大河乌猪钙蛋白酶抑制蛋白基因、脂肪细胞定向和分化因子1基因多态性及其与肉质性状的关联分析

大河乌猪钙蛋白酶抑制蛋白基因、脂肪细胞定向和分化因子1基因多态性及其与肉质性状的关联分析
大河乌猪钙蛋白酶抑制蛋白基因、脂肪细胞定向和分化因子1基因多态性及其与肉质性状的关联分析

常见蛋白酶抑制剂

当前位置:生物帮 > 实验技巧 > 生物化学技术 > 正文 蛋白酶及蛋白酶抑制剂大全 日期:2012-06-13 来源:互联网 标签: 相关专题:解析蛋白酶活性测定聚焦蛋白酶研究新进展 摘要: 破碎细胞提取蛋白质的同时可释放出蛋白酶,这些蛋白酶需要迅速的被抑制以保持蛋白质不被降解。在蛋白质提取过程中,需要加入蛋白酶抑制剂以防止蛋白水解。以下列举了5种常用的蛋白酶抑制剂和他们各自的作用特点,因为各种蛋白酶对不同蛋白质的敏感性各不相同,因此需要调整各种蛋白酶的浓度 恩必美生物新一轮2-5折生物试剂大促销! Ibidi细胞灌流培养系统-模拟血管血液流动状态下的细胞培养系统 广州赛诚生物基因表达调控专题 蛋白酶抑制剂 破碎细胞提取蛋白质的同时可释放出蛋白酶,这些蛋白酶需要迅速的被抑制以保持蛋白质不被降解。在蛋白质提取过程中,需要加入蛋白酶抑制剂以防止蛋白水解。以下列举了5种常用的蛋白酶抑制剂和他们各自的作用特点,因为各种蛋白酶对不同蛋白质的敏感性各不相同,因此需要调整各种蛋白酶的浓度。由于蛋白酶抑制剂在液体中的溶解度极低,尤其应注意在缓冲液中加人蛋白酶抑制剂时应充分混匀以减少蛋白酶抑制剂的沉淀。在宝灵曼公司的目录上可查到更完整的蛋白酶和蛋白酶抑制剂表。 常用抑制剂 PMSF 1)抑制丝氨酸蛋白酶(如胰凝乳蛋白酶,胰蛋白酶,凝血酶)和巯基蛋白酶(如木瓜蛋白酶); 2)10mg/ml溶于异丙醇中; 3)在室温下可保存一年; 4)工作浓度:17~174ug/ml(0.1~1.0mmol/L); 5)在水液体溶液中不稳定,必须在每一分离和纯化步骤中加入新鲜的PMSF。 EDTA 1)抑制金属蛋白水解酶; 2)0.5mol/L水溶液,pH8~9;

钙蛋白酶抑制蛋白(Calpastatin)的研究进展

读书报告 钙蛋白酶抑制蛋白研究进展 汪超钟正泽杨飞云周晓蓉曹兰 (重庆市畜牧科学院重庆荣昌402460) 摘要:钙蛋白酶在宰后肉类成熟过程中通过降解肌肉蛋白质而提高肉嫩度,钙蛋白酶抑制蛋白是在细胞内广泛表达的、高效的、专一性抑制钙蛋白酶活性的蛋白质,因此引起了广大研究者的广泛关注。本文阐述了钙蛋白酶抑制蛋白的结构,生物学作用,营养等因素对钙蛋白酶抑制蛋白的影响及其活性测定方法。 关键词:钙蛋白酶抑制蛋白结构生物学作用活性测定 Research Progress of Calpastatin W ang chao, Zhong zhengzhe, Y ang feiyun, Zhou xiaorong ,Cao lan (Chongqing Academy of Animal Science,Rongchong 402460 ) Abstact: Calpain make a contribution to Meat Tenderization by degradation of protein in the postmortem meat tenderization process. Calpastatin , a special endogenous inhibitor expressed extensively in cell , has a special inhibition to calpain. Therefore ,This paper review the structure ,biologic function, influenced factors , separation and activity assay of calpastatin. Key words: Calpastatin. Structure , Biologic function, influenced factors , activity assay 钙蛋白酶(Calpain)是一种钙激活中性半胱氨酸内肽酶,分布于所有脊椎动物的肌细胞内部。钙蛋白酶家族包括μ-钙蛋白酶,m-钙蛋白酶和钙蛋白酶抑制蛋白(Calpastatin)等。钙蛋白酶在骨骼肌中通过涉及生肌细胞分化、激发肌原纤维蛋白周转来调控生长,同时在宰后肉类成熟过程中通过降解肌肉蛋白质而提高肉嫩度。钙蛋白酶被钙离子和钙蛋白酶抑制蛋白调控[1]。钙蛋白酶抑制蛋白是一种有着多种功能的内源抑制剂,它通过抑制钙蛋白酶而发挥作用。本文综述了钙蛋白酶抑制蛋白的结构、生物学作用、营养等因素对钙蛋白酶抑制蛋白的影响及其分离与活性检测方法等。 1 钙蛋白酶抑制蛋白的结构 肌肉组织中钙蛋白酶抑制蛋白的分子量为77 KDa,斯托克半径为6.8nm,含

胰蛋白酶分离工艺

1、集落刺激因子(G-CSF ) 组成结构:是一种含有二硫键的单链糖蛋白,由175个氨基酸残基组成的单链非 糖基化多肽链 理化性质:①性状:无色澄明液体 ②分子量:20000,等电点为5.8~6.6 ③溶解度: ④稳定性: 生理作用与临床适应症:作用于造血祖细胞,促进其增殖和分化,其重要作用是 刺激粒、单核巨噬细胞成熟,促进成熟细胞向外周血释放,并能促进巨噬细胞及 噬酸性细胞的多种功能 ,主要用于预防和治疗肿瘤放疗或化疗后引起的白细胞 减少症, 分离纯化工艺: G-CSF 为无菌冻干粉剂,由含有10mM 醋酸钠pH 为4的蛋白溶液经0.2um 过滤后 分装冻干。 由含有高效表达人G-CSF 的原核表达系统(E.coli )经发酵、分离和高度纯化后 经冻干制成。 纯化液聚乙二醇浓缩洗脱液柱层析透析液透析缓冲液溶解沉淀沉淀蛋白质盐析洗脱液纤维素柱层析透析液透析 缓冲液溶解沉淀饱和度至加入硫酸铵透析液透析滤液超滤浓缩正常成人尿液150 ephadexG -%8020000 S DEAE 2、超氧化物歧化酶(SOD ): 组成结构: 理化性质:①性状:淡蓝色冻干粉结晶体 ②分子量:32000左右 ③溶解度: ④稳定性:耐热性强,90℃ 环境120分钟酶活几乎没有损失,100℃环境60分 钟酶活保持90%以上;稳定性高,在pH4.0—11.0范围内酶活稳定。 生理作用与临床适应症:是一种能够催化超氧化物通过歧化反应转化为氧气和过 氧化氢的酶,是一种重要的抗氧化剂,保护暴露于氧气中的细胞 分离纯化工艺: 血液预处理,洗涤红细胞和溶血;去除大部分杂蛋白得SOD 粗品;再经柱层析分离 得到精品。猪血经血液预处理、洗涤红细胞、溶血、乙醇一氯仿混合液除去血红 蛋白,然后用坟柳043HZO 萃取、丙酮沉淀、55一65℃热变性得到粗酶液。粗酶 液上阴离子DEAE 一Cellulose52交换层析柱、分子筛SephadexG-75柱,最终获 得了纯化的铜锌超氧化物歧化酶。

CAST(钙蛋白酶抑制蛋白酶)功能缺失(LOF)的突变,导致皮肤缺损白甲病、肢体末端点状角质化口唇炎指关节垫

CAST(钙蛋白酶抑制蛋白酶)功能缺失(LOF)的突变,导致皮肤缺损、白甲病、肢体末端点状角质化、口唇炎、指关 节垫 一:研究背景 皮肤剥落综合征(PSS)一种皮肤角质层持续的脱落症状,从婴幼儿时发病持续终生,皮肤脱落可伴有红斑、水泡和其它外胚层组织病变,比如脱发、异常指甲。PSS可分为两种临床类型:肢端PSS(APSS)和广泛性PSS(GPSS)。APSS患者发生在手足部位的手掌面、足底、背面,和谷氨酰胺转氨酶-5突变有关。此外,导致常染色隐性遗传病鱼鳞病的半胱氨酸蛋白酶抑制酶-A(CSTA)的基因突变也和APSS有关;GPSS个体和角膜黏连蛋白突变(CDSN)有关;山姆综合征(一种严重皮炎)和桥粒心黏连蛋白-1(GSD1)突变有关;Exampl…….。然而,一些APSS 病人的遗传机制尚不清楚。 CSAT基因突变为常染色隐性遗传,大量APSS患者该突变基因型为纯合子,临床表现白甲、肢体末端点状角质化、口唇炎、指关节垫,疾病缩写“PLACK”。通过显子测序和Sanger测序,证实了在三个互相隔离的家庭成员PLACK患者中,不同的纯合子的CSAT功能缺失。 二:研究目的 验证CSAT在表皮稳态中的作用。

3.1 样本采集:一个28岁的PLACK中国女性患者(individual1)、一个尼泊尔PLACK儿童患者(individual2)、两个欧洲先天性厚甲症患者(individual3、4)的血液和唾液样本; 3.2 Sanger测序:排除其它皮肤炎症遗传病中TGM5, CSTA, CDSN, 和CHST8基因突变; 3.3 individual-1 和individual 2全外显子测序,外显子捕获先通过罗氏NimbleGen SeqCap EZ Library外显子捕获系统富集,然后Illumina HiSeq2000测序; 3.4 individual-1 和individual 2突变通过dbSNP137、1000 G、HapMap和BGI内部数据库过滤; 3.5 RT-PCR对individual 1皮肤中CAST的mRNA表达进行定量,设定阴性对照; 3.6 individual 1胫前皮肤CAST抗体免疫组化染色,individual 2左大腿皮肤

基质金属蛋白酶及其抑制因子与盆底功能障碍性疾病的关系

基质金属蛋白酶及其抑制因子与盆底功能障碍性疾病的关系 盆底功能障碍性疾病(PFD)是中老年女性的常见病,MMP7、TIMP1及其相互作用对ECM的降解过程有着重要影响,进而也与PFD的发生发展密切相关。 标签:盆底功能障碍性疾病(PFD);基质金属蛋白酶(MMPs);组织型金属蛋白酶抑制物(TIMPs) 盆底功能障碍性疾病(PFD)是中老年女性的常见病,是威胁妇女健康的慢性疾病之一,随着社会老龄化的到来,发病率逐渐升高。PFD以女性压力性尿失禁(SUI)、盆腔器官脱垂(POP)和生殖道损伤为常见问题,是一组由于盆腔支持结构缺陷或退化、损伤及功能障碍而导致的疾病。PFD的发病危险因素有妊娠、阴道分娩损伤、长期腹压增加、先天缺陷及盆底肌肉退化薄弱,而支持盆底器官的盆底肌肉组织结构功能异常为主要因素[1]。 骨盆底由多层肌肉和筋膜构成,封闭骨盆出口,承托并保持盆腔脏器于正常位置[1]。细胞外基质(ECM)是由细胞分泌到细胞外间质中的大分子物质,构成复杂的网架结构,支持并连接组织结构、调节组织的发生和细胞的生理活动。ECM是盆底结缔组织的主要成分,其合成与分解处于动态平衡中,以维持组织形态结构及功能的稳定。因此,其含量及结构的改变与PFD的发生发展关系密切。目前已经发现多种作用于ECM不同成分的酶,其中胞外基质降解最重要的蛋白水解系统由结缔组织及肿瘤组织合成、分泌的基质金属蛋白酶(MMPs)构成。MMPs是一个依赖锌离子的内肽酶类,在细胞外基质中其活性可被内源性抑制剂—组织型金属蛋白酶抑制物(TIMPs)家族所调节。目前MMPs家族已分离鉴别出26个成员MMP1~26,分为6类。其中MMP3、7为基质溶解素类,不仅可降解Ⅲ、Ⅳ、Ⅴ型胶原蛋白还能降解纤维连接蛋白和层粘连蛋白等,它们的内源性抑制剂TIMP1可以抑制MMP3、MMP7的活性。由此可见,MMP7,TIMP1及其相互作用对ECM的降解过程有着重要影响,进而也与PFD的发生发展密切相关。现就MMP7,TIMP1与PFD之间关系的相关研究做一综述。 盆腔肌肉群与盆底结缔组织共同作用支撑着阴道与子宫。盆底结缔组织主要由胶原构成,胶原蛋白是盆底韧带、筋膜的主要成分。盆底的阴道上皮、肌纤维组织与结缔组织的胶原构成主要是Ⅰ型与Ⅲ型。 1 PFD患者盆底结缔组织中胶原含量改变 许多文献报道女性SUI及POP患者,膀胱阴道筋膜,主韧带组织中胶原含量减少。2009年李萍等[2]在研究中发现PFD患者宫颈组织中1型蛋白含量减小。2009叶明等[3]在研究中发现POP患者韧带和盆底筋膜组织Ⅲ型胶原含量减少。 2 胶原代谢情况改变 2.1 胶原分解代谢增加

蛋白酶抑制剂选择指南

蛋白酶抑制剂选择指南 1 蛋白酶抑制剂选择指南 抑制剂 工作浓度 分子量 抑制蛋白酶种类 稳定性 AEBSF终浓度1mM MW:239.5不可逆的丝氨酸蛋白酶抑制剂,抑制胰蛋白酶,糜 蛋白酶,纤溶酶,凝血酶及激肽释放酶. 可溶于水,其pH7的水溶液在4o C可保持稳定1-2个月,在pH>8的情况下会发生缓慢水解 Aprotinins 抑肽酶终浓度2ug/ ml MW:6512 可逆的丝氨酸蛋白酶抑制剂,可抑制纤溶酶,激肽 释放酶,胰蛋白酶,糜蛋白酶,但不抑制凝血酶和 Factor Xa。 非常稳定,当pH>12.8时失去活性,可溶于 水(10mg/ml),-20o C下可长期保存 Bestatin终浓度10uM MW:308.4 可逆的丙氨酰-氨基肽酶抑制剂, 工作液可保存一天,1mM的甲醇贮存液在 -20o C可保存至少一个月 E-64 Protease Inhibitor终浓度10uM MW:357.4 不可逆的半胱氨酸酸蛋白酶抑制剂,抑制半胱氨酸 酸蛋白酶而不会影响其他酶的半胱氨酸残基,与小 分子量的巯基醇如beta-巯基乙醇不会产生反应, 具有高度特异性。工作液在正常pH值下可保持稳定数天,1mM的水溶液在-20o C可保存几个月 EDTA, 4Na终浓度10mM MW:380.2 金属蛋白酶的可逆性螯合物,可能同时影响其他金 属依赖性生物过程。其水溶液很稳定,其贮存液(pH8.5的0.5M 水溶液)在4o C可保存数月 Leupeptin, 半硫酸盐 亮抑酶肽(亮肽素) 终浓度100uM MW:493.6 可逆的丝氨酸及半胱氨酸蛋白酶制剂,可抑制胰蛋 白酶样蛋白酶及一些半胱氨酸蛋白酶如:Lys-C内 切蛋白酶,激肽释放酶,木瓜蛋白酶,凝血 酶,Cathepsin B及胰蛋白酶。 工作液的稳定期为数小时,贮存液(10mM 水溶液)在4o C时稳定期为一周,-20o C时 稳定期为一个月 Pepstatin A 终浓度1uM MW:685.9 可逆的天冬氨酸蛋白酶,可抑制胃蛋白 酶,Cathepain B&L,血管紧张肽原酶(renin)及以1mg/ml溶于甲醇,搅拌过夜可以 1mg/ml溶于乙醇,333mg/ml溶于6N的

钙蛋白酶系统研究进展_梅承君

钙蛋白酶系统研究进展 梅承君1,庞辉2,康相涛1*,孙桂荣1(1.河南农业大学,河南郑州450000;2.河南省公安厅,河南郑州450000)摘要阐述了钙蛋白酶系统的分类、结构,并且综述钙蛋白酶系统的一般生物学功能及影响因素。 关键词钙蛋白酶;钙蛋白酶抑制蛋白;钙蛋白酶激活蛋白;嫩度 中图分类号Q55文献标识码A文章编号0517-6611(2006)22-5774-03 Research Adva nce in C alpain System MEI C heng-jun et al(Hen an Agricul tu ral University,Zhen gzh ou,Henan450000) Abstract This paper revie wed th e classi ficati on and structu re of cal pain sys tem,the general biological function and its affecting factors. Key w ords C alp ain;Cal pas tatin;Calpain activator;Tenderness 钙蛋白酶是1964年由Guroff首次发现,1972年Bush等首先在骨骼肌中确认,1976年Da yton等对其进行纯化。钙蛋白酶被鉴定、纯化后,其名称有钙活化中性蛋白酶(Calcium a ctiva te d ne utra l prote ase,Calcium ac tiva ted ne utral SH prote ase, c alpain)简写为CANP(EC,3,4,22,17)、钙激活酶(Ca2+-a ctiva t-ed enzy me)、钙激活中性蛋白酶(Calcium a ctiv ate d ne utral pro-te ase)等。1983年Go ll等提出钙蛋白酶在骨骼肌肌丝蛋白降解过程中起关键作用[1]。目前,已证明它广泛地分布于绝大多数动物的细胞中。在一定浓度的钙离子作用下,钙蛋白酶主要作用于细胞骨架蛋白、蛋白激酶和磷酸酶,还参与细胞内的信号传递[2]。 1钙蛋白酶系统 1.1钙蛋白酶的分类Calpain中的Cal代表钙调蛋白(Ca-l moclulin),pain代表木瓜蛋白酶(Pa pain)。Calpain由钙调蛋白和木瓜蛋白酶两者以非共价键结合而成。钙蛋白酶系由多种同工酶构成。根据分布特点可将其分为组织特异性和非组织特异性蛋白酶两大类[3]。目前研究比较深入的是非组织特异性蛋白酶,已知的2种非组织特异性同工酶是Ca-l pain1和Ca lpain2。Ca lpain1可被L mol水平的钙离子激活,又称L-Calpain;Ca lpain2可被mmol水平的钙离子激活,又称m-Calpain。除活化时需要的钙离子浓度不同和结构略有差别以外,这2种同工酶生化和催化的性质几乎完全相同。红细胞内仅含有Calpain1,其余的哺乳动物细胞中均含有2种形式的钙蛋白酶。由于细胞内钙离子的波动在微摩尔(L mol)浓度水平以下,所以Ca lpain1很可能在正常生理条件下发挥功能,而Calpain2则可能在病理情况(细胞内钙超载条件)下才能激活[4]。 1.2钙蛋白酶系统的结构[5] 1.2.1钙蛋白酶的结构。钙蛋白酶系中L-Calpain和m-Ca-l pain由不均一的二聚体蛋白构成,其大、小亚基的分子量分别为80和30kD。Calpain3、8a、9、11、12和13也都分别由大、小2个亚基构成。大亚基具有催化活性,L-Ca lpain和m-Ca-l pain的大亚基分别由CANP1和CAN P2基因编码;小亚基具有调节功能。尽管L-Calpain和m-Calpain大亚基氨基酸 基金项目国家/8630计划资助项目(2002AA242021);河南省重大科技攻关项目(022*******,0322010600);河南省高校杰出科研人才 创新工程项目(2000KY CX005)。 作者简介梅承君(1979-),女,河南焦作人,硕士研究生,研究方向:家禽育种。*通讯作者。 收稿日期2006-08-09序列有明显差异,但是其高级结构基本相同,都由4个结构域组成,从N端起分别命名为?、ò、ó、?结构域。在大亚基中,结构域?由1~80位氨基酸残基组成,约占全部分子的10%,在蛋白酶激活的情况下很容易发生自溶,由此推测其可能起钙蛋白酶的活性调节作用,L-Calpain和m-Ca lpain仅在结构域?中不同;结构域ò含有81~330位氨基酸残基,约占全部分子的35%,是表现钙蛋白酶水解活性的关键部位,在未被激活的条件下含有2个次级区域[6];结构域ó由331~560位氨基酸残基组成,约占全部分子的35%,其功能为结合钙离子和磷脂,与蛋白酶调控亚基或其他调控蛋白有关;结构域?由561~705位氨基酸残基组成,占全部分子的20%,是结合钙离子的部位,含有4个钙结合蛋白所特有的EF-手型结构(1个EF-手型结构包含2个与钙离子结合环相连的氨基酸螺旋)[7]。L-Ca lpain、m-Calpain、Ca lpain9的小亚基含有2个结构域,这2个结构域由一段富含脯氨酸的序列相连,其中结构域ò与大亚基的结构域?相同,含有4个可以结合钙的EF-手型结构,故也具有结合钙的活性[8]。在其他钙蛋白酶中,如Calpain3、8a、11、12、13,尽管其大亚基也有结构域?,但其大、小亚基之间并没有相互联系。Ca lpain5、6、7、8b、10、15为非典型的钙蛋白酶,其部分结构域缺失或被取代,没有结构域?,因此推测其大、小亚基间也不存在联系。 1.2.2钙蛋白酶抑制蛋白的结构。钙蛋白酶抑制蛋白(Ca-l pastatin)是细胞内专一抑制钙蛋白酶活性的蛋白质。通过抑制钙蛋白酶活性,可抑制肌肉内蛋白质降解,参与肌肉生长过程中蛋白质的更新。在屠宰后的动物体内,它可抑制钙蛋白酶的活性,从而明显影响肉的嫩度。它可以识别钙蛋白酶与钙结合引起的构象变化,并与之特异性结合。钙蛋白酶抑制蛋白通过抑制钙蛋白酶的自溶作用而发挥作用,且该抑制作用不受pH值的影响。钙蛋白酶抑制蛋白共由5个部分(?、ò、ó、?、?)组成,其中4个是钙蛋白酶抑制蛋白的活性中心。当钙蛋白酶被钙离子激活后,如果附近有钙蛋白酶抑制蛋白存在,则将迅速与之结合而抑制蛋白酶活性,从而保证钙蛋白酶对底物只进行局部的特定位点的水解。 目前对钙蛋白酶抑制蛋白的生化性质了解的还不十分清楚。根据钙蛋白酶抑制蛋白在SDS电泳中的行为,可将其分为70和110kD两种类型。70kD类型主要存在于红细胞中,110kD类型存在于肝、心脏和其他组织中。虽然这2种钙蛋白酶抑制蛋白分子大小不同,但它们的功能性质相似。 安徽农业科学,Jou rnal of Anh ui Agri.S ci.2006,34(22):5774-5776责任编辑刘月娟责任校对孙能森

组织金属蛋白酶及其抑制因子与肝纤维化

组织金属蛋白酶及其抑制因子与肝纤维 化 (作者:__________ 单位:___________ 邮编:___________ ) 【摘要】基质金属蛋白酶(matrix metalloproteinase ,MMP) 是体内重要的水解酶之一,几乎能降解细胞外基质(extracellular matrix ,ECM的所有成分;基质金属蛋白酶组织抑制因子(tissue in hibitor of metalloprote in asas ,TIMPs )是MMP 啲内源性抑制 系统。近年来发现,MMPs/TIMPs调节失衡与肝纤维化的关系密切,可从多方面影响肝纤维化的形成。通过干扰MMP与TIMPs基因的表达,研究肝纤维化的发病机制和药物治疗是有希望的途径。 【关键词】MMPs ;TIMPs;肝纤维化 肝纤维化是许多慢性肝病的共同病理过程,是细胞外基质(ECM)的合 成与降解失衡,导致在细胞间质的过度沉积[1-4 ],肝组织结构改建。 许多细胞因子参与了这一过程,但是MMP是最重要的一种[5]。MMPs 几乎能降解细胞外基质(ECM)的所有成分,而其天然抑制剂-基质金属蛋白酶抑制剂(TIMPs)能与MMPs成员结合成复合物抑制其活性⑹。二者的调节异常将引起ECM合成或降解的失衡,与各种器官纤维化疾病密切相关。研究发现,通过调节MMP与TIMPs基因的表达

来治疗肝纤维化是肝纤维化治疗的新途径。本文就MMPs/TIMPs与肝纤维化的关系及治疗前景作一综述。 1 MMPs分类、功能、结构及活性的调控 MMPs是一组基质金属蛋白酶。M MPs在肝内主要由肝星状细胞(HSC)和Kupffer细胞表达分泌,参与细胞外基质降解的一类锌-钙离子依赖的内源性蛋白水解酶家族,因其需要Ca2+ Zn 2+等金属离 子作为辅助因子而得名,是迄今为止发现的唯一能分解纤维类胶原的酶,几乎能降解除多糖以外的所有ECM成分,在生理病理过程中发挥着重要的作用。MMP家族由24种成员组成,其中有23种存在于人体中。 1. 1 MMPs可被分成六类[7](1)胶原酶类。主要包括MMP-1 MMP-8 MMP-13和MMP-18它们能够降解间质胶原(I、H、皿型胶原),也能消化许多别的ECM及可溶性蛋白[5]。 MMP-1又称成纤维细胞型,是人类主要的间质胶原酶,结缔组织细胞、肝内HSC肝细胞、枯否氏细胞均有分泌,分解底物为胶原蛋白(皿I II)。而MMP-13 是鼠类主要的间质胶原酶。MMP-取称中性粒细胞胶原酶,主要降解I型胶原。(2)明胶酶类(gelatinases)。包括MMP-2阴胶酶A)及MMP-9明胶酶B)。它们可降解明胶(变性胶原)和W、V和幻型胶原、层粘连蛋白、蛋白聚糖等。MMP-2和胶原酶类以相似的方式可以降解I, I,和皿型胶原,但其活性较MMP-1弱[8]。(3)基质分解素(strogylisin)。主要包括MMP-3 MMP-1(和MMP-11 仅有MMP-3在肝脏中存在。底物广泛,包括蛋白多糖、层粘蛋白、纤维连接蛋白、

常见蛋白酶抑制剂

蛋白酶及蛋白酶抑制剂大全 标签: 相关专题:解析蛋白酶活性测定聚焦蛋白酶研究新进展 摘要: 破碎细胞提取蛋白质的同时可释放出蛋白酶,这些蛋白酶需要迅速的被抑制以保持蛋白质不被降解。在蛋白质提取过程中,需要加入蛋白酶抑制剂以防止蛋白水解。以下列举了5种常用的蛋白酶抑制剂和他们各自的作用特点,因为各种蛋白酶对不同蛋白质的敏感性各不相同,因此需要调整各种蛋白酶的浓度 恩必美生物新一轮2-5折生物试剂大促销! Ibidi细胞灌流培养系统-模拟血管血液流动状态下的细胞培养系统 广州赛诚生物基因表达调控专题 蛋白酶抑制剂 破碎细胞提取蛋白质的同时可释放出蛋白酶,这些蛋白酶需要迅速的被抑制以保持蛋白质不被降解。在蛋白质提取过程中,需要加入蛋白酶抑制剂以防止蛋白水解。以下列举了5种常用的蛋白酶抑制剂和他们各自的作用特点,因为各种蛋白酶对不同蛋白质的敏感性各不相同,因此需要调整各种蛋白酶的浓度。由于蛋白酶抑制剂在液体中的溶解度极低,尤其应注意在缓冲液中加人蛋白酶抑制剂时应充分混匀以减少蛋白酶抑制剂的沉淀。在宝灵曼公司的目录上可查到更完整的蛋白酶和蛋白酶抑制剂表。 常用抑制剂 PMSF 1)抑制丝氨酸蛋白酶(如胰凝乳蛋白酶,胰蛋白酶,凝血酶)和巯基蛋白酶(如木瓜蛋白酶); 2)10mg/ml溶于异丙醇中; 3)在室温下可保存一年; 4)工作浓度:17~174ug/ml(0.1~1.0mmol/L); 5)在水液体溶液中不稳定,必须在每一分离和纯化步骤中加入新鲜的PMSF。 EDTA 1)抑制金属蛋白水解酶; 2)0.5mol/L水溶液,pH8~9; 3)溶液在4℃稳定六个月以上;

4)工作浓度:0.5~1.5mmol/L. (0.2~0.5mg/ml); 5)加入NaOH调节溶液的pH值,否则EDTA不溶解。 胃蛋白酶抑制剂(pepst anti n) l)抑制酸性蛋白酶如胃蛋白酶,血管紧张肽原酶,组织蛋白酶D和凝乳酶; 2)1mg/ml溶于甲醇中; 3}储存液在4℃一周内稳定,-20℃稳定6个月; 4)1作浓度:0.7ug/ml(1umol/L) 5)在水中不溶解。 亮抑蛋白酶肽(leupeptin) 1)抑制丝氨酸和巯基蛋白酶,如木瓜蛋白酶,血浆酶和组织蛋白酶B; 2)lOmg/ml溶于水; 3)储存液4℃稳定一周,-20℃稳定6个月; 4)工作浓度0.5mg/ml。 胰蛋白酶抑制剂(aprotinin) 1)抑制丝氨酸蛋白酶,如血浆酶,血管舒缓素,胰蛋白酶和胰凝乳蛋白酶; 2)lOmg/ml溶于水,pH7~8 3}储存液4℃稳定一周,-20℃稳定6个月; 4)工作浓度:0.06~2.0ug/ml(0.01~0.3umol/L); 5)避免反复冻融: 6)在pH>12.8时失活。 蛋白酶抑制剂混合使用 35ug/ml PMSF…………………………………丝氨酸蛋白酶抑制剂 0.3mg/ml EDTA…………………………………金属蛋白酶抑制剂 0.7ug/ml胃蛋白酶抑制剂(Pepstatin)…………酸性蛋白酶抑制剂 0.5ug/ml亮抑蛋白肽酶(Leupeptin)……………广谱蛋白酶抑制剂

α1-抗胰蛋白酶缺乏症发病机理

α1-抗胰蛋白酶缺乏症发病机理 *导读:α1-抗胰蛋白酶缺乏症是血中抗蛋白酶成份-α1- 抗胰蛋白酶(简称α1-AT)缺乏引起的一种先天性代谢病,通过常染色体遗传。临床特点为新生儿肝炎,婴幼儿和成人的肝硬化、肝癌和肺气肿等。…… α1-抗胰蛋白酶缺乏症是血中抗蛋白酶成份-α1-抗胰蛋白酶 (简称α1-AT)缺乏引起的一种先天性代谢病,通过常染色体遗传。临床特点为新生儿肝炎,婴幼儿和成人的肝硬化、肝癌和肺气肿等。 【发病机理】 蛋白电泳时α1-AT位于α1球蛋白带内,α1-AT为一种肝脏合 成的糖蛋白,半衰期约4~5日。血清中有对胰蛋白酶活性起抑 制作用的物质,其中α1-AT起90%的作用。除抑制胰蛋白酶活性外,α1-AT还可抑制糜蛋白酶、凝血因子Ⅻ辅助因子及中性粒 细胞的中性蛋白水解酶作用。α1-AT存在于泪液、十二指肠液、唾液、鼻腔分泌物、脑脊液、肺分泌物及乳汁中,羊水中α1-AT 浓度相当于血清的10%,炎症刺激、肿瘤、妊娠或用雌激素治疗可使血清α1-AT浓度增加2~3倍,但这些刺激对α1-AT缺乏症患者则几乎无效。 正常人体内常存在外源性和内源性蛋白酶,如细菌毒素和白细胞崩解出的蛋白酶对肝脏及其他脏器有破坏作用,α1-AT可拮抗

这些酶类,以维持组织细胞的完整性,α1-AT缺乏时,这些酶均可侵蚀肝细胞,尤其是新生儿肠腔消化吸收功能不完善,大分子物质进入血液更多,α1-AT缺乏的婴儿肝脏更易受损害。此外,α1-AT还具有调节免疫应答、影响抗原-抗体免疫复合物清除、补体激活以及炎症反应的作用,并可抑制血小板的凝聚和纤溶的发生。α1-AT缺乏时上述机体平衡的机制失调,导致组织损伤。

组织金属蛋白酶及其抑制因子与肝纤维化

组织金属蛋白酶及其抑制因子与肝纤维化【摘要】基质金属蛋口酶(matrix metalloproteinase> MMP)是体内 重要的水解酶之一,几乎能降解细胞外基质(extracellular raatrix> ECM)的所有成分;基质金属蛋口酶组织抑制因子(tissue inhibitor of metalloproteinasas^ TIMPs )是MMPs的内源性抑制系统。近年来发现,MMPs/TIMPs调节失衡与肝纤维化的关系密切,可从多方而影响肝纤维化的形成。通过干扰MMPs与TIMPs基因的表达,研究肝纤维化的发病机制和药物治疗是有希望的途径。 【关键词】MMPs ;TIMPs:肝纤维化 肝纤维化是许多慢性肝病的共同病理过程,是细胞外基质(ECM)的合成与降解失衡,导致在细胞间质的过度沉积[1-4],肝组织结构改建。 许多细胞因子参与了这一过程,但是MMPs是最重要的一种[5]° MMPs 几乎能降解细胞外基质(ECM)的所有成分,而其天然抑制剂-基质金属 蛋口酶抑制剂(TIMPs)能与MMPs成员结合成复合物抑制其活性[6]。 二者的调节异常将引起ECM合成或降解的失衡,与各种器官纤维化疾病密切相关。研究发现,通过调节MMPs与TIMPs基因的表达来治疗肝纤维化是肝纤维化治疗的新途径。木文就MMPs/TIMPs与肝纤维化的关系及治疗前景作一综述。 1 MMPs分类、功能、结构及活性的调控 MMPs是一组基质金属蛋口酶。MMPs在肝内主要由肝星状细胞(HSC) 和Kupffer细胞表达分泌,参与细胞外基质降解的一类锌-钙离子依赖的内源性蛋口水解酶家族,因其需要Ca2+、Zn2+等金属离子作为辅 助因子而得名,是迄今为止发现的唯一能分解纤维类胶原的酶,几乎能降解除多糖以外的所有ECM成分,在生理病理过程中发挥着重要的作用。MMPs家族由24种成员组成,其中有23种存在于人体中。 L 1 MMPs可被分成六类[7](1)胶原酶类。主要包括MMP-K

钙蛋白酶系统与肌肉增长及嫩度的关系

收稿日期:2002-05-16 作者简介:金海丽(1979-),女,浙江义乌人,浙江大学华家池校区饲料所在读硕士生,主要从事动物营养与饲料科学研究。 浙江农业学报Acta Agriculturae Zhejiangensis 14(6):354~359,2002 钙蛋白酶系统与肌肉增长及嫩度的关系 金海丽,许梓荣 (浙江大学饲料科学研究所,浙江杭州310029) 摘 要:钙蛋白酶系统主要由钙蛋白酶(μ-calpain ,m-calpain ) 及钙蛋白酶抑制蛋白(calpastatin )组成,calpain 是存在于细胞质中的依赖于Ca 2+的中性蛋白酶,calpastatin 是钙蛋白酶的内源抑制蛋白。近年的研究表明,calpain 是细胞质中主要的蛋白水解酶,在肌原纤维蛋白降解中起着重要的作用。肌肉增长和宰后嫩度的变化与蛋白质水解程度密切相关。因此,钙蛋白酶系统的活性会影响畜禽肌肉增长和肉的嫩度。本文综述了钙蛋白酶系统各种酶的结构、作用、活性调节及与肉质的关系。关键词:钙蛋白酶系统;结构功能;活性调节;肌肉增长;嫩度中图分类号:S813.24 文献标识码:A 文章编号:1004-1524(2002)06-0354-06 The relationship between calpain system and muscle growth and meat tenderness :JIN Hai-li ,XU Zi-rong (Feed Science Institute ,Zhejiang University ,Hangzhou 310029,China ) Abstract :Calpain system consists of μ-calpain ,m-calpain ,the calcium-dependent neutral proteases ,and their endogenous inhibitor ,calpastatin.Calpain system is probably the major proteolytic in protein degradation ,which plays an important role in myofibrillar protein degradation.The muscle growth and postmortem tenderiza-tion of meat are highly related to the degree of proteolysis ,so the activity of calpain system has an effect on muscle growth and meat tenderness.This paper reviews the structure ,function and regulation of calpain system and the relationship between calpain system and muscle growth and meat tenderness . Key words :calpain system ;structure and function ;activity regulation ;muscle growth ;tenderness 提高家畜瘦肉率和产出对畜牧业来说具有非常重要的经济意义。肌肉蛋白质的增加取决于肌肉蛋白合成速度和降解速度。研究发现,过量calpain 表达可引起成肌细胞肌原纤维的降解,而calpastatin 表达量的增加会抑制肌肉蛋白质水解。骨骼肌蛋白降解的途径有三条:溶酶体组织蛋白酶途径、依赖钙的蛋白酶途径和依赖ATP 的蛋白质途径。在肌 肉组织中,钙蛋白酶系统控制着肌纤维蛋白 的降解,是肌肉蛋白质降解的限速步骤[1]。 因此,钙蛋白酶系统有可能在肌肉发育中起着调控作用。 肉的嫩度是肉品质的一个重要方面。影响肌肉间肉嫩度的主要因素有肌节的长度、结缔组织的含量及肌肉结构蛋白的水解敏感 性 [2] 。目前研究主要集中在第3个因素,宰后肌肉嫩度与肌肉蛋白质的降解量密切相 关,具有水解蛋白的特性钙蛋白酶系统毫无疑问会影响宰后肉嫩化,除此之外嫩度还与畜禽的遗传因素和肉的种类等因素有关。研

蛋白酶抑制剂

蛋白酶抑制剂 破碎细胞提取蛋白质的同时可释放出蛋白酶,这些蛋白酶需要迅速的被抑制以保持蛋白质不被降解。在蛋白质提取过程中,需要加入蛋白酶抑制剂以防止蛋白水解。以下列举了5种常用的蛋白酶抑制剂和他们各自的作用特点,因为各种蛋白酶对不同蛋白质的敏感性各不相同,因此需要调整各种蛋白酶的浓度。由于蛋白酶抑制剂在液体中的溶解度极低,尤其应注意在缓冲液中加人蛋白酶抑制剂时应充分混匀以减少蛋白酶抑制剂的沉淀。在宝灵曼公司的目录上可查到更完整的蛋白酶和蛋白酶抑制剂表。 常用抑制剂 PMSF PMSF即Phenylmethanesulfonyl fluoride,中文名为苯甲基磺酰氟。分子式为C7H7FO2S,分子量为174.19,纯度>99%。 常用生化试剂,用于抑制蛋白酶. 【配制方法】用异丙醇溶解PMSF成 1.74mg/ml(10mmol/L),分装成小份贮存于-20℃。如有必要可配成浓度高达17.4mg/ml的贮存液(100mmol/L)。 【注意】PMSF严重损害呼吸道粘膜、眼睛及皮肤,吸入、吞进或通过皮肤吸收后有致命危险。一旦眼睛或皮肤接触了PMSF,应立即用大量水冲洗之。凡被PMSF污染的衣物应予丢弃。PMSF在水溶液中不稳定。应在使用前从贮存液中现用现加于裂解缓冲液中。PMSF在水溶液中的活性丧失速率随pH值的升高而加快,且25℃的失活速率高于4℃。pH值为8.0时,20μmmol/l PMSF水溶液的半寿期大约为85min,这表明将PMSF溶液调节为碱性(pH>8.6)并在室温放置数小时后,可安全地予以丢弃。 蛋白水解酶抑制剂啊!!!实验室常用的啊!!! 主要用于组织匀浆时用!! 1)抑制丝氨酸蛋白酶(如胰凝乳蛋白酶,胰蛋白酶,凝血酶)和巯基蛋白酶(如木瓜蛋白酶); 2)10mg/ml溶于异丙醇中; 3)在室温下可保存一年; 4)工作浓度:17~174ug/ml(0.1~1.0mmol/L); 5)在水液体溶液中不稳定,必须在每一分离和纯化步骤中加入新鲜的PMSF。 EDTA 1)抑制金属蛋白水解酶; 2)0.5mol/L水溶液,pH8~9; 3)溶液在4℃稳定六个月以上; 4)工作浓度:0.5~1.5mmol/L. (0.2~0.5mg/ml); 5)加入NaOH调节溶液的pH值,否则EDTA不溶解。 胃蛋白酶抑制剂(pepstantin) l)抑制酸性蛋白酶如胃蛋白酶,血管紧张肽原酶,组织蛋白酶D和凝乳酶; 2)1mg/ml溶于甲醇中; 3}储存液在4℃一周内稳定,-20℃稳定6个月; 4)1作浓度:0.7ug/ml(1umol/L) 5)在水中不溶解。 亮抑蛋白酶肽(leupeptin) 1)抑制丝氨酸和巯基蛋白酶,如木瓜蛋白酶,血浆酶和组织蛋白酶B; 2)lOmg/ml溶于水; 3)储存液4℃稳定一周,-20℃稳定6个月; 4)工作浓度0.5mg/ml。 胰蛋白酶抑制剂(aprotinin) 1)抑制丝氨酸蛋白酶,如血浆酶,血管舒缓素,胰蛋白酶和胰凝乳蛋白酶; 2)lOmg/ml溶于水,pH7~8 3}储存液4℃稳定一周,-20℃稳定6个月; 4)工作浓度:0.06~2.0ug/ml(0.01~0.3umol/L); 5)避免反复冻融: 6)在pH>12.8时失活。

src激酶抑制剂综述

Src(sarcoma gene)受体激酶家族抑制剂 研究综述 药学0703班 U200717953 周俊

Src(sarcoma gene)受体激酶家族抑制剂研究综述 摘要;本文介绍了src的组成,作用以及与相关疾病的作用,总结了近几年研究src激酶家 族的方向,以src激酶家族作为靶点寻找抗癌药物中的一些进展和成果,并逐一分析比较有代表性的药物,如喹啉衍生物,嘧啶衍生物等等化合物,最后总结近期成果,指出现有工作的不足和未来的研究方向。 关键词鸡肉瘤病毒基因(src)酪氨酸蛋白激酶抑制因子ATP结合位点 引言: sarcoma gene(鸡肉瘤病毒基因,以下简称src)的组成 Src是一类癌基因,其表达产物主要是酪氨酸蛋白激酶类。Src在许多组织细胞中表达,在癌症发病机制中处于重要的地位,是肿瘤,癌症分子表达途径的重要的激酶。Src家族是研究最早最深入的家族,包括Blk, Brk, Fgr, Frk,Fyn, Hck, Lck, Lyn, c-Src, Srm,c-Yes等成员。根据氨基酸序列,可以分为两个亚族:一族是Src, Fyn, Yes and Fgr并且广泛在不同的组织中表达,Lck, Blk, Lyn and Hck和造血细胞有关.研究表明,Src与其他众多酶类可联合在一起促进多个细胞反应进程。Src 与多种激酶受体偶联,包括酪氨酸激酶受体,整合单白受体,G蛋白偶联受体等。.通过偶联作用影响细胞生长,发育,乃至转移扩散。最好的例子就是与EGFR(一种有关细胞生长的受体)的结合,Src可以使EGFR自身磷酸化,降低EGFR 的中间体的调节与胞吞作用。 除了牵涉到细胞内的反应,Src可能也在初级肿瘤细胞的转移中扮演着一个重要的角色。实际上Src转移细胞的存在减少了ECM反应以及组织反应的损失。分子调节这些过程的机理建立在Src和FAK的反应的基础上。Src与粘附分子有关。Src的磷酸化使得在粘附分子上的整联蛋白受体接收的黏着性与转移信号得以传播。 Src的作用靶点 一般来说就目前的研究而言,src的作用靶点有以下几类: 第一种是以src激酶为作用靶点。到目前为止还没有被批准的src激酶抑制剂,但是新的分子,有选择性的有潜力的化合物已经在被合成。设计测试更加有效的抑制剂,运用分子模型筛选技术,组合化学研发新的药物已经成为趋势。一般而言,一个抑制剂的选择性应该严格作用于癌细胞而不干扰正常细胞的生长进程,抑制剂也应间接作用于酶合成这样的在癌细胞进程中也会发生的物质。 第二种就是以SH2和SH3区域为靶点的药物,该药物是很多疾病的重要靶点,如癌症cardiovascular ,restenosis。这些分子阻断src和其他蛋白底物作用属于信号阻断途径,一般而言,SH2区域识别特殊的多肽包括一个磷酸化的酪氨酸残基。SH2的抑制剂分子设计基于氨基酸特定的排列顺序。在许多例子中,多肽库中产生的第一代配体给与了重要的信息以成功设计连接无受体的src的SH2的受体。而SH3的抑制剂则是基于与该区域作用的分子的多肽,其配体能够和SH3区域的酪氨酸富集区作用,但是一般而言这种作用是很弱的,因为形成的离子键和氢键数量有限。因此SH3抑制剂KI值在微摩尔范围内很低。尽管合成此种抑制剂的效果已经显现,但只有少量例子在文献中出现。 Src激酶家族的作用 Src酪氨酸激酶联系的受体对细胞的生长和分裂是非常重要的,它具有双重作用,既可以

大豆抗营养因子及其消除方法

大豆抗营养因子及其消除方法 【摘要】大豆中含有胰蛋白酶抑制因子和脂肪氧化酶等多种抗营养因子,它们直接影响大豆食品与饲料的营养价值和食用安全性,降低了大豆的利用率。本文综述了胰蛋白酶抑制剂和脂肪氧化酶的抗营养作用以及消除方法的研究进展。 【关键词】胰蛋白酶抑制剂;脂肪氧化酶;抗营养作用;消除方 【正文】 (一)大豆因其蛋白质含量高和氨基酸平衡性好而成为人类植物蛋白和脂肪的主要来源,同时又是发展家畜、家禽和鱼的重要蛋白质饲料来源,但是其中还含有很多 抗营养因子,如胰蛋白酶抑制剂、脂肪氧化酶、凝集素、单宁、植酸等,它们不 但使大豆的营养价值受到影响,还对畜禽的健康产生不同程度的影响,从而降低 了大豆及其加工产品的利用效率。本文对近几十年来国内外学者对胰蛋白酶抑制 剂和脂肪氧化酶的理化性质、抗营养作用机理以及大豆主要抗营养因子消除方法 的研究和报道进行了综。 (二)大豆抗营养因子的消除方 1、物理失活:大豆中部分抗营养因子对热不稳定,充分加热即可使之变性失活。目 前,膨化法是抗营养因子热失活最常用的方法,对全脂大豆及其副产品进行膨化,不仅可降低其所含胰蛋白酶抑制剂等抗营养因子的活性;还会改善大豆所含蛋白质的品质,提高其消化、吸收和利用率,因此得到了广泛的应用。大豆胰蛋白酶抑制剂的失活可以分为耐热性不同的两个阶段,第一个阶段是KTI的热失活,而第二个阶段则是BBI热失活,BBI的热稳定性之所以比KTI强,是由于BBI的分子结构中含有3个二硫键,而KTI则只有2个二硫键。大豆制品中的胰蛋白酶抑制剂的失活程度,多数报道认为失活70%~85%效果较好。刘寅哲利用膨化豆粕代替普通豆粕饲喂肉仔鸡的研究结果表明,肉仔鸡对蛋白质的消化吸收率提高12.9%,31~49日龄肉仔鸡平均日增重提高13.5%,膨化豆粕应用价值明显好于普通豆粕。 2、化学失活:利用抗营养因子的化学特性,添加某些化合物消除或缓解抗营养物质。 用化学试剂处理破坏KTI和BBI分子结构中的二硫键结构,可破坏其活性,同时氨基酸的组成不发生明显变化。张建云等人采用化学钝化法研究了多种化学物质及其浓度、作用时间等因素对胰蛋白酶抑制剂活性的影响,研究结果表明,5%的尿素加20%水处理豆粕30d效果最好,使胰蛋白酶抑制剂的失活率达78.55%。化学方法对不同的抗营养因子均有一定的效果,可节省设备与资源,但存在化学物质残留,影响饲料品质,降低适口性,且排出的脱毒液会造成污染环境,对动物机体也会产生毒害作用。 3、作物育种方法:大豆优良品种的选育是消除抗营养因子的根本,培育专门化品种 是解决大豆及豆制品适口性和品质问题的关键,因为通过加热等物理化学方法将大豆抗营养因子失活的同时,也降低了大豆种子中丰富蛋白的可溶性,而且其中所耗的费用最终加入到产品的成本中,提高了产品的价格。因此,多年来,科学家们一直在寻找低含量或不含胰蛋白酶抑制剂和脂肪氧化酶等抗营养因子的大豆新品。

相关文档
最新文档