互调测量

互调测量
互调测量

3.5 移动通信天线互调的测量

3.5.1无源互调概念

当有多个不同频率的信号加到非线性器件上时,非线性变换将产生许多组合频率信号,其中的一部分可能落到接收机通带内,成为对有用信号的干扰,称为互调干扰。

随着移动通信的高功率多通道的发展,一种新的电磁干扰源-无源互调(PIM)已作为天线的重要性能指标出现。天线中互调产生的成因主要是天线使用了铁质材料,由于磁滞的关系它属非线性;另外所用材料不纯、电镀问题、连接件接触表面与触点之间压力问题等。

天线的互调主要是三阶互调的影响,该干扰信号使得移动通信基站的覆盖范围减小、通信信号丢失、语音质量下降、系统容量受限等

具有两个载波信号的互调失真频率

两个载波信号经过非线性网络,产生如下互调失真频率:

图3.5.1互调失真频率示意图

移动通信GSM系统实例:3阶互调失真信号

f1=935MHz f2=960MHz

2f1- f2=(935*2)-960=1870-960=910MHz

2f2- f1=(960*2)-935=1920-935=985MHz

由此可见,在双频大功率情况下工作的基站天线,由于天线结构的不良现象,就会使3阶互调失真信号落在接收机带宽内,对通信网络造成干扰。3阶互调失真也就成了移动通信基站天线必测的主要指标之一

3.5.2 天线互调测试设备

SummiteK SI系列互调分析仪是较为广泛使用的天线互调测试设备,它采用

通过式和反射法来测量无源器件(天线、电缆接头等)的互调失真。SI系列产品SI-800A/B, SI-900A/B, SI-1800A/B, SI-1900A/B, 或SI-2000B(目前SUMMITEK公司的最新产品是E系列和D系列;而且已经可以分体组合各个频段:700 / 800 / 900 / 1800 / 1900 / 2000 / 2600 / 3500MHz 覆盖了2G, 3G, 4G以及蓝牙等各通信频段)几乎覆盖了移动通信全频段,基本满足测试要求。

在对天线测试时应使用对应频段的无源互调仪进行测试。由以上主机配备SI-100A 电源、控制器、显示器、打印机等组成互调测试系统。

1.主要技术指标

主机频段划见表3.2表主机频段划分(更新如下图)

(1)发射机:

* 发射功率:+20(+43dbm)

* 频率增量:200KHz;

* 频率精度典型值+/-2~5ppm

* 反向功率保护:典型值65W

(2)接收机(端口1,2):

* 噪声电平:-140dbm;

* 动态范围:75db;

* 典型测量间隔时间:分三档:200ms 400ms 800ms

* 端口1残留互调(端口1加两个20W载波信号):-65dbm 典型rms;

* 最大工作输入功率:发射接收综合带宽:-65dbm 典型rms;

* 最大安全输入功率:发射带宽:48dbm(65w);接收带宽:16dbm(40w);

* 功率参考信号(端口3):提供一个小功率校准信号;

* 频率特性

SI-800A SI900A SI1800A SI1900

824-894 890-960 1710-1880 1850-1990

* 频率精度典型值+/-2;最大+/-5ppm ;

* 频率增量:200KHz ;

* 功率特性:

* 输出功率:+10dbm~-50dbm +/- 0.2db

* 反向功率保护:60w

2. 互调仪工作原理

互调仪RF标准配置系统见图2.7.3与2.7.4,其中图2.7.4是带有选件“K”的RF 标准配置系统。由图可知,两台合成信号源给出幅度相等的具有一定频率间隔的两个载波信号(如f1=935MHz f2=960MHz),两路信号经过功率放大达到规定值,通过合路器、定向耦合器、双工器等到测试端口。定向耦合器取样参考信号,双工器作为信号分离器件其作用既是传输测试信号给待测件,又可将待测件产生的互调信号分离馈送给接收机。

图3.5.2互调仪RF标准配置原理框图

3.5.3 测试系统安装

1.注意事项

在安装之前必须要完成:

*检查电源模块的保险丝型号,220-240 V AC的电压应该用250V, 5A, T5A的保险丝。

*确保电源插座合适,电源线必须要接地。

仪器背面的数模传输端口是必须要防静电的,为了避免静电损伤设备,禁

止触摸仪器传输端口的接触点.

无回波吸收体不能放在天线感应近场内,以确保吸收体内感应回波不产生交调。

同时还要保证吸收体之间相同极化间隙不产生泄漏。

确保连接天线电缆的剩余交调小于被测天线的交调。这可以通过在电缆一端接入一个低交调负载,在所需的形变范围内移动电缆而测得。

降低连接电缆损耗超过1dB时,无源交调测量误差将显著增大。

2.系统安装

交调测量应使用对应频段的“无源交调分析仪”进行测试,分析仪置于测量“反射式交调”状态,建议使用“扫频”测试,测量框图见图3.5.3与3.5.5。双极化天线测量时,另一端口接入一个低交调负载。

系统安装连接按照如图3.5.3所示进行,安装连接完毕后仪器开始预热,时间至少为15分钟。

图3.5.3系统连接图

3.5.4 校准

1.使用功率计验证每路载波:在仪器的校验端口验证功率波动在+/- 1dB以内;或每个通道(AUT)都是20W——此项验证在每次功率重新设置和每次更换电缆都必须进行。如果测试要求为-110dBm(-153dbc),仪器必须在接标准负载情况下测试值低于-120dBm。(即表示标准负载值需要在测试要求值-10dB以上)

2. 调节仪器单路载波的功率,使功率计读数为20+/-0.5W。如果无法达到20W,尽量调节仪器的输出功率到最大值,每路载波至少要大于16 。

3 设置生产模式界面(点频测试)

设置确认打开电脑,显示器和电源,打开”Passive IM Analyzer”图标,选择生产

模式界用鼠标双击屏幕左下角的” Program Set”生产模式测试设置窗口将打开。

图3.5.4频率设置界面

3.5.5测试步骤

(1)待测天线必须安装在一个无反射的自由空间或模拟自由空间(无回波室),测量设备与测试人员远离其中。待测天线距吸波材料有一定距离,确保吸波材料感应回波不产生互调。同时还要保证吸波体间相同极化间隙不产生泄漏。

(2)确保射频电缆剩余互调小于待测天线的互调值。这可以通过在电缆一端接一个低互调负载,在所需的形变范围内移动电缆而测得。

(3)要用低损耗射频电缆。当电缆损耗超过1db,无源互调测量误差显著增大。(4)接收机门限电平应小于-135dbm.

(5)连接被测天线和电缆时应使用N型或7/16型扭力扳手。保证接触可靠。

图3.5.5双极化天线连接示意图

(6)在工作频段内选择合适的频率f1 f2,使三阶互调产物2f1- f2或2f2- f1落在工作频段范围内。

(7)每路载波的功率都设置为20W/43dBm

(8)从互调仪上直接读出三阶互调产物段电平值。

3.5.6 测试结果

移动通信系统基站天线三阶互调应≤-107dbm(依据YD/T1059-2004移动通信系统基站天线技术条件) 依据此标准判别待测天线测试结果是否合格。

测得结果为:2f1- f2=1870-960=910MHz和2f2- f1=1920-935=985MHz

3阶互调失真信号电平不超过-130dbm.

接收机互调干扰特性

ITU-R SM.1134-1建议书* 陆地移动业务中互调干扰的计算 (ITU-R 44/1号研究课题) (1995-2007年) 范围 本建议书为计算最多三种互调干扰提供了依据,接收机输出端出现的这种互调干扰,是接收机幅度响应的非线性在接收机输入端产生的强烈无用信号引起的。 国际电联无线电通信全会, 考虑到 a) 在大多数典型情况下,确定陆地移动业务干扰的主要因素包括: –由两个(或更多个)高电平干扰信号产生的带内互调产物; –当来自其他发射机的任何其他信号出现在受影响的发射机的RF级输入级,就会在发射机产生无用发射; –有用和干扰的信号幅度是随机变量; b) 两个(或更多个)无用信号必须具有特定的频率,造成互调产物落入接收机频带内; c) 由两个以上的幅度很高的无用信号引起互调干扰的概率非常小; d) 互调干扰计算程序将为陆地移动业务的频谱利用效率的提高提供一个的有用的方法, 建议 1应使用附件1中提出的接收机互调模型进行陆地移动业务的互调干扰计算; 2互调干扰计算应遵循以下的程序,详情见附件1; 2.1确定随机有用信号功率在接收机输入端的均值和偏差值; 2.2确定一个随机互调干扰信号功率在接收机输入端的平均值和偏差值; 2.3确定接收时出现接收机自身以及由发射机互调产生的互调产物的概率; *应提请无线电通信第8研究组注意本建议书。

3 受互调干扰影响的区域以及相应的干扰发射机与接收机间的必要地理间隔应根据给定的干扰概率值来确定,如附件1所述。 附 件 1 互调模型 本附件描述了两个互调模型;接收机互调(RXIM )模型和发射机互调(TXIM )模型。它分成5个小节。 第1节概述了计算接收机互调干扰的通用公式。第2节描述了RXIM 的测量程序。第3节概述了使用通用公式来评估接收互调干扰的程序。第4节概述了发射机互调干扰的公式。第5节描述了如何计算RXIM 和TXIM 干扰的概率。 1 接收机互调分析模型 两信号、三阶互调干扰功率由以下公式给出(前CCIR 522-2报告,1990年,杜塞尔多夫): ()()1,222112K P P P ino -β-+β-= (1) 其中: P 1和P 2: 分别为在频率f 1和f 2上的干扰信号功率 P ino : 在频率f 0(f 0 = 2f 1 - f 2)上的三阶互调产物功率 K 2,1: 三阶互调系数,可以根据三阶互调测量结果计算得到或从设备参数获得 β1和β2: 分别为距工作频率f 0频偏为?f 1和?f 2处的RF 频率选择性参数。 例如β1和β2值可以通过计算失谐频率的信号衰减的公式得到: ??? ? ??????? ? ???+=?2 2 1 log 60)(βRF B f f (2) 其中B RF 是接收机的RF 带宽。 值得注意的是,对一个工作在VHF 和低UHF 频带的陆地移动模拟无线电接收机的一组特定的三阶互调测量值,由公式(1)可以得到以下公式[1974年,McMahon]: P ino = 2P 1+P 2+10-60 log(σf ) (3)

接收机邻通道选择性和互调抑制两项指标的测试方案

接收机邻通道选择性和互调抑制的测试方法 一、接收机测试指标要求 二、测试设备清单: 根据测试文档内容,理出以下可能相关测试所需的测试设备,有些是否真正需要,待考究。序号仪器设备名称数量型号/规格/配置 1频谱分析仪1 2矢量网络分析仪1 3射频信号源3产生DUT所需的标准调制信号 4示波器1 5直流稳压源1 6功分器(合路器)2三合路器、二合路器 7误码测试仪1 8PC机1 9DUT若干 10射频线缆若干

三、测试平台搭建 1、测试平台1:邻通道选择性(ACS) 名词解析:邻道选择性(Adjacent Channel Selectivity,ACS)是用来衡量存在相邻信道信号时,接收机在其指定信道频率上接收有用信号的能力,定义为接收机滤波器在指定信道上的衰减与在相邻信道上的衰减的比值。 即指在相邻的信道上存在无用信号时,接收机接收已调有用信号的能力,用无用信号与灵敏度的相对电平表示。 2、测试平台2:互调抑制 名词解析:是指当存在2个或多个以上与有用信号存在特定频率关系的无用信号时,接收机接收有用调制信号时,其性能不低于给定指标的能力;其中三阶互调对系统影响最严重,所以一般测试三阶互调。检验接收机抑制因信号的相互作用在接收机输出端造成干扰的能力,在下行信道加入干扰信号检查接收误码率,判断接收机性能。

四、测试方法步骤 1、邻通道选择性 1)根据测试平1搭建连接图搭建测试环境。 2)测试步骤: a.在接收机的有用信道上使用射频信号源1产生相应被测信道的标准调制信号并将该信 号(有用信号)输入到接收机,其他射频信号源关闭输出,根据设定的BER(Bit Error Rate)或SINAD(Signal-to-Noise-And-Distortion)指标使用误码测试仪等仪器工具测得符合BER或SINAD指标的有用信号的灵敏度,记录此时射频信号源1的功率值为P1; b.再将射频信号源1产生的有用信号加大3dB,即输出SINAD必然会随之增大,BER也会 随之降低; c.然后在接收机的相邻信道(上邻道)上使用射频信号源2产生标准调制信号,即无用信 号,并通过合路器与有用信号合成一路输入到接收机,保持有用信号功率不变,逐渐加大或减小无用信号的功率,直到接收机信号的BER或SINAD恢复到原来测试灵敏度的水平,记录此时射频信号源2的功率值为P2; d.根据无用信号的功率与前面测试接收机的灵敏度功率的差值就是邻通道选择性,记录为 P上=|P2-P1|; e.根据步骤c选择另外一侧相邻信道(下邻道),重复步骤c、d,记录该测试结果功率 为P下=|P2-P1|,至此测试完成; f.根据P上和P下大小,选择较小者为接收机的邻通道选择性(dB),记录该值对应的邻 道(上邻道或下邻道)和被测信道的标称频率(MHz)。 2、互调抑制 1)根据测试平台2搭建连接图搭建测试环境。 2)测试步骤:

三阶互调的计算

三阶互调计算 什么是三阶互调? 三阶互调是指当两个信号在一个线性系统中,由于非线性因素存在使一个信号的二次谐波与另一个信号的基波产生差拍(混频)后所产生的寄生信号。由于一个信号是二次谐波(二阶信号),另一个信号是基波信号(一阶信号),他们俩的合称为三阶信号。又因为是这两个信号的相互调制而产生差拍信号,所以这个新产生的信号称为三阶互调失真信号。产生这个信号的过程称为三阶互调失真。他所表明的是确切含义是,一个线性系统所包含的非线性系数的大小。这个指标对于大动态放大器是一个非常重要的技术指标。测试这项指标使用的测试仪器主要是频谱分析仪。对于不同指标要求的三阶互调失真,需使用不同性能的频谱分析仪,对三阶互调失真要求越高,对频谱分析仪的要求就越高。 给定具体频率可以推算出哪些频率点有三阶互调干扰具体的算法是: 计算方法: (1)将所分配或使用的频率从低向高排序; (2)按最小信道间隔计算每个频率对应的频道数; (3)计算相邻频道数的差值; (4)求差值的和(按下举例方法求和); (5)检查差值与和数中不得有相同的数出现。 举例说明:现有一组频率156.275MHz 156.150MHz 156.200MHz 156.125MHz计算是否存在互调组合。 (1)排序156.125 156.150 156.200 156.275(156.300) (2)顺序频道数 1 2 4 7(8) (3)相邻频道差值 1 2 3(4) (4)差值之和 3 5(6)6(7) (5)检查差值与和数是否有同样的数出现 有相同的数字3,表明这一组频率存在互调,只有将156.275频率向上调换成156.300或其它的频率才可避开互调组合。上面括号中的数字是被调换后的计算结果。 三阶互调是指当两个信号在一个线性系统中,由于非线性因素存在使一个信号的二次谐波 与另一个信号的基波产生差拍(混频)后所产生的寄生信号。比如F1的二次谐波是2F1,他 与F2产生了寄生信号2F1-F2。由于一个信号是二次谐波(二阶信号),另一个信号是基波 信号(一阶信号),他们俩合成为三阶信号,其中2F1-F2被称为三阶互调信号,它是在调制 过程中产生的。又因为是这两个信号的相互调制而产生差拍信号,所以这个新产生的信号 称为三阶互调失真信号。产生这个信号的过程称为三阶互调失真。由于F2,F1信号比较接

无源互调测量及解决方案

1概述 无源器件会产生非线性互调失真吗?答案是肯定的!尽管还没有系统的理论分析,但是在工程中已经发现在一定条件下无源器件存在互调失真,并且会对通信系统(尤其是蜂窝系统)产生严重干扰。 无源互调(Passive Inter-Modulation,PIM)是由发射系统中各种无源器件的非线性特性引起的。在大功率、多信道系统中,这些无源器件的非线性会产生相对于工作频率的更高次谐波,这些谐波与工作频率混合会产生一组新的频率,其最终结果就是在空中产生一组无用的频谱从而影响正常的通信。 所有的无源器件都会产生互调失真。无源互调产生的原因很多,如机械接触的不可靠、虚焊和表面氧化等。 5年前,大部分射频工程师很少提及无源器件互调问题。但是,随着移动通信系统新频率的不断规划、更大功率发射机的应用和接收机灵敏度的不断提高,无源互调产生的系统干扰日益严重,因 无源互调测量及 解决方案 朱 辉 上海创远信息技术股份有限公司 此越来越被运营商、系统制造商和器件制造商所关注。 长期以来,无源器件的互调失真测量技术一直被国外公司所掌握,并垄断了测量产品市场。今天这种局面发生了变化,无源互调测量技术难关已经被中国本土的射频工程师们攻克,而且低成本的商用无源互调测量系统也已诞生。 2无源互调的表达方式 无源互调有绝对值和相对值两种表达方式。绝对值表达方式是指以dBm为单位的无源互调的绝对值大小;相对值表达方式是指无源互调值与其中一个载频的比值(这是因为无源器件的互调失真与载频功率的大小有关),用dBc来表示。 典型的无源互调指标是在两个43 dBm的载频功率同时作用到被测器件DUT时,DUT产生-110 dBm(绝对值)的无源互调失真,其相对值为-153 dBc。 3无源互调测量方法 由于无源互调值非常小,因此无源

三阶互调的算法

在移动通信领域内,频率规划是很重要的项目之一。频率规划的正确与否直接影响到工程完工之后实际的通信质量。在多信道的共用系统中,因为多个信道的同时工作,必然要产生相互干扰,为了减少频率之间的相互干扰的程度,就应该选取一些适当的频点,选用无三阶互调的频点就能够有效的抑制频率间的干扰。 三阶互调是由电路的非线性产生的三次项,在频率上满足: Fi-Fj=Fj-Fk(两信号三阶互调) Fi-Fj=Fk-Fl(三信号三阶互调) 三阶互调的意思是,只要有几个频率满足以上的关系,相互间就会构成干扰,比如在两信号的三阶互调中,Fi=2Fj-Fk,若由Fj和Fk产生的新的频率Fi落在本系统或其他系统工作的频率或通带上,就会对系统的通信造成干扰。无三阶互调就是要取出一组满足频率要求的点,使这些点的任何组合都满足Fi-Fj≠Fj-Fk,Fi-Fj≠Fk-Fl。 在一组数的范围内取出无三阶互调的点,我们可以考虑几种算法。第一种是:先将所有的组合求出,然后依照无三阶互调的条件进行判断,取出所有满足无三阶互调的组,然后依照附加条件(比如信道间隔)进行挑选;第二种是:先依照附加条件选择信道组合,再将程序求出的组合进行无三阶互调比较和判断,最终求得满足的解。 在判断无三阶互调的条件时,将每两个元素进行循环比较的方法显得过于繁杂,一般采用差分三角形法。 这个例子是取5个无三阶互调的点,取出的组(1,2,5,10,12)(引自《移动通信工程》,人民邮电出版社316页,表5-5)满足无三阶的条件,约束条件为信道间隔≥1,由这个数组可以计算出上面的差分三角矩阵。验证无三阶互调的方法是:只要这个三角矩阵中的元素不重复,则这个数组本身就满足无三阶互调。由于矩阵本身并不会很大,可以用多重循环形成差分三角形,再进行矩阵元素之间的比较。 在具体编程描述时可以考虑选用C语言或专用数学工具Matlab或者Mathematic。考虑到在求解较大型的无三阶互调组时,用C语言描述的工作量过大,牵涉到矩阵运算的循环次数过多,编程繁杂难以实现,且难以维护,故选用Matlab,Matlab以其矩阵运算的效率而闻名。 在编程的实现上,Matlab提供了很多的可以供使用的函数,这方便了我们的编程过程。对于第一种算法,COMBNK(n k)函数可以生成在n个元素里每次取出k个元素的所有组合,使用此函数很快就能获得所有组合,然后能对每一种组合求得差分三角矩阵,进而求出我们需要的无三阶互调组,这种方法在求得维数较低的无三阶互调数组时易于使用。例如在取数范围<56时使用比较方便,在CPU主频为2G的情况下,15分钟左右能求出结果,无三阶互调组的维数为7(不加任何限定条件);但是当数组变大的时候就不再适合了,此时生成矩阵的规模成几何级数增长,当要在100个点中取出维数为10的组时,有1.7310e+013种组合,这在生成矩阵的时候是不可实现的,因为Matlab不允许对默认的存储变量的大小进行修改,每个变量用8个字节来表示,那么要求系统存储矩阵的容量不能低于1.3848e+005GBytes,这在物理上也是不可行的,最终因耗尽内存而不能继续。这时应该作出在系统内存和CPU占用率上的取舍。故比较合理的解决方案是采用第二种算法。

使用带定位功能互调仪对室分系统干扰排查与定位案例

室分系统干扰排查与定位案例 一.背景 随着中国移动2/3G网络的发展和室内话音、数据业务流量的高速增长,室内分布系统已成为吸收话务量、解决深度覆盖并提升用户感受的主要手段,是移动网络的重要组成部分。 无源互调是指当两个以上不同频率的信号作用在具有非线性特性的无源器件时,会产生无源互调产物PIM(Passive Inter-Modulation)。在所有的互调产物中,二阶与三阶互调产物的危害性最大,因为其幅度较大、可能落在本系统或其他系统接收频段,无法通过滤波器滤除而对系统造成较大危害。 二.优化案例 1)指标情况 隆生大厦微1小区4/5等级的干扰比例在20%左右,小区掉话数在二十多次每小时。 小区性能下降,给客户感知造成较差的情况。并且该大厦长期存在客户投诉,但由于无法精准定位排查解决,下表是该大厦覆盖小区RJC隆生大厦微1相关指标统计。 2)系统原理图

3)现场互调测试 现场对机架顶端馈线进行互调测试,测试结果如下:该分布系统三阶互调约为-56dBm,三阶互调峰值在14.18米距离处。测试情况如下图所示。 -56dBm,测试结果以机架端测试结果相接近。

通过更换高性能电桥再次在机架端进行互通测试,本次测试结果发现4米处存在三阶互调为-73dBm ,经过分析该处1/2软馈线转7/8硬件连接处。 经过检查1/2软跳线与7/8硬馈线之间馈头连接处,发现1/2馈线接头稍微 用力拉就脱落现象。主要是由于前期施工中工艺存在问题,馈线与馈头之间松动,接触不良情况,引起互调干扰问题,因此现场重新更换1/2馈线头。 故障电桥

对1/2馈头进行重新更换后,再次对该系统进行三阶互调测试,测试结果合格,能够满足系统三阶互调要求。详细情况如下图所示:三阶互调峰值为-83dBm,所处位置为距离机架端36米地方。 4)效果跟踪 通过对电桥更换及馈头更换后,重新开启该小区对信道干扰情况进行观察,发现处理前干扰等级集中在3/4/5等级,处理后大部分1等级,个别信道为2等级。下面是该小区处理前后小区性能指标统计对比。

LTE谐波互调干扰处理案例

LTE谐波互调干扰处理案 例 2017-09

1.案例概述 通过IDS干扰分析,发现6APYNX-鄱阳桥下-27083-8FC4D10-1小区连续多日存在高干扰,PRB干扰均值在-109dBm左右。 2.问题分析 通过IDS干扰分析平台查询得知,RB95及两边邻近RB持续干扰,RB44及两边邻近RB 干扰强度随着时间变化,满足1个或多个RB干扰凸起的情况,根据经验判断为二次谐波(2f1)及二阶互调(f1+f2)造成。 LTE小区为38400频点,中心频率为1895MHZ,LTE每RB带宽为180KHZ,两边各1MHZ 保护带宽,中国移动GSM900下行频率从935MHZ开始,每200KHZ一个频点,频率计算方法: RB95对应模糊频率=1886+95*0.18=1903.1MHZ RB44对应模糊频率=1886+44*0.18=1893.92MHZ BCCH对应模糊频率=1903.1/2=951.55MHZ BCCH对应频点 =(951.55-935)/0.2=82.75 将BCCH频点取整为83,通过查询2G工参,发现确实共站存在PYXX-桥下-27083-10581-A1的GSM小区,其BCCH频点为83,两个TCH频点,分别为:37;27 ,同理可以计算出BCCH频点83与TCH频点37的二阶频率为935+0.2*83+935+37*0.2=1894MHZ,与RB44频率相近,通过以上方法基本确认为GSM小区BCCH83与TCH 37频点造成的干扰,为了计算方便,我根据此原理编写了工具,网上也有类似excel公式,效果如下:

谐波互调分析.xl sm 3.优化措施及效果 1)通过上述分析,确认为GSM侧小区造成的干扰,使用OMC网管干扰检测监控对6APYNX-鄱阳桥下-27083-8FC4D10-1进行实时干扰跟踪,并过滤出RB43/44/94/95/96的干扰噪声功率,受BCCH二次谐波干扰的RB基本持续高干扰,而受TCH与BCCH二阶互调干扰的RB实时跟踪噪声功率呈现忽高忽低,主要由于TCH信道非持续发射,在业务忙时干扰会恶化,如下图所示: 干扰实时监控 2)联系GSM工程师,建议其将PYXX-桥下-27083-10581-A1小区BCCH频点控制在1-40范围内,因为1~40及86~94频点二次谐波对F1频点不会造成干扰,由于此次干扰还涉及到BCCH 与TCH的二阶互调,不宜将频点修改到86~94,否则二阶互调就很难避免,GSM工程师根据建议将BCCH频点修改到25,4G侧干扰立即消除,如下图所示:

IP3 三阶交调截取点测试

IP3 三阶交调截取点测试 2008-05-18 23:52输入输出三阶截获点(iip3,oip3):反映放大器的线性特性。 具体指三阶谐波与输入端基波电平相同时对应的输入/输出功率电平。 摘要:在宽带无线通讯系统的设计过程,设计者们在设计放大器、混频器、变频器时,在诸多的设计指标中有一项三阶交调截取点(IP3),它是表征了线性度或失真性能的参数,本文主要介绍了三阶交调截取点(IP3)测量方法。 关键词:线性度,失真,三阶交调截取点,IP3 1. 引言 在射频或微波多载波通讯系统中,三阶交调截取点IP3(Third-order Intercept Point)是一个衡量线性度或失真的重要指标。交调失真对模拟微波通信来说,会产生邻近信道的串扰,对数字微波通信来说,会降低系统的频谱利用率,并使误码率恶化;因此容量越大的系统,要求IP3越高,IP3越高表示线性度越好和更少的失真。本主要介绍了三阶交调截取点(IP3)测量方法。 2.计算三阶交调截取点 IP3通常用两个输入音频测试,这里所指的音频与我们在低频电子线路的音频有区别,实际上是两个靠的比较近的射频或微波频率,由式(1)表示: 当两个或多个正弦频率正好落在放大器的带宽内并通过一个非线性放大时,其输出信号将包括各种频率分量。三阶交调分量2F1-F2,2F2-F1是非线性中三次方项产生的,由于落在带宽内,是我们主要关注的非线性产物,见图1。 图2反映了基频(一阶交调)与三阶交调增益曲线,当输入功率逐渐增加到IIP3时,基频与三阶交调增益曲线相交,对应的输出功率为OIP3。IIP3与

OIP3分别被定义为输入三阶交调载取点(Input Third-order Intercept Point)和输出三阶交调载取点(Output Third-order Intercept Point)。

二阶互调和三阶互调

二阶互调 x+x+45=y+95 ;x=912+(a-110*0.2) ;y=1773.2+(b-827*0.2) ;a=100~124 ;b=800~859 ;计算上述5个式子可得:2(890-0.2a)=1773.2+0.2b-165.4+50 ;计算可得:122.2=0.2a-0.4b 即2a+611=b 然后可得对应得二阶互调频点为:100-811 ,101-813 102-815 ,103-817 。。。。。。。。。。115-841 ,116-843 。。。。。。。。。。123-857 ,124-859 (1)该频率计划是因为二阶互调所引起的。115频点的发射频率和接收频率之和等于841的下行频率1871,同时124频点的发射频率和接收频率之和等于859的下行频率1874.6,因此引起了二阶互调导致系统掉话。 (2)对于该网络的频率计划主要要考虑900/1800之间的二阶互调干扰和三阶互调干扰。二阶互调干扰: 1、二阶互调表现为fA+/-fB=fC,对双频网可能的表现形式有: DCS1800Tx-GSM900Tx=GSM900Rx;Tx代表基站发射频率,Rx代表基站接收频率 共站时1800发射频率与900发射频率的差频不能等于GSM900的接收频率。 2、还有一种情况就是一个基站的三个小区的BCCH之间存在这样的关系也是二阶互调: BCCH(A)+BCCH(B)=2*BCCH(C) 三阶互调干扰 三阶互调表现为:fA+fB+fC=fD,fA-fB-fC=fD,fA+fB-fC=fD或fA-fB+fC=fD。对双频网前两者不可能成立,后两者其实是同一种情况。可归结为:情况1:DCS1800Tx1-DCS1800Tx2+GSM900Tx=GSM900Rx 即:共站两1800频点发射频率的差频与GSM900频点发射频率的和不能等于GSM900的接收频率情况2:DCS1800Tx-GSM900Tx1+GSM900Tx2= DCS1800Rx 即:共站两GSM900发射频率的差频与DCS1800发射频率的和不能等于DCS1800的接收频率。

无源互调测试仪检测方法及功能分析_JOINTCOM

无源互调测试仪检测方法 及“工兵行动”所需互调仪功能分析

目录 一. 互调仪整机性能测试 (3) 1.残余互调(自身互调)测试 (3) 2.标准件测试测试 (3) 3.总结 (4) 二. 互调仪模块性能测试 (4) 1.发射模块测试 (4) 2.接收模块测试 (4) 3.总结 (5) 三. 互调仪一致性测试 (5) 四. “工兵行动”所需互调仪功能分析 (5) 1. 中国移动需要什么样的互调仪? (5) 2.为什么互调仪的重量要求足够轻? (5) 3.为什么互调仪必须要测量频谱? (6) 4.为什么国际标准EGSM便携互调仪国内不能使用? (7)

一. 互调仪整机性能测试 互调仪由发射机和接收机组成,因此可以利用其收发特性对整机性能进行验证。整机性能测试包括两项,一项是残余互调测试,另外一项是标准件测试。 1. 残余互调(自身互调)测试 测试设备包括被测互调分析仪、低互调负载、低互调测试电缆,其连接如图1所示,仪表设置如下:两路载波输出功率为+43dBm ,互调阶数为3阶,选择扫频测试,记录整个频段范围内的互调最差点,这个值就是互调仪残余互调。 建议残余互调≤-125 dBm (-168dBc@2×43dBm ),该值越小越好。残余互调是互调仪的一项重要指标,他决定了仪表的测量范围和测量精度。根据互调测试IEC 62037相关国际标准,要求测试系统残余互调至少必被测件互调值低10dB ,也就是说残余互调为-125 dBm@2×43dBm 的互调仪,最低可以测到-115 dBm@2×43dBm 无源互调,低于-115 dBm ,测试结果不准确。反过来也可以讲,在被测件互调值确定情况下,互调仪残余互调值越低,测量结果越精确。 低互调负载 图1 残余互调测试框图 2. 标准件测试测试 低互调负载 图2 标准件测试框图 测试设备包括被测互调分析仪、标准件、低互调负载、低互调测试电缆,其连接如图2所示。标准件是一种在确定的功率(2×43dBm)下产生确定互调值(譬如-80dBm 或-100dBm 等)的设备,其外形与一般连接器相同。仪表设置如下:两路载波输出功率为+43dBm ,互调阶数为3阶,选择扫频测试,记录整个频段范围内的数据,计算其与标准(譬如-80dBm )的差值。 建议标准件偏差在±3dB 之内,偏差值越小越好。标准件测试是另外一个整机测试指标,它用来衡量测试的准确性。与网络分析仪的测量误差(0.05dB~0.1dB)相比,±3dB 互调仪的测试偏差比较明显,这是由于互调测试的复杂性及不确定性造成。

二阶互调

二阶互调 x+x+45=y+95 ; x=912+(a-110*0.2) ; y=1773.2+(b-827*0.2) ; a=100~124 ; b=800~859 ; 计算上述5个式子可得: 2(890-0.2a)=1773.2+0.2b-165.4+50 ;计算可得: 122.2=0.2a-0.4b 即2a+611=b 然后可得对应得二阶互调频点为: 100-811 ,101-813 102-815 ,103-817 。。。。。。。。。。 115-841 ,116-843 。。。。。。。。。。 123-857 ,124-859 (1)该频率计划是因为二阶互调所引起的。 115频点的发射频率和接收频率之和等于841的下行频率1871,同时 124频点的发射频率和接收频率之和等于859的下行频率1874.6,因此 引起了二阶互调导致系统掉话。 (2)对于该网络的频率计划主要要考虑900/1800之间的二阶互调干扰和三阶互调干扰。 二阶互调干扰: 1、二阶互调表现为fA+/-fB=fC,对双频网可能的表现形式有: DCS1800Tx-GSM900Tx=GSM900Rx; Tx代表基站发射频率,Rx代表基站接收频率。 共站时1800发射频率与900发射频率的差频不能等于GSM900的接收频 率。 2、还有一种情况就是一个基站的三个小区的BCCH之间存在这样的关系也是二 阶互调:

BCCH(A)+BCCH(B)=2*BCCH(C) 三阶互调干扰: 三阶互调表现为: fA+fB+fC=fD,fA-fB-fC=fD,fA+fB-fC=fD或fA-fB+fC=fD。 对双频网前两者不可能成立,后两者其实是同一种情况。可归结为:情况1:DCS1800Tx1-DCS1800Tx2+GSM900Tx=GSM900Rx 即:共站两1800频点发射频率的差频与GSM900频点发射频 率的和不能等于GSM900的接收频率 情况2:DCS1800Tx-GSM900Tx1+GSM900Tx2= DCS1800Rx 即:共站两GSM900发射频率的差频与DCS1800发射频率的 和不能等于DCS1800的接收频率。

互调干扰

互调干扰 基站互调信号的产生和对GSM网络质量的影响,必须在处理网络规划和网络优化中关注。在自然界中,当两个射频信号输入到一个非线性元件中,或者通过一个存在不连续性的传输介质时,将因为这种非线性而产生一系列新的频率分量,新产生信号的频率分量满足如下频率关系,设输入的两个信号的频率为f1,f2(绝对频率): Fn=mf1+nf2 和 Fn=mf1-nf2 最常见是三阶、五阶互调分量,因为在各阶互调分量中,三阶、五阶互调产物的幅度较高。以三阶互调为例: 2f1-f2和2f2-f1的两种频谱分量距离本身信号最近,它们最有可能对系统产生干扰,频谱分布如图所示: 图1 互调信号频谱分布图 新增信号的幅度取决于器件的非线性程度或者微波传输不连续性,衡量的指标为三阶互调指标IM3。IM3定义:该指标定义为输入两个一定电平的等幅信号,由于系统的非线性而产生的三阶互调产物与输入信号的差值。一般情况下器件三阶互调指标满足要求,在频率规划时,不考虑三阶互调的频点,但对于所使用双频网(共天馈时)或使用频带特别宽的情况,下行产生的三阶互调会影响上行的接收,在排查干扰问题时重点考虑。 天线作为无源器件和微波信号传输器件,产生互调的可能有以下几个方面: 天线输入接头的清洁程度,机械性损伤,或者多次拆装造成内部的镀银层损坏和遗留在接头内的金属屑; 天线接头安装不紧密或密封不良; 密封在保护罩内部天线阵子被腐蚀; 天线输入接头到天线阵子的馈电部分被腐蚀。

互调产物干扰接收必须满足两个基本条件: 互调产物落入接收带内。 互调产物必须达到一定的电平,按照同频干扰和基站灵敏度-110dBm要求,天线端口互调产物的最大信号电平必须满足:-110dBm-9dB(同频干扰抑制因子)+ 6dB(60m馈线损耗)=-113dBm。 对于第一个条件,以M900 两个发射信号互调产物落入接收带内为例: 在对某基站第二小区拨测中,发现很明显的噪音,这个小区中的频点依次为109、87、18、96。将计算96和18频点的下行绝对频点: F1 (18) =935MHz+0.2MHz*18=938.6MHz F2(96)=935MHz+0.2MHz*96=954.2MHz 图2 3阶和5阶互调信号分布 两者的三阶互调产物信号频率为:2F1-F2=923MHz 两者的五阶互调产物信号频率为:3F1-2F2=907.4MHz 五阶互调产物都已经落入M900 的上行频带内,对应上行信号频点为 F3=(907.4-890)/0.2=87,而87频点正好是本小区使用的频点,就可能产生干扰。 对于第二个条件,仍然以这个小区为例。 该小区采用双CDU配置,TRX输出功率40W,假设馈线损耗为6dB时,输入到天线输入端口的功率为35dBm左右,不考虑其他,仅仅按照天线互调IM3=-150dB的要求来衡量,天线端口的互调产物可粗略的估计为:35dBm-150dB=-115dBm<-113dBm,将不会因互调而产生干扰。但是,如果互调指标恶化20dB,则天线口的互调产物为-95dBm,该信号通过CDU后的输入电平为-90dBm左右,形成等级为2的干扰带(干扰带门限为缺省值时)。 对于目前中国移动(1~94号频点)和中国联通(96~124)的频段化分,通过计算没

无源互调测试流程和方法_V1

无源互调测试流程和方法 罗森伯格亚太电子有限公司 2011年5月

目录 1.0 无源互调简介 (1) 2.0 PIM 测试仪 (1) 3.0 PIM的单位 (2) 4.0 PIM测试指导 (2) 4.1 RF安全 (2) 4.2 RF连接器的维护 (2) 4.3 外部PIM信号源 (3) 4.4 测试精确性 (3) 4.5 测试系统搭建以及PIM测试基准的现场核查 (3) 5.0 验收标准 (3) 6.0 器件测试 (4) 6.1 天线产品PIM测试 (4) 6.2 多端口器件的PIM测试 (5) 6.2.1 电缆组件(二端口) (5) 6.2.2 功分器和合路器(三端口或多端口) (5) 6.2.3 天线共用器和多频合路器(三端口) (6) 6.2.4 塔顶放大器(TMA)的PIM测试 (6) 6.2.4.1 Duplexing TMA (6) 6.2.4.2 Dual-Duplexing TMA (6) 6.2.5 带RRH的系统PIM测试 (7) 7.0 互调仪参数设置 (8)

1.0无源互调简介 无源互调(PIM)是两个或更多不同频率的信号混合输入到无源器件中,由于连接点或材料的非线性,而产生的失真信号。干扰的产生和本地下行频点相关,可以导致在多系统共享基础设施时,上行频段噪声上升。PIM对网络质量的影响是非常严重的,特别是UMTS或LTE这种宽频系统。PIM 干扰会导致接收机灵敏度下降,掉 话率增加,接入失败率提高,过早 切换,降低数据传输速率,并降低 系统的覆盖范围和容量。 RF路径中的任何组件都可能 产生PIM干扰,包括天线,TMAs, 天线共用器,双工器,避雷器,电 缆和连接器。此外,当天线系统大 功率辐射时,松动的机械连接和生 锈的表面,也会产生PIM干扰。2.0PIM 测试仪 PIM测试仪是将两路高功率信号输入到被测件中。如果被测件中有非线性连接,就会产生互调信号。测试信号将被负载吸收,或是被天线发射到自由空间。互调信号会在各个方向进行传输。在同轴系统中,互调信号不仅会朝着负载或天线 的方向传输,也会朝着PIM测试仪的方向传 输。落在系统Rx频段的互调信号会通过双工 器传输到接收机上。这个小信号会通过滤波器 和低噪放,然后到达测试仪的接收机。 这种互调测试方式被称为反射式测试。精 确的测试的难点在于在一个发射大功率信号 的系统里去检测一个非常小的信号。IEC 62037 [3]对互调测试给出了更为详细的定义。 当使用负载去吸收通过被测的传输器件的发 射信号时,这个负载必须是“低互调”(LOW PIM)的。如果负载含有能产生高互调信号的 因素时,即使被测件没有产生互调信号,PIM测试仪也无法分辨互调信号是负载产生的还是被测件产生的,就会造成测试失败。需要注意的是,VSWR扫频测试的负载,是不能用于互调测试的。这类精密负载的设计,没有考虑承受互调测试的高功率信号,一旦使用,将会造成永久性损坏。 PIM测试仪的自身互调信号(残留PIM)应进行现场验证,并保证在一定的电平之下。测试系统的残留PIM信号(包括测试仪表、负载、,测试线缆、转接器)应进行现场验证,以确保之前的使用没有造成损坏。

ITU-RSM1837-1建议书-测量无线电监测接收机三阶交调截取点IP3

ITU-R SM.1837-1 建议书 (08/2013)测量无线电监测接收机三阶交调截取点(IP3)电平的测试程序 SM 系列 频谱管理

ii ITU-R SM.1837 建议书 前言 无线电通信部门的职责是确保卫星业务等所有无线电通信业务合理、平等、有效、经济地使用无线电频谱,不受频率范围限制地开展研究并在此基础上通过建议书。 无线电通信部门的规则和政策职能由世界或区域无线电通信大会以及无线电通信全会在研究组的支持下履行。 知识产权政策(IPR) ITU-R的IPR政策述于ITU-R第1号决议的附件1中所参引的《ITU-T/ITU-R/ISO/IEC的通用专利政策》。专利持有人用于提交专利声明和许可声明的表格可从http://www.itu.int/ITU-R/go/patents/en获得,在此处也可获取《ITU-T/ITU-R/ISO/IEC的通用专利政策实施指南》和ITU-R专利信息数据库。 ITU-R 系列建议书 (也可在线查询http://www.itu.int/publ/R-REC/en)) 系列标题 BO 卫星传送 BR 用于制作、存档和播出的录制;电视电影 BS 广播业务(声音) BT 广播业务(电视) F 固定业务 M 移动、无线电定位、业余和相关卫星业务 P 无线电波传播 RA 射电天文 RS 遥感系统 S 卫星固定业务 SA 空间应用和气象 SF 卫星固定业务和固定业务系统间的频率共用和协调 SM 频谱管理 SNG 卫星新闻采集 TF 时间信号和频率标准发射 V 词汇和相关问题 说明:该ITU-R建议书的英文版本根据ITU-R第1号决议详述的程序予以批准。 电子出版 2014年,日内瓦 ITU 2014 版权所有。未经国际电联书面许可,不得以任何手段复制本出版物的任何部分。

三阶互调的计算及IP3测试原理和方法详细教程

三阶互调的计算及IP3测试原理和方法详细教程 三阶交截点(IP3)是衡量通信系统线性度的一个重要指标,他反映了系统受到强信号干扰时互调失真的大小。当系统的IP3较高时,要精确测试IP3 会比较困难,因为测试环境中各种因素(如测试配件的隔离度、线性度和匹配性等)都容易影响高IP3的测试。下面将简略介绍IP3的测试原理,详细分析高IP3的测试方法。 1IP3测试原理在无线通信设备中,器件(如放大器、混频器、调制/解调器等)的非线性通常会使同时侵入2个或多个强干扰信号发生相互调制,并产生新的频率成分,这种现象称为互调。互调干扰不仅能降低有用信号的功率,引起信号失真,降低系统选择性,还能破坏邻近信道的性能。因此,互调性能是系统常检指标,通常用IP3来表示。 IP3是工作频率信号在理想线性系统中的输出信号与三阶互调分量幅值相等时的交点,是一个固定点。如图1所示[1]。该点是虚交点,实际系统中无法直接测出,但可以通过相关的测量值计算出来。下面将简单介绍IP3计算式的原理。 虽然侵入系统的强信号可能有2个或2个以上,但为了测试的方便,假设只有2个强的等幅单音信号侵入了系统。若用一个幂级数来表示器件的非线性作用,并假设单音信号的频率分别为f1和f2,那么不难推出三阶互调分量的频率为(2f1-f2)或(2f2-f1)。IP3(IIP3,OIP3)的计算式为[2]: 其中:IIP3为输入IP3,是IP3的横坐标; OIP3为输出IP3,是IP3的纵坐标; Pin为单音信号的输入功率电平; Pout为单音信号的输出功率电平; G为被测件(Device Under Test - DUT)的小信号增益。 IMD3为三阶互调失真,他等于干扰信号的输出功率电平减去三阶互调量功率电平的值,即:

1dB压缩点和三阶交调点

fuiiioofkdjhf 1dB压缩点(P1dB)是输出功率的性能参数。压缩点越高意味着输出功率越高。P1dB是指与在很低的功率时相比增益减少1dB时的输入(或输出)功率点。参见图2,增益随输入功率变化的曲线。注意当输入功率升高时增益是如何下降的。这是因为在其最大输出功率时器件达到饱和,于是功率不能继续上升。1dB压缩点可以在输入或输出定义。例如,如果输出P1dB规范是+20dBm,则这个元件的输出功率约为+20dBm。减小输出功率使之低于P1dB将减小失真。 图1 元件(放大器或混频器)增益随输入功率变化的曲线。由于输出达到饱和,增益在输出功率较高时将会下降。 三阶截取点(IP3)是表示线性度或失真性能的参数。IP3越高表示线性度越好和更少的失真。IP3通常用两个输入音频测试。图3所示为双音频IP3测试在频域的情况。放大器的输入是两个正弦波(基波),本例中一个在900MHz,另一个在901MHz。放大器的输出是两个欲得

到的有用信号。因为放大器不是理想线性的,它还产生了两个三阶互调(IM3)产物。IM3通常以dBm给出。这里显示的IM3失真产物在频率上距离有用信号非常近,因此不能用滤波器轻易地去除它们。为了减少三阶失真产物,必须提高IP3规范。 三阶互调产物是由放大器或混频器的非线性特性造成的对两个音频输入相互混频(或调制)的结果。这两个IM3产物是: fIM3_1 = 2 × f1 - f2, 即:900 × 2 - 901 = 899MHz fIM3_2 = 2 × f2 - f1, 即:901 × 2 - 900 = 902MHz 图2 双音频IP3测试(左)。两个输入音频(右)。输出包含两个被放大的音频、IM3产物和谐波失真。

紫光互调仪测试方法

1、红星路测试 测试设备自带负载: 负载1(编号:01121501211022806) IM ORDER 3: -125.5dBm IM ORDER 5: -137dBm 负载2(编号:01121501211022809) IM ORDER 3: -126.1dBm IM ORDER 5: -133dBm 测试设备自带线: IM ORDER 3: -120.5dBm IM ORDER 5: -133.2dBm ①1小区测试: ●将1端口天馈线接入互调仪后,可通过互调仪窄带(890-910MHz)频谱功能 得到该小区上行平均干扰电平,频谱图如下: 图1-1:红星路1小区1端口测试频谱图 ●1端口天馈系统反射互调PIM测试图:

图1-2:红星路1小区1端口IM ORDER 3 将2端口天馈线接入互调仪后,可通过互调仪窄带(890-910MHz)频谱功能

得到该小区上行平均干扰电平,频谱图如下: 图1-4:红星路1小区2端口测试频谱图 2端口天馈系统反射互调PIM测试图:

图1-5:红星路1小区2端口 IM ORDER 3 图1-6:红星路1小区2端口IM ORDER 5 ②2小区测试: 将1端口天馈线接入互调仪后,可通过互调仪窄带(890-910MHz)频谱功能得到该小区上行平均干扰电平,频谱图如下:

图1-7:红星路2小区1端口测试频谱图 1端口天馈系统反射互调PIM测试图: 图1-8:红星路2小区1端口IM ORDER 3

图1-9:红星路2小区1端口IM ORDER 5 2端口天馈系统反射互调PIM测试图: 图1-10:红星路2小区2端口IM ORDER 3 图1-11:红星路2小区2端口IM ORDER 5

三阶互调截取点测量提示和技巧

三阶互调截取点测量提示和技巧 确保下一个高线性度IP3 测量的精度工程师们常常需要进行三阶互调截取 点(IP3)测量来更好地了解被测器件的线性度。在大功率水平下进行IP3 测量(+40 dBm 或更高)是最困难的测量任务之一。其中一个原因是:为了实现精确的测量,信号源和信号分析仪的三阶失真分量必须低于被测器件(DUT)所 产生的失真分量(最好低于20 dB)。鉴于高线性度IP3 测量的难度,下述技术可以帮助您确保测量精度。 在进行IP3 测量时,您可以从产生高线性度双音源开始。虽然多音模式矢量 信号发生器也可以产生双音信号,然而对于要求最严格的IP3 测量来说,此解 决方案通常没有足够好的防失真性能。产生干净的双音信号的最佳方法是使用 两个信号发生器并用合成器将其合成。这里,信号源隔离是IP3 测量获得成功 的关键。如果没有足够好的信号源隔离,那么其中一个源发出的FR 能量会泄 漏到另一个源中。 信号源隔离的重要性您可以采用若干种方法合成两个信号源的信号,产生达 到IP3 测量要求的隔离。一个明显要求是选择具有最佳端口-端口隔离的合成器。一般来说,纯粹电阻性分路器/合成器仅能实现6-12 dB 的隔离。与此对照,Wilkinson 功率合成器常常能够实现最优隔离通常达到20 dB 或更低。 除了正确选择功率合成器之外,您还可以对两个信号源进行隔离。一种最简 单的方法是使用隔离器或者定向耦合器。耦合器和隔离器通常提供30 dB 或更高的方向性。除了Wilkinson 功率合成器之外,两个信号源均采用定向耦合器 的配置还使信号源之间的隔离优于50 dB。 在获得正确配置的双音源信号之后,下一步是分析激励信号的互调分量,以 验证互调失真(IMD)是否足够低。在使用RF 信号分析仪时,挤出动态范围

三阶互调

三阶互调 (Third Order Intermodulation 或3rd Order IMD)是指当两个信号在一个线性系统中,由于非线性因素存在使一个信号的二次谐波与另一个信号的基波产生差拍(混频)后所产生的寄生信号。由于一个信号是二次谐波(二阶信号),另一个信号是基波信号(一阶信号),他们俩的合称为三阶信号。又因为是这两个信号的相互调制而产生差拍信号,所以这个新产生的信号称为三阶互调失真信号。产生这个信号的过程称为三阶互调失真。他所表明的是确切含义是,一个线性系统所包含的非线性系数的大小. 公式 三阶互调公式:f1+f2-f3,2f1-f2,2f2-f1 三阶互调是指当两个信号在一个线性系统中,由于非线性因素存在使一个信号的二次谐波与另一个信号的基波产生差拍(混频)后所产生的寄生信号。比如F1的二次谐波是2F1,他与F2产生了寄生信号2F1-F2。由于一个信号是二次谐波(二阶信号),另一个信号是基波信号(一阶信号),他们俩合成为三阶信号,其中2F1-F2被称为三阶互调信号,它是在调制过程中产生的。又因为是这两个信号的相互调制而产生差拍信号,所以这个新产生的信号称为三阶互调失真信号。产生这个信号的过程称为三阶互调失真。由于F2,F1信号比较接近,也造成2F1-F2,2F2-F1会干扰到原来的基带信号F1,F2。这就是三阶互调干扰。既然会出现三阶,当然也有更高阶的互调,这些信号不也干扰原来的基带信号么?其实因为产生的互调阶数越高信号强度就越弱,所以三阶互调是主要的干扰,考虑的比较多。不管是有源还是无源器件,如放大器、混频器和滤波器等都会产生三次互调产物。这些互调产物会降低许多通信系统的性能。 1、三阶互调的产生 三阶互调是指当两个信号在一个线性系统中,由于非线性因素存在使一个信号的二次谐波与另一个信号混频后所产生的寄生信号。比如F1的二次谐波是2F1,他与F2产生了寄生信号2F1-F2和2F2-F1。由于一个信号是二次谐波(二阶信号),另一个信号是基波信号(一阶信号),所以称之为三阶互调。 由于F2,F1信号一般比较接近,也造成2F1-F2,2F2-F1会干扰到其它基站的信号,这就是三阶互调干扰。 2、三阶互调的影响 假如某基站输出的互调干扰为-36dBm(满足无委指标),互调信号和有用信号一起通

相关文档
最新文档