高等代数9.3 同构

§2 标准正交基

§1 定义与基本性质

§3 同构§4 正交变换

§5 子空间

§6 对称矩阵的标准形§7 向量到子空间的§8 酉空间介绍

一、欧氏空间的同构

(完整版)高等代数(下)期终考试题及答案(B卷)

高等代数(下)期末考试试卷及答案(B 卷) 一.填空题(每小题3分,共21分) 1. 22 3[]-2-31,(-1),(-1)P x x x x x 在中,在基下的坐标为 2. 设n 阶矩阵A 的全体特征值为12,,,n λλλL ,()f x 为任一多项式,则()f A 的全体特征值为 . 3.'=n 在数域P 上的线性空间P[x]中,定义线性变换:(,则的值域())()A A f x f x A ()-n P[x]= ,的核(0)= 1A A A 4.已知3阶λ-矩阵A (λ)的标准形为21 0 00 00 0λλλ?? ? ? ?+?? ,则A (λ)的不变 因子________________________; 3阶行列式因子 D 3 =_______________. 5. 若4阶方阵A 的初等因子是(λ-1)2,(λ-2),(λ-3),则A 的若当标准形 J= 6.在n 维欧氏空间V 中,向量ξ在标准正交基12,,,n ηηηL 下的坐标是 12(,,,)n x x x L ,那么(,)i ξη= 7. 两个有限维欧氏空间同构的充要条件是 . 二. 选择题( 每小题2分,共10 分) 1.( ) 已知{(,),,,}V a bi c di a b c d R =++∈为R 上的线性空间, 则dim(V)为 (A) 1; (B) 2; (C) 3; (D) 4 2. ( ) 下列哪个条件不是n 阶复系数矩阵A 可对角化的充要条件 (A) A 有n 个线性无关的特征向量; (B) A 的初等因子全是1次的; (C) A 的不变因子都没有重根; (D) A 有n 个不同的特征根; 3.( ) 设三阶方阵A 的特征多项式为322)(23+--=λλλλf ,则=||A

高等代数论文选题

高等代数论文选题 1.关于矩阵的乘积的秩的研究; 2.矩阵相似的若干判定方法; 3.线性变换的命题与矩阵命题的相互转换问题; 4.矩阵的特征值与特征向量的应用; 5.化二次型为标准型的方法; 6.“高等代数”知识在几何中的应用; 7. 矩阵初等变换的应用; 8.“高等代数”中的思想方法; 9.“高等代数”中多项式的值、根的概念及性质的推广; 10.线性变换“可对角化”的条件及“可对角化”方法; 11.行列式的若干应用; 12.行列式的计算技巧; 13.欧式空间与柯西不等式; 14.《高等代数》对中学数学的指导作用; 15.关于多项式的整除问题; 16.虚根成对定理的又一证法及其应用; 17.范德蒙行列式的若干应用; 18.矩阵相似及其应用; 19.矩阵的迹及其应用;

20.关于对称矩阵的若干问题; 21.关于反对称矩阵的性质; 22.关于n阶矩阵的次对角线的若干问题; 23.有理数域上多项式不可约的判定; 24.n阶矩阵可对角化的条件; 25.有理数域上多项式的因式分解; 26.矩阵在解线性方程组中的应用; 27.关于整系数有理根的几个定理及求解方法; 28.代数基本定理的几种证明方法简介; 29.关于线性变换的确定(求法); 30.线性变换思想在中学数学中的应用; 31.关于矩阵正定的若干判别方法; 32.矩阵可逆的若干判别方法; 33.线性空间与欧式空间; 34.向量组线性相关与线性无关的判定方法; 35.常见线性空间与欧式空间的基与标准正交基的求法; 36.线性变换的内积刻划; 37.线性方程组的推广——从向量到矩阵; 38.幂零矩阵的性质; 39.矩阵可交换的条件; 40.关于幂等矩阵及其性质; 41.矩阵的标准形及其应用;

高等代数II期末考试试卷及答案A卷

高等代数(II )期末考试试卷及答案(A 卷) 一、 填空题(每小题3分,共15分) 1、线性空间[]P x 的两个子空间的交() ()11L x L x -+= 2、设12,,...,n εεε与12,,...,n εεε'''是n 维线性空间 V 的两个基, 由12,,...,n εεε到12,,...,n εεε'''的过渡矩阵是C ,列向量X 是V 中向量ξ在基12,,...,n εεε下的坐标,则ξ在基12,,...,n εεε'''下 的坐标是 3、设A 、B 是n 维线性空间V 的某一线性变换在不同基下的矩阵, 则A 与B 的关系是 4、设3阶方阵A 的3个行列式因子分别为:()2 1,,1,λλ λ+ 则其特征矩阵E A λ-的标准形是 5、线性方程组AX B =的最小二乘解所满足的线性方程组是: 二、 单项选择题(每小题3分,共15分) 1、 ( )复数域C 作为实数域R 上的线性空间可与下列哪一个 线性空间同构: (A )数域P 上所有二级对角矩阵作成的线性空间; (B )数域P 上所有二级对称矩阵作成的线性空间; (C )数域P 上所有二级反对称矩阵作成的线性空间; (D )复数域C 作为复数域C 上的线性空间。 2、( )设 是非零线性空间 V 的线性变换,则下列命题正确的是:

(A ) 的核是零子空间的充要条件是 是满射; (B ) 的核是V 的充要条件是 是满射; (C ) 的值域是零子空间的充要条件是 是满射; (D ) 的值域是V 的充要条件是 是满射。 3、( )λ-矩阵()A λ可逆的充要条件是: ()()()()0; A A B A λλ≠是一个非零常数; ()()C A λ是满秩的;()()D A λ是方阵。 4、( )设实二次型 f X AX '=(A 为对称阵)经正交变换后化为: 222 1122...n n y y y λλλ+++, 则其中的12,,...n λλλ是: ()()1;A B ±全是正数;()C 是A 的所有特征值;()D 不确定。 5、( )设3阶实对称矩阵A 有三重特征根“2-”,则A 的若当 标准形是: ()()()200200200020;120;120;002002012A B C ---?? ?? ?? ? ? ? --- ? ? ? ? ? ?---?????? ()D 以上各情形皆有可能。 三、 是非题(每小题2分,共10分) (请在你认为对的小题对应的括号内打“√”,否则打“?”) 1、( )设V 1,V 2均是n 维线性空间V 的子空间,且{}1 20V V = 则12V V V =⊕。 2、( )n 维线性空间的某一线性变换在由特征向量作成的基下 的矩阵是一对角矩阵。

高等代数期末卷及答案

沈阳农业大学理学院第一学期期末考试 《高等代数》试卷(1) 1 ?设 f (x) = x 4 +x ? +4x - 9 ,贝H f (一3) = 69 .. 2?当 t = _2,-2 . 时,f(x)=x 3 —3x+t 有重因式。 3.令f(x),g(x)是两个多项式,且f(x 3) xg(x 3)被x 2 x 1整除,则 f(1)=_0_^ g(1)= 0 . 0 6 2 =23 。 1 1 — -2 0 1 x , 2x 2 2x 3 x 4 二 0 7. 2x 1 x 2 -2x 3 -2x 4 二 0 的一般解为 x( ~'X 2 _'4x 3 ~3x 4 = 0 题号 -一- -二二 -三 四 五 六 七 总分 得分 、填空(共35分,每题5 分) 得分 4.行列式 1 -3 5. ■’4 10" 1 0 3 -1、 -1 1 3 '9 -2 -1 2 1 0 2」 2 0 1 < 9 9 11 <1 3 4 丿 6. z 5 0 0 1 -1 <0 2 1; 0-2 3 矩阵的积

c 亠5 刘=2x3 X4 4 x3, x4任意取值。X2 二-2x^ --x4

、(10分)令f(x),g(x)是两个多项式。求证 当且仅当(f(x) g(x), f(x)g(x))=1。 证:必要性.设(f(x) g(x), f (x)g(x)) =1。(1% 令 p(x)为 f (x) g (x), f (x)g(x)的不可约公因式,(1% 则由 p(x) | f (x)g (x)知 p(x)| f (x)或 p(x) |g(x) o (1%) 不妨设 p(x) | f (x),再由 p(x)|(f(x) g (x))得 p(x) | g(x)。故 p(x) |1 矛盾。(2%) 充分性.由(f (x) g(x), f (x)g(x)^1知存在多项式u(x), v(x)使 u(x)(f(x) g(x)) v(x)f(x)g(x)=1,(2%) 从而 u(x)f(x) g(x)(u(x) v(x) f(x)) =1,(2%) 故(f (x), g(x)) =1 o (1%) ax 「bx 2 2x 3 =1 ax 1 (2 b -1)x 2 3x 3 =1 ax 1 bx 2 - (b 3)X 3 = 2b _1 有唯一解、没有解、有无穷解?在有解情况下求其解。 解: a b 2 1 a b 2 1 a 2b -1 3 1 T 0 b —1 1 0 b J* b+3 2b-1 , b+1 2b-2 ‘ (5%) a 2 - b 0 1 0 b -1 1 0 L 0 0 b+1 2b —2 当b =1时,有无穷解:X 3 = 0, X 2 = 1 - a%,人任意取值; 当a =0,b =5时,有无穷解:x 1 = k,x^ --3,x^ 4 ,k 任意取值;(3%) 当b = T 或a =0且b =二1且b = 5时,无解。(4%) 三、(16分)a,b 取何值时,线性方程组 当a(b 2 T) = 0时,有唯一解: 5-b a(b 1) X 2 2 b+1 x3 = 2b -2 b 1 ;4%) (f(x),g(x)) =1

大一第二学期高数期末考试题(含答案)

大一第二学期高数期末考试 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 2. )时( ,则当,设133)(11)(3→-=+-= x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无 穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 3. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x , 则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 4. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )22x (B )2 2 2x +(C )1x - (D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 5. = +→x x x sin 2 ) 31(lim . 6. ,)(cos 的一个原函数是已知 x f x x =??x x x x f d cos )(则 . 7. lim (cos cos cos )→∞ -+++=2 2 2 21 n n n n n n π π ππ . 8. = -+? 2 1 2 12 211 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17 7 x x x x ?+-求 11. .  求,, 设?--??? ??≤<-≤=1 32 )(1020)(dx x f x x x x xe x f x 12. 设函数 )(x f 连续, =?1 ()()g x f xt dt ,且 →=0 () lim x f x A x ,A 为常数. 求'() g x

高等代数课程的基本内容与主要方法

2010年第2期 牡丹江教育学院学报 No 12,2010 (总第120期) JOU RN A L OF M U D AN JIA N G CO LL EG E OF EDU CA T IO N Serial N o 1120[收稿日期]2009-10-25 [作者简介]戴立辉(1963-),男,江西乐安人,闽江学院教授,研究方向为矩阵论;林大华(1959-),男,福建福州人,闽江学院副教授,研究方向为代数学;吴霖芳(1979-),女,福建永安人,闽江学院讲师,硕士,研究方向为微分方程;陈翔(1980-),男,福建连江人,闽江学院讲师,硕士,研究方向为代数环论。 [基金项目]/十一五0国家课题/我国高校应用型人才培养模式研究0数学类子课题项目(F IB070335-A2-03)。 高等代数课程的基本内容与主要方法 戴立辉 林大华 吴霖芳 陈 翔 (闽江学院,福建 福州 350108) [摘 要] 对高等代数的基本内容与主要方法进行归纳和总结,使其所涉及的知识点之间的相互关系清晰明了,同时体现高等代数课程要求学生掌握的知识体系。 [关键词] 高等代数;基本内容;主要方法[中图分类号]O 15 [文献标识码]A [文章编号]1009-2323(2010)02-0146-03 高等代数是高等学校数学专业的一门必修的专业基础课程,它是由多项式理论和线性代数两部分组成。多项式部分以一元多项式的因式分解理论为中心,线性代数部分主要包括行列式、线性方程组、矩阵、二次型、线性空间、线性变换、K -矩阵与若尔当标准形、欧几里得空间等。 通过高等代数课程的教学,要求学生掌握一元多项式及线性代数的基本知识和基础理论,熟悉和掌握抽象的、严格的代数方法,理解具体与抽象、特殊与一般、有限与无限等辨证关系,提高抽象思维、逻辑推理及运算能力。根据我们多年的教学经验,本文拟对高等代数的基本内容与主要方法进行归纳和总结,使其所涉及的知识点之间的相互关系清晰明了,同时也体现出了高等代数课程要求学生掌握的知识体系。 一、多项式 一元多项式理论主要讨论了三个问题:整除性理论,因式分解理论和根的理论。其中整除性是基础,因式分解是核心。 (一)基本内容 1.整除性理论)))整除,最大公因式,互素。 2.因式分解理论)))不可约多项式,典型分解式,重因式。 3.根的理论)))多项式函数,根的个数,根与系数的关系。 (二)主要方法 1.多项式除多项式的带余除法。 2.用辗转相除法求两个多项式的最大公因式,最大公因式的判别法。 3.两多项式互素的判别法。 4.不可约多项式的判别法,多项式标准分解式求法,重因式的判别法。 5.多项式函数值的求法,x -c 除多项式f (x )的综合除法,多项式按x -x 0的方幂展开的方法。 6.多项式根的判别法,多项式重根的判别法。 7.整系数多项式有理根的求法,艾森斯坦判断法。二、行列式 行列式是线性方程组理论的一个重要组成部分,是一种重要的数学工具。 (一)基本内容 n 级排列及其性质,n 级行列式的概念,行列式的性质,行列式的计算,克拉默规则。 (二)主要方法 1.求一个排列的逆序数的方法。 2.行列式的计算方法:定义法,性质法,化为三角形行列式的方法,降级法(按一行或一列展开法、拉普拉斯展开法),化为范得蒙行列式的方法,递推法,加边法,数学归纳法,拆项法。 3.一些特殊行列式的计算方法)))三角形行列式,ab 型行列式,范得蒙行列式,爪型行列式,三对角行列式。 4.克莱姆规则。三、线性方程组 /线性方程组0这部分在理论上解决了线性方程组有解的判定、解的个数及求法、解的结构等。 (一)基本内容 1.向量的线性关系)))n 维向量,向量的线性运算,线性组合,线性表出,线性相关,线性无关,极大线性无关组,向量组等价,向量组的秩。 2.矩阵的秩)))矩阵的秩=矩阵行(列)向量组的秩,即矩阵的行(列)秩=矩阵不为零的子式的最大级数,初等变换不改变矩阵的秩,用初等变换计算矩阵的秩。 3.线性方程组的解的情形)))线性方程组有解的判定,线性方程组解的个数,齐次线性方程组解的情形。 4.线性方程组解的结构)))齐次线性方程组的基础解系,齐次线性方程组解的表示,非齐次线性方程组解的表示。

厦门大学《高等代数》期末试题及答案(数学系)

10-11学年第一学期厦门大学《高等代数》期末试卷 厦门大学《高等代数》课程试卷 数学科学学院 各 系 2010 年级 各 专业 主考教师:杜妮、林鹭 试卷类型:(A 卷) 2011.1.13 一、 单选题(32 分. 共 8 题, 每题 4 分) 1) 设b 为 3 维行向量, 123123 V {(,,)|(,,)} x x x x x x b == ,则____。C A)对任意的b ,V 均是线性空间;B)对任意的b ,V 均不是线性空间;C)只有当 0 b = 时,V 是线性空间;D)只有当 0 b 1 时,V 是线性空间。 2)已知向量组 I : 12 ,,..., s a a a 可以由向量组 II : 12 ,,..., t b b b 线性表示,则下列叙述正确的是____。 A A)若向量组 I 线性无关,则s t £ ;B)若向量组 I 线性相关,则s t > ; C)若向量组 II 线性无关,则s t £ ;D)若向量组 II 线性相关,则s t > 。 3)设非齐次线性方程组AX b = 中未定元个数为 n ,方程个数为m ,系数矩阵 A 的秩为 r ,则____。 D A)当r n < 时,方程组AX b = 有无穷多解; B) 当r n = 时,方程组AX b = 有唯一解;C)当r m < 时,方程组AX b = 有解;D)当r m = 时,方程组AX b = 有解。 4) 设 A 是m n ′ 阶矩阵,B 是n m ′ 阶矩阵,且AB I = ,则____。A A)(),() r A m r B m == ;B)(),() r A m r B n == ;C)(),() r A n r B m == ; D)(),() r A n r B n == 。 5) 设 K 上 3 维线性空间 V 上的线性变换j 在基 123 ,, x x x 下的表示矩阵是 111 101 111 ?? ?÷ ?÷ ?÷ è? ,则j 在基 123 ,2, x x x 下的表示矩阵是____。C A) 121 202 121 ?? ?÷ ?÷ ?÷ è? ; B) 1 2 11 22 1 2 11 0 11 ?? ?÷ ?÷ ?÷ è? ; C)11 22 121 0 121 ?? ?÷ ? ÷ ?÷ è? ;D) 1 2 1 2 11 202 11 ?? ?÷ ?÷ ?÷ è? 。 6) 设j 是 V 到 U 的线性映射,dim V ,dim U n m == 。若m n < ,则j ____。B A)必是单射; B)必非单射; C)必是满射;D)必非满射。

高等代数

高等代数方法论文 信科0901 09271013 孟庆阳

等价无穷小性质的理解、延拓及应用 【摘要】等价无穷小具有很好的性质,灵活运用这些性质,无论是在在求极限的运算中,还是在正项级数的敛散性判断中,都可取到预想不到的效果,能达到罗比塔法则所不能取代的作用。通过举例,对比了不同情况下等价无穷小的应用以及在应用过程中应注意的一些性质条件,不仅使这些原本复杂的问题简单化,而且可避免出现错误地应用等价无穷小。 【关键词】等价无穷小极限罗比塔法则正项级数比较审敛法 Comprension,Expand and Application of Equivalent Infinitesimal's Character Abstract Equivalent Infinitesimal have good characters,both in opreation of test for Limit and determine whether the positive series converges or diverges,if these quality that apply flexibly can obtain more effect,the effection can not be replace by L'Hospital Rule.this paper give examples and compare some instance to pay attention to condition in application of Equivalent Limit,so the question can be simply and avoid error in application. Key words equivalent Infinitesimal; limit; L'Hospital rule positive series; comparison test 等价无穷小概念是高等数学中最基本的概念之一,但在高等数学中等价无穷小的性质仅仅在“无穷小的比较”中出现过,其他地方似乎都未涉及到。其实,在判断广义积分、级数的敛散性,特别是在求极限的运算过程中,无穷小具有很好的性质,掌握并充分利用好它的性质,往往会使一些复杂的问题简单化,可起到事半功倍的效果,反之,则会错误百出,有时还很难判断错在什么地方。因此,有必要对等价无穷小的性质进行深刻地认识和理解,以便 恰当运用,达到简化运算的目的。 1 等价无穷小的概念及其重要性质〔1〕 无穷小的定义是以极限的形式来定义的,当x→x0时(或x→∞)时,limf(x)=0,则称函数 f(x)当x→x0时(或x→∞)时为无穷小。 当limβα=1,就说β与α是等价无穷小。 常见性质有: 设α,α′,β,β′,γ 等均为同一自变量变化过程中的无穷小,①若α~α′,β~β′,且limα′β′存在,则limαβ=limα′β′②若α~β,β~γ,则α~γ 性质①表明等价无穷小量的商的极限求法。性质②表明等价无穷小的传递性若能运用极 限的运算法则,可继续拓展出下列结论:

高等代数学习报告

竭诚为您提供优质文档/双击可除 高等代数学习报告 篇一:高等代数期末论文学习总结 高等代数学习总结 摘要:两学期的高等代数已经接近尾声了,高等代数作为数学专业的基础学科之 一。本文主要讲述本人两学期下来学习高等代数的一些知识总结和学习体会。关键词: 行列式矩阵二次型 正文: 《高等代数》是数学学科的一门传统课程。在当今世界的数学内部学科趋于统一性和数学在其他学科的广泛应用 性的今天,《高等代数》以其追求内容结构的清晰刻画和作为数学应用的基础,是大学数学各个专业的主干基础课程。它是数学在其它学科应用的必需基础课程,又是数学修养的核心课程。 高等代数是代数学发展到高级阶段的总称,它包括许多分支。它是在初等代数的基础上研究对象进一步的扩充,引

进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。通过学习后,我们知道,不仅是数,还有矩阵、向量、向量空间的变换等,对于这些对象,都可以进行运算,虽然也叫做加法或乘法,但是关于数的基本运算定律,有时不再保持有效。因此代数学的内容可以概括称为带有运算的一些集合,在数学中把这样的一些集合,叫做代数系统。 在学习之前,我一直认为高等代数就是把线性代数重学一遍,因为大一的时候线性代数学得不深,而且也没有学完。经过两学期的学习后,我发现,这两者之间区别还是挺大的。高等代数数学专业开设的专业课,更注重理论的分析,需要搞懂许多概念是怎么来的,而线性代数,只是一种运算工具,是供工科和部分医科专业开设的课程,只注重应用。 经过两学期的学习,我对高等代数里面的知识有了个初步的认识和接触,特别是代数的一些思想,也从中收获不少。下面就对两学期的学习做一个回顾和总结。行列式行列式是代数学中的一个基本概念,它不仅是讨论线性方程组理论的有力工具,而且还广泛的应用于数学及其他科学技术领域 定义:设A=(??????)为数域F上的n×n矩阵,规定A的行列式为

最新高数期末考试题.

往届高等数学期终考题汇编 2009-01-12 一.解答下列各题(6*10分): 1.求极限)1ln(lim 1 x x e x ++ →. 2.设?? ? ??++++=22222ln a x x a a x x y ,求y d . 3.设?????-=-=3 232t t y t t x ,求22d d x y . 4.判定级数()()0!1 2≥-∑∞ =λλλn n n n n e 的敛散性. 5.求反常积分() ?-10 d 1arcsin x x x x . 6.求?x x x d arctan . 7.?-π 03d sin sin x x x . 8.将?????≤≤<=ππ πx x x x f 2,02,)(在[]ππ,-上展为以π2为周期的付里叶级数,并指出收敛于()x f 的区间. 9.求微分方程0d )4(d 2=-+y x x x y 的解. 10.求曲线1=xy 与直线0,2,1===y x x 所围平面图形绕y 轴旋转一周所得旋转体的体积. 二.(8分)将()()54ln -=x x f 展开为2-x 的幂级数,并指出其收敛域. 三.(9分)在曲线()10sin 2≤≤=x x y 上取点() ()10,sin ,2≤≤a a a A ,过点A 作平行于ox 轴的直线L ,由直线L ,oy 轴及曲线()a x x y ≤≤=0sin 2所围成的图形记为1S ,由直线L ,直线1=x 及曲线 ()1sin 2≤≤=x a x y 所围成的图形面积记为2S ,问a 为何值时,21S S S +=取得最小值. 四.(9分)冷却定律指出,物体在空气中冷却的速度与物体和空气温度之差成正比,已知空气温度为30℃时,物体由100℃经15分钟冷却至70℃,问该物体冷却至40℃需要多少时间? 五.(8分)(学习《工科数学分析》的做(1),其余的做(2)) (1)证明级数∑∞ =-02n nx e x 在[),0+∞上一致收敛. (2)求幂级数()∑ ∞ =-----1 221 21212)1(n n n n x n 的收敛域及和函数. 六.(6分)设()[]b a C x f ,2∈,试证存在[]b a ,∈ξ,使()()()()?''-+ ??? ??+-=b a f a b b a f a b dx x f ξ324 1 2

高数下期末考试试题和答案解析

2017学年春季学期 《高等数学Ⅰ(二)》期末考试试卷(A ) 注意: 1、本试卷共 3 页; 2、考试时间110分钟; 3、姓名、学号必须写在指定地方 一、单项选择题(8个小题,每小题2分,共16分)将每题的正确答案的代号A 、B 、C 或D 填入下表中. 1.已知a 与b 都是非零向量,且满足-=+a b a b ,则必有( ). (A)-=0a b (B)+=0a b (C)0?=a b (D)?=0a b 2.极限2 2 22 00 1 lim()sin x y x y x y →→+=+( ). (A) 0 (B) 1 (C) 2 (D)不存在 3.下列函数中,d f f =?的是( ). (A )(,)f x y xy = (B )00(,),f x y x y c c =++为实数 (C )(,)f x y = (D )(,)e x y f x y += 4.函数(,)(3)f x y xy x y =--,原点(0,0)是(,)f x y 的( ). (A )驻点与极值点 (B )驻点,非极值点 (C )极值点,非驻点 (D )非驻点,非极值点 5.设平面区域2 2 :(1)(1)2D x y -+-≤,若1d 4D x y I σ+= ??,2D I σ=,3D I σ=,则有( ). (A )123I I I << (B )123I I I >> (C )213I I I << (D )312I I I << 6.设椭圆L : 13 42 2=+y x 的周长为l ,则22(34)d L x y s +=?( ). (A) l (B) l 3 (C) l 4 (D) l 12 7.设级数 ∑∞ =1 n n a 为交错级数,0()n a n →→+∞,则( ). (A)该级数收敛 (B)该级数发散 (C)该级数可能收敛也可能发散 (D)该级数绝对收敛 8.下列四个命题中,正确的命题是( ). (A )若级数 1n n a ∞ =∑发散,则级数21n n a ∞ =∑也发散 (B )若级数21n n a ∞ =∑发散,则级数1n n a ∞=∑也发散 (C )若级数 21n n a ∞ =∑收敛,则级数 1n n a ∞ =∑也收敛 (D )若级数 1 ||n n a ∞=∑收敛,则级数2 1 n n a ∞=∑也收敛 二、填空题(7个小题,每小题2分,共14分). 1.直线34260 30 x y z x y z a -+-=?? +-+=?与z 轴相交,则常数a 为 . 2.设(,)ln(),y f x y x x =+则(1,0)y f '=______ _____. 3.函数(,)f x y x y =+在(3,4)处沿增加最快的方向的方向导数为 . 4.设2 2 :2D x y x +≤,二重积分 ()d D x y σ-??= . 5.设()f x 是连续函数,22{(,,)|09}x y z z x y Ω=≤≤--,22()d f x y v Ω +???在柱面坐标系下 的三次积分为 . 6.幂级数 1 1 (1) ! n n n x n ∞ -=-∑的收敛域是 . 7.将函数2 1,0 ()1,0x f x x x ππ--<≤??=?+<≤?? 以2π为周期延拓后,其傅里叶级数在点x π=处收敛 于 . 三峡大学 试卷纸 教学班号 序号 学号 姓名 …………………….……答 题 不 要 超 过 密 封 线………….………………………………

高等代数论文

代数学从高等代数总的问题出发,又发展成为包括许多独立分支的一个大的数学科目,比如:多项式代数、线性代数等。代数学研究的对象,也已不仅是数,还有矩阵、向量、向量空间的变换等,对于这些对象,都可以进行运算。虽然也叫做加法或乘法,但是关于数的基本运算定律,有时不再保持有效。因此代数学的内容可以概括为研究带有运算的一些集合,在数学中把这样的一些集合叫做代数系统。比如群、环、域等 多项式是一类最常见、最简单的函数,它的应用非常广泛。多项式理论是以代数方程的根的计算和分布作为中心问题的,也叫做方程论。研究多项式理论,主要在于探讨代数方程的性质,从而寻找简易的解方程的方法。 多项式代数所研究的内容,包括整除性理论、最大公因式、重因式等。这些大体上和中学代数里的内容相同。多项式的整除性质对于解代数方程是很有用的。解代数方程无非就是求对应多项式的零点,零点不存在的时候,所对应的代数方程就没有解 我们知道一次方程叫做线性方程,讨论线性方程的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。 行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在1683年写了一部叫做《解伏题之法》的著作,标题的意思是“解行列式问题的方法”,书里对行列式的概念和它的展开已经有了清楚的叙述。欧洲第一个提出行列式概念的是德国的数学家莱布尼茨。德国数学家雅可比于1841年总结并提出了行列式的系统理论。 行列式有一定的计算规则,利用行列式可以把一个线性方程组的解表示成公式,因此行列式是解线性方程组的工具。行列式可以把一个线性方程组的解表示成公式,也就是说行列式代表着一个数。 因为行列式要求行数等于列数,排成的表总是正方形的,通过对它的研究又发现了矩阵的理论。矩阵也是由数排成行和列的数表,可以行数和烈数相等也可以不等。 矩阵和行列式是两个完全不同的概念,行列式代表着一个数,而矩阵仅仅是一些数的有顺序的摆法。利用矩阵这个工具,可以把线性方程组中的系数组成向量空间中的向量;这样对于一个多元线性方程组的解的情况,以及不同解之间的关系等等一系列理论上的问题,就都可以得到彻底的解决。矩阵的应用是多方面的,不仅在数学领域里,而且在力学、物理、科技等方面都十分广泛的应用。 代数学研究的对象,不仅是数,也可能是矩阵、向量、向量空间的变换等,对于这些对象,都可以进行运算,虽然也叫做加法或乘法,但是关于数的基本运算定律,有时不再保持有效。因此代数学的内容可以概括称为带有运算的一些集合,在数学中把这样的一些集合,叫做代数系统。比较重要的代数系统有群论、环论、域论。群论是研究数学和物理现象的对称性规律的有力工具。现在群的概念已成为现代数学中最重要的,具有概括性的一个数学的概念,广泛应用于其他部门。 例1:矩阵A[ 1 , 0] M矩阵 [a ,b] ,A与M矩阵可互换,确定a b c d之间的关系,并写出矩阵M

关于高等代数的一些解题方法总结

高等代数论文 题目:有关二次型的总结 学院:理学院 专业:信息与计算科学 姓名:王颀 学号:11271014 2011年12月30日

学习高等代数,最好的方法是多进行总结分类,将知识系统化。下面那二次型这章来进行操作。 二次型的问题来源于解析几何: 平面解析 一次曲线:Ax + By + C = 0 (直线); 二次曲线:Ax 2 + Bxy + Cy 2 + Dx + Ey = F → 经平移 变换化,旋转变换化成为Ax 2+ By 2 = d (二次齐次多项式) → 可根据二次项系数确定曲线类型(椭圆、抛物线、双曲线等); 空间解析 一次曲面: Ax + By + Cz + D = 0 (平面); 二次曲面: (平移后不含一次项)→ Ax + By + Cz + 2Dxy + 2Exz + 2Fyz = G (18-19世纪上半期表示方法) → 通过方程变形,选定主轴方向为坐标轴,可化简为 a/x/2 + b/y/2 + c/z/2 = d/ → 据二次项系数符号确定二次曲面的分类 更一般的问题: 数域P 上含n 个变量x 1,x 2,…,x n 的二次齐次多项式如何化成平方和形式,即标准型问题,是18世纪中期提出的一个课题 了解了二次型的相关背景,我们进行对课本上二次型的内容进行总结。 二次型这章内容如下 5.1 二次型及其矩阵表示 5.2 二次型的标准形 5.3 惯性定理和规范形 5.4 实二次型的正定性 在这章的学习中,我们需要学会二次型的矩阵表示,求解矩阵的秩,通过线性替换将二次型化为标准型,了解矩阵合同,规范型,掌握正定二次型的判定方法。 例1.二次型??? ? ?????? ??=21 21213201),(),(x x x x x x f 的矩阵为( 3 )。 (1)、102 3?? ??? (2)、1 22 3?? ??? (3)、1113?? ??? (4)、1 113-?? ?-?? 注意对于任意一个二次型,都唯一确定这一个对称矩阵,这个对称矩阵才叫做二次型的矩阵。二次型的秩就是矩阵的秩。 例2.将二次型2212311213233(,,)246f x x x x x x x x x x x =+-++化为标准形,并写出所用的非退化线性替换。 解:用配方法: 2 2 2 2 12311232323233 (,,)[2(2)(2)](2)6f x x x x x x x x x x x x x x =+-+---++ 2221232233(2)103x x x x x x x =+--+- 2 2 2 2 12322333 (2)(1025)22x x x x x x x x =+---++

高等代数期末卷 及答案

沈阳农业大学理学院第一学期期末考试 《高等代数》试卷(1) 一、 填空(共35分,每题5分) 1.设4 2 ()49f x x x x =++-, 则(3)f -= 69_ .. 2.当t = _2,-2 .时, 3()3f x x x t =-+有重因式。 3. 令 ()f x ,()g x 是两个多项式, 且33()()f x xg x +被21x x ++整除, 则 (1)f = 0_ , (1)g = _0 . 4. 行列式 31 0210 62 101132 1 -=-- 23 。 5. 矩阵的积41010311 1321022 011 34?? ? --?? ?= ? ??? ??? 9219911--?? ???。 6. 1 500031021-?? ?= ? ??? 1 05011023?? ? ?- ? ? - ??? 7. 1234123412342202220430 x x x x x x x x x x x x +++=?? +--=??---=?的一般解为 134234523423x x x x x x ? =+??? ?=--?? , 34,x x 任意取值。 二、(10分)令()f x ,()g x 是两个多项式。求证((),())1f x g x =当且仅当

(()(),()())1f x g x f x g x +=。 证:必要性. 设(()(),()())1f x g x f x g x +≠。(1%) 令()p x 为()(),()()f x g x f x g x +的不可约公因式,(1%)则由()|()()p x f x g x 知 ()|()p x f x 或()|()p x g x 。(1%) 不妨设()|()p x f x ,再由()|(()())p x f x g x +得()|()p x g x 。故()|1p x 矛盾。(2%) 充分性. 由(()(),()())1f x g x f x g x +=知存在多项式(),()u x v x 使 ()(()())()()()1u x f x g x v x f x g x ++=,(2%) 从而()()()(()()())1u x f x g x u x v x f x ++=,(2%) 故((),())1f x g x =。(1%) 三、(16分),a b 取何值时,线性方程组 有唯一解、没有解、有无穷解?在有解情况下求其解。 解: 21212131011032100122201011000122a b a b a b b a b b b b b a b b b b ???? ? ?-→- ? ? ? ?+-+-????-?? ?→- ? ?+-?? (5%) 当2 (1)0a b -≠时,有唯一解:1235222 , (1)+11 b b x x x a b b b ---= ==++,; (4%) 当1b =时,有无穷解:3210,1,x x ax ==-1x 任意取值; 当a 0,5b ==时,有无穷解:14 12333,,,x k x x k ==-=任意取值;(3%) 当1b =-或0 1 5a b b =≠±≠且且时,无解。(4%) 四、(10分)设12,,...,n a a a 都是非零实数,证明 证: 对n 用数学归纳法。当n=1时 , 1111 1 1(1)D a a a =+=+, 结论成立(2%); 假设n-1时成立。则n 时

大一上学期高数期末考试题

大一上学期高数期末考试 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1.. (A)(B)(C)(D)不可导. 2.. (A)是同阶无穷小,但不是等价无穷小;(B)是等价无穷小; (C)是比高阶的无穷小;(D)是比高阶的无穷小. 3.若,其中在区间上二阶可导且,则(). (A)函数必在处取得极大值; (B)函数必在处取得极小值; (C)函数在处没有极值,但点为曲线的拐点; (D)函数在处没有极值,点也不是曲线的拐点。 4. (A)(B)(C)(D). 二、填空题(本大题有4小题,每小题4分,共16分) 5. . 6. . 7. . 8. . 三、解答题(本大题有5小题,每小题8分,共40分) 9.设函数由方程确定,求以及. 10. 11. 12.设函数连续,,且,为常数. 求并讨论在处的连续性. 13.求微分方程满足的解. 四、解答题(本大题10分) 14.已知上半平面内一曲线,过点,且曲线上任一点处切线斜率数值上等于此 曲线与轴、轴、直线所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分) 15.过坐标原点作曲线的切线,该切线与曲线及x轴围成平面图形D. (1)求D的面积A;(2) 求D绕直线x = e 旋转一周所得旋转体的体积 V. 六、证明题(本大题有2小题,每小题4分,共8分) 16.设函数在上连续且单调递减,证明对任意的,. 17.设函数在上连续,且,.证明:在内至少存在两个不同的点,使(提示: 设) 解答 一、单项选择题(本大题有4小题, 每小题4分, 共16分)

1、D 2、A 3、C 4、C 二、填空题(本大题有4小题,每小题4分,共16分) 5. . 6.. 7. . 8.. 三、解答题(本大题有5小题,每小题8分,共40分) 9.解:方程两边求导 , 10.解: 11.解: 12.解:由,知。 ,在处连续。 13.解: , 四、解答题(本大题10分) 14.解:由已知且, 将此方程关于求导得 特征方程:解出特征根: 其通解为 代入初始条件,得 故所求曲线方程为: 五、解答题(本大题10分) 15.解:(1)根据题意,先设切点为,切线方程: 由于切线过原点,解出,从而切线方程为: 则平面图形面积 (2)三角形绕直线x = e一周所得圆锥体体积记为V1,则 曲线与x轴及直线x = e所围成的图形绕直线x = e一周所得旋转体体积为V2 D绕直线x = e旋转一周所得旋转体的体积 六、证明题(本大题有2小题,每小题4分,共12分) 16.证明: 故有: 证毕。

高等代数期末试卷

数学与应用数学专业本科期末考试试卷(A ) 课程名称: 高等代数 任课教师: 考试时间: 120 分钟 考试性质(学生填写“√”):正常考试( )缓考补考( )重修( )提前修读( ) 一、填空题(每小题2分) 1. 设n x f =?))((, 且)()(x f x g , )()(x g x f , 则))((x g ?=_________. 2. 在数域P 上有根, 但是在P 上不可约的多项式是__________多项式. 3. )(x f 是首项系数为1的实系数三次多项式. 若0)()3(==i f f , 则 )(x f =_________________. 4. 在行列式55 5115 11a a a a 中, 含有32a 且带有负号的项共有_________项. 5. 在行列式131402 1 b a -中, b 的代数余子式为-24, 则a =________. 6. 当矩阵A=______时, 秩A=0. 7. 已知A 为三阶矩阵, 且A =1, 则A 2-=_________. 8. 向量组{k ααα,,,21 }和{m βββ,,,21 }的秩分别是s 和t , 则{k αα,,1 , m ββ,,1 }的秩r 与s ,t 适合关系式____________. 9. 设A 为n 阶方阵, X 1, X 2均为方程组AX=B 的解, 且21X X ≠, 则A =____. 10. 设A, B 都是三阶方阵, 秩A=3, 秩B=2, 则秩(AB)=____________. 二、单选题(每小题2分) ). (A) S 1={Z n m m n ∈,2 }; (B) S 2={Z b a bi a ∈+,}; (C) S 3={Z z nz ∈}; (D) S 4={Q b a b a ∈+,2}. 2. 设0)(≠x f , 且)())(),((x d x g x f =, )()()()()(x d x v x g x u x f =+, 则错误的结....论.是( ). (A) 1)) () (,)()(( =x d x g x d x f ; (B) )())(),((x d x v x u =; (C) )())(),()((x d x g x g x f =+; (D) )())(),((m m m x d x g x f =. 3. 设行列式D 1=3332 31232221 13 1211 a a a a a a a a a , D 2=31 32 33 21222311 1213 a a a a a a a a a ,则下面结论正确的有( ). (A)D 2=-D 1; (B)D 2=0; (C)D 2与D 1无关; (D)D 2=D 1. 4. )(x f = x x x x x 1 11 1231 11212-中 4x 的系数为( ) (A) 1, (B) 2, (C) 0, (D) 3. 5. 22)13)()(1()(--+=x i x x x f 在复数域上的标准分解式是( ) (A)22)13)()(1(--+x i x x ; (B) 22)13())((--+x i x i x ; (C)22)31())((--+x i x i x ; (D) 22)3 1 ())((9--+x i x i x . 6.若r ααα,,,21 是线性无关的向量组, 则r r k k k ααα,,,2211 也线性无关的条件

相关文档
最新文档