神奇的分形艺术(二):一条连续的曲线可以填满整个平面

神奇的分形艺术(二):一条连续的曲线可以填满整个平面
神奇的分形艺术(二):一条连续的曲线可以填满整个平面

神奇的分形艺术(二):一条连续的曲线

可以填满整个平面

虽然有些东西似乎是显然的,但一个完整的定义仍然很有必要。比如,大多数人并不知道函数的连续性是怎么定义的,虽然大家一直在用。有人可能会说,函数是不是连续的一看就知道了嘛,需要定义么。事实上,如果没有严格的定义,你很难把下面两个问题说清楚。

你知道吗,除了常函数之外还存在其它没有最小正周期的周期函数。考虑一个这样的函数:它的定义域为全体实数,当x为有理数时f(x)=1,当x为无理数时f(x)=0。显然,任何有理数都是这个函数的一个周期,因为一个有理数加有理数还是有理数,而一个无理数加有理数仍然是无理数。因此,该函数的最小正周期可以任意小。如果非要画出它的图象,大致看上去就是两根直线。请问这个函数是连续函数吗?如果把这个函数改一下,当x为无理数时f(x)=0,当x为有理数时f(x)=x,那新的函数是连续函数吗?

Cauchy定义专门用来解决这一类问题,它严格地定义了函数的连续性。Cauchy定义是说,函数f在x=c处连续当且仅当对于一个任意小的正数ε,你总能找到一个正数δ使得对于定义域上的所有满足c-δ< x

f(c)-ε

有了Cauchy定义,回过头来看前面的问题,我们可以推出:第一个函数在任何一点都不连续,因为当ε< 1时,δ范围内总存在至少一个点跳出了ε的范围;第二个函数只在x=0处是连续的,因为此时不管ε是多少,只需要δ比ε小一点就可以满足ε-δ定义了。

在拓扑学中,也有类似于ε-δ的连续性定义。假如一个函数f(t)对应空间中的点,对于任意小的正数ε,总能找到一个δ使得定义域(t-δ,t+δ)对应的所有点与f(t)的距离都不超过ε,那么我们就说f(t)所对应的曲线在点f(t)处连续。

回到我们的话题,如何构造一条曲线使得它可以填满整个平面。在这里我们仅仅说明存在一条填满单位正方形的曲线就够了,因为将此单位正方形平铺在平面上就可以得到填满整个平面的曲线。大多数人可能会想到下面这种构造方法:先画一条单位长的曲线,然后把它变成一个几字形,接着把每一条水平的小横线段变成一个几字形,然后不断迭代下去,最后得到的图形一定可以填满整个单位正方形。我们甚至可以递归地定义出一个描述此图形的函数:将定义域平均分成五份,第二和第四份对应两条竖直线段上的点,并继续对剩下的三个区间重复进行这种操作。这个函数虽然分布得有些“不均匀”,但它确实是一个合法的函数。最后的图形显然可以填充一个正方形,但它是不是一条曲线我们还不知道呢。稍作分析你会发现这条“曲线”根本不符合前面所说的ε-δ定义,考虑任何一个可以无限细分的地方(比如x=1/2处),只要ε<1/2,δ再小其范围内也有一条竖线捅破ε的界线。这就好像当n趋于无穷时sin(nx)根本不是一条确定的曲线一样,因为某个特定的函数值根本不能汇聚到一点。考虑到这一点,我们能想到的很多可以填满平面的“曲线”都不是真正意义上的连续曲线。为了避免这样的情况出现,这条曲线必须“先把自己周围填满再延伸出去”,而填满自己周围前又必须先填满“更小规模的周围”。这让我们联想到分形图形。

德国数学家David Hilbert发现了这样一种可以填满整个单位正方形的分形曲线,他称它为Hilbert曲线。我们来看一看这条曲线是怎么构造出来的。首先,我们把一个正方形分割为4个小正方形,然后从左下角的那个小正方形开始,画一条线经过所有小正方形,最后到达右下角。现在,我们把这个正方形分成16个小正方形,目标同样是从左下角出发遍历所有的格子最后到达右下角。而在这之前我们已经得到了一个2x2方格的遍历方法,我们正好可以用它。把两

个2x2的格子原封不动地放在上面两排,右旋90度放在左下,左旋90度放在右下,然后再补三条线段把它们连起来。现在我们得到了一种从左下到右下遍历4x4方格的方法,而这又可以用于更大规模的图形中。用刚才的方法把四个4x4的方格放到8x8的方格中,我们就得到了一条经过所有64个小方格的曲线。不断地这样做下去,无限多次地迭代后,每个方格都变得无穷小,最后的图形显然经过了方格上所有的点,它就是我们所说的Hilbert曲线。下图是一个迭代了n 多次后的图形,大致上反映出Hilbert曲线的样子。

根据上面这种方法,我们可以构造出函数f(t)使它能映射到单位正方形中的所有点。Hilbert曲线首先经过单位正方形左下1/4的所有点,然后顺势北上,东征到右上角,最后到达东南方的1/4正方形,其中的每一个阶段都是一个边长缩小了一半的“小Hilbert曲线”。函数f(t)也如此定义:[0,1/4]对应左下角的小正方形中所有的点,[1/4,1/2]就对应左上角,依此类推。每个区间继续划分为四份,依次对应面积为1/16的正方形,并无限制地这么细分下去。注意这里的定义域划分都是闭区间的形式,这并不会发生冲突,因为所有m/4^n 处的点都是两个小Hilbert曲线的“交接处”。比如那个f(1/4)点就是左上左下两块1/4正方形共有的,即单位正方形正左边的那一点。这个函数是一条根正苗红的连续曲线,完全符合ε-δ定义,因为f(t-δ)和f(t+δ)显然都在f(t)的周围。

Hilbert曲线是一条经典的分形曲线。它违背了很多常理。比如,把Hilbert曲线平铺在整个平面上,它就成了一条填满整个平面的曲线。两条Hilbert曲线对接可以形成一个封闭曲线,而这个封闭曲线竟然没有内部空间。回想我们上次介绍的Hausdorff维度,你会发现这条曲线是二维的,因为它包含自身4份,每一份的一维大小都是原来的一半,因此维度等于log(4)/log(2)。这再一次说明了它可以填满整个平面。

Hilbert曲线的价值在于建立一维空间与二维空间一一对应的关系。

Hilbert曲线可以看作是一个一维空间到二维空间的映射,也就是说我们证明了直线上的点和平面上的点一样多(集合的势相同)。Hilbert曲线也是一种遍历二维格点的方法,它同样可以用来证明自然数和有理数一样多。如果你已经知道此结论的Cantor证明,你会立刻明白Hilbert遍历法的证明,这里就不再多说了。当然,Hilbert曲线也可以扩展到三维空间,甚至更高维的空间,从而建立一维到任意多维的映射关系。下图就是一个三维Hilbert曲线(在迭代过程中)的样子。

分形与分形艺术

分形与分形艺术 我们人类生活的世界是一个极其复杂的世界,例如,喧闹的都市生活、变幻莫测的股市变化、复杂的生命现象、蜿蜒曲折的海岸线、坑坑洼洼的地面等等,都表现了客观世界特别丰富的现象。基于传统欧几里得几何学的各门自然科学总是把研究对象想象成一个个规则的形体,而我们生活的世界竟如此不规则和支离破碎,与欧几里得几何图形相比,拥有完全不同层次的复杂性。分形几何则提供了一种描述这种不规则复杂现象中的秩序和结构的新方法。 一、分形几何与分形艺术 什么是分形几何?通俗一点说就是研究无限复杂但具有一定意义下的自相似图形和结构的几何学。什么是自相似呢?例如一棵苍天大树与它自身上的树枝及树枝上的枝杈,在形状上没什么大的区别,大树与树枝这种关系在几何形状上称之为自相似关系;我们再拿来一片树叶,仔细观察一下叶脉,它们也具备这种性质;动物也不例外,一头牛身体中的一个细胞中的基因记录着这头牛的全部生长信息;还有高山的表面,您无论怎样放大其局部,它都如此粗糙不平等等。这些例子在我们的身边到处可见。分形几何揭示了世界的本质,分形几何是真正描述大自然的几何学。 “分形” 一词译于英文Fractal,系分形几何的创始人曼德尔布罗特(B.B.Mandelbrot)于1975年由拉丁语Frangere一词创造而成,词本身具有“破碎”、“不规则”等含义。Mandelbrot研究中最精彩的部分是1980年他发现的并以他的名字命名的集合,他发现整个宇宙以一种出人意料的方式构成自相似的结构(见图1)。Mandelbrot 集合图形的边界处,具有无限复杂和精细的结构。如果计算机的精度是不受限制的话,您可以无限地放大她的边界。图2、图3 就是将图1中两个矩形框区域放大后的图形。当你放大某个区域,它的结构就在变化,展现出新的结构元素。这正如前面提到的“蜿蜒曲折的一段海岸线”,无论您怎样放大它的局部,它总是曲折而不光滑,即连续不可微。微积分中抽象出来的光滑曲线在我们的生活中是不存在的。所以说,Mandelbrot集合是向传统几何学的挑战。 图 1 Mandelbrot集合

曲线的参数方程(教案)

曲线的参数方程 教材 上海教育出版社高中二年级(理科)第十七章第一节 教学目标 1、理解曲线参数方程的概念,能选取适当的参数建立参数方程; 2、通过对圆和直线的参数方程的研究,了解某些参数的几何意义和物理意义; 3、初步了解如何应用参数方程来解决某些具体问题,在问题解决的过程中, 形成数学抽象思维能力,初步体验参数的基本思想。 教学重点 曲线参数方程的概念。 教学难点 曲线参数方程的探求。 教学过程 (一)曲线的参数方程概念的引入 引例: 2002年5月1日,中国第一座身高108米的摩天轮,在上海锦江乐园正式对外运营。并以此高度跻身世界三大摩天轮之列,居亚洲第一。 已知该摩天轮半径为51.5米,逆时针匀速旋转一周需时20分钟。如图所示,某游客现在点(其中点和转轴的连线与水平面平行)。问:经过秒,该游客的位置在何处? 引导学生建立平面直角坐标系,把实际问题抽象到数学问题,并加以解决 (1、通过生活中的实例,引发学生研究的兴趣;2、通过引例明确学习参数方程的现实意义;3、通过对问题的解决,使学生体会到仅仅运用一种方程来研究往往难以获得满意的结果,从而了解学习曲线的参数方程的必要性;4、通过具体的问题,让学生找到解决问题的途径,为研究圆的参数方程作准备。) (二)曲线的参数方程 1、圆的参数方程的推导 (1)一般的,设⊙的圆心为原点,半径为,0OP 所在直线 为轴,如图,以0OP 为始边绕着点按逆时针方向绕原点以匀角 速度作圆周运动,则质点的坐标与时刻的关系该如何建立呢? (其中与为常数,为变数) 结合图形,由任意角三角函数的定义可知: ),0[sin cos +∞∈???==t t r y t r x ωω 为参数 ① (2)点的角速度为,运动所用的时间为,则角位移t ωθ=,那么方程组①可以改写为何种形式? 结合匀速圆周运动的物理意义可得:),0[sin cos +∞∈???==θθ θr y r x 为参数 ② (在引例的基础上,把原先具体的数据一般化,为圆的参数方程概念的形成作准备,同时也培养了学生数学抽象思维能力)

趣味数学--分形艺术

神奇的分形艺术:无限长的曲线可能围住一块有限的面积 很多东西都是吹神了的,其中麦田圈之谜相当引人注目。上个世纪里人们时不时能听见某个农民早晨醒了到麦田地一看立马吓得屁滚尿流的故事。上面这幅图就是97年在英国Silbury山上发现的麦田圈,看上去大致上是一个雪花形状。你或许会觉得这个图形很好看。看了下面的文字后,你会发现这个图形远远不是“好看”可以概括的,它的背后还有很多东西。 在说明什么是分形艺术前,我们先按照下面的方法构造一个图形。看下图,首先画一个线段,然后把它平分成三段,去掉中间那一段并用两条等长的线段代替。这样,原来的一条线段就变成了四条小的线段。用相同的方法把每一条小的线段的中间三分之一替换为等边三角形的两边,得到了16条更小的线段。然后继续对16条线段进行相同的操作,并无限地迭代下去。下图是这个图形前五次迭代的过程,可以看到这样的分辨率下已经不能显示出第五次迭代后图形的所有细节了。

当把三条这样的曲线头尾相接组成一个封闭图形时,有趣的事情发生了。这个雪花一样的图形有着无限长的边界,但是它的总面积却是有限的。 这个神奇的雪花图形叫做Koch雪花,其中那条无限长的曲线就叫做Koch曲线。他是由瑞典数学家Helge von Koch最先提出来的。麦田圈图形显然是想描绘Koch雪花。Koch曲线于1904年提出,是最早提出的分形图形之一。下面我们来看Koch雪花的面积与周长,如下图

周长为次分叉图第4n 设图1三角形周长为31=P ,面积为4 31=A ; 第一次分叉图2;913,3411212A A A P P ??+==面积为周长为 第二次分叉图3 … 面积为 1121211)9 1(43)91(43913A A A A n n --??++??+?+=Λ ]})9 4(31)94(31)94(3131[1{221-+++++=n A Λ Λ,3,2=n 雪花曲线令惊异的性质是:无限长的曲线可能围住一块有限的面积。 ;91431223?????????????? ????+=A A A 面积为Λ ,2,1)34(11==-n P P n n ]})9 1[(4{31121A A A n n n n ---+=,周长为12 334P P ??? ??=

2.2常见曲线的参数方程

2.2 常见曲线的参数方程 第一节 圆锥曲线的参数方程 一椭圆的参数方程 1、中心在坐标原点,焦点在x 轴上,标准方程是22 221(0)x y a b a b +=>>的椭圆的参数方程 为cos (sin x a y b ? ??=??=? 为参数) 同样,中心在坐标原点,焦点在y 轴上,标准方程是22 221(0)y x a b a b +=>>的椭圆的参 数方程为cos (sin x b y a ? ??=??=? 为参数) 2、椭圆参数方程的推导 如图,以原点O 为圆心,,()a b a b o >>为半径分别作两个同心圆,设A 为大圆上的任一点,连接OA ,和小圆交于点B ,过点,A B 分别作x 轴,y 轴的垂线,两垂线交于点M 。 设以Ox 为始边,OA 为终边的角为?,点M 的坐标是(,)x y 。那么点A 的横坐标为x ,点B 的纵坐标为y 。由于点,A B 都在角?的终边上,由三角函数的定义有 cos cos ,sin sin x OA a y OB b ????==== 3 当半径OA 绕点O 旋转一周时,就得到了点M 的轨迹,它的参数方程是cos (sin x a y b ? ?? =??=?为 参数) 这是中心在原点O ,焦点在x 轴上的椭圆的参数方程。 3、椭圆的参数方程中参数?的意义 圆的参数方程cos (sin x r y r θ θθ =?? =?为参数)中的参数θ是动点(,)M x y 的旋转角,但在椭圆 的参数方程cos (sin x a y b ? ?? =?? =?为参数)中的参数?不是动点(,)M x y 的旋转角,它是动点 (,)M x y 所对应的圆的半径OA (或OB )的旋转角,称为点M 的离心角,不是OM 的旋 转角,通常规定[)0,2?π∈ 4、椭圆参数方程和普通方程的互化

极坐标和参数方程知识点总结大全

极坐标与参数方程 一、参数方程 1.参数方程的概念 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的 函数,即 ?? ?==) () (t f y t f x 并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上(即曲线上的点在方程上,方程的解都在曲线上),那么方程组就叫做这条曲线的参数方程,联系 x 、y 之间关系的变数叫做参变数,简称参数. 相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.参数方程和普通方程的互化 曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程. 练习 1.若直线的参数方程为12()23x t t y t =+?? =-?为参数,则直线的斜率为( ) A . 23 B .23- C .32 D .32 - 2.下列在曲线sin 2()cos sin x y θ θθθ =?? =+?为参数上的点是( ) A .1(,2 B .31(,)42 - C . D . 3.将参数方程2 2 2sin ()sin x y θ θθ ?=+??=??为参数化为普通方程为( ) A .2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤ 注:普通方程化为参数方程,参数方程的形式不一定唯一(由上面练习(1、3可知))。应用参数方程解轨迹问题,关键在于适当地设参数,如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同。

3.圆的参数方程 如图所示,设圆的半径为,点从初始位置出发,按逆时针方向在 圆上作匀速圆周运动,设,则。 这就是圆心在原点,半径为的圆的参数方程,其中的几何意义是 转过的角度(称为旋转角)。 圆心为,半径为的圆的普通方程是, 它的参数方程为:。 4.椭圆的参数方程 以坐标原点为中心,焦点在轴上的椭圆的标准方程为 其参数方程为,其中参数称为离心角;焦点在轴上的椭圆的标准方程是其参数方程为 其中参数仍为离心角,通常规定参数的范围为∈[0,2)。 注:椭圆的参数方程中,参数的几何意义为椭圆上任一点的离心角,要把它和这一点的旋转角区分开来,除了在四个顶点处,离心角和旋转角数值可相等外(即在到的范围内),在其他任何一点,两个角的数值都不相等。但 当时,相应地也有,在其他象限内类似。 5.双曲线的参数方程

曲线在点处的法平面方程为

B020005 一、1、曲线x y R y z R 222222+=+=???在点R R R 222,,?? ???处的法平面方程为 (A )-+-=x y z R 2 (B )x y z R -+=32 (C )x y z R -+=2 (D )x y z R ++=32 答:( ) 三、1、 若u =f (t )是(-∞,+∞)上严格单调的奇函数,Ω是球体(x -x 0)2+(y -y 0)2+(z -z 0)2≤R 2 (R >0),若,试问a ,b ,c ,d 应满足什么条件。 2、设f x ()是以3为周期的周期函数,又设f x ()在任意有限闭区间[,]a b 内可积。试写出f x ()的傅立叶系数的计算公式。 四、1、z xy =ln()2,求z z x y ,。 2、设z ax bxy cy dx ey f =+++++22222,求 ????z x z y ,。 3、设f x y (,)有连续偏导数,u f e e x y =(,),求d u 。 4、设曲线C 的方程为x 6+y 6=1.求曲线积分 5、求微分方程''-=y a y x 2sin 的一个特解,其中a 为非零实常数。 6、求微分方程tx x ''-'=0的通解。 7、求极限lim x y x xye xy →→-+00 416 。 8、 设Ω是由及z =1所围的有界闭区域,试计算. 五、1、设L 为在右半平面内的任意一条闭的光滑曲线,试证明曲线积分 2、如果幂级数∑∞=0n n n x a 在2-=x 处条件收敛,那么该级数的收敛半径是多少? 试证之. 3、验证:y x y x 12==cos ,sin ωω都是微分方程''+=y y ω20的解,并写出该方程的通解。 4、求证函数系{}sin ,sin ,,sin ,x x nx 2??????是[]0,π上的正交函数系。 5、 试证对于空间任意一条简单闭曲线C ,恒有∮c (2x +y )d x +(4y +x +2z )d y +(2y -6z )d z =0. 六、1、 利用二重积分计算由直线y =x ,y =5x 及x =1所围成区域的面积。 2、在空间找一点P x y z (,,),使它到三个平面x y z x y z y z ++=-+=-=111,,的距离平方和为最小。 3、求微分方程''+'-=y y y 230的一条积分曲线,使其在原点处与直线y x =4相切。 4、求曲线族y Cx =3的正交轨线族(即与曲线y Cx =3 互相正交的曲线族)所满足的微分方程。

分形几何与分形艺术

我们人类生活的世界是一个极其复杂的世界,例如,喧闹的都市生活、变幻莫测的股市变化、复杂的生命现象、蜿蜒曲折的海岸线、坑坑洼洼的地面等等,都表现了客观世界特别丰富的现象。基于传统欧几里得几何学的各门自然科学总是把研究对象想象成一个个规则的形体,而我们生活的世界竟如此不规则和支离破碎,与欧几里得几何图形相比,拥有完全不同层次的复杂性。分形几何则提供了一种描述这种不规则复杂现象中的秩序和结构的新方法。 一、分形几何与分形艺术 什么是分形几何?通俗一点说就是研究无限复杂但具有一定意义下的自相似图形和结构的几何学。什么是自相似呢?例如一棵苍天大树与它自身上的树枝及树枝上的枝杈,在形状上没什么大的区别,大树与树枝这种关系在几何形状上称之为自相似关系;我们再拿来一片树叶,仔细观察一下叶脉,它们也具备这种性质;动物也不例外,一头牛身体中的一个细胞中的基因记录着这头牛的全部生长信息;还有高山的表面,您无论怎样放大其局部,它都如此粗糙不平等等。这些例子在我们的身边到处可见。分形几何揭示了世界的本质,分形几何是真正描述大自然的几何学。 "分形"一词译于英文Fractal,系分形几何的创始人曼德尔布罗特(B.B.Mandelbrot)于1975年由拉丁语Frangere一词创造而成,词本身具有"破碎"、"不规则"等含义。Mandelbrot研究中最精彩的部分是1980年他发现的并以他的名字命名的集合,他发现整个宇宙以一种出人意料的方式构成自相似的结构(见图1)。Mandelbrot 集合图形的边界处,具有无限复杂和精细的结构。如果计算机的精度是不受限制的话,您可以无限地放大她的边界。图2、图3 就是将图1中两个矩形框区域放大后的图形。当你放大某个区域,它的结构就在变化,展现出新的结构元素。这正如前面提到的"蜿蜒曲折的一段海岸线",无论您怎样放大它的局部,它总是曲折而不光滑,即连续不可微。微积分中抽象出来的光滑曲线在我们的生活中是不存在的。所以说,Mandelbrot集合是向传统几何学的挑战。

空间曲线的参数化

一、 空间曲线的参数化 若积分曲线Γ的参数方程 ],[)(),(),(βα∈===t t z z t y y t x x Γ,:,则曲线积分的计算公式为 ??'=++β α)())(),(),(({d d d t x t z t y t x P z R y Q x P Γ }d )())(),(),(()())(),(),((t z t z t y t x R t y t z t y t x Q '+'+ ],[d )()()())()()((d )(222βαβ α ∈'+'+'=?? t t t z t y t x t ,z t ,y t x f s x,y,z f Γ , 曲线积分计算的关键是如何将积分曲线Γ参数化。下面将给出积分曲线参数化的某些常用方法。 1. 设积分曲线???==0 ),,(0),,(z y x G z y x F Γ:,从中消去某个自变量,例如z ,得到Γ在 xoy 平面的投影曲线,这些投影曲线常常是园或是椭圆,先将它们表示成参数方程),(),(t y y t x x ==然后将它们代入0),,(0),,(==z y x G z y x F 或中,解出)(t z z =由此得到Γ的参数方程:],[)(),(),(βα∈===t t z z t y y t x x ,。 例1将曲线???==++y x a z y x Γ2222:,(其中0>a )用参数方程表示。 解:从Γ的方程中消去y ,得到xoz 平面上的投影曲线2 222a z x =+,这是椭圆, 它的参数方程为]2,0[,sin ,cos 2 π∈== t t a z t a x ,将其代入Γ的方程,得到第七讲 曲线积分与曲面积分

函数也可以如此美丽-Julia集的分形艺术

函数也可以如此美丽——Julia集的分形艺术 微博:@月绒兔子 前言 大家在高中的时候都学过解析函数吧?说解析函数是不是有点显得太高端了?那好,给你一个y=x的函数,在XY坐标系上画出这个函数的图像。别告诉我你不会啊,这可是拿脚后跟都能画出来的图像啊。 闲话不多说了。首先,先声明下此文并不是给大家讲数学的,也不是专门给理工科童鞋看的。此文的目的就是想让大家知道,有那么一个函数,她是如此的奇幻如此的美丽多变,就像她的名字一样—Julia。然后我们用HTML5的canvas来召唤她。 先来几张Julia的芳容欣赏下: 没错,以上四个图片不是电脑桌面,但是它确实Julia集合(Julia Set)所描绘的抽象艺术。 Julia集简介 我是在一门叫做“高等统计物理”的课程上认识到Julia集的。虽然她的图像非常绚丽多姿,但其实她的真身非常简单,简单到你不敢想象: f(z)=z^2+C 其中,z^2表示z的平方,z和C均为复数(复习一下:复数就是a+ib,a为实部,b为虚部,i就是表示虚部的部分)。 然后我们做以下的迭代: Z1=f(z0) Z2=f(z1)

Z3=f(z2) Z4=f(z3) … 那么当Z0=0,C=0.5时 Z1=0^2+0.5=0.5 Z2=0.5^2+0.5=0.75 Z3=0.75^2+0.5=1.0625 Z4=1.0625^2+0.5=1.62890625 Z5=1.62890625^2+0.5=3.653355… Z6=Z5^2+0.5=14.346860796… 最终Zn趋于无限大。 同理,如果令Z0等于另一个值时,有可能会出现最终Zn收敛于某一值(无限趋近于某一个值),也有可能趋近无穷大,或者趋近无穷小(负值)。 Julia集绘制原理 上面的简介说明了其实Julia集就是一个迭代函数而已,那么,这么美丽的图像是怎么画出来的呢?其实很简单,刚才我有提到过,z和C都是复数,C是常量。 所以,z=x+iy,C=a+ib,图像是以x为横坐标,y为纵坐标绘制的。这么说来,只要随便改变a和b的值,就会出现不同的图案了。 那么图像中颜色是根据什么来的呢? 我们从画布左上角第一个像素(x=0,y=0)开始,这个像素所代表的物理意义就是,当z=0+i0(也就是z=0)时,进行Zn的迭代计算。我们预先设置一个阀值k(例如k=4),当计算到Z10的时候,发现Z10的模大于k了(|Z10|>k),就说明在迭代到第10次的时候发散了。依此类推,如果是计算到Z88的时候|Z88|>k了,就说明迭代到第88次的时候发散了。这时候你就可以按照你的口味来了,你可以设置为发散的越慢(迭代次数越多)颜色越深,发散的越快(迭代次数越少)颜色越浅。当然也可以用冷暖色系来表示。找到形成发散的迭代次数,就可以结束迭代运算了。 当然,有一点是要注意的,这个迭代在计算到很高阶的时候运算量可是会很大的哦,所以一定要设置一个迭代次数的最大值,比如,如果再迭代到300次的时候,|Zn|还没有大于阈值k,那就认为这个点永远不会发散了(可以叫做收敛点),直接停止迭代运算。这点的颜色就按迭代最大值时对应的颜色值来填充。 第一个点的绘制原理就是酱紫。下面就是要遍历所有的点,按照同样的方法让计算机去计算喽。如果你的画布是800x800,那就需要从(x=0,y=0)一直遍历到(x=800,y=800),一共是800x800=640000个点。如果你对你的电脑运算能力有信心的话,就可以利用Julia集绘制高分辨的HD桌面壁纸喽! Julia集的魅力所在 学术界对于Julia集的研究非常广泛,学者们深深被这个集合的美丽和规律所吸引。除了她的多变和美丽外,还有一个神奇的地方(不要跟太多人讲哦),就是她的分形艺术(fractal art)。

高中数学第2章参数方程2.4一些常见曲线的参数方程讲义新人教B版选修44

高中数学第2章参数方程2.4一些常见曲线的参数方程讲义新人 教B 版选修44 学习目标:1.了解圆的渐开线和摆线的参数方程.(重点)2.了解渐开线与摆线的参数方程的推导过程.(难点) 1.摆线 (1)定义 一圆周沿一直线作无滑动滚动时,圆周上的一定点M 的轨迹称为摆线. (2)参数方程 ????? x =a (t -sin t )y =a (1-cos t ) (t 是参数). 2.圆的渐开线 (1)定义 把一条没有弹性的细绳绕在一个固定不动的圆盘的侧面上,把绳拉紧逐渐展开,绳的外端点随之移动,且绳的拉直部分始终和圆相切.绳的端点移动的轨迹就是一条圆的渐开线,固定的圆称为渐开线的基圆. (2)参数方程 ? ?? ?? x =a (cos t +t sin t )y =a (sin t -t cos t )(t 是参数). 思考:圆的渐开线和摆线的参数方程中,参数t 的几何意义是什么? [提示] 根据渐开线的定义和求解参数方程的过程,可知其中的字母a 是指基圆的半径,而参数t 是指绳子外端运动时绳子与基圆的切点B 转过的角度,如图,其中的∠AOB 即是角 t .显然点M 由参数t 惟一确定.在我们解决有关问题时可以适当利用其几何意义,把点的坐 标转化为与三角函数有关的问题,使求解过程更加简单. 同样,根据圆的摆线的定义和建立参数方程的过程,可知其中的字母a 是指定圆的半径,参数t 是指圆上定点相对于定直线与圆的切点所张开的角度.参数的几何意义可以在解决问题中加以引用,简化运算过程.当然这个几何意义还不是很明显,直接使用还要注意其取值的具体情况.

1.关于渐开线和摆线的叙述,正确的是( ) A .只有圆才有渐开线 B .渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以才得到了不同的图形 C .正方形也可以有渐开线 D .对于同一个圆,如果建立的平面直角坐标系的位置不同,画出的渐开线形状就不同 [解析] 不仅圆有渐开线,其他图形如椭圆、正方形也有渐开线;渐开线和摆线的实质是完全不一样的,因此得出的图形也不相同;对于同一个圆不论在什么地方建立平面直角坐标系,画出的图形的大小和形状都是一样的,只是方程的形式及图形在坐标系中的位置可能不同. [答案] C 2.半径为3的圆的摆线上某点的纵坐标为0,那么其横坐标可能是( ) A .π B .2π C .12π D .14π [解析] 根据条件可知圆的摆线的参数方程为? ?? ?? x =3t -3sin t y =3-3cos t (t 为参数),把y =0代 入可得cos t =1,所以t =2k π(k ∈Z ).而x =3t -3sin t =6k π(k ∈Z ).根据选项可知应选C. [答案] C 3.半径为4的圆的渐开线的参数方程是________. [解析] 将a =4代入圆的渐开线方程即可. [答案] ? ?? ?? x =4(cos t +t sin t ) y =4(sin t -t cos t ) 4.给出某渐开线的参数方程? ?? ?? x =3cos t +3t sin t y =3sin t -3t cos t (t 为参数),根据参数方程可以看 出该渐开线的基圆半径是______,当参数t 取π 2 时,对应的曲线上的点的坐标是________. [解析] 与渐开线的参数方程进行对照可知,a =3,即基圆半径是3,然后把t =π 2代入, 可得????? x =3π2,y =3. [答案] (3π 2 ,3)

分形与幽默艺术

分形与幽默艺术 分形与幽默艺术 作者:憔悴太子 ── 从赵本山的小品《心病》谈起 摘要表演艺术本身就有着自己的规律与理论。研究分形与幽默,研究分形与表演艺术之间的关系,只不过是从一个从新的角度来进一步了解及研究表演艺术它的自身规律与理论,将原来看到的,还有可能看不到的和遗漏的,或者看不清楚的问题及内容,从理论与技术上进一步进行归纳与升华成为应用价值的东西,从而形成新的规律与理论。并用它来指导表演艺术的编导与表演艺术的实践。从赵本山的小品《心病》谈起, 研究分形与幽默的目的就在于希望本文能起抛砖引玉的作用。 关键词分形自相似性表演艺术幽默 一前言 2003春节晚会上赵本山的小品“心病”(何庆魁先生等撰写),由赵本山、高秀敏、范伟组成的“黄金铁三角” 重新杀回央视,成为最大的看点和亮点。小品“心病”在舞台演出需要的时间很短(网上下载赵本山的“心病”播放时间为13分54秒),然而观众的笑声不断共计有25次之多(除“黄金铁三角”的人物出场时深受观众欢迎,引起观众大笑叫好外,其中还有15次也是大笑与幽默喜剧的高潮),足见其成功之处。他们获得非常好的幽默喜剧效果与巨大轰动效应。该小品最典型的幽默是赵本山这个“医生”与“病人”范伟一样都得了相似的“心病”。对于身外之物的“钱”的“心病”上,“医生”治好了“病人”的“心病”,他自己却是同样的“心病”大发其着,而且更为甚之。正是赵本山这个“医生”与“病人”范伟一样都得了相似的“心病”才引发了幽默喜剧的效果,也正是这个幽默喜剧情节才引发了一些不必要的争论。其实艺术上的“相似”的故事情节,“相似”表现手法的相互借鉴是无可非议的,因为世界上从时间与空间的整体来看每时每刻不知要发生多少“相似”,“相同”的事情,这是不足为奇的。世界本来就是“分形”的世界。 从现在的观点来看,赵本山的小品“心病”他们获得非常好的幽默喜剧效果与巨大轰动效应,除了他们的表演技巧外,小品剧情的发展与表现技巧都应用了“分形”这一手法。这里我们只不过是从一个从新的角度来进一步了解及研究表演艺术而已。 二分形简介 “分形”(f ractal)这个名词是由美国IBM(International Business Machine)公司研究中心物理部研究员暨哈佛大学数学教授曼德勃罗特(Benoit B. Mandelbort)在1975年首次提出的,其原意是“不规则的,分数的,支离破碎的”物体,这个名词是参考了拉丁文f ractus(弄碎的)后造出来的,它既是英文又是法文,既是名词又是形容词。1977年,他的所撰写的世界第一部关于“分形”的著作“分形:形态,偶然性和维数”(Fractal:From, Chance and Dimension),标志着分形理论的正式诞生。五年后,他又出版了著名的专著“自然界的分形几何学”(The Fractal Geometry of Nature),至此,分形理论初步形成。由于他对科学作出的杰出的贡献,他荣获了1985年Barnard奖,该奖是由全美科学院推荐,每五年选一人,是非常有权威性的奖。在过去的获奖者中,爱因斯坦名列第一,其余的也都是著名的科学家。 分形理论诞生后,人们意思到应该把它作为工具,从新的角度来进一步了解及研究自然界和社会,范围包括所有的自然科学和社会科学领域。[1] (张济忠<<分形>> 清华大学出版社1995年8月第一版绪论pⅧ-Ⅸ) 分形的几个特点: (1) 具有无限精细的结构; (2) 比例自相似性; (3) 一般它的分数维大于它的拓扑维数; (4) 可以由非常简单的方法定义,并由递归,迭代产生等。 这里(1)(2)两项说明分形在结构上的内在规律性。自相似性是分形的灵魂,它使得分形的任何一个片段包含整个分形的信息。第(3)项说明了分形的复杂性,第(4)项说明了分形的生成机制。[2](分形--自然几何.htm)请看图1中的几个图形,它们叫做科赫曲线和科赫雪花曲线,从它的任何一个局部经过放大,都可以得到一个局部和整体自相似的图形。这就是分形几何的一个特点叫做自相似性。并且具有无限精细的结构,即它的全息性。从图1中,可以看出它的生成规律,即其递归过程。[3](分形艺术欣赏.htm)[4](21ic_com

空间曲线方程不同形式间的转化技巧

空间曲线方程不同形式间的转化技巧 李晶晶 摘要:空间曲线的参数方程和一般方程是空间曲线方程的两种非常重要的形式, 它们表示同一条曲线,因此可以相互转化.两种形式相互转化的方法有很多,本文主 要介绍了常用的几种.在转化的过程中要保证方程的等价性和同解性. 关键词:一般方程;参数方程;互化;等价性;同解性 Transformation Techniques for Different Forms of Inter-space Curve Equation Li Jingjing (20102112052, Class 4 Grade 2010, Mathematics & Applied Mathematics ,School of Mathematics & Statistics) Abstract:Space curve parameter equation and general equation are two very important form of the equation of space curve.They represent the same curve, so they can be transformed into each other.There are many methods for the conversion between these two kinds of forms.This paper mainly introduces several methods commonly used.During the transformation process to ensure that equation equivalence and the same solution. Key words: The general equation; parameter equation; interaction; equivalence; the same solution 1引言 空间解析几何的首要问题是空间曲线的方程的求解.空间曲线方程主要包含两种形式,即一般方程(普通方程)与参数方程.空间曲线的一般方程反映的是空间曲线上点的坐标x,y,z之间的直接关系.空间曲线的参数方程是通过参数反应坐标变量之间的间接关系.在求空间曲线的弧长以及空间曲线上的第一类与第二类曲线积分等方面都用到了空间曲线的参数方程.由于任何一种曲线方程的求解方法都不能适用于所有方程的求解,因此如何完成空间曲线方程不同形式的互化便成了一个基本问题.[1] 空间曲线的方程是建立在平面曲线方程的基础之上的,研究空间曲线方程不同形式之间的转化依赖于平面曲线不同形式之间的转化.我们首先回顾之前所学的平面曲线方程的形式以及不同形式间的相互转化.

分形几何与分形艺术

分形几何与分形艺术 Revised as of 23 November 2020

分形几何与分形艺术 作者: 我们人类生活的世界是一个极其复杂的世界,例如,喧闹的都市生活、变幻莫测的股市变化、复杂的生命现象、蜿蜒曲折的海岸线、坑坑洼洼的地面等等,都表现了客观世界特别丰富的现象。基于传统欧几里得几何学的各门自然科学总是把研究对象想象成一个个规则的形体,而我们生活的世界竟如此不规则和支离破碎,与欧几里得几何图形相比,拥有完全不同层次的复杂性。分形几何则提供了一种描述这种不规则复杂现象中的秩序和结构的新方法。 一、分形几何与分形艺术 什么是分形几何通俗一点说就是研究无限复杂但具有一定意义下的自相似图形和结构的几何学。什么是自相似呢例如一棵苍天大树与它自身上的树枝及树枝上的枝杈,在形状上没什么大的区别,大树与树枝这种关系在几何形状上称之为自相似关系;我们再拿来一片树叶,仔细观察一下叶脉,它们也具备这种性质;动物也不例外,一头牛身体中的一个细胞中的基因记录着这头牛的全部生长信息;还有高山的表面,您无论怎样放大其局部,它都如此粗糙不平等等。这些例子在我们的身边到处可见。分形几何揭示了世界的本质,分形几何是真正描述大自然的几何学。 "分形"一词译于英文Fractal,系分形几何的创始人曼德尔布罗特()于1975年由拉丁语Frangere一词创造而成,词本身具有"破碎"、"不规则"等含义。Mandelbrot研究中最精彩的部分是1980年他发现的并以他的名字命名的集合,他发现整个宇宙以一种出人意料的方式构成自相似的结构(见图1)。Mandelbrot 集合图形的边界处,具有无限复杂和精细的结构。如果计算机的精度是不受限制的话,您可以无限地放大她的边界。图2、图3 就是将图1中两个矩形框区域放大后的图形。当你放大某个区域,它的结构就在变化,展现出新的结构元素。这正如前面提到的"蜿蜒曲折的一段海岸线",无论您怎样放大它的局部,它总是曲折而不光滑,即连续不可微。微积分中抽象出来的光滑曲线在我们的生活中是不存在的。所以说,Mandelbrot集合是向传统几何学的挑战。

参数方程题型大全

参数方程 1.直线、圆、椭圆的参数方程 (1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为????? x =x 0+t cos α, y =y 0+t sin α(t 为参数). (2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为????? x =x 0+r cos θ, y =y 0+r sin θ(θ为参数). (3)椭圆x 2a 2+y 2 b 2=1(a >b >0)的参数方程为? ???? x =a cos φ,y =b sin φ (φ为参数). (4)双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的参数方程为????? x =a 1cos θ,y =b tan θ (θ为参数). (5)抛物线px y 22 =的参数方程可表示为)(. 2, 22为参数t pt y pt x ?? ?==. 基础练习 1.在平面直角坐标系中,若曲线C 的参数方程为?? ? x =2+22t , y =1+2 2 t (t 为参数),则其普通方程为 ____________. 2.椭圆C 的参数方程为? ???? x =5cos φ, y =3sin φ(φ为参数),过左焦点F 1的直线l 与C 相交于A ,B 两点, 则|AB |min =________.

3.曲线C 的参数方程为? ??? ? x =sin θ,y =cos 2θ+1(θ为参数),则曲线C 的普通方程为____________. 4.在平面直角坐标系xOy 中,已知直线l 的参数方程为??? x =1+12 t , y =3 2t (t 为参数),椭圆C 的方程 为x 2+ y 2 4 =1,设直线l 与椭圆C 相交于A ,B 两点,则线段AB 的长为_______________ 考点一 参数方程与普通方程的互化 (基础送分型考点——自主练透) [考什么·怎么考] (1)??? x =1 t , y =1 t t 2 -1 (t 为参数);(2)????? x =2+sin 2θ, y =-1+cos 2θ(θ为参数).(3)?? ??? x =1 cos θ ,y =tan θ 2.求直线????? x =2+t ,y =-1-t (t 为参数)与曲线? ???? x =3cos α, y =3sin α(α为参数)的交点个数. 考点二 参数方程的应用 (重点保分型考点——师生共研) 角度一:t 的几何意义

1、求下列各平面的坐标式参数方程和一般方程(精)

1、求下列各平面的坐标式参数方程和一般方程 (1)通过点)1,1,3(1M 和)0,1,1(2-M 且平行于矢量}2,0,1{-的平面; (3)已知四点A (5,1,3),B (1,6,2),C (5,0,4),D (4,0,6),求通过直线AB 且平行直线CD 的平面,并求通过直线AB 且与△ABC 所在平面垂直的平面 2、求下列平面的一般方程 (1)过点M (3,2,-4)且在X 轴和Y 轴上截距分另为-2和-3的平面 (2)已知两点M 1(3,-1,2),M 2(4,-2,-1),通过M 1且垂直于M 1M 2的平面 (3)过点M 1(3,-5,1)和M 2(4,1,2)且垂直于平面x-8y+3z-1=0的平面 3、将下列平面的一般方程化为法式方程 (1)x-2y+5z-3=0 (2) x+2=0 4、求自坐标原点向平面2x+3y+6z-35=0所引垂线的长和批向平面的单位法矢量的方向余弦 5、已知三角形顶点为A(0,-7,0),B(2,-1,1),C(2,2,2),求平面于△ABC 所在的平面且与它相距为 2个单位的平面方程 6、求在X 轴上且到平面12x-16y+15z+1=0和2x+2y-z-1=0距离相等的点 7、已知四面体的四个顶点为S(0,6,4),A(3,5,3),B(-2,11,-5),C(1,-1,4),计算从顶点S 向底面ABC 所引的高 8、求中心在C3,-5,-2)且与平面2x-y-3z+11=0相切的球面方程。 9、求与9x-y+2z-14=0和9x-y+2z+6=0平面距离相等的点的轨迹 10、判别点M(2,-1,1)和N(1,2,-3)在由下列相交平面所构成的同一个二面角内,还是分别在 相邻二面角内,或是在对顶的二面角内? (1)0323:1=-+-z y x π与042:2=+--z y x π (2)0152:1=-+-z y x π与01623:2=-+-z y x π 11、分别在下列条件下确定l,m,n 的值使lx+y-3z+1=0与7x-2y-z=0表示二平行平面 12、求下列两平行平面19x-4y+8z+21=0和19x-4y+8z+42=0间的距离 13、求两平面2x-3y+6z-12=0和x+2y+2z-7=0所成的角 14、求过Z 轴且与平面0752=--+z y x 成 60角的平面 15、 求下列各直线的方程 (1)通过点),,(0000z y x M 且平行于两相交平面0:1=+++i i i i D z C y B x A π)2,1(=i 的 直线 (2)通过点M (1,0,-2)且与两直线 11111-+==-z y x 和0 1111+=--=z y x 垂直的直线 16、求下列各平面的方程: (1) (1) 通过点P (2,0,1),且又通过直线 3 2121-=-=+z y x 的平面 (2) (2) 通过直线113312-+=-+=-z y x 且与直线???=--+=-+-052032z y x z y x 平行的平面 (3) (3) 通过直线 2 23221-=-+=-z y x 且与平面3x+2y-z-5=0垂直的平面 (4) (4) 通过直线???=-+-=+-+014209385z y x z y x 向三坐标面引的三个射影平面 17、化下列直线的一般方程为射影式方程与标准方程,并求出直线的方向余弦 (1)???=---=+-+0 323012z y x z y x

_论分形艺术美的本质

第10卷第6期2008年11月  哈尔滨工业大学学报(社会科学版) J O U R N A LO FH I T (S O C I A LS C I E N C E S E D I T I O N )   V o l .10N o .6 N o v .,2008 收稿日期:2008-06-16 作者简介:王建一(1962-),男,黑龙江哈尔滨人,副教授,从事工程技术美学研究;汪俊琼(1985-),女,湖北武汉人,硕士研究 生,从事数字人工生命研究。 论分形艺术美的本质 王建一,汪俊琼 (哈尔滨工业大学媒体技术与艺术系,哈尔滨150001) 摘 要:分形艺术是基于分形几何理论所创建的一类奇特的新媒体艺术,是计算机技术在图形图像艺术领域的应用,富于视觉冲击力,具有非同寻常的美感。分形几何具有自相似和分数维两大重要特征,它们正是分形艺术美感的数学缘起。此外,分形艺术也是一门创造艺术,分形艺术家运用数学算法作为画笔来进行造型、色彩设计,这种艺术灵感的挥洒过程实现了美的创造。基于分形理论和数学方法创作的分形艺术,不仅象征了科学与艺术自然而完美的结合,更具有独特的美学意义。从美学角度来分析,分形艺术具有数学和谐、标度对称和奇异性等特点,在超越传统美学标准审美的同时形成其独特的审美感染力,而分形艺术这种活跃的生命力正是分形美的本质。 关键词:新媒体艺术;分形艺术;标度对称;奇异性 中图分类号:J 9 文献标志码:A 文章编号:1009-1971(2008)06-0046-06 分形是指具有自相似特征的图形图像或者 物理过程,而分形艺术是特指具有分形特性的艺术作品所形成的一种艺术门类,即分形艺术的审美主体是分形作品。分形艺术具有深厚的几何理论基础,强调标度变换下的不变性和分数维度,即具有自相似和分数维两大特性,这些特性使得分形长于表现自然的真实细腻和生命力的蓬勃延伸,所以,分形艺术能表现出传奇的和谐、亲近感及奇异性。分形艺术的与众不同还在于其创作方法和创作过程的独特,分形艺术家们将数学算法作为画笔来进行造型和构图设计,凝聚着的艺术灵感实现了美的创造。分形力是蕴涵于分形中的自然生命力的宣扬,它表征了一类新兴艺术的动态交流形态。 一、分形的自相似与分数维特征 美籍法国数学家曼德布罗特(B e n o i t B .M a n d e l b r o t )在研究复杂图形时,发现许多不规则的点集拥有一个共性,那就是粗糙性和自相似性,于是他提出了“F r a c t a l ”的概念,“F r a c t a l ”强调破碎与不规则,一般译作“分形”或者“碎 形” [1]58 。而今天谈论的“分形”即由此而来。曼 德布罗特在介绍分形时这样说过,云彩不是球体,山岭不是锥体,大自然界的很多图样是很不规则的,甚至是支离破碎的。它说明了分形在大自然中存在的普遍性。这种独特的分形思想最终指导曼德布罗特创立了分形几何。作为非欧几何中重要的一支,分形几何具有自相似和分维两大特征,它们也正是分形艺术区别与其他艺术的两大特色,最初这两大特点都是从几何学的角度提出的,其中,自相似特征正是分形的核心意义所在。 自相似是指一个对象的局部与局部或者局部与整体相似,如叶脉的无限分叉、俄罗斯套娃的无穷嵌套都具有自相似的特点。自相似性是分形理论的核心,是分形艺术最基本,也最根本的特征。根据曼德布罗特的研究,无论是对自然中的不规则结构进行模拟,还是将简单的形状进行无限次重复,这些过程都贯穿着自相似的基本观点,甚至可以说,分形就意味着自相似。美丽的科赫雪花(见图1)、谢宾斯基衬垫等图形(见图2)就是具有自相似特性的典型分形图形。不断放大科赫雪花图形的边缘,会出现无数个科赫雪花,可以发现每一个小局部中包含的细节并不

相关文档
最新文档