信号与系统的MATLAB仿真(燕庆明第四版配套)

信号与系统的MATLAB仿真(燕庆明第四版配套)
信号与系统的MATLAB仿真(燕庆明第四版配套)

信号与系统的MATLAB 仿真

一、信号生成与运算的实现

1.1 实现)3(sin )()(π±==

=t t

t

t S t f a )(sin )sin()sin(sin )()(t c t t t t t t t S t f a '='

'==

==πππ

π

ππ m11.m

t=-3*pi:0.01*pi:3*pi; % 定义时间范围向量t f=sinc(t/pi); % 计算Sa(t)函数 plot(t,f); % 绘制Sa(t)的波形 运行结果:

1.2 实现)10()

sin()(sin )(±==

=t t

t t c t f ππ m12.m

t=-10:0.01:10; % 定义时间范围向量t f=sinc(t); % 计算sinc(t)函数

plot(t,f); % 绘制sinc(t)的波形 运行结果:

1.3 信号相加:t t t f ππ20cos 18cos )(+=

m13.m

syms t; % 定义符号变量t

f=cos(18*pi*t)+cos(20*pi*t); % 计算符号函数f(t)=cos(18*pi*t)+cos(20*pi*t) ezplot(f,[0 pi]); % 绘制f(t)的波形 运行结果:

1.4 信号的调制:t t t f ππ50cos )4sin 22()(+=

m14.m

syms t; % 定义符号变量t

f=(2+2*sin(4*pi*t))*cos(50*pi*t) % 计算符号函数f(t)=(2+2*sin(4*pi*t))*cos(50*pi*t) ezplot(f,[0 pi]); % 绘制f(t)的波形 运行结果:

1.5 信号相乘:)20cos()(sin )(t t c t f π?=

m15.m

t=-5:0.01:5; % 定义时间范围向量

f=sinc(t).*cos(20*pi*t); % 计算函数f(t)=sinc(t)*cos(20*pi*t) plot(t,f); % 绘制f(t)的波形 title('sinc(t)*cos(20*pi*t)'); % 加注波形标题 运行结果:

二、系统时域的仿真分析

2.1 实现卷积)(*)(t h t f ,其中:)2()()()],1()([2)(--=--=t t t h t t t f εεεε m21.m

p=0.01; % 取样时间间隔 nf=0:p:1; % f(t)对应的时间向量 f=2*((nf>=0)-(nf>=1)); % 序列f(n)的值

nh=0:p:2; % h(t)对应的时间向量 h=(nh>=0)-(nh>=2); % 序列h(n)的值 [y,k]=sconv(f,h,nf,nh,p); % 计算y(t)=f(t)*h(t) subplot(3,1,1),stairs(nf,f); % 绘制f(t)的波形 title('f(t)');axis([0 3 0 2.1]);

subplot(3,1,2),stairs(nh,h); % 绘制h(t)的波形 title('h(t)');axis([0 3 0 1.1]);

subplot(3,1,3),plot(k,y); % 绘制y(t)=f(t)*h(t)的波形 title('y(t)=f(t)*h(t)');axis([0 3 0 2.1]);

子程序 sconv.m

% 此函数用于计算连续信号的卷积y(t)=f(t)*h(t) function [y,k]=sconv(f,h,nf,nh,p)

% y:卷积积分y(t)对应的非零样值向量 % k:y(t)对应的时间向量 % f:f(t)对应的非零样值向量 % nf:f(t)对应的时间向量 % h:h(t)对应的非零样值向量 % nh:h(t)对应的时间向量 % p:取样时间间隔

y=conv(f,h); % 计算序列f(n)与h(n)的卷积和y(n) y=y*p; % y(n)变成y(t)

left=nf(1)+nh(1) % 计算序列y(n)非零样值的起点位置 right=length(nf)+length(nh)-2 % 计算序列y(n)非零样值的终点位置 k=p*(left:right); % 确定卷积和y(n)非零样值的时间向量 运行结果:

2.2 实现卷积)(*)(t h t f ,其中:)()()],2()([2)(t e t h t t t f t εεε-=--= m22.m

p=0.01; % 取样时间间隔 nf=0:p:2; % f(t)对应的时间向量 f=2*((nf>=0)-(nf>=2)); % 序列f(n)的值

nh=0:p:4; % h(t)对应的时间向量 h=exp(-nh); % 序列h(n)的值 [y,k]=sconv(f,h,nf,nh,p); % 计算y(t)=f(t)*h(t) subplot(3,1,1),stairs(nf,f); % 绘制f(t)的波形 title('f(t)');axis([0 6 0 2.1]);

subplot(3,1,2),plot(nh,h); % 绘制h(t)的波形 title('h(t)');axis([0 6 0 1.1]);

subplot(3,1,3),plot(k,y); % 绘制y(t)=f(t)*h(t)的波形 title('y(t)=f(t)*h(t)');axis([0 6 0 2.1]);运行结果:

2.3 设方程 )(2)(6)(5)('''t e t y t y t y t ε-=++,试求零状态响应)(t y m2

3.m :

yzs=dsolve('D2y+5*Dy+6*y=2*exp(-t)','y(0)=0,Dy(0)=0') ezplot(yzs,[0 8]); 运行结果:

yzs =exp(-t)+exp(-3*t)-2*exp(-2*t) 即:)()2()(32t e e e t y t t t ε---+-=

2.4 已知二阶系统方程)(1)(1)()(''

't LC

t u LC t u L R t u c c δ=++

对下列情况分别求)(t h ,并画出其波形。 a. F C H L R 3/1,1,4==Ω= b. F C H L R 1,1,2==Ω= c. F C H L R 1,1,1==Ω=

d. F C H L R 1,1,0==Ω=

m24.m:

R=input('电阻R='); % 以交互方式输入电阻R 的值 L=input('电感L='); % 以交互方式输入电阻L 的值 C=input('电容C='); % 以交互方式输入电阻C 的值 b=[1/(L*C)];

a=[1 R/L 1/(L*C)]; impulse(b,a); 运行结果:

a. 电阻R=4 电感L=1 电容C=1/3

b. 电阻R=2 电感L=1 电容C=1

c. 电阻R=1 电感L=1 电容C=1

d. 电阻R=0 电感L=1 电容C=1

三、频域仿真分析

3.1 如图所示周期矩形脉冲,试求其幅度谱。

-0.50.5t

043.5 4.5

-4-4.5-3.5

m31.m : clear all

syms t n T tao A T=4;A=1;tao=1;

f=A*exp(-j*n*2*pi/T*t);

fn=int(f,t,-tao/2,tao/2)/T; % 计算傅立叶系数 fn=simple(fn); % 化简

n=[-20:-1,eps,1:20]; % 给定频谱的整数自变量,eps 代表0 fn=subs(fn,n,'n'); % 计算傅立叶系数对应各个n 的值 subplot(2,1,1),stem(n,fn,'filled'); % 绘制频谱

line([-20 20],[0 0]); % 在图形中添加坐标线 title('周期矩形脉冲的频谱');

subplot(2,1,2),stem(n,abs(fn),'filled'); % 绘制频谱 title('周期矩形脉冲的幅度谱'); axis([-20 20 0 0.3]); 运行结果:

3.2 如图所示三角波信号,即:22,2

1)(≤≤--

=t t t f ,试求其频谱)(ωF

t

-2

2

m32.m :

syms t w f ft; % 定义符号变量 f=(1-(abs(t)/2)); % 三角波信号

ft=f*exp(-j*w*t); % 计算被积函数 F=int(ft,t,-2,2); % 计算傅立叶变换F(w) F=simple(F);F % 化简

subplot(2,1,1),ezplot(f,[-2 2]); % 绘制三角波信号 axis([-3 3 0 1.1]);title('三角波信号');

subplot(2,1,2),ezplot(abs(F),[-8:0.01:8]); % 绘制三角波信号的频谱 title('三角波信号的频谱'); 运行结果:

F =-(cos(2*w)-1)/w^2 即:)(2)

(sin 2)

2cos(1)(2

2

22

ωωωωωωa S F ==

-=

3.3 二阶低通滤波器特性为:???

?

??+???? ??-=

2

111

)(ωωωωωQ j H

即:2

02

0111

)(?

??? ??+??

???????? ??-=

ωωωωωQ H 和??????

?

?????? ??--=2

00

11arctan )(ωωωω

ω?Q 令2

1=

Q 和1时,分别求幅频特性和相频特性。

m33.m

Q=input('输入Q='); % 以交互方式输入Q normalizedw=linspace(0.1,10,100);

H=1./(1-normalizedw.^2+j*normalizedw/Q); % 二阶低通滤波器的频率特性表达式 subplot(1,2,1),plot(normalizedw,abs(H)); % 绘制幅频特性曲线 title('幅频特性曲线');grid

subplot(1,2,2),plot(normalizedw,angle(H)); % 绘制相频特性曲线 title('相频特性曲线');grid 运行结果: 输入

Q=1/sqrt(2)

输入

Q=1

3.4 三阶低通滤波器特性为:1

)(2)(3)(1

)(2

3+++=

ωωωωj j j H a. 求幅频特性)(ωH 和相频特性)(ω?

b. 求该系统的冲激响应)(t h

m34a.m : w=0:0.01:5;

H=1./((j*w).^3+3*(j*w).^2+2*j*w+1); % 三阶低通滤波器的频率特性表达式 subplot(1,2,1),plot(w,abs(H)); % 绘制幅频特性曲线 title('幅频特性曲线');grid;axis tight;

subplot(1,2,2),plot(w,angle(H)); % 绘制相频特性曲线 title('相频特性曲线');grid;axis tight; 运行结果:

m34b.m :

b=[1]; % 分子多项式系数 a=[1 3 2 1]; % 分母多项式系数 impulse(b,a); % 冲激响应h(t) 运行结果:

3.5 脉冲采样的实现)()()(t p t S t f a ?=

其中)(t p 的波形如下:

-0.20.20.40.81 1.4

-0.4-0.8-1-1.4t

m35.m

t=-3*pi:0.01:3*pi; % 定义时间范围向量 s=sinc(t/pi); % 计算Sa(t)函数 subplot(3,1,1),plot(t,s); % 绘制Sa(t)的波形

p=zeros(1,length(t)); % 预定义p(t)的初始值为0 for i=16:-1:-16

p=p+rectpuls(t+0.6*i,0.4); % 利用矩形脉冲函数rectpuls 的平移来产生宽度为0.4,幅度为1的矩形脉冲序列p(t) end

subplot(3,1,2),stairs(t,p); % 用阶梯图形表示矩形脉冲 axis([-10 10 0 1.2]); f=s.*p;

subplot(3,1,3),plot(t,f); % 绘制f(t)=Sa(t)*p(t)的波形 运行结果:

3.6 分析如图所示三角信号的采样过程

)(t

T

δ

)(t

y

f(t)

-0.50.5-Ts Ts

0t

Ts=0.2s

||2

1

)(t

t

f-

=

a. 画出)(t

f的频谱图)

F

b. 画出)(1t

y的频谱图)

(

1

ω

Y

c. 画出)(t

y的频谱图)

Y

m36.m:

syms t w f; % 定义符号变量

f=(1-2*abs(t))*exp(-j*w*t); % 计算被积函数

F=int(f,t,-1/2,1/2); % 计算傅立叶系数F(w)

F=simple(F);F % 化简

subplot(3,1,1), % 绘制三角波的幅频特性曲线F(w)

low=-26*pi;high=-low; % 设置w的上界和下界

ezplot(abs(F),[low:0.01:high]);

axis([low high -0.1 0.5]); xlabel('');

title('三角波的频谱');

subplot(3,1,2), % 绘制经过截止频率为4*pi低通滤波器后的频谱Y1(w) ezplot(abs(F),[-4*pi:0.01:4*pi]);

axis([low high -0.1 0.5]); xlabel('');

title('低通滤波后的频谱');

% 采样信号的频谱是原信号频谱的周期延拓,延拓周期为(2*pi)/Ts

% 利用频移特性F[f(t)*exp(-j*w0*t)]=F(w+w0)来实现

subplot(3,1,3); % 绘制采样后的频谱Y(w)

Ts=0.2; % 采样信号的周期

w0=(2*pi)/Ts; % 延拓周期10*pi

for k=-2:2

ft=f*exp(-j*w0*k*t);

FT=int(ft,t,-1/2,1/2);

ezplot((1/Ts)*abs(FT),[(-4*pi-k*w0):0.01:(4*pi-k*w0)]);

hold on

end

axis([low high -0.1 2.5]); xlabel(''); title('采样后的频谱'); 运行结果:

F =-4*(cos(1/2*w)-1)/w^2

即:)4(21))

21

cos(1(4)(22

ωωωωa S F =-=

四、复频域仿真分析

4.1 部分分式展开:s

s s s s F 521

2)(2

3+++= m41.m b=[2 1]; a=[1 2 5 0];

[r p k]=residue(b,a) 运行结果: r =

-0.1000 - 0.4500i -0.1000 + 0.4500i 0.2000 p =

-1.0000 + 2.0000i -1.0000 - 2.0000i 0 k =[ ] 故 s

j s j j s j s F 2

.0)21(45.01.0)21(45.01.0)(+---+-++----=

4.2 求拉氏变换 a. t e t f t ωcos )(-=

b. )(3)(2t e t f t

ε-=

m42.m

syms t w % 指定t 和W 为符号变量 fat=exp(-t)*cos(w*t); fbt=3*exp(-2*t); fas=laplace(fat) fbs=laplace(fbt) 运行结果:

fas =(s+1)/((s+1)^2+w^2) fbs =3/(s+2) 即:

2

2)1(1

)(ω

+++=

s s s F a ,23)(+=s s F b 4.3 求拉氏反变换

a. 10712)(2+++=s s s s F

b. 2

3)(22

++=s s s s F

m43.m

syms s % 指定s 为符号变量 fas=(2*s+1)/(s^2+7*s+10); fbs=s^2/(s^2+3*s+2); fat=ilaplace(fas)

fbt=ilaplace(fbs) 运行结果:

fat =3*exp(-5*t)-exp(-2*t)

fbt =Dirac(t)-4*exp(-2*t)+exp(-t) 即:

)()3()(25t e t e t f t a ε---= )()4()()(2t e e t t f t t b εδ--+-+=

4.4 零极点分析 a. 5

42

)(2

+++=

s s s s H ,求零极点并画出零极点图,并求阶跃响应)(t s 和冲击响应)(t h m44a.m

b=[1 2]; % 系统函数分子多项式系数 a=[1 4 5]; % 系统函数分母多项式系数 sys=tf(b,a); % 传递函数 H(s) subplot(1,3,1),pzmap(sys); % 绘制零极点图 subplot(1,3,2),step(b,a); % 阶跃响应s(t) subplot(1,3,3),impulse(b,a); % 冲激响应h(t) 运行结果:

注:将鼠标移到零极点上即能显示其位置坐标。 b. 1

232

)(23++++=

s s s s s H ,求)(s H 的零极点分布。

m44b.m

b=[1 2]; % 系统函数分子多项式系数 a=[1 3 2 1]; % 系统函数分母多项式系数 sys=tf(b,a); % 传递函数 H(s) pzmap(sys); % 绘制零极点图 运行结果:

4.5 一简单的带阻二阶系统,已知Ω=50R ,pF C 470=,H L μ50=

+

_

+

_

u 2

a. 画出零极点图

b. 画出幅频特性和相频特性(对数)

其中:Ω=50R ,pF C 470=,H L μ50=

系统函数:C

j L j R C

j L j H ωωωωω1

1)(+

++

= (中心频率M H Z f 10≈)

即:2211)(??

? ??-+-

=

C L R C

L H ωωωωω 和?????

? ??--=C L R ωωπω?1arctan

2)( m45.m :

R=50; % 电阻R=50 L=50*(10^-6); % 电感L=50uH C=470*(10^-12); % 电容C=470pF b=[L*C 0 1]; % 分母多项式系数 a=[L*C R*C 1]; % 分子多项式系数 sys=tf(b,a); % 传递函数 H(s) subplot(1,2,1),pzmap(sys); % 绘制零极点图

subplot(1,2,2),bode(b,a); % 绘制对数幅频特性和对数相频特性曲线 运行结果:

4.6某导弹自动跟踪系统框图如图所示,

其系统函数:

1

.98741.119714.351

.987.1195.34)(2

32+++++=s s s s s s H 试求其阶跃响应)(t s 。

m46.m :

b=[34.5 119.7 98.1]; % 系统函数分母多项式系数 a=[1 35.714 119.741 98.1]; % 系统函数分子多项式系数 step(b,a); % 阶跃响应s(t)

4.7 某卫星角度跟踪天线控制系统的系统函数为:

13750

1340022681742013750

)(234++++=

s s s s s H

试画出其零极点图,并求其冲激响应)(t h 。

m47m :

b=[13750]; % 系统函数分母多项式系数 a=[20 174 2268 13400 13750]; % 系统函数分子多项式系数 sys=tf(b,a); % 传递函数 H(s) subplot(1,2,1),pzmap(sys); % 绘制零极点图 subplot(1,2,2),impulse(b,a); % 冲激响应h(t)

五、离散系统时域仿真

5.1 已知差分方程 )()2(8.0)1()(n f n y n y n y =-+-- ① 当)(5.0)(n n f n ε=时,求零状态响应)(n y ; ② 当)()(n n f δ=时,求单位响应)(n h m51.m :

b=[1];a=[1 -1 0.8]; % 差分方程的系数 n=0:15; % 序列的个数 fn=0.5.^n; % 输入序列 y1=filter(b,a,fn); % 零状态响应 y2=impz(b,a,16); % 单位响应

subplot(1,2,1),stem(n,y1,'filled');title('零状态响应');grid on subplot(1,2,2),stem(n,y2,'filled');title('单位响应');grid on 运行结果:

5.2 求卷积和:若)5(8

.0)(5

-=-n n f n ε,到30=n ,)()(10n R n h =,求)(*)()(n h n f n y =

m52.m :

nf=5:30;Nf=length(nf); % 确定f(n)的序号向量和区间长度 f=0.8.^(nf-5); % 确定f(n)序列值

nh=0:9;Nh=length(nh); % 确定h(n)的序号向量和区间长度 h=ones(1,Nh);; % 确定h(n)序列值 left=nf(1)+nh(1); % 确定卷积序列的起点 right=nf(Nf)+nh(Nh); % 确定卷积序列的终点 y=conv(f,h); % 计算f(n)和x(n)的卷积 subplot(3,1,1),stem(nf,f,'filled'); % 绘制f(n)的图形 axis([0 40 0 1]);

subplot(3,1,2),stem(nh,h,'filled'); % 绘制x(n)的图形 axis([0 40 0 1.1]);

subplot(3,1,3),stem(left:right,y,'filled'); % 绘制y(n)的图形 axis([0 40 0 5]); 运行结果:

信号与系统matlab实验及答案

产生离散衰减正弦序列()π0.8sin 4n x n n ?? = ??? , 010n ≤≤,并画出其波形图。 n=0:10; x=sin(pi/4*n).*0.8.^n; stem(n,x);xlabel( 'n' );ylabel( 'x(n)' ); 用MATLAB 生成信号()0sinc at t -, a 和0t 都是实数,410t -<<,画波形图。观察并分析a 和0t 的变化对波形的影响。 t=linspace(-4,7); a=1;

t0=2; y=sinc(a*t-t0); plot(t,y); t=linspace(-4,7); a=2; t0=2; y=sinc(a*t-t0); plot(t,y);

t=linspace(-4,7); a=1; t0=2; y=sinc(a*t-t0); plot(t,y);

三组对比可得a 越大最大值越小,t0越大图像对称轴越往右移 某频率为f 的正弦波可表示为()()cos 2πa x t ft =,对其进行等间隔抽样,得到的离散样值序列可表示为()()a t nT x n x t ==,其中T 称为抽样间隔,代表相邻样值间的时间间隔,1 s f T = 表示抽样频率,即单位时间内抽取样值的个数。抽样频率取40 Hz s f =,信号频率f 分别取5Hz, 10Hz, 20Hz 和30Hz 。请在同一张图中同时画出连续信号()a x t t 和序列()x n nT 的波形图,并观察和对比分析样值序列的变化。可能用到的函数为plot, stem, hold on 。 fs = 40; t = 0 : 1/fs : 1 ; % ?μ?ê·?±e?a5Hz,10Hz,20Hz,30Hz f1=5; xa = cos(2*pi*f1*t) ; subplot(1, 2, 1) ;

信号与系统期末考试试题(有答案的)

信号与系统期末考试试题 一、选择题(共10题,每题3分 ,共30分,每题给出四个答案,其中只有一个正确的) 1、 卷积f 1(k+5)*f 2(k-3) 等于 。 (A )f 1(k)*f 2(k) (B )f 1(k)*f 2(k-8)(C )f 1(k)*f 2(k+8)(D )f 1(k+3)*f 2(k-3) 2、 积分 dt t t ? ∞ ∞ --+)21()2(δ等于 。 (A )1.25(B )2.5(C )3(D )5 3、 序列f(k)=-u(-k)的z 变换等于 。 (A ) 1-z z (B )-1-z z (C )11-z (D )1 1--z 4、 若y(t)=f(t)*h(t),则f(2t)*h(2t)等于 。 (A ) )2(41t y (B ))2(21t y (C ))4(41t y (D ))4(2 1 t y 5、 已知一个线性时不变系统的阶跃相应g(t)=2e -2t u(t)+)(t δ,当输入f(t)=3e —t u(t)时,系 统的零状态响应y f (t)等于 (A )(-9e -t +12e -2t )u(t) (B )(3-9e -t +12e -2t )u(t) (C ))(t δ+(-6e -t +8e -2t )u(t) (D )3)(t δ +(-9e -t +12e -2t )u(t) 6、 连续周期信号的频谱具有 (A ) 连续性、周期性 (B )连续性、收敛性 (C )离散性、周期性 (D )离散性、收敛性 7、 周期序列2)455.1(0 +k COS π的 周期N 等于 (A ) 1(B )2(C )3(D )4 8、序列和 ()∑∞ -∞ =-k k 1δ等于 (A )1 (B) ∞ (C) ()1-k u (D) ()1-k ku 9、单边拉普拉斯变换()s e s s s F 22 12-+= 的愿函数等于 ()()t tu A ()()2-t tu B ()()()t u t C 2- ()()()22--t u t D 10、信号()()23-=-t u te t f t 的单边拉氏变换()s F 等于 ()A ()()()232372+++-s e s s ()() 2 23+-s e B s

基于MATLAB的GMSK调制与解调课设报告

基于Matlab的GMSK调制与解调 1.课程设计目的 (1)加深对GMSK基本理论知识的理解。 (2)培养独立开展科研的能力和编程能力。 (3)通过SIMULINK对BT=0.3的GMSK调制系统进行仿真。 2.课程设计要求 (1)观察基带信号和解调信号波形。 (2)观察已调信号频谱图。 (3)分析调制性能和BT参数的关系。 3.相关知识 3.1GMSK调制 调制原理图如图2.2,图中滤波器是高斯低通滤波器,它的输出直接对VCO 进行调制,以保持已调包络恒定和相位连续。 非归零数字序 高斯低通滤 波器频率调制器 (VCO) GMSK已 调信号 图3.1GMSK调制原理图 为了使输出频谱密集,前段滤波器必须具有以下待性: 1.窄带和尖锐的截止特性,以抑制FM调制器输入信号中的高频分量; 2.脉冲响应过冲量小,以防止FM调制器瞬时频偏过大; 3.保持滤波器输出脉冲响应曲线下的面积对应丁pi/2的相移。以使调制指数为1/2。前置滤波器以高斯型最能满足上述条件,这也是高斯滤波器最小移频键控(GMSK)的由来。

GMSK 信号数据 3.2GMSK 解调 GMSK 本是MSK 的一种,而MSK 又是是FSK 的一种,因此,GMSK 检波也可以采用FSK 检波器,即包络检波及同步检波。而GMSK 还可以采用时延检波,但每种检波器的误码率不同。 GMSK 非相干解调原理图如图2.3,图中是采用FM 鉴频器(斜率鉴频器或相位鉴频器)再加判别电路,实现GMSK 数据的解调输出。 图3.2GMSK 解调原理图 4.课程设计分析 4.1信号发生模块 因为GMSK 信号只需满足非归零数字信号即可,本设计中选用(Bernoulli Binary Generator)来产生一个二进制序列作为输入信号。 图4.1GMSK 信号产生器 该模块的参数设计这只主要包括以下几个。其中probability of a zero 设置为0.5表示产生的二进制序列中0出现的概率为0.5;Initial seed 为61表示随机数种子为61;sample time 为1/1000表示抽样时间即每个符号的持续时为0.001s。当仿真时间固定时,可以通过改变sample time 参数来改变码元个数。例如仿真时间为10s,若sample time 为1/1000,则码元个数为10000。 带通滤 波器限幅器判决器鉴频器GMSK 信号 输出

信号与系统习题答案

《信号与系统》复习题 1. 已知f(t)如图所示,求f(-3t-2)。 2. 已知f(t),为求f(t0-at),应按下列哪种运算求得正确结果?(t0和a 都为正值) 3.已知f(5-2t)的波形如图,试画出f(t)的波形。 解题思路:f(5-2t)?????→?=倍 展宽乘22/1a f(5-2×2t)= f(5-t) ??→?反转f(5+t)??→?5 右移 f(5+t-5)= f(t) 4.计算下列函数值。 (1) dt t t u t t )2(0 0--?+∞ ∞-) (δ (2) dt t t u t t )2(0 --?+∞ ∞-) (δ (3) dt t t e t ?+∞ ∞ --++)(2)(δ

5.已知离散系统框图,写出差分方程。 解:2个延迟单元为二阶系统,设左边延迟单元输入为x(k) 左○ ∑:x(k)=f(k)-a 0*x(k-2)- a 1*x(k-1)→ x(k)+ a 1*x(k-1)+ a 0*x(k-2)=f(k) (1) 右○ ∑: y(k)= b 2*x(k)- b 0*x(k-2) (2) 为消去x(k),将y(k)按(1)式移位。 a 1*y(k-1)= b 2* a 1*x(k-1)+ b 0* a 1*x(k-3) (3) a 0*y(k-2)= b 2* a 0*x(k-2)-b 0* a 0*x(k-4) (4) (2)、(3)、(4)三式相加:y(k)+ a 1*y(k-1)+ a 0*y(k-2)= b 2*[x(k)+ a 1*x(k-1)+a 0*x(k-2)]- b 0*[x(k-2)+a 1*x(k-3)+a 0*x(k-4)] ∴ y(k)+ a 1*y(k-1)+ a 0*y(k-2)= b 2*f(k)- b 0*f(k-2)═>差分方程 6.绘出下列系统的仿真框图。 )()()()()(10012 2t e dt d b t e b t r a t r dt d a t r dt d +=++ 7.判断下列系统是否为线性系统。 (2) 8.求下列微分方程描述的系统冲激响应和阶跃响应。 )(2)(3)(t e dt d t r t r dt d =+

Matlab通信系统仿真实验报告

Matlab通信原理仿真 学号: 2142402 姓名:圣斌

实验一Matlab 基本语法与信号系统分析 一、实验目的: 1、掌握MATLAB的基本绘图方法; 2、实现绘制复指数信号的时域波形。 二、实验设备与软件环境: 1、实验设备:计算机 2、软件环境:MATLAB R2009a 三、实验内容: 1、MATLAB为用户提供了结果可视化功能,只要在命令行窗口输入相应的命令,结果就会用图形直接表示出来。 MATLAB程序如下: x = -pi::pi; y1 = sin(x); y2 = cos(x); %准备绘图数据 figure(1); %打开图形窗口 subplot(2,1,1); %确定第一幅图绘图窗口 plot(x,y1); %以x,y1绘图 title('plot(x,y1)'); %为第一幅图取名为’plot(x,y1)’ grid on; %为第一幅图绘制网格线 subplot(2,1,2) %确定第二幅图绘图窗口 plot(x,y2); %以x,y2绘图 xlabel('time'),ylabel('y') %第二幅图横坐标为’time’,纵坐标为’y’运行结果如下图: 2、上例中的图形使用的是默认的颜色和线型,MATLAB中提供了多种颜色和线型,并且可以绘制出脉冲图、误差条形图等多种形式图: MATLAB程序如下: x=-pi:.1:pi; y1=sin (x); y2=cos (x); figure (1); %subplot (2,1,1); plot (x,y1); title ('plot (x,y1)'); grid on %subplot (2,1,2); plot (x,y2);

信号与系统 matlab答案

M2-3 (1) function yt=x(t) yt=(t).*(t>=0&t<=2)+2*(t>=2&t<=3)-1*(t>=3&t<=5); (2)function yt=x (t) yt=(t).*(t>=0&t<=2)+2*(t>=2&t<=3)-1*(t>=3&t<=5); t=0:0.001:6; subplot(3,1,1) plot(t,x2_3(t)) title('x(t)') axis([0,6,-2,3]) subplot(3,1,2) plot(t,x2_3(0.5*t)) title('x(0.5t)') axis([0,11,-2,3]) subplot(3,1,3) plot(t,x2_3(2-0.5*t)) title('x(2-0.5t)') axis([-6,5,-2,3]) 图像为:

M2-5 (3) function y=un(k) y=(k>=0) untiled3.m k=[-2:10] xk=10*(0.5).^k.*un(k); stem(k,xk) title('x[k]') axis([-3,12,0,11])

M2-5 (6) k=[-10:10] xk=5*(0.8).^k.*cos((0.9)*pi*k) stem(k,xk) title('x[k]') grid on M2-7 A=1; t=-5:0.001:5; w0=6*pi; xt=A*cos(w0*t); plot(t,xt) hold on A=1; k=-5:5; w0=6*pi; xk=A*cos(w0*0.1*k); stem(k,xk) axis([-5.5,5.5,-1.2,1.2]) title('x1=cos(6*pi*t)&x1[k]')

基于matlab的通信信道及眼图的仿真 通信原理课程设计

通信原理课程设计 基于matlab的通信信道及眼图的仿真 作者: 摘要 由于多径效应和移动台运动等影响因素,使得移动信道对传输信号在时间、频率和角度上造成了色散,即时间色散、频率色散、角度色散等等,因此多径信道的特性对通信质量有着重要的影响,而多径信道的包络统计特性则是我们研究的焦点。根据不同无线环境,接收信号包络一般服从几种典型分布,如瑞利分布、莱斯分布等。因此我们对瑞利信道、莱斯信道进行了仿真并针对服从瑞利分布的多径信道进行模拟仿真。由于眼图是实验室中常用的一种评价基带传输系统的一种定性而方便的方法,“眼睛”的张开程度可以作为基带传输系统性能的一种度量,它不但反映串扰的大小,而且也可以反映信道噪声的影响。为此,我们在matlab上进行了仿真,加深对眼图的理解。 关键词:瑞利信道莱斯信道多径效应眼图 一、瑞利信道 在移动通信系统中,发射端和接收端都可能处于不停的运动状态之中,这种相对运动将产生多普勒频移。在多径信道中,发射端发出的信号通过多条路径到达接收端,这些路径具有不同的延迟和接收强度,它们之间的相互作用就形成了衰落。MATLAB中的多径瑞利衰落信道模块可以用于上述条件下的信道仿真。 多径瑞利衰落信道模块用于多径瑞利衰落信道的基带仿真,该模块的输入信号为复信号,可以为离散信号或基于帧结构的列向量信号。无线系统中接收机与发射机之间的相对运动将引起信号频率的多普勒频移,多普勒频移值由下式决定: 其中v是发射端与接收端的相对速度,θ是相对速度与二者连线的夹角,λ是信号的波长。

Fd的值可以在该模块的多普勒平移项中设置。由于多径信道反映了信号在多条路径中的传输,传输的信号经过不同的路径到达接收端,因此产生了不同的时间延迟。当信号沿着不同路径传输并相互干扰时,就会产生多径衰落现象。在模块的参数设置表中,Delay vector(延迟向量)项中,可以为每条传输路径设置不同的延迟。如果激活模块中的Normalize gain vector to 0 dB overall gain,则表示将所有路径接收信号之和定为0分贝。信号通过的路径的数量和Delay vector(延迟向量)或Gain vector(增益向量)的长度对应。Sample time(采样时间)项为采样周期。离散的Initial seed(初始化种子)参数用于设置随机数的产生。 1.1、Multipath Rayleigh Fading Channel(多径瑞利衰落信道)模块的主要参数 参数名称参数值 Doppler frequency(Hz) 40/60/80 Sample time 1e-6 Delay vector(s) [0 1e-6] Gain vector(dB) [0 -6] Initial seed 12345 使能 Normalize gain vector to 0 dB overall gain Bernoulli Random Binary Generator(伯努利二进制随机数产生器)的主要参数 参数名称参数值 Probability of a zero0.5 Initial seed54321

matlab信号与系统代码整理

连续时间系统 (1) 离散时间系统 (2) 拉普拉斯变换 (4) Z变换 (5) 傅里叶 (7) 连续时间系统 %%%%%%%%%%向量法%%%%%%%%%%%%%%%% t1=-2:0.01:5; f1=4*sin(2*pi*t1-pi/4); figure(1) subplot(2,2,1),plot(t1,f1),grid on %%%%%%%%%符号运算法%%%%%%%%%%%% syms t f1=sym('4*sin(2*pi*t-pi/4)'); figure(2) subplot(2,2,1),ezplot(f1,[-2 5])跟plot相比,ezplot不用指定t,自动生成。axis([-5,5,-0.1,1])控制坐标轴的范围xx,yy; 求一个函数的各种响应 Y’’(t)+4y’(t)+2y(t)=f”(t)+3f(t) %P187 第一题 %(2) clear all; a1=[1 4 2]; b1=[1 0 3]; [A1,B1,C1,D1]=tf2ss(b1,a1); t1=0:0.01:10; x1=exp(-t1).*Heaviside(t1); rc1=[2 1];(起始条件) figure(1) subplot(3,1,1),initial(A1,B1,C1,D1,rc1,t1);title('零输入响应') subplot(3,1,2),lsim(A1,B1,C1,D1,x1,t1);title('零状态响应') subplot(3,1,3),lsim(A1,B1,C1,D1,x1,t1,rc1);title('全响应') Y=lsim(A1,B1,C1,D1,x1,t1,rc1);title('全响应')则是输出数值解 subplot(2,1,1),impulse(b1,a1,t1:t:t2可加),grid on,title('冲激响应') subplot(2,1,2),step(b1,a1,t1:t:t2可加),grid on,title('阶跃响应') 卷积 %第九题 P189 clear all; %(1) t1=-1:0.01:3;

信号与系统试题附答案

信科0801《信号与系统》复习参考练习题一、单项选择题:

14、已知连续时间信号,) 2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度为() A .400rad /s B 。200 rad /s C 。100 rad /s D 。50 rad /s

f如下图(a)所示,其反转右移的信号f1(t) 是() 15、已知信号)(t f如下图所示,其表达式是() 16、已知信号)(1t A、ε(t)+2ε(t-2)-ε(t-3) B、ε(t-1)+ε(t-2)-2ε(t-3) C、ε(t)+ε(t-2)-ε(t-3) D、ε(t-1)+ε(t-2)-ε(t-3) 17、如图所示:f(t)为原始信号,f1(t)为变换信号,则f1(t)的表达式是() A、f(-t+1) B、f(t+1) C、f(-2t+1) D、f(-t/2+1)

18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( ) 19。信号)2(4sin 3)2(4cos 2)(++-=t t t f π π 与冲激函数)2(-t δ之积为( ) A 、2 B 、2)2(-t δ C 、3)2(-t δ D 、5)2(-t δ ,则该系统是()>-系统的系统函数.已知2]Re[,6 51)(LTI 202s s s s s H +++= A 、因果不稳定系统 B 、非因果稳定系统 C 、因果稳定系统 D 、非因果不稳定系统 21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( ) A 、常数 B 、 实数 C 、复数 D 、实数+复数 22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( ) A 、阶跃信号 B 、正弦信号 C 、冲激信号 D 、斜升信号

MATLAB通信系统仿真实验报告1

MATLAB通信系统仿真实验报告

实验一、MATLAB的基本使用与数学运算 目的:学习MATLAB的基本操作,实现简单的数学运算程序。 内容: 1-1要求在闭区间[0,2π]上产生具有10个等间距采样点的一维数组。试用两种不同的指令实现。 运行代码:x=[0:2*pi/9:2*pi] 运行结果: 1-2用M文件建立大矩阵x x=[0.10.20.30.40.50.60.70.80.9 1.11.21.31.41.51.61.71.81.9 2.12.22.32.42.52.62.72.82.9 3.13.23.33.43.53.63.73.83.9] 代码:x=[0.10.20.30.40.50.60.70.80.9 1.11.21.31.41.51.61.71.81.9 2.12.22.32.42.52.62.72.82.9 3.13.23.33.43.53.63.73.83.9] m_mat 运行结果: 1-3已知A=[5,6;7,8],B=[9,10;11,12],试用MATLAB分别计算 A+B,A*B,A.*B,A^3,A.^3,A/B,A\B. 代码:A=[56;78]B=[910;1112]x1=A+B X2=A-B X3=A*B X4=A.*B X5=A^3 X6=A.^3X7=A/B X8=A\B

运行结果: 1-4任意建立矩阵A,然后找出在[10,20]区间的元素位置。 程序代码及运行结果: 代码:A=[1252221417;111024030;552315865]c=A>=10&A<=20运行结果: 1-5总结:实验过程中,因为对软件太过生疏遇到了些许困难,不过最后通过查书与同学交流都解决了。例如第二题中,将文件保存在了D盘,而导致频频出错,最后发现必须保存在MATLAB文件之下才可以。第四题中,逻辑语言运用到了ij,也出现问题,虽然自己纠正了问题,却也不明白错在哪了,在老师的讲解下知道位置定位上不能用ij而应该用具体的整数。总之第一节实验收获颇多。

信号与系统MATLAB实验

《信号与系统及MATLAB实现》实验指导书

前言 长期以来,《信号与系统》课程一直采用单一理论教学方式,同学们依靠做习题来巩固和理解教学内容,虽然手工演算训练了计算能力和思维方法,但是由于本课程数学公式推导较多,概念抽象,常需画各种波形,作题时难免花费很多时间,现在,我们给同学们介绍一种国际上公认的优秀科技应用软件MATLAB,借助它我们可以在电脑上轻松地完成许多习题的演算和波形的绘制。 MATLAB的功能非常强大,我们此处仅用到它的一部分,在后续课程中我们还会用到它,在未来地科学研究和工程设计中有可能继续用它,所以有兴趣的同学,可以对MATLAB 再多了解一些。 MATLAB究竟有那些特点呢? 1.高效的数值计算和符号计算功能,使我们从繁杂的数学运算分析中解脱出来; 2.完备的图形处理功能,实现计算结果和编程的可视化; 3.友好的用户界面及接近数学表达式的自然化语言,易于学习和掌握; 4.功能丰富的应用工具箱,为我们提供了大量方便实用的处理工具; MATLAB的这些特点,深受大家欢迎,由于个人电脑地普及,目前许多学校已将它做为本科生必须掌握的一种软件。正是基于这些背景,我们编写了这本《信号与系统及MATLAB实现》指导书,内容包括信号的MATLAB表示、基本运算、系统的时域分析、频域分析、S域分析、状态变量分析等。通过这些练习,同学们在学习《信号与系统》的同时,掌握MATLAB的基本应用,学会应用MATLAB的数值计算和符号计算功能,摆脱烦琐的数学运算,从而更注重于信号与系统的基本分析方法和应用的理解与思考,将课程的重点、

难点及部分习题用MATLAB进行形象、直观的可视化计算机模拟与仿真实现,加深对信号与系统的基本原理、方法及应用的理解,为学习后续课程打好基础。另外同学们在进行实验时,最好事先预习一些MATLAB的有关知识,以便更好地完成实验,同时实验中也可利用MATLAB的help命令了解具体语句以及指令的使用方法。 实验一基本信号在MATLAB中的表示和运算 一、实验目的 1.学会用MATLAB表示常用连续信号的方法; 2.学会用MATLAB进行信号基本运算的方法; 二、实验原理 1.连续信号的MATLAB表示 MATLAB提供了大量的生成基本信号的函数,例如指数信号、正余弦信号。 表示连续时间信号有两种方法,一是数值法,二是符号法。数值法是定义某一时间范围和取样时间间隔,然后调用该函数计算这些点的函数值,得到两组数值矢量,可用绘图语句画出其波形;符号法是利用MATLAB的符号运算功能,需定义符号变量和符号函数,运算结果是符号表达的解析式,也可用绘图语句画出其波形图。 例1-1指数信号指数信号在MATLAB中用exp函数表示。 如at )(,调用格式为ft=A*exp(a*t) 程序是 f t Ae

(完整版)信号与系统习题答案.docx

《信号与系统》复习题 1.已知 f(t) 如图所示,求f(-3t-2) 。 2.已知 f(t) ,为求 f(t0-at) ,应按下列哪种运算求得正确结果?(t0 和 a 都为正值)

3.已知 f(5-2t) 的波形如图,试画出f(t) 的波形。 解题思路:f(5-2t)乘a 1 / 2展宽 2倍f(5-2 × 2t)= f(5-t)

反转 右移 5 f(5+t) f(5+t-5)= f(t) 4.计算下列函数值。 ( 1) ( 2) ( t ) t 0 )dt t 0 u(t 2 (t t 0)u(t 2t 0 )dt ( 3) (e t t ) (t 2)dt 5.已知离散系统框图,写出差分方程。 解: 2 个延迟单元为二阶系统,设左边延迟单元输入为 x(k) ∑ 0 1 1) → 左○ :x(k)=f(k)-a *x(k-2)- a*x(k- x(k)+ a 1*x(k-1)+ a 0*x(k-2)=f(k) (1) ∑ y(k)= b 2*x(k)- b 0*x(k-2) (2) 右○ : 为消去 x(k) ,将 y(k) 按( 1)式移位。 a 1*y(k-1)= b 2 * a 1*x(k-1)+ b * a 1*x(k-3) (3) a 0*y(k-2)= b 2 * a 0*x(k-2)-b 0* a 0*x(k-4) (4) (2) 、( 3)、( 4)三式相加: y(k)+ a 1*y(k-1)+ a 0*y(k-2)= b *[x(k)+ a 1 *x(k-1)+a *x(k-2)]- b *[x(k-2)+a 1*x(k-3)+a *x(k-4)] 2 0 0 0 ∴ y(k)+ a 1 *y(k-1)+ a *y(k-2)= b 2 *f(k)- b *f(k-2) ═ >差分方程

信号与系统MATLAB实验报告

实验报告 实验课程:信号与系统—Matlab综合实验学生姓名: 学号: 专业班级: 2012年5月20日

基本编程与simulink仿真实验 1—1编写函数(function)∑=m n k n 1并调用地址求和∑∑∑===++100 11-8015012 n n n n n n 。实验程序: Function sum=qiuhe(m,k)Sum=0For i=1:m Sum=sum+i^k End 实验结果; qiuhe(50,2)+qiuhe(80,1)+qiuhe(100,-1) ans=4.6170e+004。 1-2试利用两种方式求解微分方程响应 (1)用simulink对下列微分方程进行系统仿真并得到输出波形。(2)编程求解(转移函数tf)利用plot函数画图,比较simulink图和plot图。)()(4)(6)(5)(d 22t e t e d d t r t r d d t r d t t t +=++在e(t)分别取u(t)、S(t)和sin(20пt)时的情况! 试验过程 (1)

(2) a=[1,5,6]; b=[4,1]; sys=tf(b,a); t=[0:0.1:10]; step(sys)

连续时间系统的时域分析3-1、已知某系统的微分方程:)()()()()(d 2t e t e d t r t r d t r t t t +=++分别用两种方法计算其冲激响应和阶跃响应,对比理论结果进行验证。 实验程序: a=[1,1,1];b=[1,1];sys=tf(b,a);t=[0:0.01:10];figure;subplot(2,2,1);step(sys);subplot(2,2,2);x_step=zeros(size(t));x_step(t>0)=1;x_step(t==0)=1/2;lsim(sys,x_step,t);subplot(2,2,3);impulse(sys,t);title('Impulse Response');xlabel('Time(sec)');ylabel('Amplitude');subplot(2,2,4);x_delta=zeros(size(t));x_delta(t==0)=100;[y1,t]=lsim(sys,x_delta,t);y2=y1;plot(t,y2);title('Impulse Response');

信号与系统习题集

信号与系统 习题 1 一、填空题 1.离散信号()2()k f k k ε=,则该信号的单边Z 变换为 ① 。 2.信号()f t 的傅里叶变换为()F j ω,则(23)f t -的傅里叶变换为 ① 。 3.已知周期信号()cos(230)sin(4+60)f t t t =++,则其周期为 ① s ,基波频率为 ② rad/s 。 4、已知)(1t f 和)(2t f 的波形如下图所示,设)()()(21t f t f t f *=,则=-)1(f ① , =)0(f ② 。 5、单边拉氏变换()) 4(2 2 += s s s F ,其反变换()=t f ① 。 6、一离散系统的传输算子为2 3)(22+++=E E E E E H ,则系统对应的差分方程为 ① , 单位脉冲响应为 ② 。 二、单项选择题 1. 下列说法不正确的是______。 A. 每个物理系统的数学模型都不相同。 B. 同一物理系统在不同的条件下,可以得到不同形式的数学模型。 C. 不同的物理系统经过抽象和近似,有可能得到形式上完全相同的数学模型。 D. 对于较复杂的系统,同一系统模型可有多种不同的数学表现形式。 2. 周期信号f (t )的傅立叶级数中所含有的频率分量是______。 A. 余弦项的奇次谐波,无直流 B. 正弦项的奇次谐波,无直流 C. 余弦项的偶次谐波,直流 D. 正弦项的偶次谐波,直流 3. 当周期矩形信号的脉冲宽度缩小一半时,以下说确的是_____。

A. 谱线间隔增加一倍 B. 第一个过零点增加一倍 C. 幅值不变 D. 谱线变成连续的 4. 图3所示的变化过程,依据的是傅立叶变换的_____。 图3A. 时移性 B. 频移性 C. 尺度变换 D. 对称性 5. 对抽样信号进行恢复,需将信号通过_____。 A. 理想带通滤波器 B. 理想电源滤波器 C. 理想高通滤波器 D. 理想低通滤波器 6. 连续周期信号的频谱有_____。 A. 连续性、周期性 B. 连续性、收敛性 C. 离散性、周期性 D. 离散性、收敛性 7. 若对)(t f 进行理想取样,其奈奎斯特取样频率为s f ,对)231 (-t f 进行取样,其奈奎斯 特取样频率为_____。 A. 3s f B. s f 31 C. 3(s f -2) D. )2(3 1 -s f 8. 信号f (t )变成)12 1 (+t f 的过程为_____。 A. 先将f (t )的图形向左移一个单位,再时间上展宽1/2倍 B. 先将f (t )的图形向左移一个单位,再时间上展宽1/2倍 C. 先将f (t )的图形向左移一个单位,再时间上展宽1/2倍 D. 先将f (t )的图形向左移一个单位,再时间上展宽1/2倍 9. 下列傅里叶变换性质中错误的是_____。 A. 时间与频率标度)(1 )(ω? F a at f F B. 时移特性)()(00ω-ω-?F e t t f t j F C. 频移特性)()(00ω-ω?ωF t f e F t j (b ) ω (ω)ω π 2πτ4πτ (d )2π τ - 4πτ - o -π ?(b ) (a ) -1

燕庆明《信号与系统》(第3版)习题解析

《信号与系统》(第3版)习题解析 目录 第1章习题解析 (2)

第2章习题解析 (6) 第3章习题解析 (16) 第4章习题解析 (23) 第5章习题解析 (31) 第6章习题解析 (41) 第7章习题解析 (49) 第8章习题解析 (55)

第1章习题解析 1-1 题1-1图示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号? (c) (d) 题1-1图 解 (a)、(c)、(d)为连续信号;(b)为离散信号;(d)为周期信号;其余为非周期信号;(a)、(b)、(c)为有始(因果)信号。 1-2 给定题1-2图示信号f ( t ),试画出下列信号的波形。[提示:f ( 2t )表示将f ( t )波形 压缩,f (2 t )表示将f ( t )波形展宽。] (a) 2 f ( t - 2 ) (b) f ( 2t ) (c) f ( 2t ) (d) f ( -t +1 ) 题1-2图 解 以上各函数的波形如图p1-2所示。

图p1-2 1-3 如图1-3图示,R 、L 、C 元件可以看成以电流为输入,电压为响应的简单线性系统S R 、S L 、S C ,试写出各系统响应电压与激励电流函数关系的表达式。 题1-3图 解 各系统响应与输入的关系可分别表示为 )()(t i R t u R R ?= t t i L t u L L d ) (d )(= ?∞-= t C C i C t u ττd )(1)( 1-4 如题1-4图示系统由加法器、积分器和放大量为-a 的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。 S R S L S C

实验项目五:表示信号与系统的MATLAB函数、工具箱

电子科技大学 实 验 报 告 学生姓名: 学号: 指导老师: 日期:2016年 12月25 日

一、实验室名称: 科研楼a306 二、实验项目名称: 实验项目五:表示信号与系统的MATLAB 函数、工具箱 三、实验原理: 利用MATLAB 强大的数值处理工具来实现信号的分析和处理,首先就是要学会应用MATLAB 函数来构成信号。常见的基本信号可以简要归纳如下: 1、单位抽样序列 ???=01 )(n δ 00≠=n n 在MATLAB 中可以利用zeros()函数实现。 ; 1)1();,1(==x N zeros x 如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即: ???=-01)(k n δ 0≠=n k n 2、单位阶跃序列 ???0 1)(n u 00<≥n n 在MATLAB 中可以利用ones()函数实现。 );,1(N ones x = 3、正弦序列 )/2sin()(?π+=Fs fn A n x 采用MATLAB 实现 )/***2sin(*1:0fai Fs n f pi A x N n +=-= 4、复正弦序列

n j e n x ?=)( 采用MATLAB 实现 )**exp(1 :0n w j x N n =-= 5、指数序列 n a n x =)( 采用MATLAB 实现 n a x N n .^1 :0=-= 四、实验目的: 目的:1、加深对常用离散信号的理解; 2、熟悉表示信号的基本MATLAB 函数。 任务:基本MATLAB 函数产生离散信号;基本信号之间的简单运算;判断信 号周期。 五、实验内容: MATLAB 仿真 实验步骤: 1、编制程序产生上述5种信号(长度可输入确定),并绘出其图形。 2、在310≤≤n 内画出下面每一个信号: 1223[]sin()cos() 44[]cos ()4 []sin()cos()48n n x n n x n n n x n πππππ=== 六、实验器材: 计算机、matlab 软件、C++软件等。 七、实验数据及结果分析: 实验1: 单位抽样序列

(完整word版)使用matlab绘制眼图.docx

使用 matlab 绘制数字基带信号的眼图实验 一、实验目的 1、掌握无码间干扰传输的基本条件和原理,掌握基带升余弦滚降系统的实现方法; 2、通过观察眼图来分析码间干扰对系统性能的影响,并观察在输入相同码率的NRZ 基带信号下,不同滤波器带宽对输出信号码间干扰大小的影响程度; 3、熟悉 MATLAB语言编程。 二、实验原理和电路说明 1、基带传输特性 基带系统的分析模型如图3-1 所示,要获得良好的基带传输系统,就应该 a n t nT s 基带传输a n h t nT s n n抽样判决 H ( ) 图 3-1基带系统的分析模型 抑制码间干扰。设输入的基带信号为a n t nT s, T s为基带信号的码元周期,则经过 n 基带传输系统后的输出码元为a n h t nT s。其中 n h(t )1H ()e j t d(3-1 ) 2 理论上要达到无码间干扰,依照奈奎斯特第一准则,基带传输系统在时域应满足: ,k 0 h( kT s)(3-2) 0,k为其他整数 频域应满足: T s, T s(3-3) H ( ) 0,其他

H ( ) T s T s T s 图 3-2 理想基带传输特性 此时频带利用率为 2Baud / Hz , 这是在抽样值无失真条件下,所能达到的最高频率利用率。 由于理想的低通滤波器不容易实现, 而且时域波形的拖尾衰减太慢, 因此在得不到严格 定时时,码间干扰就可能较大。在一般情况下,只要满足: 2 i H 2 2 , (3-4) H H ( ) H T s i T s T s T s T s 基带信号就可实现无码间干扰传输。这种滤波器克服了拖尾太慢的问题。 从实际的滤波器的实现来考虑,采用具有升余弦频谱特性 H ( ) 时是适宜的。 1 sin T s ( ) , (1 ) (1 ) 2 T s T s T s H ( ) 1, (1 ) 0 (3-5) T s 0, (1 ) T s 这里 称为滚降系数, 1。 所对应的其冲激响应为: sin t cos( t T s ) h(t ) T s (3-6) t 1 4 2t 2 T s 2 T s 此时频带利用率降为 2 / (1 ) Baud/ Hz ,这同样是在抽样值无失真条件下, 所能达到的最 高频率利用率。换言之,若输入码元速率 R s ' 1/ T s ,则该基带传输系统输出码元会产生码

燕庆明信号与系统(第二版)课后习题答案

())()()]([),()(20d t t tf t tg t g T t t f t g -==-= 令,∞-≠-)()(00t t y t t T f f ,=-)(0t t y f )()(00t t f t t --。 (3))()(0t t f t g -=令,)()()]([0t t f t g t g T --=-=,≠-)(0t t T f )(0t t y f -,)()(00t t f t t y f +-=- 线性时不变系统。显然其不相等,即为非不失一般性,设可以表示为为系统运算子,则设解时不变系统?判断该系统是否为线性的关系为与输出已知某系统输入),()()()] ([),()()]([)()()(,)()]([)()(T :)()()()(.2.12111121t y t f t f t f T t y t f t f T t f t f t f t f t f T t y t y t f t y t y t f =+===+====1.3判断下列方程所表示系统的性?+=t dx x f dt t df t y 0)()()(:)1()()()]([:)2(2't f t y t y =+ (3):)2()()(3)(2)(' ' ' '-+=++t f t f t y t y t y (4):)(3)(2)('2)("t f t y t ty t y =++ 线性 非线性时不变 线性时不变 线性时变 1.4。试证明方程y'(t)+ay(t)=f(t)所描述的系统为线性系统。 证明:不失一般性,设输入有两个分量,且f 1(t)→y 1(t),f 2(t)→y 2(t) 则有y 1'(t)+ay 1(t)=f 1(t),y 2'(t)+ay 2(t)=f 2(t) 相加得y 1'+ay 1(t)+y 2'(t)+ay 2(t)=f 1(t)+f 2(t) 即 dt d [y 1(t)+y 2(t)]+a[y 1(t)+y 2(t)] =f 1(t)+f 2(t )可见f 1(t)+f 2(t)→y 1(t)+y 2(t)即满足可加性,齐次性是显然的。故系统为线性的。 1.5。证明1.4满足时不变性。 证明 将方程中的t 换为t-t 0,t 0为常数。即y'(t-t 0)+ay(t-t 0)=f(t-t 0) 由链导发则,有 =-dt t t dy ) (0 dt t t d t t d t t dy )()()(000-?--又因t 0为常数,故1) (0=-dt t t d 从而 )()()(000t t d t t dy dt t t dy --=-所以有 )()() (000t t f t t ay dt t t dy -=-+-即满足时不变性f(t-t 0)→y(t-t 0) 1.6.试一般性地证明线性时不变系统具有微分特性。 证明 设f(t)→y(t),则f(t-Δt)→y(t-Δt)又因为 t t t y t y t t t f t f ?--→ ??--)()() ()(0所以 t t t f t y t t t t f t f t ?--→?→??--→?) ()(0lim )()(0lim 0既有 )(')('t y t f → 1.7 若有线性时不变系统的方程为y'(t)+ay(t)=f(t)在非零f(t)作用下其响应y(t)=1-e -t ,试求方程y'(t)+ay(t)=2f(t)+f'(t)的响应。 解:因为f(t)→y(t)=1-e -t ,又线性关系,则2f(t)→2y(t)=2(1-e -t ) 又线性系统的微分特性,有 f'(t)→y'(t)=e -t 故响应 2f(t)+f'(t)→y(t)=2(1-e -t )+e -t =2-e -t

信号与系统实验(MATLAB版) (1)

《信号与系统MATLAB实现》实验指导书 电气信息工程学院 2014年2月

长期以来,《信号与系统》课程一直采用单一理论教学方式,同学们依靠做习题来巩固和理解教学内容,虽然手工演算训练了计算能力和思维方法,但是由于本课程数学公式推导较多,概念抽象,常需画各种波形,作题时难免花费很多时间,现在,我们给同学们介绍一种国际上公认的优秀科技应用软件MA TLAB,借助它我们可以在电脑上轻松地完成许多习题的演算和波形的绘制。 MATLAB的功能非常强大,我们此处仅用到它的一部分,在后续课程中我们还会用到它,在未来地科学研究和工程设计中有可能继续用它,所以有兴趣的同学,可以对MATLAB 再多了解一些。 MATLAB究竟有那些特点呢? 1.高效的数值计算和符号计算功能,使我们从繁杂的数学运算分析中解脱出来; 2.完备的图形处理功能,实现计算结果和编程的可视化; 3.友好的用户界面及接近数学表达式的自然化语言,易于学习和掌握; 4.功能丰富的应用工具箱,为我们提供了大量方便实用的处理工具; MATLAB的这些特点,深受大家欢迎,由于个人电脑地普及,目前许多学校已将它做为本科生必须掌握的一种软件。正是基于这些背景,我们编写了这本《信号与系统及MATLAB实现》指导书,内容包括信号的MA TLAB表示、基本运算、系统的时域分析、频域分析、S域分析、状态变量分析等。通过这些练习,同学们在学习《信号与系统》的同时,掌握MATLAB的基本应用,学会应用MATLAB的数值计算和符号计算功能,摆脱烦琐的数学运算,从而更注重于信号与系统的基本分析方法和应用的理解与思考,将课程的重点、难点及部分习题用MATLAB进行形象、直观的可视化计算机模拟与仿真实现,加深对信号与系统的基本原理、方法及应用的理解,为学习后续课程打好基础。另外同学们在进行实验时,最好事先预习一些MATLAB的有关知识,以便更好地完成实验,同时实验中也可利用MATLAB的help命令了解具体语句以及指令的使用方法。

相关文档
最新文档