直流电机闭环调速控制系统

直流电机闭环调速控制系统
直流电机闭环调速控制系统

实验课题:直流电机调速控制

实验内容:

本实验完成的是一个实现对直流电机转速调节的应用。

编写实验程序,用ADC0809完成模拟信号到数字信号的转换。输入模拟信号有A/D转换单元可调电位器提供的0~5V,将其转换后的数字信号读入累加器,做为控制电机的给定转速。用8255的B口作为直流电机的控制信号输出口,通过对电机转速反馈量的运算,调节控制信号,达到控制电机匀速转动的的作用。并将累加器中给定的转速和当前测量转速显示在屏幕上。再通过LED灯显示出转速的大小变化。

实验目的:

(1)学习掌握模/数信号转换的基本原理。

(2)掌握的ADC0809、8255芯片的使用方法。

(3)学习PC系统中扩展简单I/O接口的方法。

(4)了解实现直流电机转速调节的基本方法。

实验要求:

利用微机接口实验系统的硬件资源,运用汇编语言设计实现直流电机的调速控制功能。

基本功能要求:1、利用A/D转换方式实现模拟量给定信号的采样;2、实现PWM方式直流电机速度调节;3、LED灯显示当前直流电机速度状态。

实验设备:

(1)硬件要求: PC微机一台、TD-PIT实验系统一套

(2)软件要求:唐都编程软件,tdpit编程软件,“轻松编程”软件

实验原理:

各芯片的功能简介:

(1)8255的基本输出接口电路:

并行接口是以数据的字节为单位与I/O设备或被控制对象之间传递信息,CPU 和接口之间的数据传递总是并行的,即可以同时进行传递8位,16位,32位等。8255可编程外围接口芯片是具有A、B、C三个并行接口,+5V单电源供电,能在以下三种方式下工作:方式0—基本输入/出方式、方式1—选通输入/出方式、方式2—双向选通工作方式。

8255的内部结构图和引脚图如下:

本实验利用8255的A口作为输出口,控制8个单色LED灯,来实现电机转速的大小显示。

(2)转速调节原理:

* PWM的占空比决定输出到直流电机的平均电压.

PWM不是调节电流的.PWM的意思是脉宽调节,也就是调节方波高电平和低电平的时间比,一个20%占空比波形,会有20%的高电平时间和80%的低电平时间,而一个60%占空比的波形则具有60%的高电平时间和40%的低电平时间,占空比越大,高电平时间越长,则输出的脉冲幅度越高,即电压越高.如果占空比为0%,那么高电平时间为0,则没有电压输出.如果占空比为100%,那么输出全部电压.

所以通过调节占空比,可以实现调节输出电压的目的,而且输出电压可以无级连续调节.

在使用PWM控制的直流无刷电动机中,PWM控制有两种方式:

1.使用PWM信号,控制三极管的导通时间,导通的时间越长,那么做功的时间越

长,电机的转速就越高

2.使用PWM控制信号控制三极管导通时间,改变控制电压高低来实现

** 利用实验平台上8255的PB0产生脉冲信号作为控制量,经驱动电路驱动电机运转。霍尔测速元件输出的脉冲信号记录电机转速构成反馈量。在参数给定的情况下,经PID运算,电机可在控制量的作用下,按PC机累加器给定的转速运转。实验通过PC的0号通道,设置为输出1ms方波,作为采样时钟,PB0产生PWM脉冲计时及转速累加,系统总线上INTR中断用于测量电机转速。

(3)A/D转换原理:

本实验用ADC0809完成模拟信号到数字信号的转换。输入模拟信号有A/D转换单元可调电位器提供的0~5V,将其转换后的数字信号读入累加器,做为控制电机的给定转速。

(5) LED灯的工作原理:

LED灯显示器有8个单色发光二极管构成,在共阳极接法中,各二极管的阳极被连在一起,使用的时候要将它与+5V项链,而把各段的阴极连到器件的相应引脚上。当某的LED灯的引脚为低电平的时候,该灯工作。

本实验上通过8255的A口信号作为输入信号,控制各灯的工作状态。来显示出此时电机转速的大小变化。

(6)实现两位十进制数的显示:

在计算机中,对数字的输入和输出是用二进制进行的,而在计算机内部十进制数要转换为二进制来表示,要实现两位十进制数的显示,必须将他们转换为目前最普遍使用的字符编码ASCII码。

本实验中通过作除法。即拆分法。如两位十进制AB转换为A*10+B的形式,再通过A+30H与B+30H来转换为ASCII码,若溢出,加7运算。

DECSHOW PROC NEAR ;完成两位十进制数显示子程序

MOV DX,0

MOV BX,10 ;计算AX/10

DIV BX

ADD AL,30H ;商+30H,即为十位数ASCII码

MOV AH,0EH

INT 10H

ADD DL,30H ;余+30H,即为个位数ASCII码

MOV AH,2

INT 21H

RET

DECSHOW ENDP

实验接线图:

转速调节程序设计框图:

PA0~PA7

(a)转速调节主程序

主程序流程图:

程序清单:

;***************根据CHECK配置信息修改下列符号值******************* INTR_IVADD EQU 0038H ;INTR对应的中断矢量地址

INTR_OCW1 EQU 21H ;INTR对应PC机内部8259的OCW1地址

INTR_OCW2 EQU 20H ;INTR对应PC机内部8259的OCW2地址

INTR_IM EQU 0BFH ;INTR对应的中断屏蔽字

PCI_INTCSR EQU 0CC38H ;PCI卡中断控制寄存器地址

IOY0 EQU 0C400H ;片选IOY0对应的端口始地址

IOY1 EQU 0C440H ;片选IOY0对应的端口始地址

;***************************************************************** MY8255_A EQU IOY0+00H*4 ;8255的A口地址

MY8255_B EQU IOY0+01H*4 ;8255的B口地址

MY8255_C EQU IOY0+02H*4 ;8255的C口地址

MY8255_MODE EQU IOY0+03H*4 ;8255的控制寄存器地址

AD0809 EQU IOY1+00H ;AD0809的端口地址

STACK1 SEGMENT STACK

DW 64 DUP(?)

TOP LABEL WORD

STACK1 ENDS

DATA SEGMENT

TABLE1 DB 'Assumed Fan Speed:(/s)',0AH,0DH,'$' ;字符串变量 TABLE2 DB 'Current Fan Speed:(/s)',0AH,0DH,'$' ;字符串变量

ENT DB 0AH,0DH,'$' ;换行,回车

CS_BAK DW ? ;保存INTR原中断处理程序入口段地址的变量

IP_BAK DW ? ;保存INTR原中断处理程序入口偏移地址的变量 IM_BAK DB ? ;保存INTR原中断屏蔽字的变量

CS_BAK1 DW ? ;保存定时器0中断处理程序入口段地址的变量

IP_BAK1 DW ? ;保存定时器0中断处理程序入口偏移地址的变量

IM_BAK1 DB ? ;保存定时器0中断屏蔽字的变量

TS DB 14H ;采样周期

SPEC DW 55 ;转速给定值

IBAND DW 0060H ;积分分离值

KPP DW 1060H ;比例系数

KII DW 0010H ;积分系数

KDD DW 0020H ;微分系数

YK DW ?

CK DB ?

VADD DW ?

ZV DB ?

ZVV DB ?

TC DB ?

FPWM DB ?

CK_1 DB ?

EK_1 DW ?

AEK_1 DW ?

BEK DW ?

AAAA DB ?

VAA DB ?

BBB DB ?

VBB DB ?

MARK DB ?

R0 DW ?

R1 DW ?

R2 DW ?

R3 DW ?

R4 DW ?

R5 DW ?

R6 DW ?

R7 DB ?

R8 DW ?

DATA ENDS

CODE SEGMENT

ASSUME CS:CODE,DS:DATA

START: MOV AX,DATA

MOV DS,AX

MOV DX,OFFSET TABLE1 ;显示字符串1 MOV AH,09H

INT 21H

MOV AX,SPEC ;显示给定值

CALL DECSHOW

MOV DX,OFFSET ENT ;回车,换行

MOV AH,09H

INT 21H

MOV DX,OFFSET TABLE2 ;显示字符串2 MOV AH,09H

INT 21H

CLI

MOV AX,0000H

MOV ES,AX

MOV DI,0020H

MOV AX,ES:[DI]

MOV IP_BAK1,AX ;保存定时器0中断处理程序入口偏移地址

MOV AX,OFFSET TIMERISR

MOV ES:[DI],AX ;设置实验定时中断处理程序入口偏移地址

ADD DI,2

MOV AX,ES:[DI]

MOV CS_BAK1,AX ;保存定时器0中断处理程序入口段地址

MOV AX,SEG TIMERISR

MOV ES:[DI],AX ;设置实验定时中断处理程序入口段地址

IN AL,21H

MOV IM_BAK1,AL ;保存INTR原中断屏蔽字

AND AL,0F7H

OUT 21H,AL ;打开定时器0中断屏蔽位

MOV DX,PCI_INTCSR ;初始化PCI卡中断控制寄存器

MOV AX,1F00H ;向PCI_INTCSR中写入003F1F00H

OUT DX,AX

ADD DX,2

MOV AX,003FH

OUT DX,AX

MOV DI,INTR_IVADD

MOV AX,ES:[DI]

MOV IP_BAK,AX ;保存INTR原中断处理程序入口偏移地址

MOV AX,OFFSET MYISR

MOV ES:[DI],AX ;设置当前中断处理程序入口偏移地址 ADD DI,2

MOV AX,ES:[DI]

MOV CS_BAK,AX ;保存INTR原中断处理程序入口段地址

MOV AX,SEG MYISR

MOV ES:[DI],AX ;设置当前中断处理程序入口段地址

MOV DX,INTR_OCW1

IN AL,DX

MOV IM_BAK,AL ;保存INTR原中断屏蔽字

AND AL,INTR_IM

OUT DX,AL ;打开INTR的中断屏蔽位

MOV VADD,0000H ;变量的初始化

MOV ZV,00H

MOV ZVV,00H

MOV CK,00H

MOV YK,0000H

MOV CK_1,00H

MOV EK_1,0000H

MOV AEK_1,0000H

MOV BEK,0000H

MOV BBB,00H

MOV VBB,00H

MOV R0,0000H

MOV R1,0000H

MOV R2,0000H

MOV R3,0000H

MOV R4,0000H

MOV R5,0000H

MOV R6,0000H

MOV R7,00H

MOV R8,0000H

MOV MARK,00H

MOV FPWM,01H

MOV AAAA,7FH

MOV VAA,7FH

MOV TC,00H

MOV AL,80H ;初始化8255

MOV DX,MY8255_MODE

OUT DX,AL

MOV AL,00H

MOV DX,MY8255_B

OUT DX,AL

MOV DX,MY8255_A

OUT DX,AL

MOV DX,PC8254_MODE ;初始化PC机定时器0,定时1ms

MOV AL,36H

OUT DX,AL

MOV DX,PC8254_COUNT0

MOV AL,8FH

MOV AL,04H

OUT DX,AL

STI

M1: MOV AL,TS ;判断采样周期到否?

SUB AL,TC

JNC M1 ;没到则继续等待

MOV TC,00H ;采样周期到,将采样周期变量清0 MOV AL,ZVV

MOV AH,00H

MOV YK,AX ;得到反馈量YK

LOOP1: MOV DX,AD0809 ;启动A/D转换

OUT DX,AL

CALL DALLY

MOV DX,AD0809 ;读出转换结果

IN AL,DX

MOV DX,MY8255_A ;将结果显示于LED

OUT DX,AL

MOV BL,AL

MOV BH,0

CALL PID ;调用PID子程序,得到控制量CK MOV AL,CK ;把控制量转化成PWM输出

SUB AL,80H

JC IS0

MOV AAAA,AL

JMP COU

IS0: MOV AL,10H ;电机的启动值不能低于10H

MOV AAAA,AL

COU: MOV AL,7FH

SUB AL,AAAA

MOV BBB,AL

MOV AX,YK ;将反馈值YK送到屏幕显示

CALL DECSHOW

MOV DL,0DH ;回车

MOV AH,02H

MOV AH,1 ;判断是否有按键按下

INT 16H

JZ M1 ;无按键则跳回继续等待,有则退出

EXIT: CLI

MOV AL,00H ;退出时停止电机运转

MOV DX,MY8255_B

OUT DX,AL

MOV DX,PC8254_MODE ;恢复PC机定时器0状态 MOV AL,36H

OUT DX,AL

MOV DX,PC8254_COUNT0

MOV AL,00H

OUT DX,AL

MOV AL,00H

OUT DX,AL

MOV DX,PCI_INTCSR ;恢复PCI卡中断控制寄存器

MOV AX,0000H

OUT DX,AX

MOV AX,0000H ;恢复INTR原中断矢量

MOV ES,AX

MOV DI,INTR_IVADD

MOV AX,IP_BAK ;恢复INTR原中断处理程序入口偏移地址

MOV ES:[DI],AX

ADD DI,2

MOV AX,CS_BAK ;恢复INTR原中断处理程序入口段地址

MOV ES:[DI],AX

MOV DX,INTR_OCW1 ;恢复INTR原中断屏蔽寄存器的屏蔽字

MOV AL,IM_BAK

OUT DX,AL

MOV DI,0020H

MOV AX,IP_BAK1 ;恢复定时器0中断处理程序入口偏移地址

MOV ES:[DI],AX

ADD DI,2

MOV AX,CS_BAK1 ;恢复定时器0中断处理程序入口段地址

MOV ES:[DI],AX

MOV AL,IM_BAK1

OUT 21H,AL ;恢复屏蔽字

STI

MOV AX,4C00H

INT 21H

MYISR PROC NEAR ;系统总线INTR中断处理程序

PUSH AX

PUSH CX

PUSH DX

MOV AX,DATA

MOV DS,AX

MOV AL,MARK

CMP AL,01H

JZ IN1

MOV MARK,01H

JMP IN2

IN1: MOV MARK,00H ;计算转速

VV: MOV DX,0000H

MOV AX,03E8H

MOV CX,VADD

CMP CX,0000H

JZ MM1

DIV CX

MM: MOV ZV,AL

MOV VADD,0000H

MM1: MOV AL,ZV

MOV ZVV,AL

IN2: MOV DX,PCI_INTCSR ;清PCI卡控制寄存器标志位

SUB DX,19H

IN AL,DX

MOV DX,PCI_INTCSR

MOV AX,003FH

OUT DX,AX

MOV DX,INTR_OCW2 ;向PC机内部8259发送中断结束命令

MOV AL,20H

OUT DX,AL

MOV AL,20H

OUT 20H,AL

POP DX

POP CX

POP AX

IRET

MYISR ENDP

TIMERISR PROC NEAR ;PC机定时器0中断处理程序

PUSH AX

PUSH CX

PUSH DX

MOV AX,DATA

MOV DS,AX

INC TC ;采样周期变量加1

CALL KJ

CLC

CMP MARK,01H

JC TT1

INC VADD

CMP VADD,0700H ;转速值溢出,赋极值

JC TT1

MOV VADD,0700H

MOV MARK,00H

TT1: MOV AL,20H ;中断结束,发EOI命令

OUT 20H,AL

POP DX

POP CX

POP AX

IRET

TIMERISR ENDP

KJ PROC NEAR ;PWM子程序

CMP FPWM,01H ;PWM为1,产生PWM的高电平 JNZ TEST2

CMP VAA,00H

JNZ ANOT0

MOV FPWM,02H

MOV AL,BBB

CLC

RCR AL,01H

MOV VBB,AL

JMP TEST2

ANOT0: DEC VAA

MOV AL, 01H ;PB0=1 电机转动

MOV DX, MY8255_B

OUT DX,AL

TEST2: CMP FPWM,02H ;PWM为2,产生PWM的低电平 JNZ OUTT

CMP VBB,00H

JNZ BNOT0

MOV FPWM,01H

MOV AL,AAAA

CLC

RCR AL,01H

MOV VAA,AL

JMP OUTT

BNOT0: DEC VBB

MOV AL,00H ;PB0=0 电机停止

MOV DX,MY8255_B

OUT DX,AL

OUTT: POP AX

RET

KJ ENDP

PID: MOV AX,BX ;PID子程序

SUB AX,YK ;求偏差EK

MOV R0,AX

MOV R1,AX

SUB AX,EK_1

MOV R2,AX

SUB AX,AEK_1 ;求BEK

MOV BEK,AX

MOV R8,AX

MOV AX,R1 ;求偏差变化量AEK

MOV EK_1,AX

MOV AX,R2

MOV AEK_1,AX

TEST R1,8000H

JZ EK1 ;若偏差EK为正数,则不需要求补码 NEG R1 ;若偏差EK为负数,则求偏差EK的补码

EK1: MOV AX,R1 ;判断偏差EK是否在积分分离值的范围内

SUB AX,IBAND

JC II ;在积分分离值范围内,则跳转到II,计算积分项

MOV R3,00H ;若不在积分分离值范围内,则将积分项清0

JMP DDD ;计算微分项

II: MOV AL,TS ;计算积分项,结果放在R3变量中(R3=EK*TS/KII)

MOV AH,00H ;其中TS和KII均为正数,所以R3的正负由EK决定

MOV CX,R1

MUL CX

MOV CX,KII

DIV CX

MOV R3,AX

TEST R0,8000H ;判断积分项的正负

JZ DDD ;为正数,则跳转去计算微分项

NEG R3 ;为负数,则将积分项的结果求补码

DDD: TEST BEK,8000H ;判断BEK的正负

JZ DDD1 ;为正数,则BEK不变

NEG BEK ;为负数,则求BEK的补码

DDD1: MOV AX,BEK ;计算微分项(R4=KDD*BEK/8TS)

MOV CX,KDD

MUL CX

PUSH AX

PUSH DX

MOV AL,TS

MOV AH,00H ;将微分项缩小8倍,防止溢出

MOV CX,0008H

MUL CX

MOV CX,AX

POP AX

DIV CX

MOV R4,AX

TEST R8,8000H ;判断微分项的正负

JZ DD1 ;为正数,则结果不需要求补码

NEG R4 ;为负数,则微分项结果R4求补码

DD1: MOV AX,R3 ;积分项和微分项相加,结果放在R5变量中

ADD AX,R4

MOV R5,AX

JO L9 ;判断溢出

L2: MOV AX,R5

ADD AX,R2

MOV R6,AX ;R6=R5+R2=积分项+微分项+AEK

JO L3

L5: MOV AX,R6 ;计算KPP*R6

MOV CX,KPP

IMUL CX

MOV CX,1000H

IDIV CX

MOV CX,AX

RCL AH,01H ;判断溢出,溢出赋极值

PUSHF

RCR AL,01H

POPF

JC LLL1

CMP CH,00H

JZ LLL2

MOV AL,7FH

JMP LLL2

LLL1: CMP CH,0FFH

JZ LLL2

MOV AL,80H

LLL2: MOV R7,AL ;CK=CK_1+CK

ADD AL,CK_1

JO L8

L18: MOV CK_1,AL

ADD AL,80H

MOV CK,AL

RET

L8: TEST R7,80H ;CK溢出处理程序

JNZ L17

MOV AL,7FH ;若为正溢出,则赋给正极值7FH

L17: MOV AL,80H ;若为负溢出,则赋给赋极值80H JMP L18

L9: TEST R3,8000H

JNZ L1

MOV R5,7FFFH ;若为正溢出,则赋给正极值7FFFH JMP L2

L1: MOV R5,8000H ;若为负溢出,则赋给负极值8000H JMP L2

L3: TEST R2,8000H

JNZ L4

MOV R6,7FFFH

JMP L5

L4: MOV R6,8000H

JMP L5

DALLY PROC NEAR ;软件延时子程序

PUSH CX

PUSH AX

MOV CX,4000H

D1: MOV AX,0600H

D2: DEC AX

JNZ D2

LOOP D1

POP AX

POP CX

RET

DALLY ENDP

DECSHOW PROC NEAR ;完成两位十进制数显示子程序

MOV DX,0

MOV BX,10 ;计算AX/10

DIV BX

ADD AL,30H ;商+30H,即为十位数ASCII码

MOV AH,0EH

INT 10H

ADD DL,30H ;余+30H,即为个位数ASCII码

MOV AH,2

INT 21H

RET

DECSHOW ENDP

CODE ENDS

END START

实验调试步骤:

(1)确认从PC机引出的两根扁平电缆已经连接在实验平台上。

(2)首先运行CHECK程序,查看I/O空间始地址。

(3)利用查出的地址编写程序,然后编译连接。

(4)参照实验接线图连接实验电路。

(5)运行程序,调节电位器的大小,观察电机的运行情况以及显示在屏幕上的结果和LED灯的变化。

实验结果分析:

A/D实现模拟信号转换为数字信号,通过电位器调节输入电压(0~5V),改变输出的数字信号,进而改变8255的给定信号(给定转速),即通过改变PB0通道输出方波的占空比,实现PWM调速,改变脉冲的宽度。

若占空比越大,高电平时间越长,则输出的脉冲幅度越高,即电压越高.根据直流电动机的机械特性,电机转速与电压呈正比变化。

整个程序设计过程分为基本功能实现阶段,检测程序阶段,功能扩展和功能验证及程序补充四个实验阶段。

基本功能实验阶段,在“轻松编程”软件中完成,主要完成各个子程序的调试;在检测程序阶段,在“轻松编程”软件中通过编译和链接,并反复检查没有逻辑错误;调试结果正确以后在进行相应的连接,将各个子模块联系起来,由于自己不具备硬件资源,所以调试的时候只能检查程序本身的错误,经过调试能显示各个子程序的功能,同时嵌套有延时子程序,方便程序的调用,而端口地址的选择与确定,只能在实验室里完成,功能扩展及程序的补充,在实验室里完成,使用唐都硬件实验箱,用TDPIT来编程实现,实验的过程中,注意端口地址,要与硬件实验箱上的匹配;功能验证阶段,实验发现已经编好的程序仍存在问题,其中菜单显示和A/D转换是好的,然而电机不转,LED灯也不能正确的显示电机的转速(即相应的速度对应的相应的等不能正常显示)针对原来的程序及老师给的要求进行修改,并添加了一个判断是否有按键输入的子程序通过调整不同的速度后来实现任意状态下的按键停止。

在本实验中,通过对实验程序的设计、修改、实现,实验有以下几个需要注意和改进的地方:

1.在接线时要注意,将对应的线接在对应的位置,高位与高位对应,地位与地位对应;

2.在本次实验中实现电机转速调节很不稳定,主要原因是插线不牢固。

3.LED灯的显示并不精准,只是大概的反映出电机的转速变化状况。分析原因:我们的知识有限,仪器精度不高。

实验结论:

A/D转换器实现模拟信号到数字信号的转换,设置电机转速的给定值,通过PWM方式可实现电机转速的调节,LED灯显示电机转速的大小状态。这每一个功能模块的实现,都是自己的智慧的结晶,感到无比的喜悦。

本实验,总的来说,比较好的实现了实验目的,在原来实验课程的基础上更进一步的学习了在pc机系统中扩展简单程序的方法,进一步学习了编制数据输出程序的设计方法,实现了滞留电机的开环调速功能。在本实验中,通过独立的实验程序设计,自己查找资料验证,到功能的拓展及实现,培养了自己发现问题、

双闭环直流电机调速系统的SIMULINK仿真实验

双闭环直流电机调速系统的SIMULINK仿真实验 魏小景张晓娇刘姣 (自动化0602班) 摘要:采用工程设计方法对双闭环直流调速系统进行设计,选择调节器结构,进行参数的计算和校验;给出系统动态结构图,建立起动、抗负载扰动的Matlab Simulink 仿真模型.分析系统起动的转速和电流的仿真波形 ,并进行调试 ,使双闭环直流调速系统趋于合理与完善。 关键词:双闭环调速系统;调节器;Matlab Simulink建模仿真 1.引言 双闭环直流调速系统是目前直流调速系统中的主流设备,具有调速范围宽、平稳性好、稳速精度高等优点,在理论和实践方面都是比较成熟的系统,在拖动领域中发挥着极其重要的作用。由于直流电机双闭环调速是各种电机调速系统的基础,直流电机双闭环调速系统的工程设计主要是设计两个调节器。调节器的设计一般包括两个方面:第一选择调节器的结构,以确保系统稳定,同时满足所需的稳态精度. 第二选择调节器的参数,以满足动态性能指标。本文就直流电机调速进行了较系统的研究,从直流电机的基本特性到单闭环调速系统,然后进行双闭环直流电机设计方法研究,最后用实际系统进行工程设计,并采用Matlab/Sim-ulink进行仿真。 2.基本原理和系统建模 为了实现转速和电流两种负反馈分别起作用,在系统中设置了两个调节器,分别调节转速和电流,二者之间实行串联连接. 把转速调节器ASR 的输出当作电流调节器ACR 的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置GT ,TA为电流传感器,TG 为测速发电机. 从闭环结构上看,电流调节环在里面,叫做内环,转速调节环在外边叫做外环,这样就形了转速、 图1 直流电机双闭环调速系统的动态结构图

转速单闭环直流调速系统设计

郑州航空工业管理学院 电力拖动自动控制系统课程设计 07 级电气工程及其自动化专业 0706073 班级 题目转速单闭环的直流拖动系统 姓名 学号 指导教师孙标 二ОО十年月日

电力拖动自动控制系统课程设计 一、设计目的 加深对电力拖动自动控制系统理论知识的理解和对这些理论的实际应用能力,提高对实际问题的分析和解决能力,以达到理论学习的目的,并培养学生应用计算机辅助设计的能力。 二、设计任务 设计一个转速单闭环的直流拖动系统

题目:单闭环不可逆直流调速系统设计 1 技术指标 电动机参数:PN=3KW, n N=1500rpm, UN=220V,IN=17.5A,Ra=1.25 。主回路总电阻R=2.5,电磁时间常数Tl=0.017s,机电时间常数Tm=0.075s。三相桥式整流电路,Ks=40。测速反馈系数=0.07。调速指标:D=30,S=10%。 2 设计要求 (1)闭环系统稳定 (2)在给定和扰动信号作用下,稳态误差为零。 3 设计任务(1)绘制原系统的动态结构图; (2)调节器设计; (3)绘制校正后系统的动态结构图; (4)撰写、打印设计说明书。 4 设计说明书 设计说明书严格按**大学毕业设计格式书写,全部打印.另外,设计说明书应包括以下内容: (1)中文摘要 (2)英文摘要

目录 第一章中文摘要 ································································································ - 1 -第二章英文摘要 ············································································错误!未定义书签。第三章课程设计的目的和意义·············································································· - 1 -1.电力拖动简介 ··························································································· - 1 - 2.课程设计的目的和意义·················································································· - 2 -第四章课程设计内容·························································································· - 2 -第五章方案确定 ································································································ - 3 - 5.1方案比较的论证 ······················································································ - 3 - 5.1.1总体方案的论证比较········································································ - 3 - 5.1.2主电路方案的论证比较····································································· - 4 - 5.1.3控制电路方案的论证比较·································································· - 6 -第六章主电路设计····························································································· - 7 - 6.1主电路工作设备选择 ················································································ - 7 -第七章控制电路设计·························································································· - 8 -第八章结论 ·····································································································- 11 -第九章参考文献 ·······························································································- 11 -

单闭环直流调速系统

第十七单元 晶闸管直流调速系统 第二节 单闭环直流调速系统 一、转速负反馈直流调速系统 转速负反馈直流调速系统的原理如图l7-40所示。 转速负反馈直流调速系统由转速给定、转速调节器ASR 、触发器CF 、晶闸管变流器U 、测速发电机TG 等组成。 直流测速发电机输出电压与电动机转速成正比。经分压器分压取出与转速n 成正比的转速反馈电压Ufn 。 转速给定电压Ugn 与Ufn 比较,其偏差电压ΔU=Ugn-Ufn 送转速调节器ASR 输入端。 ASR 输出电压作为触发器移相控制电压Uc ,从而控制晶闸管变流器输出电压Ud 。 本闭环调速系统只有一个转速反馈环,故称为单闭环调速系统。 1.转速负反馈调速系统工作原理及其静特性 设系统在负载T L 时,电动机以给定转速n1稳定运行,此时电枢电流为Id1,对应转速反馈电压为Ufn1,晶闸管变流器输出电压为Udl 。 n n I C R R C U C R R I U n d e d e d e d d d ?+=+-=+-=0)(φ φφ 当电动机负载T L 增加时,电枢电流Id 也增加,电枢回路压降增加,电动机转速下降,则Ufn 也相应下降, 而转速给定电压Ugn 不变,ΔU=Ugn-Ufn 增加。 转速调节器ASR 输出电压Uc 增加,使控制角α减小,晶闸管整流装置输出电压Ud 增加,于是电动机转速便相应自动回升,其调节过程可简述为: T L ↑→Id ↑→Id(R ∑+Rd)↑→n ↓→Ufn ↓→△U ↑→Uc ↑→α↓→Ud ↑→n ↑。 图17-41所示为闭环系统静特性和开环机械特性的关系。

图中①②③④曲线是不同Ud之下的开环机械特性。 假设当负载电流为Id1时,电动机运行在曲线①机械特性的A点上。 当负载电流增加为Id2时,在开环系统中由于Ugn不变,晶闸管变流器输出电压Ud 也不会变,但由于电枢电流Id增加,电枢回路压降增加,电动机转速将由A点沿着曲线①机械特性下降至B’点,转速只能相应下降。 但在闭环系统中有转速反馈装置,转速稍有降落,转速反馈电压Ufn就相应减小,使偏差电压△U增加,通过转速调节器ASR自动调节,提高晶闸管变流器的输出电压Ud0由Ud01变为Ud02,使系统工作在随线②机械特性上,使电动机转速有所回升,最后稳定在曲线②机械特性的B点上。 同理随着负载电流增加为Id3,Id4,经过转速负反馈闭环系统自动调节作用,相应工作在曲线③④机械特性上,稳定在曲线③④机械特性的C,D点上。 将A,B,C,D点连接起来的ABCD直线就是闭环系统的静特性。 由图可见,静特性的硬度比开环机械特性硬,转速降Δn要小。闭环系统静特性和开环机械特性虽然都表示电动机的转速-电流(或转矩)关系,但两者是不同的,闭环静特性是表示闭环系统电动机转速与电流(或转矩)的静态关系,它只是闭环系统调节作用的结果,是在每条机械特性上取一个相应的工作点,只能表示静态关系,不能反映动态过程。 当负载突然增加时,如图所示由Idl突增到Id2时,转速n先从A点沿着①曲线开环机械特性下降,然后随着Ud01升高为Ud02,转速n再回升到B点稳定运行,整个动态过程不是沿着静特性AB直线变化的。 2.转速负反馈有静差调速系统及其静特性分析 对调速系统来说,转速给定电压不变时,除了上面分析负载变化所引起的电动机转速变化外,还有其他许多扰动会引起电动机转速的变化,例如交流电源电压的变化、电动机励磁电流的变化等,所有这些扰动和负载变化一样都会影响到转速变化。对于转速负反馈调速系统来说,可以被转速检测装置检测出来,再通过闭环反馈控制减小它们对转速的影响。也就是说在闭环系统中,对包围在系统前向通道中的各种扰动(如负载变化、交流电压波动、电动机励磁电流的变化等)对被调量(如转速)的影响都有强烈的抑制作用。但是对于转速负反馈调速系统来说,转速给定电压Ugn的波动和测速发电机的励磁变化引起的转速反馈电压Ufn变化,闭环系统对这种给定量和检测装置的扰动将无能为力。为了使系统有较高的调速精度,必须提高转速给定电源和转速检测装置的精度。

直流电机PWM调速与控制设计报告

综合设计报告 单位:自动化学院 学生姓名: 专业:测控技术与仪器 班级:0820801 学号: 指导老师: 成绩: 设计时间:2011 年12 月 重庆邮电大学自动化学院制

一、题目 直流电机调速与控制系统设计。 二、技术要求 设计直流电机调速与控制系统,要求如下: 1、学习直流电机调速与控制的基本原理; 2、了解直流电机速度脉冲检测原理; 3、利用51单片机和合适的电机驱动芯片设计控制器及速度检测电路; 4、使用C语言编写控制程序,通过实时串口能够完成和上位机的通信; 5、选择合适控制平台,绘制系统的组建结构图,给出完整的设计流程图。 6、要求电机能实现正反转控制; 7、系统具有实时显示电机速度功能; 8、电机的设定速度由电位器输入; 9、电机的速度调节误差应在允许的误差范围内。 三、给定条件 1、《直流电机驱动原理》,《单片机原理及接口技术》等参考资料; 2、电阻、电容等各种分离元件、IC、直流电机、电源等; 3、STC12C5A60S2单片机、LM298以及PC机; 四、设计 1. 确定总体方案; 2. 画出系统结构图; 3. 选择以电机控制芯片和单片机及速度检测电路,设计硬件电路; 4. 设计串口及通信程序,完成和上位机的通信; 5. 画出程序流程图并编写调试代码,完成报告;

直流电机调速与控制 摘要:当今社会,电动机作为最主要的机电能量转换装置,其应用范围已遍及国民经济的各个领域和人们的日常生活。无论是在工农业生产,交通运输,国防,航空航天,医疗卫生,商务和办公设备中,还是在日常生活的家用电器和消费电子产品(如电冰箱,空调,DVD等)中,都大量使用着各种各样的电动机。据资料显示,在所有动力资源中,百分之九十以上来自电动机。同样,我国生产的电能中有百分之六十是用于电动机的。电动机与人的生活息息相关,密不可分。电气时代,电动机的调速控制一般采用模拟法、PID控制等,对电动机的简单控制应用比较多。简单控制是指对电动机进行启动,制动,正反转控制和顺序控制。这类控制可通过继电器,光耦、可编程控制器和开关元件来实现。还有一类控制叫复杂控制,是指对电动机的转速,转角,转矩,电压,电流,功率等物理量进行控制。 本电机控制系统基于51内核的单片机设计,采用LM298直流电机驱动器,利用PWM 脉宽调制控制电机,并通过光耦管测速,经单片机I/O口定时采样,最后通过闭环反馈控制系统实现电机转速的精确控制,其中电机的设定速度由电位器经A/D通过输入,系统的状显示与控制由上位机实现。经过设计和调试,本控制系统能实现电机转速较小误差的控制,系统具有上位机显示转速和控制电机开启、停止和正反转等功能。具有一定的实际应用意义。关键字:直流电机、反馈控制、51内核、PWM脉宽调制、LM298 一、系统原理及功能概述 1、系统设计原理 本电机控制系统采用基于51内核的单片机设计,主要用于电机的测速与转速控制,硬件方面设计有可调电源模块,串口电路模块、电机测速模块、速度脉冲信号调理电路模块、直流电机驱动模块等电路;软件方面采用基于C语言的编程语言,能实现系统与上位机的通信,并实时显示电机的转速和控制电机的运行状态,如开启、停止、正反转等。 单片机选用了51升级系列的STC12c5a60s2作为主控制器,该芯片完全兼容之前较低版本的所有51指令,同时它还自带2路PWM控制器、2个定时器、2个串行口支持独立的波特率发生器、3路可编程时钟输出、8路10位AD转换器、一个SPI接口等,

直流电机双闭环调速系统设计.

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 目录 1 绪论 (1) 1.1课题研究背景 (1) 1.2研究双闭环直流调速系统的目的和意义 (1) 2 直流电机双闭环调速系统 (3) 2.1直流电动机的起动与调速 (3) 2.2直流调速系统的性能指标 (3) 2.2.1静态性能指标 (3) 2.2.2动态的性能指标 (4) 2.3双闭环直流调速系统的组成 (6) 3 双闭环直流调速系统的设计 (8) 3.1电流调节器的设计 (8) 3.2转速调节器的设计 (10) 3.3闭环动态结构框图设计 (12) 3.4设计实例 (12) 3.4.1设计电流调节器 (13) 3.4.2设计转速调节器 (15) 4.Matlab仿真 (17) 4.1仿真结果分析 (19) 5 结论 (20) 参考文献 (21)

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊1 绪论 1.1课题研究背景 直流调速是现代电力拖动自动控制系统中发展较早的技术。就目前而言,直流调速系统仍然是自动调速系统的主要形式,电机自动控制系统广泛应用于机械,钢铁,矿山,冶金,化工,石油,纺织,军工等行业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电机,提高其运行性能,对国民经济具有十分重要的现实意义。 以上等等需要高性能调速的场合得到广泛的应用。然而传统双闭环直流电动机调速系统多数采用结构比较简单、性能相对稳定的常规PID控制技术,在实际的拖动控制系统中,由于电机本身及拖动负载的参数(如转动惯量)并不像模型那样保持不变,而是在某些具体场合会随工况发生改变;与此同时,电机作为被控对象是非线性的,很多拖动负载含有间隙或弹性等非线性的因素。因此被控制对象的参数发生改变或非线性特性,使得线性的常参数的PID控制器往往顾此失彼,不能使得系统在各种工况下都保持与设计时一致的性能指标,常常使控制系统的鲁棒性较差,尤其对模型参数变化范围大且具的非线性环节较强的系统,常规PID调节器就很难满足精度高、响应快的控制指标,往往不能有效克服模型参数变化范围大及非线性因素的影响。 1.2研究双闭环直流调速系统的目的和意义 双闭环直流调速系统是性能很好,应用最广的直流调速系统。采用该系统可获得优良的静、动态调速特性。此系统的控制规律,性能特点和设计方法是各种交、直流电力拖动自动控制系统的重要基础。 20世纪90年代前的大约50年的时间里,直流电动机几乎是唯一的一种能实现高性能拖动控制的电动机,直流电动机的定子磁场和转子磁场相互独立并且正交,为控制提供了便捷的方式,使得电动机具有优良的起动,制动和调速性能。尽管近年来直流电动机不断受到交流电动机及其它电动机的挑战,但至今直流电动机仍然是大多数变速运动控制和闭环位置伺服控制首选。因为它具有良好的线性特性,优异的控制性能,高效率等优点。直流调速仍然是目前最可靠,精度最高的调速方法。 通过对转速、电流双闭环直流调速系统的了解,使我们能够更好的掌握调速系统的基本理论及相关内容,在对其各种性能加深了解的同时,能够发现其缺陷之处,通过对该系统不足之处的完善,可提高该系统的性能,使其能够适用于各种工作场合,提高其使用效率。并以此为基础,再对交流调速系统进行研究,最终掌握各种交、直流调速系统的原理,使之能够应用于国民经济各个

直流电机双闭环调速大作业

题目(中)直流电机双闭环控制调速 姓名与学号 指导教师 年级与专业

所在学院

目录: 一、电机控制实验目的和要求 (4) 二、双闭环调速控制内容 (4) 三、主要仪器设备和仿真平台 (5) 四、仿真建模步骤及分析 (5) 1.直流电机双闭环调速各模块功能分析 (5) 2.仿真结果分析(转速、转矩改变) (18) 3.转速PI调节器参数对电机运行性能的影响 (24) 4.电流调节器改用PI调节器后的仿真 (27) 5.加入位置闭环后的仿真 (28) 6.速度无超调仿真 (30) 七、实验心得 (32)

一、电机控制实验目的和要求 1、加深对直流电机双闭环PWM调速模型的理解。 2、学会利用MATLAB中的SIMULINK工具进行建模仿真。 3、掌握PI调节器的使用,分析其参数对电机运行性能的影响。 二、双闭环调速控制内容 必做: 1、描述Chopper-Fed DC Motor Drive中每个模块的功能。 2、仿真结果分析:包括转速改变、转矩改变下电机运行性能,并解释相应现象。 3、转速PI调节器参数对电机运行性能的影响。 4、电流调节器改用PI调节器后,对电机运行调速结果的影响。 选做: 5、加入位置闭环 6、速度无超调

三、主要仪器设备和仿真平台 1、MATLAB R2014b 2、Microsoft Officials Word 2016 四、仿真建模步骤及分析 1.直流电机双闭环调速各模块功能分析 参考Matlab自带的直流电机双闭环调速的SIMULINK仿真模型: demo/simulink/simpowersystem/Power Electronics Models/Chopper-Fed DC Motor Drive

微机原理课程设计—直流电机闭环调速控制系统

实验课题:直流电机调速控制 实验内容: 本实验完成的是一个实现对直流电机转速调节的应用。 编写实验程序,用ADC0809完成模拟信号到数字信号的转换。输入模拟信号有A/D转换单元可调电位器提供的0~5V,将其转换后的数字信号读入累加器,做为控制电机的给定转速。用8255的B口作为直流电机的控制信号输出口,通过对电机转速反馈量的运算,调节控制信号,达到控制电机匀速转动的的作用。并将累加器中给定的转速和当前测量转速显示在屏幕上。再通过LED灯显示出转速的大小变化。 实验目的: (1)学习掌握模/数信号转换的基本原理。 (2)掌握的ADC0809、8255芯片的使用方法。 (3)学习PC系统中扩展简单I/O接口的方法。 (4)了解实现直流电机转速调节的基本方法。 实验要求: 利用微机接口实验系统的硬件资源,运用汇编语言设计实现直流电机的调速控制功能。 基本功能要求:1、利用A/D转换方式实现模拟量给定信号的采样;2、实现PWM方式直流电机速度调节;3、LED灯显示当前直流电机速度状态。 实验设备: (1)硬件要求: PC微机一台、TD-PIT实验系统一套 (2)软件要求:唐都编程软件,tdpit编程软件,“轻松编程”软件 实验原理: 各芯片的功能简介: (1)8255的基本输出接口电路: 并行接口是以数据的字节为单位与I/O设备或被控制对象之间传递信息,CPU 和接口之间的数据传递总是并行的,即可以同时进行传递8位,16位,32位等。8255可编程外围接口芯片是具有A、B、C三个并行接口,+5V单电源供电,能在以下三种方式下工作:方式0—基本输入/出方式、方式1—选通输入/出方式、方式2—双向选通工作方式。

直流电动机闭环调速试验

. University of South China 电气传动技术 实验报告1 实验名称直流电动机闭环调速实验 学院名称电气工程学院 指导教师 班级电力 学号 学生姓名 文档Word . 一预习报告

目的:1了解并掌握典型环节模拟电路构成方法。 2 熟悉各典型线性环节阶跃响应曲线。 3 了解参数变化对典型环节动态性能影响。内容: 1比例积分控制的无静差直流调速系统的仿真模型 2电流环调速系统的仿真模型 3转速环调速系统的仿真模型

文档Word . 二实验报告 直流电动机:额定电压U=220N,额定电流I=55A,额定转速 dNN n=1000r/min,电动机电动势系数C=0.192V·min/r。假定晶闸管整流eN装置输出电流可逆,装置的放大系数Ks=44,滞后的时间常数 T=0.00167s。电枢回路总电阻R=1.0Ω,电枢回路电磁时间常数 s T=0.00167s,电力拖动系统机电时间常数T=0.075s。转速反馈系数ml*U。对应额定转速时的给定电压·α=0.01Vmin/r=10V。双闭环调速系统中Ks=40,T=0.0017s,T=0.18s,T=0.03s,T=0.002s,T=0.01s,R=0onlmsoi Ω,C=0.132V·min/r,α=0.00666V·min/r,β=0.05V·min/r。e一比例积分控制的无静差直流调速系统中PI调节器的值为: K=0.56,1/τ=11.34 P 文档Word .

无静差调速系统输出(Scope图像1) 输出波形比例部分(Scope1图像2) 对比图1和图2可以发现,只应用比例控制的话,系统响应速度快,但是静差率大,而添加积分环节后,系统既保留了比例环节的快速响应性,又具有了积分环节的无静差调速特性,使调速系统稳定性相对更高,动态响应速度也快。 文档Word .

数字化直流电机双闭环调速系统

数字化直流电机双闭调速系统 摘要本文叙述了直流电动机的基本原理和调速原理,介绍了直流电动机开环和双闭环调速系统的组成及静、动态特性,并且根据直流电动机的基本方程建立了调速系统的数学模型,给出了动态结构框图,用工程设计方法设计了直流电动机双闭环调速系统。最后用MATLAB 软件搭建了仿真模型,对调速系统进行了仿真研究。通过对直流电动机双闭环调速系统动态特性的研究与仿真,可以清楚地看到,直流电动机双闭环调速系统具有较好的动态特性,可以在给定调速范围内,实现无静差平滑调速,这为直流电动机调速系统的硬件实验提供了理论依据。 关键词:直流调速;双闭环调速;转速环;电流环;MATLAB 仿真 目录 第1 章绪论 (1) 第2 章课程设计的方案 (2) 2.1 概述 (2) 2.2 方案选择 (2) 2.3 系统组成总体结构 (4) 第3 章硬件设计 (5) 3.1 单片机控制器 (5) 3.2 接口电路 (5)

3.3 D/A 转换电路 (6) 3.4 触发电路 (6) 3.5 三相整流电路 (7) 3.6 电流检测电路 (7) 3.7 A/D 转换电路 (8) 3.8 转速检测电路 (8) 3.9 键盘显示电路 (9) 第4 章软件设计 (11) 4.1 设计要求 (11) 4.2 电流环的设计 (11) 4.3 转速环的设计 (12) 4.4 闭环动态结构框图设计 (12) 4.5 程序设计 (13) 第5 章系统测试与分析/实验数据及分析 (15) 第6 章课程设计总结 (17) 参考文献 (18) 第1章绪论 三十多年来,直流电机调速控制经历了重大的变革。传统的控制系统采用模拟元件,虽在一定程度上满足生产要求,但是因为元件容易老化,在使用中易受外界干扰影响,并且线路复杂、通用性差,控制效果受器件性能、温度等因素的影响,故系统的运行可靠性及标准性得不到保证,甚至出现事故。而如今首先实现了整流器的更新换代,以晶闸管整流装置取代了习用已久的直流发电机电动机组及水银整流装置使直流电气传动完成了一次大的跃进。大功率直流调速系统通常采用三相全控桥式整流电路对电动机进行供电,从而控制电动机的转速。同时,控制电路已经实现高集成化、小型化、高可靠性及低成本。以上技术的应用,使直流调速系统的性能指标大幅提高,应用范围不断扩大。直流调速技术不断发展,走向成熟化、完善化、系列化、标准化,在可逆脉宽调速、高精度的电气传动领域中仍然难以替代。直流调速是指人为地或自动地改变直流电动机的转速,以满足工作机械的要求。从机械特性上看,就是通过改变电动机的参数或外加电压等方法来改变电动机的机械特性,从而改变电动机机械特性和工作特性机械特性的交点,使电动机的稳定运转速度发生变化。直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在轧钢机、矿井卷扬机、挖掘机、高层电梯等需要高性能可控电力拖动领域应用历史悠久。近年来,

直流电动机调速控制系统论文

安徽三联学院 年度论文 直流电动机调速系统的研究 Dc motor speed control system research 专业:电气工程及其自动化 姓名:薄朋_____________ 学号: 1002164___________ 指导老师:张金翰________ 2013年1月10日 信息与通信技术系

【摘要】直流电动机诞生与19世纪,距今已有100多年的历史,并已成为动力机械的主要驱动装置。直流调速系统具有优良的启动、制动性能,宜于在宽广范围内平滑调速,在需要高性能可控电力拖动的领域中得到了广泛的应用。电动机拖动生产机械运行时,系统的速度需要根据工作状态和工艺要求的不同进行调节,使生产机械以最合理的速度工作,从而提高产品和生产效率,这就要求人为采取一定的方法来改变生产机械的工作速度,以满足生产的需要。 关键字:直流电动机调速 【abstract 】Dc motor was born in the 19th century, more than 100 years of history, and has become the main drive power machinery. Dc speed control system has good start, braking performance, like in the wide range smoothing speed and are in need of high performance controlled electric drive field has been widely used in the field. Motor drive production machine operation, the speed of the system need according to the working status and technological requirements of different carries on the adjustment, production machinery with the most reasonable speed work, so as to improve the products and production efficiency, this requires people to take certain method to change the production machinery working speed, in order to meet production need. Key words: Dc motor speed regulation

双闭环直流电机调速系统设计参考案例

《运动控制系统》课程设计指导书 一、课程设计的主要任务 (一)系统各环节选型 1、主回路方案确定。 2、控制回路选择:给定器、调节放大器、触发器、稳压电源、电流截止环节,调节器锁零电路、电流、电压检测环节、同步变压器接线方式(须对以上环节画出线路图,说明其原理)。 (二)主要电气设备的计算和选择 1、整流变压器计算:变压器原副方电压、电流、容量以及联接组别选择。 2、晶闸管整流元件:电压定额、电流定额计算及定额选择。 3、系统各主要保护环节的设计:快速熔断器计算选择、阻容保护计算选择计算。 4、平波电抗器选择计算。 (三)系统参数计算 1、电流调节器ACR 中i i R C 、 计算。

2、转速调节器ASR 中n n R C 、 计算。 3、动态性能指标计算。 (四)画出双闭环调速系统电气原理图。 使用A1或A2图纸,并画出动态框图和波德图(在设计说明书中)。 二、基本要求 1、使学生进一步熟悉和掌握单、双闭环直流调速系统工作原理,了解工程设计的基本方法和步骤。 2、熟练掌握主电路结构选择方法,主电路元器件的选型计算方法。 3、熟练掌握过电压、过电流保护方式的配置及其整定计算。 4、掌握触发电路的选型、设计方法。 5、掌握同步电压相位的选择方法。 6、掌握速度调节器、电流调节器的典型设计方法。 7、掌握电气系统线路图绘制方法。 8、掌握撰写课程设计报告的方法。 三、 课程设计原始数据

有以下四个设计课题可供选用: A 组: 直流他励电动机:功率P e =1.1KW ,额定电流I e =6.7A ,磁极对数P=1, n e =1500r/min,励磁电压220V,电枢绕组电阻R a =2.34Ω,主电路总电阻R =7Ω,L ∑=246.25Mh(电枢电感、平波电感和变压器电感之和),K s =58.4,机电时间常数 T m =116.2ms ,滤波时间常数T on =T oi =0.00235s ,过载倍数λ=1.5,电流给定最大值 10V U im =*,速度给定最大值 10V U n =* B 组: 直流他励电动机:功率P e =22KW ,额定电压U e =220V ,额定电流I e =116A,磁极对 数P=2,n e =1500r/min,励磁电压220V,电枢绕组电阻R a =0.112Ω,主电路总电阻R = 0.32Ω,L ∑=37.22mH(电枢电感、平波电感和变压器电感之和),电磁系数 C e =0.138 Vmin /r ,K s =22,电磁时间常数T L =0.116ms ,机电时间常数T m =0.157ms , 滤波时间常数T on =T oi =0.00235s ,过载倍数λ=1.5,电流给定最大值 10V U im =*,速度给定最大值 10V U n =* C 组: 直流他励电动机:功率Pe =145KW ,额定电压Ue=220V ,额定电流Ie=733A,磁极对数P=2,ne=430r/min,励磁电压220V,电枢绕组电阻Ra=0.0015Ω,主电路总电阻R =0.036Ω,Ks=41.5,电磁时间常数TL=0.0734ms ,机电时间常数

基于STC52单片机的直流电机PWM调速系统

实训报告 实训名称直流电机调速试验系别电子与电气工程学院专业、班级09测控C1 学生姓名、学号刘凡094821257 学生姓名、学号沈阳094821345 学生姓名、学号覃新造094820364 指导教师陈进 实训地点16号楼212室 实训日期2012 年5月20日

基于STC52单片机的直流电机PWM调速系统 摘要 本文介绍一种基于STC52单片机控制的PWM直流电机脉宽调速系统。系统以廉价的STC52单片机为控制核心,以直流电机为控制对象。从系统的角度出发,对电路进行总体方案论证设计,确定电路各个的功能模块之间的功能衔接和接口设置,详细分析了各个模块的方案论证和参数设置。整个系统利用52单片机的定时器产生1K左右的PWM脉冲,通过快速光耦6N137实现控制单元与驱动单元的强弱电隔离,采用4个9013和2个9012构成的H桥电路实现对直流电机的调速,用光电编码盘完成测速功能。 关键字STC52,PWM,光耦隔离,光电编码盘

1前言 1.1数字直流调速的意义 现在电气传动的主要方向之一是电机调速系统采用微处理器实现数字化控制。从上世纪80年代中后期起,世界各大电气公司如ABB、通用、西屋、西门子等都在竞相开发数字式调速传动装置,经过二十几年的发展,当前直流调速已发展到一个很高的技术水平:功率元件采用可控硅;控制板采用表面安装技术;控制方式采用电源换相、相位控制[1]。特别是采用了微处理器及其他先进电力电子技术,使数字式直流调速装置在精度的准确性、控制性能的优良性和抗干扰的性能有很大的提高和发展,在国内外得到广泛的应用。数字化直流调速装置作为目前最新控制水平的传动方式显示了强大优势。全数字化直流调速系统不断升级换代,为工程应用和工业生产提供了优越的条件。 采用微处理器控制,使整个调速系统的数字化程度,智能化程度有很大改观;采用微处理器控制,使调速系统在结构上简单化,可靠性提高,操作维护变得简捷,电机稳态运行时转速精度等方面达到较高水平。由于微处理器具有较佳的性价比,所以微处理器在工业过程及设备控制中得到日益广泛的应用。近年来,尽管交流调速系统发展很快,但是直流电机凭借其良好的启动、制动性能,在金属切削机床、轧钢机、海洋钻机、挖掘机、造纸机、矿井卷扬机、电镀、高层电梯等需要广泛范围内平滑调速的高性能可控电力拖动领域中仍得到了广泛的应用。 现阶段,我国还没有自主的全数字化直流调速控制装置生产商,而国外先进的控制器价格昂贵,且技术转让受限,为此研究及更好的使用国外先进的控制器,吸收国外先进的数字化直流电机调速装置的优点,具有重要的实际意义和重大的经济价值。 1.2研究现状综述 1.2.1电气传动的发展现状 20世纪70年代以来,直流电机传动经历了重大的技术、装备变革。整流器的更新换代,以晶闸管整流装置取代了习用已久的直流发电机电动机组及水银整流装置使直流电气传动完成了一次大的跃进[1]。同时,高集成化、小型化、高可靠性及低成本成为控制的电路的发展方向。使直流调速系统的性能指标大幅提高,应用范围不断扩大。直流调速技术不断发展,走向成熟化、完善化、系列化、标准化,在可逆脉宽调速、高精度的电气传动领域中仍然难以替代[1]。 早期直流传动的控制系统采用模拟分离器件构成,由于模拟器件有其固有的缺点,

单闭环直流电机速度控制系统研究报告

一.实验原理 直流电机在应用中有多种控制方式,在直流电机的调速控制系统中,主要采用电枢电压控制电机的转速与方向。 功率放大器是电机调速系统中的重要部件,它的性能及价格对系统都有重要的影响。过去的功率放大器是采用磁放大器、交磁放大机或可控硅<晶闸管)。现在基本上采用晶体管功率放大器。PWM功率放大器与线性功率放大器相比,有功耗低、效率高,有利于克服直流电机的静摩擦等优点。 PWM调制与晶体管功率放大器的工作原理: 1.PWM的工作原理 图1-1PWM的控制电路 上图所示为SG3525为核心的控制电路,SG3525是美国Silicon General公司生产的专用。 PWM控制集成芯片,其内部电路结构及各引脚如图1-2所示,它采用恒频脉宽调制控制方案,其内部包含有精密基准源、锯齿波振荡器、误差放大器、比较器、分频器和保护电路等。调节Ur的大小,在A、B两端可输出两个幅度相等、频率相等、相位相互错开180度、占空比可调的矩形波<即PWM信号)。它适用于各开关电源、斩波器的控制。 2.功放电路 直流电机PWM输出的信号一般比较小,不能直接去驱动直流电机,它必须经过功放后再接到直流电机的两端。该实验装置中采用直流15V的直流电压功放电路驱动。 3.反馈接口 在直流电机控制系统中,在直流电机的轴上贴有一块小磁钢,电机转动带动磁钢转动。磁钢的下面中有一个霍尔元件,当磁钢转到时霍尔元件感应输出。

4.直流电机控制系统如图1-3所示,由霍耳传感器将电机的速度转换成电信号,经数据采集卡变换成数字量后送到计算机与给定值比较,所得的差值按照一定的规律<通常为PID)运算,然后经数据采集卡输出控制量,供执行器来控制电机的转速和方向。 图1-2 SG3525内部结构 图1-3 直流电机控制系统 5.PID原理 过程控制的基本概念 过程控制――对生产过程的某一或某些物理参数进行的自动控制。 1.模拟控制系统 图1-4 基本模拟反馈控制回路 被控量的值由传感器或变送器来检测,这个值与给定值进行比较,得到偏差,模拟调节器依一定控制规律使操作变量变化,以使偏差趋近于零,其输出通过执行器作用于过程。 控制规律用对应的模拟硬件来实现,控制规律的修改需要更换模拟硬件。 2.微机过程控制系统

双闭环直流电机调速系统

双闭环直流电机调速系统 摘要: 关键词: 引言:速度和电流双臂环直流调速系统,是由单闭环调速系统发展而来的,调速系统采用比例积分调节器,实现了转速的无静差调速。又采用直流截止负反馈环节,限制了启(制)动时的最大电流。这对一般要求不太高的调速系统,基本已能满足要求。但是由于电流截止反馈限制了最大电流,再加上电动机反电动势随着电机转速的上升而增加,使电流达最大值后便迅速将下来。此时,电机的转矩也减小,使启动过程变慢,启动时间较长。 一、双闭环直流调速系统的组成 转速、电流双闭环直流调速系统原理如图 1 所示。系统的组成框图如图2所示。

图1 转速-电流双闭环直流调速系统 图2 转速-电流双闭环直流电机调速系统组成框图 由图可见,该系统由两个反馈构成两个闭环回路,其中一个是由电流调节器ACR和电流检测——反馈环节构成的电流环,另一个是由速度调节器ASR和转速检测——反馈环节构成的速度环。由于速度环包围电流环,因此称电流环为内环,称速度环为外环。在电路中,ASR和ACR实行串级联接,即由ASR去“驱动”ACR,再由ACR去控制“触发电路”。图中ASR和ACR均为PI调节器。ASR、ACR的输入、输出量的极性主要视触发电路对控制电压的要求而定。 (一)直流电机各物理量间的关系 直流电动机的电路图如图3所示。由图可知,直流电动机有两个独立回路,一个是电枢回路,另一个是励磁回路。

1.电枢绕组的电磁转矩和转矩平衡关系: 2.电枢回路电压平衡关系 结合以上公式可推出即e e T a e a T K K R K U n ?Φ -Φ= 2 其中,Φ ?= e a K U n 0,称为电机理想空载转速,e e T a T K K R n ?Φ=?2为电机转速降,故 直流电机的调速方法 改变电压调速,采用此方法的特性曲线如下图6所示: 图6 改变U 时的机械曲线特性 3.直流电动机的系统框图 (二)转速调节器与速度调节器—比例积分电路(PI 调节器) PI 调节器的电路原理图如图7所示:

基于单片机的直流电机调速系统的课程设计

一、总体设计概述 本设计基于8051单片机为主控芯片,霍尔元件为测速元件, L298N为直流伺服电机的驱动芯片,利用 PWM调速方式控制直流电机转动的速度,同时可通过矩 阵键盘控制电机的启动、加速、减速、反转、制动等操作,并由LCD显示速度的变化值。 二、直流电机调速原理 根据直流电动机根据励磁方式不同,分为自励和它励两种类型,其机械特性曲线有所不同。但是对于直流电动机的转速,总满足下式: 式中U——电压; Ra——励磁绕组本身的内阻; ——每极磁通(wb ); Ce——电势常数; Ct——转矩常数。 由上式可知,直流电机的速度控制既可以采用电枢控制法也可以采用磁场控制法。磁场控制法控制磁通,其控制功率虽然较小,但是低速时受到磁场和磁极饱和的限制,高速时受到换向火花和换向器结构强度的限制,而且由于励磁线圈电感较大,动态响应较差,所以在工业生产过程中常用的方法是电枢控制法。 电枢控制法在励磁电压不变的情况下,把控制电压信号加到电机的电枢上来控制电机的转速。传统的改变电压方法是在电枢回路中串连一个电阻,通过调节电阻改变电枢电压,达到调速的目的,这种方法效率低,平滑度差,由于串联电阻上要消耗电功率,因而经济效益低,而且转速越慢,能耗越大。随着电力电子的发展,出现了许多新的电枢电压控制法。如:由交流电源供电,使用晶闸管整流器进行相控调压;脉宽调制(PWM)调压等。调压调速法具有平滑度高、能耗低、精度高等优点,在工业生产中广泛使用,其中PWM应用更广泛。脉宽调速利用一个固定的频率来控制电源的接通或断开,并通过改变一个周期内“接通”和“断开”时间的长短,即改变直流电机电枢上的电压的“占空比”来改变平均电. 压的大小,从而控制电动机的转速,因此,PWM又被称为“开关驱动装置”。如 果电机始终接通电源是,电机转速最大为Vmax,占空比为D=t1/t,则电机的平均转速:Vd=Vmax*D,可见只要改变占空比D,就可以调整电机的速度。平均转 速Vd与占空比的函数曲线近似为直线。 三、系统硬件设计

直流电机闭环调速课程设计

课程设计报告 课程名称:计算机控制系统 设计题目:直流电机闭环调速 院系:电气信息学院 班级: 姓名: 学号: 姓名: 学号: 姓名: 学号: 指导教师: 设计时间:

摘要 在电气时代的今天,电动机在工农业生产、人们日常生活中起着十分重要的作用。直流电机是最常见的一种电机,在各领域中得到广泛的应用。研究直流电机的控制和测量方法,对提高控制精度和响应速度、节约能源等都具有重要意义。电机调速问题一直是自动化领域中比较重要的问题之一。不同领域对于电机的调速性能有着不同的要求,因此,不同的调速方法有着不同的应用场合。 为了提高直流调速系统的动态、静态性能,通常采用闭环控制系统(主要包括单闭环、双闭环)。而在对调速指标要求不高的场合,采用单闭环即可。闭环系统较之开环系统能自动侦测把输出信号的一部分拉回到输入端,与输入信号相比较,其差值作为实际的输入信号;能自动调节输入量,能提高系统稳定性。在对调速系统性能有较高要求的领域常利用直流电动机,但直流电动机开环系统稳定性不能满足要求,可利用转速单闭环提高稳态精度。 本次课程设计利用软件定时方式采用Intel 8255A可编程外设接口芯片唐都TD-PITC 实验系统上模拟直流电动机闭环调速系统,A/D转换器实现模拟信号到数字信号的转换,设置电机转速的给定值,通过PWM方式可实现电机转速的调节,LED灯显示电机转速的大小状态。 关键字:闭环调速、inter 8255A、A/D转换器、PWM、LED

目录 摘要 1 控制系统总体设计方案 (3) 2 系统的组成及工作原理 (4) 2.1 8255工作原理 (4) 2.2 转速调节原理 (5) 2.3 A/D转换原理 (5) 2.4 LED灯的工作原理 (6) 2.5 实现两位十进制数的显示 (6) 3 硬件设计 (7) 3.1 接线图 (7) 4 软件设计 (8) 4.1 转速调节程序设计框图 (8) 4.2 主程序流程图 (9) 4.3 程序清单 (10) 5 调试及结果 (21) 5.1 调试步骤 (21) 5.2结果分析 (21) 5.2结论 (21) 参考文献 (22)

相关文档
最新文档