供娱乐),当然,比如两个爱吵架的人,关羽与张飞,刘备就是他们的相容剂! 聚合物与聚合物组分之间的共混体系,有的有良好的相容性,有的相容性不大好,或者完全不相容。如何处理与解决聚合物组分之间的相容性问题,是塑料改性工作者研究、开拓的重要课题。 本文内容丰富,我们分为5个部分来讲 1、聚合物共混物的相容性原则 2、提高共混物相容性方法 3、聚合物的相容性与相容剂 4、相容剂的分类 5、相容剂应用举例 1.市面上有种万能的相容剂,能跟ABS,PS,SBS,PVC,等很多塑料都相容的一种材料,您猜猜是什么? 2.关于TPE包胶ABS,PC,以及POM,如何提高相容性? 3.马来酸酐能够接枝哪些聚合物?有什么特点?要注意什么? 1、聚合物共混物的相容性原则 聚合物组分之间的共混改性,为达到改善性能的相应效果,往往需要加入相容体系。一般来说,不同聚合物组分之间的共混需要的是相适应的相容性,从而制得相相之间结合力较强的多相结构的共混物。了解与应用共混物体系之间的更好相容性,应考虑如下几个原则。

聚合物之间的共混过程,实际上是分子链间相互扩散的过程,并受分子链之间作用的制约。分子链间相互作用的大小,可以用溶解度参数来表示。溶解度参数的符号为δ,其数值为单位体积内聚能密度的平方根。不同组分之间的相容性好坏,也可以用溶解度参数δ之差来衡量,即δ越接近,其相容性越好。 如两种聚合物溶解度参数相近,其差值通常要<0.2,而两种聚合物溶解度参数之差>0.5时,不能以任意比例相容。例如:PVC/NBR共混体系,PVC的溶解度参数δA为9.4~9.7,而NBR的溶解度参数δB为9.3~9.5,所以PVC与NBR相容性良好;又如PS/PB共混体系,他们的溶解度参数之差>0.7,所以两者的相容性差。PVC与PS的溶解度参数之差>1,所以两者基本不相容。 (2)极性相近原则 聚合物之间共混体系的极性越相近,其相容性越好,即极性组分与极性组分、非极性组分与非极性组分都具有良好的相容性。例如:PVC/EVA、PVC/NBR、PVC/ABS之间极性相近,所以其相容性好。在考虑共混改性配方设计时,要了解聚合物之间相容性的基本原则:极性/极性≥非极性/非极性≥极性/非极性。极性组分与非极性组分之间一般不相容,例如:PVC/PC、PVC/PS、PC/PS等。 极性相近原则也有些例外,例如:PVC/CR共混体系,其极性相近,但不相容;而PPO/PS 两种极性不同的组分,相容性反而很好。 (3)结构相近原则 聚合物共混体系中各组分的结构相似,则相容性就好,即两聚合物的结构越接近,其相容性越好。所谓结构相近,是指各组分分子链中含有相同或相近的结构单元,例如:PA6月PA66分子链中都含有—CH2—、—CO—NH—,故有较好的相容性。

高分子材料改性作业

天津城市建设学院 《高分子材料改性》结课作业 PVC树脂的共混改性 班级:09级材料化学(2)班 学号:09460219 姓名:张玉锐

PVC树脂的共混改性 摘要: PVC树脂由于具有一定的极性,因此与很多极性聚合物相容性很好,如丁腈橡胶、MBS、ABS及CPE等。PVC与非极性聚合物的相容性不好,共混时可以利用加入增容剂的方法来实现。 关键词: 极性 PVC树脂增容剂相容性

正文: 由于PVC树脂分子链中有大量的极性键C—Cl键,分子之间存在着较大作用力,因此PVC树脂比较坚硬,对外显示一定的脆性;另外,其分子中的C—cl键在受热时,特别是在成型加工时,容易脱去HCl分子,在大分子链中引入不饱和键,这就大大影响了树脂的耐老化性能。20世纪中期以后,人们利用物理共混的方法对PVC树脂进行了大量的改性研究。高聚物共混是一种简便而有效的改性方法。一般说来,将两种或两种以上不同的高聚物共混时,可以制备兼有这些高聚物性质的混合物。 聚氯乙烯(PVC)是最早工业化的塑料品种之一,也是产量较大的一种通用塑料,目前产量仅次于聚乙烯,居第二位。聚氯乙烯由氯乙烯(VC)按自由基历程聚合而得,其化学反应式简示为: nCH 2=CHCl—[CH2一CHC]n。 在工业上,聚氯乙烯可按悬浮聚合、乳液聚合、溶液聚合和本体聚合四种方法生产。 聚氯乙烯的共混改性聚氯乙烯(PVC)是最早工业化的树脂品种之一,目前产量仅次于聚乙烯,居第二位。聚氯乙烯是由氯乙烯单体采用悬浮、乳液、溶液或本体聚合方法按自由基历程聚合而成。分子呈无定形线形结构,无支链。分子中氯原子赋予该聚合物较大的极性与刚性,并具有良好的耐化学性、绝缘性和透光性。加入增塑剂可制得柔软曲折的聚氯乙烯制品。 聚氯乙烯的共混是聚合物之间的混合,共混体系的热力学是最重要的影响因素,也就是相容性问题。聚氯乙烯共混改性的应用主要有两种,一种是用作PVC加工助剂,另一种是用作PVC抗冲击改性剂。 (1)PVC加工助剂 ①烯酸酯类聚合物如聚丙烯酸酯类聚甲基丙烯酸酯类,或以MMA为主的共聚物。 ②苯乙烯、甲基丙烯酸酯或丙烯酸酯共聚物。 ③ABS(丙烯腈/丁二烯/苯乙烯)树脂,其苯乙烯含量较高。 ④SAN(苯乙烯/丙烯腈)树脂,苯乙烯含量较高者。 ⑤聚o—甲基苯乙烯(PAMS),线性低分子量均聚物,相容性虽比MMA为主的共聚物差,但价格便宜,另外它还有润滑作用。 (2)PVC抗冲击改性剂 ①氯化聚乙烯(CPE)。采用高密度聚乙烯进行氯化,C1的含量为30%一42%。一般采用PVC与CPE共混;也有将PVC接枝到CPE上。共混物的耐候性好,适于屋子外墙挡雨板,窗框,异型材等。 ②乙烯—醋酸乙烯共聚物(EVA)。PVC/EVA共混物耐低温性能、耐候性及保色性好。此共混物也有粉料与粒料两种。 ③ABS(丙烯腈-丁二烯—苯乙烯共聚物)。一般选用丁二烯含量较高者即低模量ABS。 ④MBS(甲基丙烯酸甲酯—了二烯—苯乙烯共聚物)。制法是将MMA及S接枝到聚丁二烯乳液上或丁苯乳液上。 ⑤MABS(甲基丙烯酸甲酯—丙烯腈—丁二烯—苯乙烯共聚物)MABS可以是MBS与ABS 的共混物,也可以将MMA,AN及S在聚丁二烯或了苯乳液中进行接枝。 ⑥丙烯酸酯类聚合物。通常是将MMA接枝到聚丙烯酸丁酯上或聚丙烯酸异辛酯上,是一种弹性体。这类产品加工性好,耐候性好,与硬PVC片共混,可制得玻璃样透明片,

高分子表面处理剂

高分子表面处理剂 高分子表面处理剂又名为粉体表面处理剂,是兼具偶联剂、表面改性剂、润滑剂等于一体的高分子复合酯类粉体助剂。其是由基一化工有限公司研发并生产出来的,主要针对于纳米碳酸钙、滑石粉、硫酸钡、氢氧化镁、氢氧化铝.炭黑等粉体粒度细、比表面积大、表面能高、表面原子数多、原子配位不足,使纳米粉体粒子不能以其单一的纳米颗粒均匀分散,已形成团聚等问题。我司研发的高分子表面处理剂,主要成分为醇类。利用化学键连接的方法来对纳米碳酸钙、滑石粉、硫酸钡、氢氧化镁、氢氧化铝粒子进行改性处理。纳米粉体粒子经高分子表面处理剂改性处理后,由亲水性转为亲油性。通过化学反应和分子键相互缠绕,使纳米碳酸钙、滑石粉、硫酸钡、氢氧化铝粒子与高聚物粒子之间黏结强度增大。降低纳米粉体粒子较高的表面能,改善与高聚物基材相容性和分散性,同时增加透明度。 (1)高分子表面处理剂:分子结构中,含有性能与功能完全不同的两部分。 ①分子结构一部分锚固基团,通过粒子对氢键范德华力等作用,以单点锚固或多点锚固形式,紧密地结合纳米碳酸钙、滑石粉、硫酸钡、氢氧化镁、氢氧化铝粒子。 ②分子结构一部分可与分散介质相容高分子聚合物链的。 (2)高分子表面处理剂:依靠纳米碳酸钙、滑石粉、硫酸钡、氢氧化镁、氢氧化铝粒子吸附后,引起表面性质变化,纳米碳酸钙、滑石粉、硫酸钡、氢氧化镁、氢氧化铝离子表面形成亲油基团。 (3)高分子表面处理剂:使纳米碳酸钙、滑石粉、硫酸钡、氢氧化镁、氢氧化铝粒子对PE、PP的结晶有明显的诱导作用,促使PE、PP的结晶度提高,晶体颗粒变小,晶体增加。从而有效改善PE、PP的透明度。 (4)高分子表面处理剂:使纳米碳酸钙、滑石粉、硫酸钡、氢氧化铝粒子,纳米粒子

高分子粘合剂

高分子粘合剂论文报告聚氨酯涂料研究进程

摘要:聚氨酯是世界六大具有发展前途的合成材料之一, 聚氨酯涂料具有良好的粘结性、耐磨擦性, 光泽度高,是涂料行业中占有非常重要的位置的主要品种之一。综述了聚氨酯涂料用单体、预聚物和环保型聚氨酯涂料的研究进展, 介绍了环保型聚氨酯涂料性能与应用, 指出了聚氨酯涂料的发展趋势。 关键词: 聚氨酯涂料性能应用 Research current situation and development of polyurethane coatings Abstract :Polyurethane is one of the most development synthetic materials . Polyurethane coating for its outstanding bonding wear clean、high luster played very important role in the paint industry . The polyurethane coating with monomer prepolymer-based and environmental polyurethane coatings research was reviewed in this paper. The environment friendly performance and application of polyurethane coating was introduced and the development trend of polyurethane coatings was then discussed. Key words : polyurethane coatings performance application 聚氨酯涂料是在20世纪后半叶才发展起来的一种新型材料,它的结构中除含有氨基甲酸酯键外,还含有酯键、醚键、脲键、缩二脲键、脲基甲酸酯键、酰基脲键以及油脂的不饱和键,因此,既具有类似酰胺基的特性,如强度、耐磨性、耐油性,又具有聚酯的耐热性与耐溶剂性,以及聚醚的耐水性和柔顺性。 自从 1937年德国 Bayer教授首次合成聚氨酯以来,聚氨酯以其软硬度可调节范围广、耐低温、柔韧性好、附着力强等优点逐渐被人们所认识,其弹性体、泡沫塑料、涂料及粘接剂等均已获得广泛应用。另外, 聚氨酯的主要原料异氰酸酯很活泼,不仅能与羟基树脂结合,还能与底材中的羟基结合,形成牢固的化学键和氢键,增强了与底材的粘附力,这使它集涂料的优点于一身,具有极好的通用性和优异的使用效果,聚氨酯涂料是增长速度最快的涂料品种之一,它在涂料中所占比例和增长速度象征着一个国家的涂料工业水平,受到世界各国的高度重视和广泛研究。本文综述了异氰酸酯单体、预聚物和聚氨酯涂料的研究进展。 1 异氰酸酯单体的制造方法 聚氨酯涂料的常用单体有芳香族异氰酸酯,如甲苯二异氰酸酯( TDI)、二苯基甲烷二异氰酸酯(MDI)及脂肪族二异氰酸酯, 如六亚甲基二异氰酸酯(HDI)、异佛尔酮二异氰酸酯(IPDI)及二环己基甲烷二异氰酸酯(HMDI)等。 TDI的生产方法有三种: 胺光气化法、硝基化合物羰基化法和碳酸二甲酯

高分子材料功能化改性

深圳大学课程教学大纲 课程编号: 20015500 课程名称:高分子材料功能化改性 开课院系: 材料学院 制订(修订)人: 欧阳星 审核人: 批准人: 2015 年9月27 日制(修)订

课程名称:高分子材料功能化改性 英文名称: Functional Modification of Polymer Materials 总学时: 36学时 学分: 2 先修课程:有机化学、高分子物理、高分子化学 教材: 自编讲义 参考教材: 1. J E Mark, B Erman, F R Eirich. The Science and Technology of Rubber, Elsevier, 2013 2. John Meister.Polymer Modification: Principles, Techniques, and Applications,CRC Press, 2000 3. Helmut Münstedt, Friedrich Rudolf Schwarzl. Deformation and Flow of Polymeric Materials, Springer , 2014 4. Hee-Gweon Woo, Hong Li. Advanced Functional Materials, 浙江大学出版社,Springer , 2011 5.杨明山, 郭正虹. 高分子材料改性,化学工业出版社,2013 授课对象:高分子材料与工程专业本科生 课程性质:专业选修理科课程 教学目标: 通过本课程的学习使学生理解和掌握高分子材料功能化改性的基本理论、加工方法、应用领域等相关知识。掌握几种主要高分子材

高分子材料与改性

高分子材料与改性 绪论 1.1.材料科学概述 1.1.1.什么是材料与材料科学? 材料是工程技术的基础与先导。现代社会的进步,在很大程度上都依赖于新材料的发明与发展。科学家与工程师们都认识到发展尖端技术的前提是发展新材料与新材料加工技术,并在近20年来在这方面有了空前的重要进展。所以许多人将我们这一历史时期称为“材料时代”[2]。 材料是一个广义的概念,泛指宇宙间可用于制造有用物品的物质。有用指除了使用价值外,还需具有一定的性能,如物理性质、化学性质和力学性能等。物品可以是单件的器件或元件,可以是组装的机器与仪器,也可以是集成的系统[2]。 所谓新材料,则是指最近发展或正在发展中的具有特殊功能和应用的材料。而所谓高技术新材料的概念,则是指在当今高技术时代发展起来的、具有传统材料无法比拟的完全新的或具有明显优异性能、能满足新技术需要的新型材料,如光电子信息材料、先进复合材料、先进陶瓷材料、新型金属材料、高性能塑料、超导材料等[1]。 人类社会的发展历史证明,材料是人类赖以生存和发展、征服自然和改造自然的物质基础,同时它又是人类社会发展的先导,人类进步的里程碑[1]。 当今国际社会一致公认,材料、能源和信息技术是新技术革命的三大支柱[1]。 材料科学的内容是研究材料的成分与结构、加工与性能和材料应用之间的相互关系。其任务是:为经典材料的性能和寿命的提高,为新型材料的开发、应用和特种性能的发挥,提供新的途径、新的技术、新的方法和新的流程[1]。 人们往往把材料科学与工程相提并论,而称为“材料科学与工程”。从事材料,尤其是工程材料的开发、研究工作的学科领域称为材料科学与工程,即:材料组成、结构、加工与材料性质、使用之间关系的发现与应用。其中,材料科学着重于发现材料的本质,并由此对结构与组成、性质、使用性能之间的关系作出描述与解释;而材料工程则是应用材料科学的知识,对材料进行开发、制造、修饰并实现其具体应用。有人认为材料科学与工程属于工程科学,实际上它是个交叉学科或多学科领域,涉及固体物理学、金属学、陶瓷学、高分子化学与高分子物理等[2]。 1.1. 2.材料的基本类别 根据材料的基本性质与结构,可以将其分为四大类,即金属材料、无机非金属材料、高分子材料和复合材料[1]:

聚合物防水砂浆添加剂(改性剂)使用说明

晋元建筑科技 J&Y ARCHITECTURE TECHNOLOGY 深圳市晋元建筑科技开发有限公司 S H E N Z H E N J&Y A R C H I T E C T U R E T&D C O.,LT D 筑龙牌ZL205型聚合物水泥防水砂浆添加剂(粉体)说明 2008年深圳市建设科技成果推广项目获《推广证书》 2010年深圳市建设工程新技术推广应用目录获《新技术应用证书》 简要说明: “筑龙”牌ZL205 型聚合物防水砂浆添加剂(改性剂)是由进口聚合物胶粉、抗裂纤维、聚丙烯酸盐等高分子材料和其它填料复合而成。掺与水泥砂浆混合搅拌使用,制成高性能的聚合物水泥防水砂浆,用于建筑物的防水抗裂工程,具抗裂、抗渗、防水、防潮、防冻、抗冲磨、耐腐蚀等功能,是新一代环保产品。将改性剂加入砂浆中拌和能加速水泥颗粒水化和分散,大幅度减少用水量,封闭砂浆硬化后毛细孔孔道和水分蒸发留下的孔隙,使砂浆不产生干收缩裂,降低吸水率,达到防水防裂抗渗、增强的目的;避免空鼓、脱落、开裂。 优势·特性:(提高质量、降低成本、节省工期) 1、良好的施工性、粘接与柔韧性能。 2、使用方便,可在潮湿基面直接施工。 3、耐腐蚀,耐高温,耐低温,耐老化。 4、不变质,抗震裂,无毒,无害,无味,不污染环境。 5、如无人为和结构的破坏,可与建筑物同寿命。 6、可直接在防水层上做各种饰面层(如涂料、瓷砖等)。 解决了聚合物水泥砂浆因高成本因素所限制的只能薄薄做几毫米的问题,而采用筑龙205,可完全做到用聚合物水泥砂浆进行墙体的砌筑、找平、抹面、到瓷砖粘结等,在提高工程质量的同时,降低材料成本、减少施工环节、缩短工期、降低人工成本;找平、批荡、抹面、防水、抗裂一次完成!20mm厚度平方成本只比普通水泥砂浆增加7.2元左右!对提高经济、社会和生态效益方面具有重要的意义。是内外墙等墙体首选的防水材料!

相关文档
最新文档