甲醇发动机工作原理

甲醇发动机工作原理
甲醇发动机工作原理

柴油机是用柴油作燃料的内燃机。柴油机属于压缩点火式发动机,它又常以主要发明者狄塞尔的名字被称为狄塞尔引擎。柴油在工作时,吸入柴油机气缸内的空气,因活塞的运动而受到较高程度的压缩,达到500~700℃的高温。然后燃油以雾状喷入高温空气中,与空气混合形成可燃混合气,自动着火燃烧。燃烧中释放的能量作用在活塞顶面上,推动活塞并通过连杆和曲轴转换为旋转的机械功。法国出生的德裔工程师狄塞尔,在1897年研制成功可供实用的四冲程柴油机。由于它明显地提高了热效率而引起人们的重视。起初,柴油机用空气喷射燃料,附属装置庞大笨重,只用于固定作业。二十世纪初,开始用于船舶,1905年制成第一台船用二冲程柴油机。1922年,德国的博施发明机械喷射装置,逐渐替代了空气喷射。二十世纪20年代后期出现了高速柴油机,并开始用于汽车。到了50年代,一些结构性能更加完善的新型系列化、通用化的柴油机发展起来,从此柴油机进入了专业化大量生产阶段。特别是在采用了废气涡轮增压技术以后,柴油机已成为现代动力机械中最重要的部分。柴油机可按不同特征分类:按转速分为高速、中速和低速柴油机;按燃烧室的型式分为直接喷射式、涡流室式和预燃室式柴油机等;按气缸进气方式分为增压和非增压柴油机;按气体压力作用方式分为单作用式、双作用式和对置活塞式柴油机等;按用途分为船用柴油机、机车柴油机等。柴油机燃料主要是柴油,通常高速柴油机用轻柴油;中、低速柴油机用轻柴油或重柴油。柴油机用喷油泵和喷油器将燃油以高压喷入气缸,喷入的燃油呈雾状,与空气混合燃烧。因此柴油机可用挥发性较差的重质燃料或劣质燃料,如原油和渣油等。在燃用原油和渣油时,除须滤除杂质和水分外,还要对供油系统进行预热保温,降低粘度,以便输送和喷射。柴油机如采用某种合适的燃烧室也可燃用乙醇、汽油和甲醇等轻质燃料。为了改善轻质燃料的着火性,可加入添加剂提高十六烷值,或与柴油混合使用。一些气体燃料,如天然气、液化石油气、沼气和发生炉煤气等也可作为柴油机的燃料,但这时通常以气体燃料为主,以少量柴油引燃,这种发动机称为双燃料内燃机。柴油发动机的燃烧过程一般分为着火延迟期、速燃期、缓燃期和后燃期四个阶段。着火延迟期是指从燃料开始喷射到着火,其间经过喷散、加热蒸发、扩散、混合和初期氧化等一系列物理的和化学的准备过程。它是燃烧过程的一个重要参数,对燃烧放热过程的特性有直接影响。在着火延迟期内喷入燃烧室的燃料,在速燃期内几乎是同时燃烧的,所以放热速度很高,压力升高也特别快。缓燃期阶段中燃料的燃烧取决于混合的速度。因此,加强燃烧室内的空气扰动和加速空气与燃料的混合,对保证燃料在上止点附近迅速而完全地燃烧有重要作用。柴油机的混合和燃烧时间很短,以致有些燃料不能在上止点附近及时烧完,而拖到膨胀行程的后期放出的热量不能得到充分利用,因此应尽量避免燃料在后燃期燃烧。燃烧室的优劣对柴油机的性能有决定性的作用,因此是柴油机设计的关键。燃烧室按组织燃烧过程的特点和结构不同分为开式、半开式、预燃室式和涡流室式四类。前两类属于直接喷射式燃烧室;后两类属于分隔式燃烧室。低速柴油机和部分中、高速柴油机主要用无涡流的开式燃烧室。燃烧室由气缸盖底面和活塞顶面形成,具有一定形状的整体空间。多孔喷油器(6~10孔)能使燃油雾化良好,并均匀分布在燃烧室空间。因此,开式燃烧室中的燃烧属于典型的空间式燃烧过程,要求燃烧室与油束形状和分布相配合。它的优点是燃料消耗率低,起动容易;缺点是燃料雾化要求高,难于适应变转速工作。小型高速柴油机大多采用有涡流的半开式燃烧室。这种燃烧室又分为多种类型,主要有油膜式燃烧室和复合式燃烧室等。油膜式燃烧室是1956年由德国的莫勒所发明。燃烧室位于活塞顶内,呈球形。燃料喷向燃烧室壁面,大部分燃油在强涡流作用下喷涂在燃烧室壁面上,形成很薄的油膜,小部分燃油雾化分布在燃烧室空间并首先着火,随后即引燃从壁面上蒸发的燃料。这种燃烧室可使工作过程柔和,燃烧完全,声轻无烟,并可使用轻质燃料;缺点是低温时起动较困难。复合式燃烧室是1964年由中国的史绍熙等发明,燃烧室在活塞顶内呈深盆形,口部略有收缩,用特殊形状的进气道形成进气涡流,采用单孔轴针式喷油器。喷油器轴线与燃烧室壁面基本平行,燃料喷向燃烧室的周边空间。在涡流作用下,粗大的油

粒散落在燃烧室壁面上形成油膜,细小的油粒在空间与空气

详细讲解VGT可变截面涡轮增压器

详解VGT可变截面涡轮增压器 2010年11月27日 08:12 来源:Che168类型:转载编辑:胡正暘 随着技术的发展,人们对于汽车发动机的要求也越来越苛刻,不仅要拥有强劲的动力,还必须拥有极高的效率和足够清洁的排放。这就要求发动机在各种工况下都能要达到其最高效的工作状态,因此就必须满足发动机各个工作状态下对于进气量的需求。这就要求发动机的各部件都能够通过“可变”来满足在不同工况下的条件。比如我们所熟悉的可变气门正时/升程技术,可变进气歧管技术都是如此。那么在柴油发动机上常见的VGT可变截面涡轮增压技术,又有些什么作用呢?下面我们就一起来了解一下。 『废气带动涡轮,涡轮再带动叶轮对空气进行增压,从而有效增大进气量』 涡轮增压技术是发动机上常见的技术之一,它的原理其实非常简单:涡轮增压器就相当于一个由发动机排出的废气所驱动的空气泵。在发动机的整个燃烧过程中,大约会有1/3的能量进入了冷却系统,1/3的能量用来推动曲轴做工,而最后1/3则随废气排出。拿一台功率200千瓦的发动机举例,按照上面提到的比例,它在排气上的消耗的动力大约会有70千瓦。这部分功率有一大部分随着高温的废气以热能的形式消耗掉,而废气本身的动能可能只有十几千瓦。但是千万别小看这十几千瓦,要知道家用的落地扇功率不过60瓦左右!也就是说,即使十几千瓦也足够驱动两百多台电风扇了!可想而知,用废气涡轮驱动空气所带来的增压效果非常可观。

『BMW的并联双涡轮技术』 虽然发动机全负荷状态下时排气能量非常可观,但当发动机转速较低时,排气能量却小的可怜,此时涡轮增压器就会由于驱动力不足而无法达到工作转速,这样造成的结果就是,在低转速时,涡轮增压器并不能发挥作用,这时候涡轮增压发动机的动力表现甚至会小于一台同排量的自然吸气发动机,这就是我们经常说的“涡轮迟滞(Turbo lag)”现象。

涡扇发动机简介

有关涡扇发动机的介绍 引子: 涡扇发动机是喷气发动机的一个分枝,从血原关系上来说涡扇发动机应该算得上是涡喷发动的小弟弟。从结构上看,涡扇发动机只不过是在涡喷发动机之前(之后)加装了风扇而已。然而正是这区区的几页风扇把涡喷发动机与涡扇发动机严格的区分开来。涡扇发动机这个“小弟弟”仗着自已身上的几页风扇也青出与蓝。 现代的军用战斗机要求越来越高的机动性能,较高的推重比能赋予战斗机很高的垂直机动能力和优异的水平加速性能。而且在战时,如果本方机场遭到了对方破坏,战斗机还可以利用大推力来减少飞机的起飞着陆距离。比如装备了F-100-PW-100的F-15A当已方机机的跑道遭到部分破坏时,F-15可以开全加力以不到300米的起飞滑跑距离起飞。在降落时可以用60度的迎角作低速平飞,在不用减速伞和反推力的情况下,只要500米的跑道就可以安全降落。

更高的推重比是每一个战斗机飞行员所梦寐以求的。但战斗机的推重比在很大和度上是受发动机所限--如果飞机发动机的推重比小于6一级的话,其飞机的空战推重比就很难达到1,如果强行提高飞机的推重比的话所设计的飞机将在航程、武器挂载、机体强度上付出相当大的代价。比如前苏联设计的苏-11战斗机使用了推重比为 4.085的АЛ-7Ф-1-100涡喷发动机。为了使飞机的推重比达到1,苏-11的动力装置重量占了飞机起飞重量的26.1%。相应的代价是飞机的作战半径只有300公里左右。 而在民用客机、运输机和军用的轰炸机、运输机方面。随着新材料的运用飞机的机身结构作的越来越大,起飞重量也就越来越大,对发动机的推力要求也越来越高。在高函道比大推力的涡扇发动机出现之前,人们只能采用让大型飞机挂更多的发动机的方法来解决发动机的推力不足问题。比如B-52G轰炸机的翼下就挂了八台J-57-P-43W涡喷发动机。该发动机的单台最大起飞推力仅为6237公斤(喷水)。如果B-52晚几年出生的话它完全可以不挂那么多的发动机。在现在如果不考虑动力系统的可*性,像B-52之类的飞机只装一台发动机也未尝不可。 而涡扇发动机的诞生就是为了顺应人们对航空发动机越来越高的推力要求而诞生的。因为提高喷气发动机的推力最简单的办法就是提高发动机的空气流量。 一,历史 在五十年代未、六十年代初,作为航空动力的涡喷发动机以经相当

废气涡轮增压器工作原理详解

废气涡轮增压器的工作原理 来源:机房360 作者:袁仁光、林由娟更新时间:2010/10/8 16:28:43 废气涡轮增压器由涡轮、中间壳和压气机组成。它的工作原理如图1所示。 图1库气涡轮增压器工作原理示意图 1-排气管2-喷嘴环3-涡轮4-涡轮壳5-轴6-轴承7-扩压气8-压气机叶轮9-环形压气机壳10-进气管 柴油机排出的具有800~1000K高温和一定压力的废气经排气管1进入涡轮壳4里的喷嘴环2。由于喷嘴环通过的面积是逐渐收缩的,因而废气的压力和温度下降,速度提高,使它的动能增加。这股高速废气流,按定的方向冲击涡轮,使涡轮高速运转。废气的压力、温度和速度越高,涡轮转的就越快。通过涡轮的废气最后排入大气。 因为涡轮3和离心式压气机叶轮8固装在同一根轴5上,所以两者同速旋转。这样,将经过空气滤清器的空气吸入压气机壳,高速旋转的压气机叶轮8把空气甩向叶轮的外缘,使其速度和压力增加并进入扩压器7。扩压器的形状做成进口小出口大,因此气流的

流速下降,压力升高,再通过断面由小到大的环形压气机壳9使空气流的压力继续提高,压缩的空气经柴油机进气管10进入气缸。 废气涡轮增压器用的压气机多采用离心式,它的出口气体压力可达140~300kPa,甚至可达到500kPa。 废气涡轮增压器的一个主要性能指标是压力升高比,简称压比πk。它是指压气机的出口气体压力(Pk)与进口气体压力P1之比值。 废气涡轮增压器按压比可分为低、中、高三种类型,低增压的压πk≤l.4;中增压的压比πk=1.4~2.0;高增压的压比πk≥2。现代柴油机多采用高压比增压器。 汽车用废气涡轮增压器的涡轮多采用径流向心式。进入涡轮的废气流则多利用脉冲式,以使废气的能量得到充分利用。为此,进入增压器的排气管做成分置式,如对发火顺序为1-5-3-6-2-4的6缸机而言,一般1、2、3缸共用一根排气管,沿着涡轮壳上的一条进气道通向半圈喷嘴环;4、5、6缸共用另一根排气管,沿着涡轮壳的另一条进气管通向另外半圈喷嘴环。这样,每根排气管里的排气间隔为240°大于一个冲程,使排气互不干扰,可以充分利用废气的脉冲能量驱动涡轮。并且压力高峰后的瞬时真空有助于气缸扫气(见图2)。

涡扇发动机工作原理

动力原理: 涡轮喷气发动机涡轮风扇发动机冲压喷气发动机涡轮轴发动机 升力原理: 飞机是比空气重的飞行器,因此需要消耗自身动力来获得升力。而升力的来源是飞行中空气对机翼的作用。 在下面这幅图里,有一个机翼的剖面示意图。机翼的上表面是弯曲的,下表面是平坦的,因此在机翼与空气相对运动时,流过上表面的空气在同一时间(T)内走过的路程(S1)比流过下表面的空气的路程(S2)远,所以在上表面的空气的相对速度比下表面的空气快 (V1=S1/T >V2=S2/T1)。根据帕奴利定理——“流体对周围的物质产生的压力与流体的相对速度成反比。”,因此上表面的空气施加给机翼的压力F1小于下表面的F2。F1、F2的合力必然向上,这就产生了升力。 从机翼的原理,我们也就可以理解螺旋桨的工作原理。螺旋桨就好像一个竖放的机翼,凸起面向前,平滑面向后。旋转时压力的合力向前,推动螺旋桨向前,从而带动飞机向前。当然螺旋桨并不是简单的凸起平滑,而有着复杂的曲面结构。老式螺旋桨是固定的外形,而后期设计则采用了可以改变的相对角度等设计,改善螺旋桨性能。 飞行需要动力,使飞机前进,更重要的是使飞机获得升力。早期飞机通常使用活塞发动机作为动力,又以四冲程活塞发动机为主。这类发动机的原理如图,主要为吸入空气,与燃油混合后点燃膨胀,驱动活塞往复运动,再转化为驱动轴的旋转输出:

单单一个活塞发动机发出的功率非常有限,因此人们将多个活塞发动机并联在一起,组成星型或V型活塞发动机。下图为典型的星型活塞发动机。 现代高速飞机多数使用喷气式发动机,原理是将空气吸入,与燃油混合,点火,爆炸膨胀后的空气向后喷出,其反作用力则推动飞机向前。下图的发动机剖面图里,一个个压气风扇从进气口中吸入空气,并且一级一级的压缩空气,使空气更好的参与燃烧。风扇后面橙红色的空腔是燃烧室,空气和油料的混和气体在这里被点燃,燃烧膨胀向后喷出,推动最后两个风扇旋转,最后排出发动机外。而最后两个风扇和前面的压气风扇安装在同一条中轴上,因此会带动压气风扇继续吸入空气,从而完成了一个工作循环。

电喷发动机工作原理

电喷发动机工作原理 现在的电喷车在行驶过程中,当司机突然松开油门踏板(使节气门完全关闭)时,发动机不需要输出转矩,而是由汽车的动能拖动。这一工况被称为拖动工况或滑行工况。 在拖动工况为了减少废弃排放和降低燃油消耗以及改善行驶特性,电控系统中央控制器识别出发动机处于拖动工况后,首先立即推迟当时的点火角,然后全部切断向发动机喷油,这样可使工况的过度过程较为平稳。 当发动机转速超过规定转速界限(转速界限2)并且节气门关闭时,喷嘴将不再喷油,发动机的供油被切断;而发动机转速一旦低于下个转速界限(转速界限3),则喷嘴又重新开始喷油。如果在拖动工况出现发动机转速急剧下降,如在紧急刹车时,则喷嘴将在较高转速(转速界限1)恢复喷油,以防止低于发动机怠速转速或发动机完全熄火。 一、简介 电子燃油喷射控制系统(简称EFI或EGI系统),以一个电子控制装置(又称电脑或ECU)为控制中心,利用安装在发动机不同部位上的各种传感器,测得发动机的各种工作参数,按照在电脑中设定的控制程序,通过控制喷油器,精确地控制喷油量,使发动机在各种工况下都能获得最佳浓度的混合气。 此外,电子控制燃油喷射系统通过电脑中的控制程序,还能实现起动加浓、暖机加浓、加速加浓、全负荷加浓、减速调稀、强制断油、自动怠速控制等功能,满足发动机特殊工况对混合气的要求,使发动机获得良好的燃料经济性和排放性,也提高了汽车的使用性能。 电子控制燃油喷射系统的喷油压力是由电动燃油泵提供的,电动燃油泵装在油箱内,

浸在燃油中。油箱内的燃油被电动燃油泵吸出并加压,压力燃油经燃油滤清器滤去杂质后,被送至发动机上方的分配油管。分配油管与安装在各缸进气歧管上的喷油器相通。喷油器是一种电磁阀,由电脑控制。通电时电磁阀开启,压力燃油以雾状喷入进气歧管内,与空气混合,在进气行程中被吸进气缸。分配油管的末端装有燃油压力调节器,用来调整分配油管中燃油的压力,使燃油压力保持某一定值,多余的燃油从燃油压力调节器上的回油口返回燃油箱。 进气量由驾驶员通过加速踏板操纵节气门来控制。节气门开度不同,进气量也不同,进气歧管内的真空度也不同。在同一转速下,进气歧管真空度与进气量成一定的比例关系。进气管压力传感器可将进气歧管内真空度的变化转变成电信号的变化,并传送给电脑,电脑根据进气歧管真空度的大小计算出发动机进气量,再根据曲轴位置传感器测得信号计算出发动机转速。根据进气量和转速计算出相应的基本喷油量。电脑根据进气压力和发动机转速控制各缸喷油器,通过控制每次喷油的持续时间来控制喷油量。喷油持续时间愈长,喷油量就愈大。一般每次喷油的持续时间为2~10ms。各缸喷油器每次喷油的开始时刻则由电脑根据安装于离合器壳体上的发动机转速(曲轴位置)传感器测得某一位置信号来控制。这种类型的燃油喷射系统的每个喷油器在发动机每个工作循环中喷油两次,喷油是间断进行的,属于间歇喷射方式 二、电子燃油喷射控制的原理 (一)各种工况控制简介

喷气发动机原理简介

喷气发动机原理简介

分类 涡轮喷气式发动机 完全采用燃气喷气产生推力的喷气发动机是涡轮喷气发动机。这种发动机的推力和油耗都很高。适合于高速飞行。也是最早的喷气发动机。离心式涡轮喷气发动机 使用离心叶轮作为压气机。这种压气机很简单,适合用比较差的材料制作,所以在早期应用很多。但是这种压气机阻力很大,压缩比低,并且发动机直径也很大,所以现在已经不再使用这种压气机。 轴流式涡轮喷气发动机 使用扇叶作为压气机。这样的发动机克服了离心式发动机的缺点,因此具有很高的性能。缺点是制造工艺苛刻。现在的高空高速飞机依然在使用轴流式涡喷发动机。 涡轮风扇发动机 一台涡扇发动机的一级压气机 主条目:涡轮风扇发动机

在轴流式涡喷发动机的一级压气机上安装巨大的进气风扇的发动机。一级压气机风扇因为体积大,除了可以压缩空气外,还能当作螺旋桨使用。 涡轮风扇发动机的燃油效率在跨音速附近比涡轮喷气发动机要高。 涡轮轴发动机 主条目:涡轮轴发动机 涡轮轴发动机类似涡桨发动机,但拥有更大的扭矩,并且他的输出轴和涡轮轴是不平行的(一般是垂直),输出轴减速器也不在发动机上。所以他更类似于飞机上用的燃气轮机。 涡轴发动机的大扭矩使他经常用于需要带动大螺旋桨的直升机。它的结构和车用燃气轮机区别不大。 涡轮喷气发动机(Turbojet)(简称涡喷发动机)[1]是一种涡轮发动机。特点是完全依赖燃气流产生推力。通常用作高速飞机的动力。油耗比涡轮风扇发动机高。 涡喷发动机分为离心式与轴流式两种,离心式由英国人弗兰克·惠特尔爵士于1930年取得发明专利,但是直到1941年装有这种发动机的

飞机才第一次上天,没有参加第二次世界大战,轴流式诞生在德国,并且作为第一种实用的喷气式战斗机Me-262的动力参加了1944年末的战斗。 相比起离心式涡喷发动机,轴流式具有横截面小,压缩比高的优点,但是需要较高品质的材料——这在1945年左右是不存在的。当今的涡喷发动机均为轴流式。 一个典型的轴流式涡轮喷气发动机图解(浅蓝色箭头为气流流向)图片注释: 1 - 吸入, 2 - 低压压缩, 3 - 高压压缩, 4 - 燃烧, 5 - 排气, 6 - 热区域, 7 - 涡轮机, 8 - 燃烧室, 9 - 冷区域, 10 - 进气口

发动机的基本工作原理

发动机的基本工作原理 发动机(Engine)是一种能够把其它形式的能转化为机械能的机器,包括如内燃机(汽油发动机等)、外燃机(斯特林发动机、蒸汽机等)、电动机等。下面是收集的发动机的基本工作原理,欢迎阅读。 我们以单缸汽油发动机为例,讲解一下汽油机的工作原理。 气缸内装有活塞,活塞通过活塞销、连杆与曲轴相连接。活塞 在气缸内做往复运动,通过连杆推动曲轴转动。为了吸入新鲜气体和排出废气,设有进气门和排气门。 活塞顶离曲轴中心最远处,即活塞最高位置,称为上止点。活 塞顶部离曲轴中心最近处,即活塞最低位置,称为下止点。上、下止点间的距离称为活塞行程,曲轴与连杆下端的连接中心至曲轴中心的距离称为曲轴半径。活塞每走一个行程相应于曲轴转角180°。对于气缸中心线通过曲轴中心线的发动机,活塞行程等于曲柄半径的两倍。 活塞从上止点到下止点所扫过的容积称为发动机的工作容积或 发动机排量,用符号VL表示。 四冲程发动机的工作循环包括四个活塞行程,既进气行程、压 缩行程、膨胀行程(作功行程)和排气行程。 进气行程 化油器式汽油机将空气与燃料先在气缸外部的化油器中进行混合,然后再吸入气缸。进气行程中,进气门打开,排气门关闭。随着活塞从上止点向下止点移动,活塞上方的气缸容积增大,从而气缸内

的压力降低到大气压力以下,即在气缸内造成真空吸力。这样,可燃混合气便经进气管道和进气门被吸入气缸。 压缩行程 为使吸入气缸内可燃混合气能迅速燃烧,以产生较大的压力,从而使发动机发出较大功率,必须在燃烧前将可燃混合气压缩,使其容积缩小、密度加大、温度升高,即需要有压缩过程。在这个过程中,进、排气门全部关闭,曲轴推动活塞由下止点向上止点移动一个行程称为压缩行程。 压缩终了时,活塞到达上止点,活塞上方形成很小空间,称为燃烧室。压缩前气缸中气体的最大容积与压缩后的最小容积之比称为压缩比,以ε表示: 压缩比愈大,在压缩终了时混合气的压力和温度便愈高,,燃烧速度也愈快,因而发动机发出的功率愈大,经济性愈好。但压缩比过大时,不仅不能进一步改善燃烧情况,反而会出现爆燃和表面点火等不正常燃烧现象。爆燃是由于气体压力和温度过高,在燃烧室内离点燃中心较远处的末端可燃混合气自燃造成的一种不正常燃烧。爆燃时火焰以极高的速率向外传播,甚至在气体来不及膨胀的情况下,温度和压力急剧升高。同时,还会引起发动机过热,功率下降,燃油消耗量增加等一系列不良后果。表面点火是由于燃烧室内炽热表面与炽热处(如排气门头,火花塞电极,积炭处)点燃混合气产生的另一种不正常燃烧(也称为炽热点火或早燃)。表面点火发生时,也伴有强烈的敲击声(较沉闷),产生的高压会使发动机件负荷增加,寿命降低。

详解涡轮增压发动机的结构及原理

即将装载开售,由于涡轮增压今年才首次应用在奔腾车系上面,此发动机从未露面,因此目前对此发动机尚缺乏足够资料。 也没有现成经验可考。 唯有希望开的速速成长成技术大帝,回来给大家科普。 或者厂家的人员出来指证,如果你们不出来,那么就任由我来骗大家。 现在讲的是目前大家广泛应用的增压发动机之传统废气涡轮原理,日后推出推翻此原理的涡轮增压技术不在本文讨论此列。 为方便理解,先看结构原理图: 详解涡轮增压发动机的结构及原理来个实物示意(此物是一个报废涡轮,非涡轮,只做参考):详解涡轮增压发动机的结构及原理 拆解机芯,脏的废气侧叶片(涡轮),通过废气推动带动进气侧涡轮(压气机叶轮): 详解涡轮增压发动机的结构及原理 再拆看看:详解涡轮增压发动机的结构及原理 铜套安装在中心轴上,主要作用就是隔离机油和润滑降温。 而一旦靠近涡轮蜗壳和压气机蜗壳的密封环损坏,会导致机油进入排气管和进气歧管进入燃烧室。 另外各位还要注意一个问题,由于铜套采用机油润滑散热,所以车辆使用的机油尽量采用更好的机油,而劣质的机油导致涡轮主转动轴不能正常润滑和散热,从而在高温下损坏油封造成漏油。 因此建议涡轮增压发动机应该选择耐高温、抗氧化好的优质机油,并且还要注意适当缩短机油的更换周期。

除去机油冷却之外,还要冷却水道,水经过循环后有效降低了涡轮内部温度,进而提高的涡轮的使用寿命: 详解涡轮增压发动机的结构及原理 看看叶轮: 详解涡轮增压发动机的结构及原理 看看一汽轿车的,看似也是铸造产品: 详解涡轮增压发动机的结构及原理 既然图中提到小涡轮。 那么又要给数据党做说明。 涡轮叶片越小,所需推动的力量越小,转动更快,能在更低发动机转速下达到增压值。 介入越早。 厂商往往利用小涡轮来克服涡轮介入的动力突兀感,做出自吸发动机的线性加速特征。 缺点是高转速下涡轮转速过高,逐渐形成起反作用的效应。 导致增压效能降低,扭矩调头下降。 不能支持高转速的高扭力。 小涡轮优势集中在日常使用区间,在日常使用中体现更体现出动力。 也对油耗没有明显坏处。 这样的爆发特征导致发动机高转速扭矩衰减快,变速箱不得不过早换挡,加速表现令人失望。 名词解释:效应是指在涡轮进气端由于叶片的高速旋转,会产生旋涡式的进气流,这样的高速气体旋涡式流动就类似于龙卷风。 在吸气端,这种旋涡式气流的产生反而会降低进气的效率,就比如龙卷风,虽然气流高速转动,但中心的部分却是真空的。 大涡轮叶片质量大,转动阻力更大,发动机低转速下未达到足够转速吸入足够空气,反而会形成进气阻力,进气排气不畅的结果就是低速下发

!发动机基本工作原理

!发动机基本工作原理

发动机基本工作原理 一、基本理论 汽油发动机将汽油的能量转化为动能来驱动汽车,最简单的办法是通过在发动机内部燃烧汽油来获得动能。因此,汽车发动机是内燃机----燃烧在发动机内部发生。 有两点需注意: 1.内燃机也有其他种类,比如柴油机,燃气轮机,各有各的优点和缺点。 2.同样也有外燃机。在早期的火车和轮船上用的蒸汽机就是典型的外燃机。燃料(煤、木头、

油)在发动机外部燃烧产生蒸气,然后蒸气进入发动机内部来产生动力。内燃机的效率比外燃机高不少,也比相同动力的外燃机小很多。所以,现代汽车不用蒸汽机。 相比之下,内燃机比外燃机的效率高,比燃气轮机的价格便宜,比电动汽车容易添加燃料。这些优点使得大部分现代汽车都使用往复式的内燃机。 二、燃烧是关键 汽车的发动机一般都采用4冲程。4冲程分别是:进气、压缩、燃烧、排气。完成这4个过程,发动机完成一个周期(2圈)。 理解4冲程活塞,它由一个活塞杆和曲轴相联,过程如下: 1.活塞在顶部开始,进气阀打开,活塞往下运动,吸入油气混合气 2.活塞往顶部运动来压缩油气混合气,使得爆炸更有威力。

直列4缸V6 水平对置4缸 不同的排列方式使得发动机在顺滑性、制造费用和外型上有着各自的优点和缺点,配备在相应的汽车上。 四、排量 混合气的压缩和燃烧在燃烧室里进行,活塞往复运动,你可以看到燃烧室容积的变化,最大值和最小值的差值就是排量,用升(L)或毫升(CC)来度量。汽车的排量一般在1.5L~4.0L之间。每缸排量0.5L,4缸的排量为2.0L,如果V型排列的6汽缸,那就是V6 3.0升。一般来说,排量表示发动机动力的大小。 所以增加汽缸数量或增加每个汽缸燃烧室的容

涡轮发动机飞机结构与系统

飞机系统 液压系统 1.变量泵为什么要装释压阀?P92 ?变量泵具有自动卸荷功能,因此设计系统时不用再考虑其卸荷问题。但为了系统的安全,回路上同样需加装安全阀,以防泵内压力补偿活门损坏或斜盘作动筒卡滞时造成系统压力过高。 2.液压系统渗漏检查方法?P129 (一)内漏检查法:流量表法和电流表法。 (1)流量表法操作: ?关闭所有关断活门,保持规定压力(用电动泵),读出流量表读书Q0; ?按手册要求,依次打开分系统隔离活门,读出相应流量Q1,Q2,Q3 …… Qn; ?计算各分支系统内漏量: ?用实际泄漏量与维护手册给定的数值比较,应在规定范围内。如果超出规定值,则该分支存在超标泄漏。 (2)电流表法操作: ?在电动马达驱动泵的供压线路上加装电流表; ?启动、保持系统达到额定压力; ?记录初始电流I0; ?按手册要求,依次打开分系统隔离活门,分别记录相应电量值I1,I2,I3……In; ?对照EMDP电流---流量曲线,分别查出对应的Q0,Q1,Q2,Q3 …… Qn; ?分别计算每个分支系统的内漏量; ?用实际泄漏量与维护手册给定的数值比较,应在规定范围内。如果超出规定值,则该分支存在超标泄漏。 (二)外漏检查: ?接近发生外漏的部件; ?清洁部件上外漏的油污; ?为系统加压; ?测量外漏泄漏速率,根据该机型的放行标准确定是否放行。 3.液压泵功率公式的推导?P92 4.液压油显示"过热"的原因及排除方法?P122

5.液压油滤滤芯分几类?各有什么作用?P115 ?常见的滤芯有三种:表面型滤芯、深度型滤芯、和磁性滤芯。 ?表面型滤芯:一般是金属丝编织的滤网,过滤能力低,一般作为粗滤安装在油箱加油管路上 ?磁性油滤依靠自身的磁性吸附油液中的铁磁性杂质颗粒,应用在发动机滑油系统管路中。 ?深度滤芯:液流通过的过滤介质有相当的厚度,在整个厚度内到处能吸收污染物。其过滤介质有—缠绕的金属丝网、烧结金属、纤维纺织物、压制纸等。 6.液压油温度与粘度的关系,对总效率的影响?P92 ?温度过高,会导致油液黏度下降。油液粘度过低时,会增加泵的内漏并降低油液的润滑性,继而导致容积效率和机械效率下降。 ?温度过低,会导致油也黏度上升。油液粘度过高时,油泵吸油阻力增大,油泵吸油困难,不能完全充满油腔,降低填充效率。黏度过高同样会造成油泵转动阻力增大,并增加流体的流动阻力,降低机械效率。 7.液压保险的作用?P106 液压系统某些传动部分的导管或附件损坏时,系统油液可能漏光,使得整个系统不能工作。为了防止这种现象,可在供油管上设置安全装置,这就是液压保险。在管路漏油时,当油液的流量或消耗量超过规定值时,自动堵死管路,防止系统内油液大量流失。 8.对恒压变量泵,当发动机驱动泵的开关在“开”和“关”位时,泵是怎样工作的?工作原理,开关原理?(124页) ?在电门在“开”位时,发动机驱动泵EDP在泵内补偿活门控制下进行供压或进行自动卸荷;当泵发生故障时,将电门扳到“关”位,电磁活门线圈通电,使泵的出口压力在很低的情况下就能推动补偿活门作动,使油泵卸荷,即为“人工关断”。 9.油滤的压差活门控制的是什么参数?怎么控制的? ?压力参数。活门前压力和活门后压力参数差值。 ?当一定压力时候通过传感器,以电信号方式传递到驾驶舱。注意:可能有人认为可能是地面给人看的那个燃油油滤,其实不然,这个是指驾驶舱的那个。 10.液压系统包括几个部分,各操纵那些部件? ?有两种阐述方法:一种是按组成系统的液压元件的功能类型划分;另一种是按组成整个系统的分系统功能划分。 ?按液压元件的功能划分: a)动力元件:指液压泵,其作用是将电动机或者发动机产生的机械能转换成液体的 压力能 b)执行元件:其功能是将液体的压力能转换成为机械能,执行元件包括液压作动筒 和液压马达

涡轮增压发动机的优点及缺点共9页

涡轮增压发动机的优点及缺点,涡轮增压发动机工作原理 涡轮增压发动机的优点及缺点,涡轮增压发动机工作原理 发动机是靠燃料在汽缸内燃烧作功来产生功率的,由于输入的燃料量受到吸入汽缸内空气量的限制,因此发动机所产生的功率也会受到限制。如果发动机的运行性能已处于最佳状态,再增加输出功率只能通过压缩更多的空气进入汽缸来增加燃料量,从而提高燃烧作功能力。因此在目前的技术条件下,涡轮增压器是惟一能使发动机在工作效率不变的情况下增加输出功率的机械装置。最早的涡轮增压器是用于跑车或方程式赛车上的,这样在那些发动机排量受到限制的赛车比赛里面,发动机就能够获得更大的功率。 相关阅读: 汽车空调不制冷,夏天汽车空调不制冷的解决办法 延长发动机配气机构使用寿命的基本常识 夏季应常洗车保持干净减少霉菌 目前国内可以买到的原装搭载涡轮增压系统发动机的车型并不多,基本上都是集中在少数几个品牌上,除了上述提到的新车型外,还有一些中高级车上也可以见到,如大众的帕萨特1.8T、国产的奥迪A6L 2.0T、A4 1.8T等等。如果算上国外有量产的车型,则是多不胜数,如SAAB的9-3、9-5,VOLCO的XC90 2.9T等等。不过最为车迷们津津乐道的,还是要算那些日本的高性能跑车了,其中最具代表性的就有:日产的SKYLINE GT-R、三菱枪骑兵EVOLUTION、斯巴鲁翼豹WRX STi、丰田SUPRA,以及马自达的RX-7等。 大家可能会觉得涡轮增压装置非常复杂,但它的基本结构和原理其实都并不复杂,涡轮增压装置主要是由涡轮室和增压器组成。首先是涡轮室的进气口与发动机排气歧管相连,排气口则接在排气管上。然后增压器的进气口与空气滤清器管道相连,排气口接在进气歧管上,最后涡轮和叶轮分别装在涡轮室和增压器内,二者同轴刚性联接。不过,发动机在采用废气涡轮增压技术后,工作中的最高爆发压力和平均温度都将大幅度提高,因此发动机寿命会比同样排量没有经过增压的发动机要短,而且机械性能、润滑性能也都会受到影响。为了保证增压发动机在较高的机械负荷和热负荷条件下能可靠耐久地工作,必须在发动机主要热力参数的选取、结构设计、材料、工艺等方面做必要的改变,而不是简单地在发动机上装一个增压器就行了。由于这个改变过程在实行中难度颇大,而且还要考虑增压器与发动机的匹配问题,因此在一定程度上也限制了废气涡轮增压技术在发动机上的应用。 涡轮增压也有缺点 虽然涡轮增压的确能够提升发动机的动力,不过它的缺点也有不少,其中最明显的就是动力输出反应滞后。由于转子的惯性作用,叶轮对油门的骤时变化反应还是迟缓。从你大脚油门希望立即提速,到叶轮高速转动将更多空气压进发动机之间,存在一个时间差,而且这个时间还不短。一般经过改良的涡轮也要至少2秒左右来增加或者减少进气的压力。如果你要突然加速的话,瞬间会有提不上速度的感觉。 随着技术的进步,虽然各个使用涡轮增压的厂家都在对涡轮增压技术进行改进,但是由于结构性的原因,涡轮增压的汽车驾驶起来的感觉和大排量的汽车还是有一定的差异的。比如1.8T的涡轮增压发动机,在实际的行驶中,初段的提速能力速肯定不如2.4L自然吸气发动机,但是只要度过了等待期,动力还是会很快窜上来,因此如果你要追求激烈驾驶的感觉的话,涡轮增压的引擎其实并不适合你。不过如果经常跑高速或者是上高原,涡轮增压就会显得特别有用。

涡轮发动机的工作原理、特点

一.涡轮发动机的工作原理、特点 答:1.燃气涡轮喷气发动机 工作原理:航空燃气涡轮喷气发动机是一种热机,将燃油燃烧释放出的热能转变为流经发动机气流的动能。由于气流的速度增加而直接产生反作用推力,因此,这种发动机既是热机也是推进器 特点:与航空活塞发动机相比,燃气涡轮喷气发动机结构简单,重量轻,推力大,推进效率高,而且在很大的飞行速度范围内,发动机的推力随飞行速度的增加而增加,然而其较高的耗油率逐渐被涡扇发动机所替代。 2.涡轮风扇发动机 组成:进气道、风扇、低压压气机、高压压气机、燃烧室、高压涡轮、低压涡轮和喷管工作原理:涡扇发动机内路的工作情形与涡喷发动机相同。即流入内含的空气通过高速旋转的风扇,低压压气机和高压压气机对空气做功,压缩空气,提高空气压力。高压空气在燃烧室内和燃气混合,燃烧,将化学能转变为热能,形成高温高压的燃气。高温高压燃气首先在高压涡轮内膨胀,推动高压涡轮旋转,去带动高压压气机,然后再低压涡轮内膨胀,推动低压涡轮旋转,去带动低压压气机和风扇,最后燃气通过喷管排入大气产生反作用推力。 特点:与涡喷发动机相比,涡扇发动机具有推力大,推进效率高,噪音低,在一定的飞行速度范围内燃油消耗率低等优点。但涡扇发动机结构复杂,速度特性差。目前民航干线飞机大多装配涡扇发动机。 二.轴流式压气机的基元增压原理 答:轴流式压气机主要是利用扩散增压的原理来提高空气压力的。(根据气动知识得知亚音速气流流过扩张形通道时)速度降低,压力升高。参数分析。 基元级组成:由工作叶栅和整流器叶栅组成,两处叶栅通道均是扩形的 三.压气机转子的结构形式分析图3-40 答:(图3-40为CFM56发动机风扇后增压级转子,鼓筒靠精密螺栓固定于风扇轮盘后端,其外圆上作出三道凸缘,用拉刀一次拉出三级燕尾形榫槽,因此三级叶片数目相同,虽然对性能有一定影响,但加工却大大地简化) 轴流式压气机转子的基本结构型式有三种:鼓式盘式鼓盘式 特点 鼓式:结构简单、零件数目少、加工方便、有较高的抗弯刚度,但由于受到强度的限制,目前在实际中应用的不广泛。 盘式:强度好,但抗弯刚性差,并容易发生振动。目前这种简单的盘式转子只用于单盘或小流量的压气机上。 鼓盘式:这种转子兼有鼓式转子抗弯性好和盘式转子强度高的优点在发动机广泛应用。 四.燃烧室的分类工作过程优缺点 分类:管型燃烧室,环型燃烧室,管环型燃烧室。 工作过程:发动机工作时,被压气机压缩的空气,进入燃烧室,它一边向后流动,一边与喷嘴喷出的燃油混合,组成混合气。发动机起动时,混合气由点火装置产生的火花点燃:起动后,点火装置不再产生火花,新鲜混合气全靠已燃混合气的火焰引火而燃烧。 混合气在燃烧室内燃烧时,喷嘴喷出的燃油与燃烧室中流动的空气不断混合组成新的混合气,以供连续不断的燃烧之用,这样就形成了燃边油与空气混合边燃烧的连续不断的

涡轮增压发动机的构造、原理及使用全解

论文封面成绩: 科技大学2015-2016学年第1学期 《过程装备与控制专业概论》 班级:装控153 学号:1505020312 :明海 开课学院:机电工程学院任课教师:栾德玉、翟红岩

涡轮增压发动机的构造、原理及改进 摘要 涡轮增压简称Turbo,我们经常可以在汽车尾部看到Turbo或者T的标志,这些标志表明该车采用的发动机是涡轮增压发动机。本文介绍了涡轮增压器的构造和原理,对它的保养及使用进行了阐述,同时,通过分析常见故障,对改进措施以及发展方向有了一定的看法。 关键词:涡轮增压废气常见故障改进措施 【引言】 涡轮增压器,一个近十年出现的词语。人们只知道汽车排量后面带T的车辆就是带有涡轮增压器的发动机,汽车的加速就会快,性能也好。 涡轮增压器会产生更大的扭矩以满足驾驶乐趣。为了满足发动机不同转速下的需求,1989年出现了可变增压的涡轮增压器(VNT)。在发动机低速时,涡轮增压器减小喉口,提高增压;在发动机全速运转时,涡轮增压器喉口增大,保证增压不会超出需求。喉口可用真空管控制。优点是提高了发动机低速时的加速性能。目前,涡轮增压器已经占到了50%,在亚洲、美国也都在增长。现代涡轮增压器也改变了人们对柴油机的看法,涡轮增压器已经成为提高动力性能的主流方向。 一.涡轮增压器的作用和构造以及工作原理 (一)作用

涡轮增压器按增压方式分为废气涡轮增压器、复合式废气涡轮增压器和组合式涡轮增压器。他们的作用分别如下: 1.废气涡轮增压器是利用发动机排出的具有一定能量的废气进入涡轮并膨胀做功,废气涡轮的全部功率用于驱动与涡轮机同轴旋转的压气机工作叶轮,在

汽车发动机原理课后习题答案

汽车发动机原理(第二版吴建华主编) 第一章发动机的性能 1.简述发动机的实际工作循环过程。 答:1)进气过程:为了使发动机连续运转,必须不断吸入新鲜工质,即是进气过程。此时进气门开启,排气门关闭,活塞由上止点向下止点移动。2)压缩过程:此时进排气门关闭,活塞由下止点向上止点移动,缸内工质受到压缩、温度。压力不断上升,工质受压缩的程度用压缩比表示。3)燃烧过程:期间进排气门关闭,活塞在上止点前后。作用是将燃料的化学能转化为热能,使工质的压力和温度升高,燃烧放热多,靠近上止点,热效率越高。4)膨胀过程:此时,进排气门均关闭,高温高压的工质推动活塞,由上止点向下至点移动而膨胀做功,气体的压力、温度也随之迅速下降。(5)排气过程:当膨胀过程接近终了时,排气门打开,废气开始靠自身压力自由排气,膨胀过程结束时,活塞由下止点返回上止点,将气缸内废气移除。3.提高发动机实际工作循环热效率的基本途径是什么?可采取哪些基本措施? 答:提高实际循环热效率的基本途径是:减小工质传热损失、燃烧损失、换气损失、不完全燃烧损失、工质流动损失、工质泄漏损失。提高工质的绝热指数κ。可采取的基本措施是:⑴减小燃烧室面积,缩短后燃期能减小传热损失。⑵. 采用最佳的点火提前角和供油提前角能减小提前燃烧损失或后燃损失。⑶采用多气门、最佳配气相

位和最优的进排气系统能减小换气损失。⑷加强燃烧室气流运动,改善混合气均匀性,优化混合气浓度能减少不完全燃烧损失。⑸优化燃烧室结构减少缸内流动损失。⑹采用合理的配缸间隙,提高各密封面的密封性减少工质泄漏损失。 4.什么是发动机的指示指标?主要有哪些? 答:以工质对活塞所作之功为计算基准的指标称为指示性能指标。它主要有:指示功和平均指示压力.指示功率.指示热效率和指示燃油消耗率。 5.什么是发动机的有效指标?主要有哪些? 答:以曲轴输出功为计算基准的指标称为有效性能指标。主要有:1)发动机动力性指标,包括有效功和有效功率.有效转矩.平均有效压力.转速n和活塞平均速度;2)发动机经济性指标,包括有效热效率.有效燃油消耗率;3)发动机强化指标,包括升功率PL.比质量me。强化系数P meCm. 6.总结提高发动机动力性能和经济性能的基本途径。 答:①增大气缸直径,增加气缸数②增压技术③合理组织燃烧过程④提高充量系数⑤提高转速⑥提高机械效率⑦用二冲程提高升功率。 7.什么是发动机的平均有效压力、油耗率、有效热效率?各有什么意义? 答:平均有效压力是指发动机单位气缸工作容积所作的有效功。平均有效压力是从最终发动机实际输出转矩的角度来评定气缸工作

汽车发动机、变速箱基本工作原理(图文版)

汽车发动机、变速箱基本工 作原理(图文版) -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

发动机基本工作原理 一、基本理论 汽油发动机将汽油的能量转化为动能来驱动汽车,最简单的办法是通过在发动机内部燃烧汽油来获得动能。因此,汽车发动机是内燃机----燃烧在发动机内部发生。 有两点需注意: 1.内燃机也有其他种类,比如柴油机,燃气轮机,各有各的优点和缺点。 2.同样也有外燃机。在早期的火车和轮船上用的蒸汽机就是典型的外燃机。燃料(煤、木头、油)在发动机外部燃烧产生蒸气,然后蒸气进入发动机内部来产生动力。内燃机的效率比外燃机高不少,也比相同动力的外燃机小很多。所以,现代汽车不用蒸汽机。 相比之下,内燃机比外燃机的效率高,比燃气轮机的价格便宜,比电动汽车容易添加燃料。这些优点使得大部分现代汽车都使用往复式的内燃机。 二、燃烧是关键 汽车的发动机一般都采用4冲程。(马自达的转子发动机在此不讨论,汽车画报曾做过介绍) https://www.360docs.net/doc/a21265408.html,/leonhou

4冲程分别是:进气、压缩、燃烧、排气。完成这4个过程,发动机完成一个周期(2圈)。 理解4冲程活塞,它由一个活塞杆和曲轴相联,过程如下 1.活塞在顶部开始,进气阀打开,活塞往下运动,吸入油气混合气2.活塞往顶部运动来压缩油气混合气,使得爆炸更有威力。 3.当活塞到达顶部时,火花塞放出火花来点燃油气混合气,爆炸使得活塞再次向下运动。 4.活塞到达底部,排气阀打开,活塞往上运动,尾气从汽缸由排气管排出。 注意:内燃机最终产生的运动是转动的,活塞的直线往复运动最终由曲轴转化为转动,这样才能驱动汽车轮胎。 https://www.360docs.net/doc/a21265408.html,/leonhou 三、汽缸数 发动机的核心部件是汽缸,活塞在汽缸内进行往复运动,上面所描述的是单汽缸的运动过程,而实际应用中的发动机都是有多个汽缸的(4缸、6缸、8缸比较常见)。我们通常通过汽缸的排列方式对发动机分类:直列、V或水平对置(当然现在还有大众集团的W型,实际上是

涡扇发动机原理及图片

涡扇发动机原理 涡扇发动机是喷气发动机的一个分支,从血缘关系上来说涡扇发动机应该算得上是涡喷发动机的变种。从结构上看,涡扇发动机只不过是在涡喷发动机之前(之后)加装了风扇而已。然而正是这区区的几页风扇把涡喷发动机与涡扇发动机严格的区分开来。涡扇发动机仗着自已身上的几页风扇也青出于蓝。 现代的军用战斗机要求越来越高的机动性能,较高的推重比能赋予战斗机很高的垂直机动能力和优异的水平加速性能。而且在战时,如果本方机场遭到了对方破坏,战斗机还可以利用大推力来减少飞机的起飞着陆距离。比如装备了 F-100-PW-100的F-15A当已方机机的跑道遭到部分破坏时,F-15可以开全加力以不到300米的起飞滑跑距离起飞。在降落时可以用60度的迎角作低速平飞,在不用减速伞和反推力的情况下,只要500米的跑道就可以安全降落。 更高的推重比是每一个战斗机飞行员所梦寐以求的。但战斗机的推重比在很大和度上是受发动机所限--如果飞机发动机的推重比小于6一级的话,其飞机的空战推重比就很难达到1,如果强行提高飞机的推重比的话所设计的飞机将在航程、武器挂载、机体强度上付出相当大的代价。比如前苏联设计的苏-11战斗机使用了推重比为4.085的АЛ-7Ф-1-100涡喷发动机。为了使飞机的推重比达到1,苏-11的动力装置重量占了飞机起飞重量的26.1%。相应的代价是飞机的作战半径只有300公里左右。 而在民用客机、运输机和军用的轰炸机、运输机方面。随着新材料的运用飞机的机身结构作的越来越大,起飞重量也就越来越大,对发动机的推力要求也越来越高。在高函道比大推力的涡扇发动机出现之前,人们只能采用让大型飞机挂更多的发动机的方法来解决发动机的推力不足问题。比如B-52G轰炸机的翼下就挂了八台J-57-P-43W涡喷发动机。该发动机的单台最大起飞推力仅为6237公斤(喷水)。如果B-52晚几年出生的话它完全可以不挂那么多的发动机。在现在如果不考虑动力系统的可靠性,像B-52之类的飞机只装一台发动机也未尝不可。 而涡扇发动机的诞生就是为了顺应人们对航空发动机越来越高的推力要求而诞生的。因为提高喷气发动机的推力最简单的办法就是提高发动机的空气流量。

飞行器发动机的分类及工作原理.

飞行器发动机的分类及工作原理 飞行器发动机的主要功用是为飞行器提供推进动力或支持力,是飞行器的心脏。自飞机问世以来的几十年中,发动机得到了迅速的发展,从早期的低速飞机上使用的活塞式发动机,到可以推动飞机以超音速飞行的喷气式发动机,还有运载火箭上可以在外太空工作的火箭发动机等。时至今日,飞行器发动机已经形成了一个种类繁多,用途各不相同的大家族。飞行器发动机常见的分类原则有两个:按空气是否参加发动机工作和发动机产生推进动力的原理。按发动机是否需要空气参加工作,飞行器发动机可分为两类:吸气式发动机和火箭喷气式发动机。吸空气发动机简称吸气式发动机,它必须吸进空气作为燃料的氧化剂 (助燃剂,所以不能到稠密大气层之 外的空间工作,只能作为航空器的发动机。一般所说的航空发动机即指这类发动机。根据吸气式发动机工作原理的不同,吸气式发动机又分为活塞式发动机、燃气涡轮发动机、冲压喷气发动机和脉动喷气发动机等。火箭喷气发动机是——种不依赖空气工作的发动机。航天器由于需要飞到大气层外,所以必须安装这种发动机。它也可用作航空器的助推动力。按形成喷气流动能的能源不同,火箭喷气发动机又分为化学火箭发动机、电火箭发动机和核火箭发动机等。按产生推进动力的原理不同,飞行器发动机又可分为直接反作用力发动机和间接反作用力发动机两类。直接反作用力发动机是利用向后喷射高速气流,产生向前的反作用力来推进飞行器。直接反作用力发动机又叫喷气式发动机,这类发动机有涡轮喷气发动机、冲压喷气式发动机,脉动喷气式发动机,火箭喷气式发动机等。间接反作用力发动机是由发动机带动飞机的螺旋桨、直升机的旋翼旋转对空气作功,使空气加速向后(向下流动时,空气对螺旋桨(旋翼产生反作用力来推进飞行器。这类发动机有活塞式发动机、涡轮螺旋桨发动机、涡轮轴发动机、涡轮螺旋桨风扇发动机等。而涡轮风扇发动机则既有直接反作用力,也有间接反作用力,但常将其划归直接反作用力发动机一类,所以也称其为涡轮风扇喷气发动机。活塞式发动机空活塞式发动机是利用汽油与空气混合,在密闭的容器(气缸内燃烧,膨胀作功的机械。活塞式发动机必须带动螺旋桨,由螺旋桨产生推(拉力。所以,作为飞机的动力装置发动机与螺旋桨是不能分割的。主要组成主要由气缸、活塞、连杆、曲气门机构、螺旋桨减速器、机匣等组成。气缸是混合气(汽油和空气进行燃烧的地方。气缸内容纳活塞作往复运动。气缸头上装有点

帕萨特1.8T轿车废气涡轮增压系统原理与检修

帕萨特1.8T轿车废气涡轮增压系统原理与检修 1 废气涡轮增压系统的作用 一般发动机当空燃比达到某一值后,再增加燃油,除了黑烟和未燃尽的燃油排到大气中外,不会产生更多的功率。发动机供油越多,黑烟就越浓,油耗就越高,污染就越重。为获得更大的功率,目前在一些较高挡次的汽车发动机上陆续安装废气涡轮增压器。废气涡轮增压发动机是利用发动机排出废气的能量将进入气缸的新鲜空气预先进行压缩,使发动机获得更高的充气效率,由于增加了压缩空气的量,所以允许喷入较多的燃油,使发动机在尺寸不变的条件下产生更大的功率并具有更高的燃烧效率,降低了油耗。 2 废气涡轮增压系统结构与原理 2.1 废气涡轮增压系统组成 帕萨特1.8T轿车搭载的发动机有AWL和BGC 等,其上装有的废气涡轮增压系统由废气涡轮增压器和增压压力控制系统组成。 废气涡轮增压器的实物如图1所示,由涡轮室和压气机室组成。在涡轮室上有两个废气接口,一个与发动机的排气总管相对接,位置设在涡轮径向中心上方;另一个与三元催化器相对接,位置设在涡轮的轴向中心部位,进入涡轮壳内的废气最终进入三元催化器进行催化净化。在压气机室上也有 两个接口,一个与空气滤清器相对接,位置设在压气机叶轮的轴向中心部位;另一个接口即高压空气出口,经过压缩的空气提高了压力、密度和含氧量,通过管道进入中冷器(增压空气冷却器)进行降温,最终经节气门体、进气总管、进气歧管充入气缸。 图1 废气涡轮增压器实物图 增压压力控制系统,主要由发动机控制单元(J220)、增压压力传感器(G31,位于发动机舱左侧增压空气冷却器的上部)、增压压力限制电磁阀(N75,位于发动机舱齿形皮带罩右侧)、增压压力调节单元、增压器空气再循环电磁阀(N249,位于发动机舱进气歧管下方)、机械式空气再循环阀、真空罐以及连接管路等组成,如图2所示。 2.2 废气涡轮增压器工作原理 废气涡轮和压气机叶轮安装在同一根轴上,当废气气流冲击涡轮时, 涡轮高速旋转,同时带动压气机叶轮以相同的速度旋转,经空气滤清器滤清的洁净空气被吸入压气机室,压缩后压力升高, 通过管道进入中冷器冷却,而后进入气缸,从而提高了发动机的充气效率。

相关文档
最新文档