正四面体

正四面体
正四面体

<<正四面体>>课堂实录

成都航天中学 邓成兵

(一)情景引入:

师:正四面体是最为简约而又优美的多面体,它有4个顶点、4个面、6条相等的棱,它

是一种特殊的正三棱锥——底面边长等于侧棱长。在历年的高考数学试题中,多次出现正四面体的有关计算问题,主要有三种类型:(1)正四面体的计算;(2)正四面体与正方体的计算;(3)正四面体与球的计算。下面请同学们展示一下你们得到的正四面体有关性质.首先哪位同学上台展示你们小组的成果:

(二)、知识碰闯;

万天平(学生):我们组得到的性质如下:

①、它们6条棱均相等;

②、相邻棱的夹角为0

60;(①、②这两条性质比较简单就不用证明) ③、相对棱的两条异面直线垂直(对棱垂直)

④、对棱的中点是这两条棱的公垂线且长为a 22(以下把正四面体的边长设

为a )。

⑤、相邻的两个面的二面角相等且余弦值为

1

⑥、侧棱与底面所成的角相等且余弦值为

3

3

容易知道侧棱与底面所成的角相等,∠PAO 为PA 与底面ABC 所成的角。可求AO=

3

a 3,PA=a ,PO ⊥面ABC 即PO ⊥AO ;在R t ΔPAO 中,cos ∠PAO=

3

3

PO AO = ⑦、相邻两个面中平行与交线的中位线与棱的交点所成的四边形为正方形。

(由于时间关系,同学们下来做)例1:已知S-ABC 为正四面体,且E 、F 、G 、H 分别为四 面体的四个面的中心; (1)、求证:四面体EFGH 为正四面体;

(2)、求

ABC

S FHG E S :--表表S (3)、求

ABC

S FHG E V :--V

廖红菊(学生):我们组得到的性质是:

⑧、正四面体的外接球的半径与正四面体棱长的关系是:a 4

6

R =

分别取BC 、PA 的中点D 、E ,连结DE ,则DE 为PA 、BC 的公垂线段,且与高1PO 的交点O 是外接球的球心,连结AO 、AD 。

中,由于,a 23AD =

a 2

1

AE =可得a 22DE =,所以 a 42E O =

,于是外接球的半径a 4

6

E O AE AO R 22=+== 师:非常好!你在这个推导过成中,还可以得到什么样的结论?

廖红菊:(思考片刻)可以算出1PO 长度。1PO =

a 3

6

师:对也就得到顶点到底面的距离为

a 3

6

;请问正四面体内任意一点到四个面的距离为多少?(培养学生的空间想象能力及猜想能力) 学:为一个定值。 师:这个定值是多少?

(思考片刻后)几个学生:为

a 3

6

。 师:正四面体内任意一点到四个面的距离为一个定值且为

a 3

6 师:其实求正四面体的外接球的半径与正四面体棱长关系除了用刚才这位同学的证明方法外,还可以用补形的方法更简单:把正四面体补成一个正方体,正四面体的边长为正方体面对角线,而球的直径为正方体的体对角线。也就求出外接球的半径。

(学生恍然大悟后)老师:既然有外接球那么就有…… 学:内切球。

师:内切球的半径为多少?(环视班级,看没有同学上来讲) 师:设内切球的半径为r ,球心为1O ,)PAC PAB PBC ABC ABC P S S S r(S 3

1

V +++=

- S S S S PAC PAB PBC ABC ===

a 12

6r =?=??=

∴-ABC ABC ABC ABC P r4S 31aS 3631r4S 31V 在这个证明过程用了什么方法? 学:等体积法;

既第九个性质:⑨、正四面体的内切球的半径与正四面体棱长的关系是:a 12

6

r =

谢朝培(学生):我们组得到的性质是:

⑩、正四面体的表面积S=2

a 3;正四面体的体积V=

3

a 12

3;顶点到底面的距离为

a 3

6

; ⑾、正四面体的体积等于相应正方体体积的

3

1

;正四面体的高等于相应正方体体对角线的

3

2。

师:正四面体与正方体是立体几何中较特殊内涵较丰富的几何体且二者有着

密切不可分的联系。我们在解题时要运用二者的特殊关系,就会达到“山穷水复疑无路,柳岸花明又一村”的效果。下课了,请同学们对这11条正四面体的性质下来认真消化。

高考数学攻关:二项式的递推展开(2)

(2008-12-30 12:55:04)

转载

分类:08-10高考资讯

标签:

高考

数学

攻关

二项式

递推

展开

教育

高考数学攻关:二项式的递推展开(2)

四、子集组合得展开式系数

为了弄清二项式(a+b)n = (a+b) (a+b)…(a+b)= A0an+ A1an-1b+…+ An-1 abn-1+ Anbn 展开时系数的形成过程,我们先回头看“和的平方”展开时,系数是怎样形成的.

(a+b)2 = (a+b) (a+b)

我们视a为主字母,视b为系数,其中的2个b分别记作b1和b2,于是有

(a+b)2 = (a+b1) (a+b2)

=a2+ (b1 +b2)a+ b1b2 =a2+2ab+b2

由此看到,最高项a2的系数为1. 次高项a的系数是b1 +b2,这是从集合{ b1,b2}中,每次取1个元素所成的组合. 其组合数为=2.

常数项b1b2,是从集合{ b1,b2}每次取出2个元素所成的组合,组合数为=1.

统一地看,最高项a2中不含b,因此可以看作,从集合{ b1,b2}每次取出0个元素所对应的组合.

组合数为=1.

这样一来,“和的平方”展开式可写成(a+b)2 =a2+ab+b2

有了这个基础,我们也可以用“组合数”表示二项式(a+b)n展开后各项的系数.

【例4】试探索用组合数表示二项式

(a+b)n=(a+b) (a+b)…(a+b) = A0an+ A1an-1b+…+ An-1 abn-1+ Anbn

展开式中各系数A0,A1,…,An-1,An.

【解答】对于an,它是从集合{ b1,b2,…,bn }中每次取出0个元素的组合. 组合数为A0=.

对于an-1b,它是从集合{ b1,b2,…,bn }中,每次取出1个元素的组合,组合数为A1=. ……

对于abn-1,它是从集合{ b1,b2,…,bn }中,每次取出n-1个元素的组合,组合数为.

对于bn,它是从集合{ b1,b2,…,bn }中,每次取出n个元素的组合,

组合数为.

于是,二项式(a+b)n可展开成如下形式

(a+b)n=an+an-1b +…+abn-1 +bn ——这就是所谓的“二项式定理”.

【说明】二项式展开后各项的系数依次为:,,…,.

其中,第1个数=1,从第2个数开始,后面的每一个数都可以用前面的那个数表示为

这就是二项式展开“系数递推”的依据. 二项式系数递推实际上是组合数由到的递推.

五、加法定理来自二项式性质

将杨辉三角形中的每一个数,都用组合符号表示出来,

则得图右的三角形. 自然,“肩挑两数”的性质可写成组合的

加法式. 如

这里,(1)相加两数和是“下标相等,上标差1”

的两数;(2)其和是“下标增1,上标选大”的组合数.

一般地,杨辉三角形中第n+1行任意一数,“肩挑

两数”的结果为组合的加法定理:

有了组合的加法定理,二项式(a+b)n展开式的证明就变得非常简便了.

【例5】试用数学归纳法证明二项式定理

(a+b)n=an+an-1b +…+abn-1 +bn

【证明】(1)当n=1时,a+b = a +b=a + b 命题真.

(2)假设n=k时命题真,即

(a+b)k =ak +ak-1b +…+abk-1 +bk

两边同乘以(a+b),由“错位加法”可得

(a+b)k+1=ak+1 +()akb +()ak-1 b2 +…+()ab k + bk+1

=ak+1 +akb +…+ab k +bk+1

综合(1),(2)可知,对任意的n∈N+,二项式(a+b)n展开式成立.

六、n始于1 r始于0

二项式定理将(a+b)的乘方式展开成一个数列的和:

(a+b) n=an+an-1b +…+an-rbr +…+bn =an-rbr

展开式中的r从0取到n,故展开式共有n+1项,其中关于r的通项an-rbr不是它的第r

项,而是第r+1项. 故二项式展开式的通项公式为Tr+1=an-rbr 初学者经常误成Tr=

an-rbr

在通项公式中弄清了“n与r的关系”后,以下考题可以做到“一挥而就”.

【例6】已知,求展开式中x9的系数.

【分析】x9的系数与x9的二项式系数虽然不是一回事,但仍可用通项公式an-rbr求出

对应的r来.

【解答】设展开式的第r+1项能化简得到x9项.

则有Tr+1 =(x2)9-r·=

令18-3r = 9 得r =3 故x9的系数为

【说明】数学解题,切忌拘泥公式. 如本题中求r的值,不一定要硬套通项公式. 事实上,展开式按x的降幂排列:第1项的指数是18,第2项的指数是15,依次递减,指数为9的项是第4项,故有r = 3.

由此直接得x9的系数为. 这样的计算量大为减少.

七、数形趣遇算式到算图

二项式定理与杨辉三角形是一对天然的数形趣遇,它把数形结合带进了计算数学. 求二项式展开式系数的问题,实际上是一种组合数的计算问题. 用系数通项公式来计算,称为“式算”;用杨辉三角形来计算,称作“图算”.

【例7】(2007全国甲卷理13文16)

的展开式中常数项为.

【式算】先考虑展开后的常数项

Tr +1 =x 8 – r=

(1)令8 – 2r = 0,得r = 4,得= 70;

(2)令8 – 2r = – 2,得r = 5,得= 56.

故求得的展开式中常数项为70 – 2×56 = – 42

【图算】常数项产生在展开后的第5、6两项. 用“错位加法”很容易“加出”杨辉三角形第8行的第5个数. 简图如下:

1 4 6 4 1

1 5 10 10 5 1

……15 20 15 6 …

1 …… 35 35 21 ……

…70 56 …

图上得到=70,==56.

故求得展开式中常数项为70 – 2×56 = – 42

【点评】“式算”与“图算”趣遇,各扬所长,各补所短.<, /o:p>

杨辉三角形本来就是二项式展开式的算图. 对杨辉三角形熟悉的考生,比如他熟悉到了它的第6行:

1,6,15,20,15,6,1

那么他可以心算不动笔,对本题做到一望而答.

杨辉三角形在3年内考了5个(相关的)题目,这正是高考改革强调“多想少算”、“逻辑思维与直觉思维并重”的结果. 这5个考题都与二项式展开式的系数相关,说明数形结合思想正在高考命题中进行深层次地渗透.

========================================

第 [1] [2] 页

高考数学攻关:二项式的递推展开(2)

四、子集组合得展开式系数

为了弄清二项式(a+b)n = (a+b) (a+b)…(a+b)= A0an+ A1an-1b+…+ An-1 abn-1+ Anbn 展开时系数的形成过程,我们先回头看“和的平方”展开时,系数是怎样形成的.

(a+b)2 = (a+b) (a+b)

我们视a为主字母,视b为系数,其中的2个b分别记作b1和b2,于是有

(a+b)2 = (a+b1) (a+b2)

=a2+ (b1 +b2)a+ b1b2 =a2+2ab+b2

由此看到,最高项a2的系数为1. 次高项a的系数是b1 +b2,这是从集合{ b1,b2}中,每

次取1个元素所成的组合. 其组合数为=2.

常数项b1b2,是从集合{ b1,b2}每次取出2个元素所成的组合,组合数为=1.

统一地看,最高项a2中不含b,因此可以看作,从集合{ b1,b2}每次取出0个元素所对应的组合.

组合数为=1.

这样一来,“和的平方”展开式可写成(a+b)2 =a2+ab+b2

有了这个基础,我们也可以用“组合数”表示二项式(a+b)n展开后各项的系数.

【例4】试探索用组合数表示二项式

(a+b)n=(a+b) (a+b)…(a+b) = A0an+ A1an-1b+…+ An-1 abn-1+ Anbn

展开式中各系数A0,A1,…,An-1,An.

【解答】对于an,它是从集合{ b1,b2,…,bn }中每次取出0个元素的组合. 组合数为

A0=.

对于an-1b,它是从集合{ b1,b2,…,bn }中,每次取出1个元素的组合,组合数为A1=. ……

对于abn-1,它是从集合{ b1,b2,…,bn }中,每次取出n-1个元素的组合,组合数为. 对于bn,它是从集合{ b1,b2,…,bn }中,每次取出n个元素的组合,组合数为.

于是,二项式(a+b)n可展开成如下形式

(a+b)n=an+an-1b +…+abn-1 +bn ——这就是所谓的“二项式定理”.

【说明】二项式展开后各项的系数依次为:,,…,.

其中,第1个数=1,从第2个数开始,后面的每一个数都可以用前面的那个数表示为

这就是二项式展开“系数递推”的依据. 二项式系数递推实际上是组合数由到的递

推.

五、加法定理来自二项式性质

将杨辉三角形中的每一个数,都用组合符号表示出来,

则得图右的三角形. 自然,“肩挑两数”的性质可写成组合的

加法式. 如

这里,(1)相加两数和是“下标相等,上标差1”

的两数;(2)其和是“下标增1,上标选大”的组合数.

一般地,杨辉三角形中第n+1行任意一数,“肩挑

两数”的结果为组合的加法定理:

有了组合的加法定理,二项式(a+b)n展开式的证明就变得非常简便了.

【例5】试用数学归纳法证明二项式定理

(a+b)n=an+an-1b +…+abn-1 +bn

【证明】(1)当n=1时,a+b = a +b=a + b 命题真.

(2)假设n=k时命题真,即

(a+b)k =ak +ak-1b +…+abk-1 +bk

两边同乘以(a+b),由“错位加法”可得

(a+b)k+1=ak+1 +()akb +()ak-1 b2 +…+()ab k + bk+1

=ak+1 +akb +…+ab k +bk+1

综合(1),(2)可知,对任意的n∈N+,二项式(a+b)n展开式成立.

六、n始于1 r始于0

二项式定理将(a+b)的乘方式展开成一个数列的和:

(a+b) n=an+an-1b +…+an-rbr +…+bn =an-rbr

展开式中的r从0取到n,故展开式共有n+1项,其中关于r的通项an-rbr不是它的第r

项,而是第r+1项. 故二项式展开式的通项公式为Tr+1=an-rbr 初学者经常误成Tr= an-rbr

在通项公式中弄清了“n与r的关系”后,以下考题可以做到“一挥而就”.

【例6】已知,求展开式中x9的系数.

【分析】x9的系数与x9的二项式系数虽然不是一回事,但仍可用通项公式an-rbr求出

对应的r来.

【解答】设展开式的第r+1项能化简得到x9项.

则有Tr+1 =(x2)9-r·=

令18-3r = 9 得r =3 故x9的系数为

【说明】数学解题,切忌拘泥公式. 如本题中求r的值,不一定要硬套通项公式. 事实上,展开式按x的降幂排列:第1项的指数是18,第2项的指数是15,依次递减,指数为9的项是第4项,故有r = 3.

由此直接得x9的系数为. 这样的计算量大为减少.

七、数形趣遇算式到算图

二项式定理与杨辉三角形是一对天然的数形趣遇,它把数形结合带进了计算数学. 求二项式展开式系数的问题,实际上是一种组合数的计算问题. 用系数通项公式来计算,称为“式算”;用杨辉三角形来计算,称作“图算”.

【例7】(2007全国甲卷理13文16)

的展开式中常数项为.

【式算】先考虑展开后的常数项

Tr +1 =x 8 – r=

(1)令8 – 2r = 0,得r = 4,得= 70;

(2)令8 – 2r = – 2,得r = 5,得= 56.

故求得的展开式中常数项为70 – 2×56 = – 42

【图算】常数项产生在展开后的第5、6两项. 用“错位加法”很容易“加出”杨辉三角形第8行的第5个数. 简图如下:

1 4 6 4 1

1 5 10 10 5 1

……15 20 15 6 …

1 …… 35 35 21 ……

…70 56 …

图上得到=70,==56.

故求得展开式中常数项为70 – 2×56 = – 42

【点评】“式算”与“图算”趣遇,各扬所长,各补所短.<, /o:p>

杨辉三角形本来就是二项式展开式的算图. 对杨辉三角形熟悉的考生,比如他熟悉到了它的第6行:

1,6,15,20,15,6,1

那么他可以心算不动笔,对本题做到一望而答.

杨辉三角形在3年内考了5个(相关的)题目,这正是高考改革强调“多想少算”、“逻辑思维与直觉思维并重”的结果. 这5个考题都与二项式展开式的系数相关,说明数形结合思想正在高考命题中进行深层次地渗透.

========================================

第 [1] [2] 页

抽象函数常见题型解法综述

赵春祥

抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。本文就抽象函数常见题型及解法评析如下:

一、定义域问题

例1. 已知函数的定义域是[1,2],求f(x)的定义域。

解:的定义域是[1,2],是指,所以中的满足

从而函数f(x)的定义域是[1,4]

评析:一般地,已知函数的定义域是A,求f(x)的定义域问题,相当于已知中x的取值范围为A,据此求的值域问题。

例2. 已知函数的定义域是,求函数的定义域。

解:的定义域是,意思是凡被f作用的对象都在中,由此可得

所以函数的定义域是

评析:这类问题的一般形式是:已知函数f(x)的定义域是A,求函数的定义域。正确理解函数符号及其定义域的含义是求解此类问题的关键。这类问题实质上相当于已知的值域B,且,据此求x的取值范围。例2和例1形式上正相反。

二、求值问题

例3. 已知定义域为的函数f(x),同时满足下列条件:①;

②,求f(3),f(9)的值。

解:取,得

因为,所以

又取

评析:通过观察已知与未知的联系,巧妙地赋值,取,这样便把已知条件与欲求的f(3)沟通了起来。赋值法是解此类问题的常用技巧。

三、值域问题

例4. 设函数f(x)定义于实数集上,对于任意实数x、y,总成立,且存在,使得,求函数的值域。

解:令,得,即有或。

若,则,对任意均成立,这与存在实数,使得成立矛盾,故,必有。

由于对任意均成立,因此,对任意,有

下面来证明,对任意

设存在,使得,则

这与上面已证的矛盾,因此,对任意

所以

评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段。

四、解析式问题

例5. 设对满足的所有实数x,函数满足,求f(x)的解析式。

解:在中以代换其中x,得:

再在(1)中以代换x,得

化简得:

评析:如果把x和分别看作两个变量,怎样实现由两个变量向一个变量的转化是解题关键。通常情况下,给某些变量适当赋值,使之在关系中“消失”,进而保留一个变量,是实现这种转化的重要策略。

五、单调性问题

例6. 设f(x)定义于实数集上,当时,,且对于任意实数x、y,有,求证:在R上为增函数。

证明:在中取,得

若,令,则,与矛盾

所以,即有

当时,;当时,

所以

又当时,

所以对任意,恒有

设,则

所以

所以在R上为增函数。

评析:一般地,抽象函数所满足的关系式,应看作给定的运算法则,则变量的赋值或变量及数值的分解与组合都应尽量与已知式或所给关系式及所求的结果相关联。

六、奇偶性问题

例7. 已知函数对任意不等于零的实数都有

,试判断函数f(x)的奇偶性。

解:取得:,所以

又取得:,所以

再取则,即

因为为非零函数,所以为偶函数。

七、对称性问题

例8. 已知函数满足,求的值。

解:已知式即在对称关系式中取,所以函数的图象关于点(0,2002)对称。根据原函数与其反函数的关系,知函数的图象关于点(2002,0)对称。

所以

将上式中的x用代换,得

评析:这是同一个函数图象关于点成中心对称问题,在解题中使用了下述命题:设a、b均为常数,函数对一切实数x都满足,则函数的图象关于点(a,b)成中心对称图形。

八、网络综合问题

例9. 定义在R上的函数f(x)满足:对任意实数m,n,总有,且当x>0时,0

(1)判断f(x)的单调性;

(2)设,

,若,试确定a的取值范围。

解:(1)在中,令,得,因为,所以。

在中,令

因为当时,

所以当时

所以

又当x=0时,,所以,综上可知,对于任意,均有。

设,则

所以

所以在R上为减函数。

(2)由于函数y=f(x)在R上为减函数,所以

即有

又,根据函数的单调性,有

由,所以直线与圆面无公共点。因此有

,解得。

评析:(1)要讨论函数的单调性必然涉及到两个问题:一是f(0)的取值问题,二是f(x)>0的结论。这是解题的关键性步骤,完成这些要在抽象函数式中进行。由特殊到一般的解题思想,联想类比思维都有助于问题的思考和解决。

高考数学必背经典结论-正四面体性质

必背经典结论---提高数学做题速度! 立体几何(必背经典结论) 之 正四面体性质(李炳璋提供) 【***】由于时间仓促,难免有误,若有错误,请及时指正!谢谢!!! 设正四面体的棱长为a ,则这个正四面体的 对于棱长为a 正四面体的问题可将它补成一个边长为 (1)对棱间的距离为a 2 2 (正方体的边长)/ 对棱中点连线段 的长 d= 2 a ;(此线段为对棱的距离, 若一个球与正四面体的6条 棱都相切,则此线段就是该球的直径。) (2) 正四面体的高 a 3 6 (正方体体对角线l 32=) (3) 正四面体的体积为3 12 2a (正方体小三棱锥 正方体V V V 314=-) (4) 正四面体的全面积 S 全= 2a ; (5) 正四面体的中心到底面与顶点的距离之比为3:1 (正方体体对角线正方体体对角线:l l 2 1 61=)

(6)外接球的半径为 a 4 6 (是正方体的外接球,则半径正方体体对角线l 2 1 =) (7)内切球的半径为 a 12 6 (是正四面体中心到四个面的距离,则半径正方体体对角线l 6 1 =) (8)相邻两面所成的二面角 α=1arccos 3 (9)侧棱与底面所成的角为β=1 arccos 3 (10)对棱互相垂直。 (11)正四面体内任意一点到四个面的距离之和为定值(等于正四面体的高)。 直角四面体的性质 有一个三面角的各个面角都是直角的四面体叫做直角四面体。 如图,在直角四面体AOCB 中,∠AOB=∠BOC=∠COA=90°, OA=a ,OB=b ,OC=c .则 A B C D O H

(1)不含直角的底面ABC 是锐角三角形; (2)直角顶点O 在底面上的射影H 是△ABC 的垂心; (3)体积 V= 16a b c ; (4)底面面积S △ABC (5)S 2△BOC =S △BHC ·S △ABC ; (6)S 2△BOC +S 2△AOB +S 2△AOC =S 2 △ABC (7) 22221111 OH a b c =++; (8)外接球半径 (9)内切球半径 r=AOB BOC AOC ABC S S S S a b c ????++-++

正四面体性质及其应用

正四面体性质及其应用 Revised by Jack on December 14,2020

正四面体的性质及其应用 正四面体是四个面都是等边三角形的凸多面体,它是一个很规则的几何体,因此具有一些特有的性质,设正四面体的棱长为a ,则 (1) 全面积S 全= 3 a 2; (2) 高h = 6 3a ; (3) 体积V = 2 12 a 3; (4) 对棱中点的连线是对棱的公垂线,其长为d = 2 2a (5) 相邻两面所成的二面角α=arccos 1 3; (6) 棱与其相交的面所成的角 β=arctan 2 ; (7) 正四面体的内切球和外接球的球心重合,内切球半径 r = 6 12a ,外接球半径R = 6 4a ,r ︰R =1︰3; (8) 正四面体内任一点到四个面的距离之和为定值(等于正四面体的高)。 将正四面体置于正方体中,结合正方体的性质以上诸性质容易得到证明。考查正四面体的性质多出选择或填空题,熟记以上八条性质对快速求解相关问题有很大帮助,例如: 例1:已知半径为1的球面上有A 、B 、C 三个点,且它们之间的球面距离都为π 3,则球心O 到平面ABC 的距离为( ) A 3 2 B 6 3 C 12 D 21 7 解析:如右图所示,OA=OB=OC =1 又3 π = ==⌒ ⌒ ⌒ CA BC AB ,球的半径r =1 ∴∠AOB=∠BOC=∠COA =π 3,则AB=BC=CA =1

所以O -ABC 为棱长为1的正四面体,则由正四面体的性质得球心O 到平面ABC 的 距离即其高为 6 3,答案B 。 例2:(05年湖南省十所示范校联考)已知棱长为a 的正四面体ABCD 有内切球O ,经过该棱锥A -BCD 的中截面为M ,则O 到平面M 的距离为( ) A a 4 B 6 6a C 6 12a D 2 8a 解析:直接运用正四面体的性质,内切球的半径r = 6 12a ,中截面到底面的距离为高 的一半 6 6a ,则O 到平面M 的距离为 6 6a - 6 12a = 6 12a ,因此选C 。 例3:(06年陕西卷)将半径为R 的球心到桌面的距离为 。 解析A 、B 、C 、D ,因为四个球两两相切,则ABCD 2R 的正四面体,A 到面BCD 的距离为2 6 3R ,则上面一个球的球心A 到桌面的距 离为R +2 6 3R =(1+2 6 3)R 。 例4:(06年山东卷)如图1,在等腰梯形ABCD 中,AB =2DC =2,∠DAB =60○,E 为AC 的中点,将△ADE 与△BEC 分别沿ED P ,则三棱锥P -DCE 的外接球的体积为( ) A 4 3 27π B 6 2π C 6 8π D 解析:三棱锥P -DC E 实质上是棱长为1的正四面体, 则其外接球的体积为 V = 43πR 3= 43π( 6 4)3= 6 8π。 例5:(06年湖南卷)棱长为2球心的一个截面如图1

使学生了解甲烷的结构式和甲烷的正四面体结构.

第 一 节 甲烷 1、 使学生了解甲烷的结构式和甲烷的正四面体结构。 2、 使学生掌握甲烷的化学性质,实验室制法和收集方法。 3、 使学生了解取代反应。 4、 培养学生观察、分析实验现象,形成规律性认识,并应用概念认识新事物的思维能力。 甲烷的实验室制法,甲烷的化学性质,取代反应。 甲烷的分子结构、甲烷的取代反应。 实验5——1、实验5——2用品 二课时 自学——辅导法 [引 言]1、什么是有机物?定义:含碳元素的化合物(碳氢化合物及其衍生 物)称为有机化合物。简称有机物(注意:CO 、CO 2、H 2CO 3及碳 盐例外,它们称为无机物)。 2、有机物与人类的关系。 3、人类早期、和现在取得有机物的手段。 [阅 读]P115页上 [提 问]1、有机物和无机物的种类比较(多少) 2、为什么有机物的种类繁多? 3、组成有机物的元素。 4、那类有机物叫烃?最简单的烃是什么? [简 述]有机物的特点: ①有机物种类繁多,结构复杂。 ②大多数有机物难溶于水而易溶于汽油、酒精、苯等有机溶剂。 ③绝大多数有机物受热易分解,而且容易燃烧。 ④绝大多数有机物是非电解质,不易导电,熔点低。 ⑤有机物所起的化学反应比较复杂,一般比较慢,并且还常伴随有副反应发 生。 [板 书] 第一节 甲 烷 一、甲烷的分子结构 [阅 读]P115页——116页上 要求掌握:⑴甲烷的分子式 ⑵甲烷的电子式 ⑶甲烷的结构式 ⑷甲烷的分子结构示意图

[展示甲烷的球辊模型和比例模型]加深对甲烷的正四面体结构的认识。 CH4分子中1个C与4个H形成一个四面体,C在正四面体中心,4个H在正四面体的4个顶点。 ①键角:109°28 ˊ正四面体 ②键长:C-H键键长:1.09×10-10m ③键能:413 KJ·mol-1 但由于有机物的立体结构式书写起来比较费事,为方便起见,一般采用平面的结构式。 [板书]甲烷的物理性质 ⑴无色、无味气体 ⑵在标准状况下,ρ=0.717g·L-1 ⑶极难溶于水 [板书]二、甲烷的实验室制法 1、原料:无水CH 3 COONa和干燥的碱石灰(NaOH和CaO)。 2、反应原理: CH 3-C0ONa + NaOH △ → Na 2 CO 3 + CH 4 ↑ CaO的作用 ①干燥剂(吸收反应中的水分产生) ②疏松剂(使生产的CH 4 易于外逸) ③防止试管破裂(防止NaOH在高温下与玻璃反应) [提问]讨论制取甲烷的装置与制取什么气体相同?为什么?[学生回答]与制氧气、氨气的装置相同(S+S g) [板书]三、甲烷的化学性质 1、甲烷的氧化反应 CxHy + (x+y/4) O 2点燃 → xCO 2 + y/2H 2 O *若在甲烷燃烧导管上方罩一个烧杯,烧杯内沾有石灰水能观察到什么现象? 火焰呈淡蓝色,烧杯内部有水蒸气凝结,石灰水变浑浊,同时放出大量的热。 证明:甲烷燃烧时有二氧化碳和水生成 用途:甲烷燃烧时要放出大量的热,故甲烷可用作燃料。 注意:如果点燃甲烷和氧气(或空气)的混和物,它立即发生爆炸,爆炸极限为:空气中含甲烷:5—15% 氧气中含甲烷:5.4—59.2%。所以点燃甲烷前必须检验纯度。 在煤矿矿井里要采取通风,严禁烟火等安全措施。 [实验5——4]演示 [讲述]高锰酸钾的酸性溶液是强的氧化剂。甲烷与之不反应说明甲烷很稳定,甲烷与强酸、强碱也不反应。 [板书]2、甲烷的取代反应 [实验5——2]演示 [学生讨论]由你观察到的现象,可以分析得到那些实验信息? [回答] 1、混合气体在光照下发生了化学反应。 2、生成了新的油状物质。

正四面体的性质

正四面体的性质:设正四面体的棱长为a,则这个正四面体的 (1)全面积S全 = 2a; (2)体积 V=3 12 a; (3)对棱中点连线段的长 d= a;(此线段为对棱的距离,若一个 球与正四面体的6条棱都相切,则此线段就是该球的直径。) (4)相邻两面所成的二面角α= 1 arccos 3 (5)对棱互相垂直。 (6)侧棱与底面所成的角为β= 1 arccos 3 (7)外接球半径 R= 4 a; (8)切球半径 r= 12 a. (9)正四面体任意一点到四个面的距离之和为定值(等于正四面体的高). 直角四面体的性质 有一个三面角的各个面角都是直角的四面体叫做直角四面体. 如图,在直角四面体AOCB中,∠AOB=∠BOC=∠COA=90°,OA=a,OB=b,OC=c.则 ①不含直角的底面ABC是锐角三角形; ②直角顶点O在底面上的射影H是△ABC的垂心; ③体积V= 1 6 a b c; ④底面面积S△ABC ⑤S2△BOC=S△BHC·S△ABC; A B C D O H

⑥S 2 △BOC +S 2△AOB +S 2△AOC =S 2△ABC ⑦ 22 221111 OH a b c =++; ⑧外接球半径 R= ⑨切球半径 r=AOB BOC AOC ABC S S S S a b c ????++-++ 正四面体的性质:设正四面体的棱长为a ,则这个正四面体的 (1)全面积 S 全= 2a ; (2)体积 3 ; (3)对棱中点连线段的长 d= a ;(此线段为对棱的距离,若一个球与正四面体的6条棱都相切,则此线段就是该球的直径。) (4)相邻两面所成的二面角 α=1 arccos 3 (5)对棱互相垂直。 (6)侧棱与底面所成的角为β=1 arccos 3 (7)外接球半径 R= 4 a ; (8)切球半径 r= a . (9)正四面体任意一点到四个面的距离之和为定值(等于正四面体的高). 直角四面体的性质 有一个三面角的各个面角都是直角的四面体叫做直角四面体. 如图,在直角四面体AOCB 中,∠AOB=∠BOC=∠COA=90°,OA=a ,OB=b ,OC=c .则 ①不含直角的底面ABC 是锐角三角形; A O H

正四面体

正四面体 常用性质: 1、正四面体是由四个全等正三角形围成的空间封闭图形,所有棱长都相等。 它有4个面,6条棱,4个顶点。正四面体是最简单的正多面体。 2、正四面体属于正三棱锥,但是正三棱锥只需要底面为正三角形,其他三个面是全等的等腰三角形就可以,不需要四个面全等且都是等边三角形。因此,正四面体是特殊的正三棱锥。 3、基本性质:正四面体是一种柏拉图多面体,正四面体与自身对偶。 正四面体的重心、四条高的交点、外接球、内切球球心共点,此点称为中心。 正四面体的对边相互垂直。正四面体的对棱相等。 正四面体内任意一点到四个面的距离之和为定值 3 。 4、相关数据当正四面体的棱长为a时,一些数据如下: (中心把高分为1:3两部分} 2体积: 3 12 对棱中点的连线段的长: 2,两邻面夹角满足 1 cos 3 α=。 若将正四面体放进一个正方体内,则该正方体棱长为 2,其实,正四面体的棱切球 即为次正方体的内切球。 5、建系方法1.设有一正四面体D-ABC棱长为a 以AB边为y轴A为顶点ABC所属平面为xOy面建系四个顶点的坐标依次为 其他性质: 正四面体有一个在其内部的内切球和七个与四个面都相切的旁切球,其中有三个旁切球球心在无穷远处。 正四面体有四条三重旋转对称轴,六个对称面。 正四面体可与正八面体填满空间,在一顶点周围有八个正四面体和六个正八面体。 正四面体体积占外接球体积的2*3^0.5/9*π,约12.2517532%。 内切球体积占正四面体体积的π*3^0.5/18,约30.2299894%。 两条高夹角:2ArcSin(√6/3)=ArcCos(-1/3)=≈1.91063 32362 49(弧度)或109°28′16″39428 41664 889。这一数值与三维空间中求最小面有关,也是蜂巢底菱形的钝角的角度. 侧棱与底面的夹角:ArcCos(√3/3) 正四面体的对棱相等。具有该性质的四面体符合以下条件: 1.四面体为对棱相等的四面体当且仅当四面体每对对棱的中点的连线垂直于这两条棱。 2.四面体为对棱相等的四面体当且仅当四面体每对对棱中点的三条连线相互垂直。 3.四面体为对棱相等的四面体当且仅当四条中线相等。 化学中CH4,CCl4,SiH4等物质也是正四面体结构。正四面体键角是109度28分,约为109.47°。

正四面体的性质 (2)

正四面体的性质及应用 设正四面体ABCD 的棱长为a ,则存在以下性质: 【性质1】正四面体的3对相对棱互相垂直,任意一对相对棱之间的距离为 a 22 【性质2】正四面体的高=h a 3 6 【性质3】正四面体的表面积为23a .体积为 3122a 【性质4】正四面体的内切球半径为=r a 126.外接球半径为=R a 4 6且4:3:1::=h R r 【性质5】正四面体底面内任一点O 到三个侧面的距离之和为 a 36 【性质6】正四面体内任一点到四个侧面的距离之和为a 3 6 【性质7】正四面体的侧棱与底面所成的二面角大小为: 36arccos 【性质8】正四面体相邻侧面所成的二面角的大小为: 3 1arccos 【性质9】设正四面体侧棱与底面所成的角为α,相邻两侧面所成的二面角的大小为β,则有βαtan 2tan = 【性质10】正四面体的外接球的球心与内切球的球心O 重合且为正四面体的中心 【性质11】中心与各个顶点的四条连线中两两夹角相等为3 1arccos -π

【性质12】正四面体内接于正方体,且它们共同内接于同一个球.球的直径等于正 方体的体对角线.( V 正四面体: V 正方体 : V 球 = 2 : 6 : 3 3) 二.正四面体性质的应用 【例1】一个球与正四面体的6条棱都相切,若正四面体的棱长为a.求此球的体积.【例2】在正四面体ABCD.E,F分别为棱AD,BC的中点,连结AF,CE.①异面直线AF 和CE所成的角_______②CE与平面BCD所成的角_______ 【例3,四个顶点在同一球面上,则此球的表面积为________ 【例4】四面体的ABCD的表面积为S , 其四个面的中心分别为E , F , G , H .设四面体EFGH的表面积为T , 则 S : T = _______

正四面体的结构与稳定性

正四面体的结构与稳定性 江苏省如皋市丁堰中学冒春建 226521 物质的组成、结构决定物质的性质。如果某物质具有稳定的空间构型,就有稳定的性质。那么怎么样的空间构型才是稳定的呢?按照价键理论,只要化学键的键角方向与其成键原子的价电子云在空间的伸展方向一致,则成键原子间的作用力最强烈,而成键电子与成键电子之间的排斥力最小(即通常所说的“键角张力”),非成键原子或原子团之间的空间距离最大,达到最大程度的舒展,使非成键原子或原子团间的空间位阻最小,具有这样的结构其内能最小,结构稳定。 正四面体结构是中学生所遇化学物质中最常见的空间构型之。例如,原子晶体中的金刚石、晶体硅、水晶等,它们的熔沸点高、硬度大,通常情况下很难跟一般的化学试剂反应,表现出较强的稳定性;分子晶体中的甲烷、四氯化碳等,它们在通常情况下与大多数化学试剂如强酸、强碱、强氧化剂、强还原剂等都不起反应,也表现出较强的稳定性。这是什么原因呢?因为在这些物质中,碳原子、硅原子都是以四个sp3杂化轨道与其相邻的四个原子形成典型的共价键基团“CC4”、“SiSi4”、“SiO4”或小分子“CH4”、“CCl4”,它们的键角方向与其中心原子的四个sp3杂化轨道的空间伸展方向一致,均为109°28′,不存在“键角张力”。并且它们的成键原子的电子云之间达到最大程度的重叠,键能大,内能低,结构稳定,所以它们的性质也稳定。 我们知道,浓硫酸中+6价的硫具有强氧化性,而稀硫酸中同样为+6价的硫却没有氧化性,这是为什么呢?在浓硫酸中,+6价的硫绝大多数是以H2SO4分子形式存在,而H2SO4分子的空间构型是不规则的四面体,在H2SO4分子中O—S—O键的键角与硫原子的四个sp3杂化轨道的空间伸展方向(夹角为109°28′)不一致,化学键之间存在较强的“键角张力”,内能较大。并且四个S—O键的键长不等,使位于中间的+6价硫原子的周围空间相对来说有一定的空隙,易受到具有还原性微粒的攻击,夺得电子,从而表现出氧化性。 在稀硫酸中,+6价的硫原子是以自由移动的SO42-离子形式存在,而SO42-离子的空间构型是正四面体,所有的S—O键都是沿着硫原子的四个sp3杂化轨道在空间的伸展方向成键,不存在化学键之间的“键角张力”,四个S—O键的键长、键能完全相同,四个氧原子均匀地、等距离地分布在硫原子周围,使位于正四面体中心的+6价硫原子难以被其它原子或原子团攻击,也就没有得电子的可能性,故稀硫酸中+6价的硫没有氧化性。 又如,氨气和硝酸中的氮元素分别处于最低价态-3价和最高价态+5价,按理说,前者具有较强的还原性,后者具有很强的氧化性,两者相遇应发生强烈的氧化还有反应,而事实上,它们之间发生的是非氧化还原反应(简单的化合反应),这又是什么原因呢?这是由于N H3分子中的氮原子在成键时的四个sp3杂化轨道有一个被自身的孤对电子占领,当它遇到H+后很快形成N→H配位键,变成N H4+离子。而N H4+离子的空间构型又是正四面体,四个N—H键的键长、键能均完全一样,键角均为109°28′,与N原子的四个sp3杂化轨道的夹角完全吻合,不存在“键角张力”;四个氢原子也均匀地分布在氮原子周围,使位于中心的-3价氮原子难以被其它原子或原子团进攻。故氨气在遇到硝酸、浓硫酸等酸性强氧化剂时,表现不出还原性。但是,当N H3在一定条件下,遇到CuO、Cl2等氧化剂时又表现出一定的氧化性。这是因为N H3分子中,N原子的四个sp3杂化轨道中有一个被孤对电子占用,根据价电子对互斥原理,N—H键间的夹角受孤对电子的排斥挤压,键角不再是109°28′,而是107°,故N H3分子中氮原子的周围空间不是被氢原子均匀包围,氮原子的价电子云有了一定程度的“裸露”,较易受到其它氧化性微粒的进攻,从而表现出一定的还原性。

判断分子的构型

二、判断分子构型——价层电子对互斥理论(VSEPR) 现代化学的重要基础之一是分子(包括带电荷的离子)的立体结构。实验测出,SO3分子是呈平面结构的,O—S—O的夹角等于120o,而SO32-离子却是呈三角锥体,硫是锥顶,三个氧原子是三个锥角,象一架撑开的照相用的三角架。又例如SO2的三个原子不在一条直线上,而CO2却是直线分子等等。价层电子对互斥理论用以预测简单分子或离子的立体结构,我们不难学会用这种理论来预测和理解分子或离子的立体结构,并用来进一步确定分子或离子的结构。 价层电子对互斥理论认为,在一个共价分子中,中心原子周围电子对排布的几何构型主要决定于中心原子的价电子层中电子对的数目。所谓价层电子对包括成键的σ电子对和孤电子对。价层电子对各自占据的位置倾向于彼此分离得尽可能地远些,这样电子对彼此之间的排斥力最小,整个分子最为稳定。这样也就决定了分子的空间结构。也正因此,我们才可以用价层电子对很方便地判断分子的空间结构。例如:甲烷分子(CH4),中心原子为碳原子,碳有4个价电子,4个氢原子各有一个电子,这样在中心原子周围有8个电子,4个电子对,所以这4个电子对互相排斥,为了使排斥力最小,分子最稳定,它们只能按正四面体的方式排布。这样就决定了CH4的正四面体结构。 利用VSEPR推断分子或离子的空间构型的具体步骤如下: ①确定中心原子A价层电子对数目。中心原子A的价电子数与配位体X提供共用的电子数之和的一半,就是中心原子A价层电子对的数目。例如BF3分子,B原子有3个价电子,三个F原子各提供一个电子,共6个电子,所以B 原子价层电子对数为3。计算时注意:(ⅰ)氧族元素(ⅥA族)原子作为配位原子时,可认为不提供电子(如氧原子有6个价电子,作为配位原子时,可认为它从中心原子接受一对电子达到8电子结构),但作为中心原子时,认为它提供所有的6个价电子。(ⅱ)如果讨论的是离子,则应加上或减去与离子电荷相应的电子数。如PO43-离子中P原子的价层电子数应加上3,而NH4+离子中N原子的价层电子数则应减去1。(ⅲ)如果价层电子数出现奇数电子,可把这个单电子当作电子对看待。如NO2分子中N原子有5个价电子,O原子不提供电子。因此中心原子N价层电子总数为5,当作3对电子看待。 ②确定价层电子对的空间构型。由于价层电子对之间的相互排斥作用,它们趋向于尽可能的相互远离。于是价层电子对的空间构型与价层电子对数目的关系如下表所示:

正四面体

正四面体是一种柏拉图多面体,正四面体与自身对偶。 正四面体的重心、四条高的交点、外接球、内切球球心共点,此点称为中心。 正四面体有一个在其内部的内切球和七个与四个面都相切的旁切球,其中有三个旁切球球心在无穷远处。 正四面体有四条三重旋转对称轴,六个对称面。 正四面体可与正八面体填满空间,在一顶点周围有八个正四面体和六个正八面体。 化学中CH4,CCl4等分子也呈正四面体状。 相关数据 当正四面体的棱长为a时,一些数据如下: 高:√6a/3。中心把高分为1:3两部分。 表面积:√3a^2 体积:√2a^3/12 对棱中点的连线段的长:√2a/2 外接球半径:√6a/4,正四面体体积占外接球体积的2*3^0.5/9*π,约12.2517532%。 内切球半径:√6a/12,内切球体积占正四面体体积的π*3^0.5/18,约30.2299894%。 棱切球半径:√2a/4. 两条高夹角:2ArcSin(√6/3)=ArcCos(-1/3)=≈1.91063 32362 49(弧度)或109°28′16″39428 41664 889。这一数值与三维空间中求最小面有关,也是蜂巢底菱形的钝角的角度. 两邻面夹角:2ArcSin(√3/3)=ArcCos(1/3)≈1.23095 94173 4077(弧度)或70°31′43″60571 58335 111,与两条高夹角在数值上互补。 侧棱与底面的夹角:ArcCos(√3/3) 正四面体的对棱相等。具有该性质的四面体符合以下条件: 1.四面体为对棱相等的四面体当且仅当四面体每对对棱的中点的连线垂直于这两条棱。 2.四面体为对棱相等的四面体当且仅当四面体每对对棱中点的三条连线相互垂直。 3.四面体为对棱相等的四面体当且仅当四条中线相等。

正四面体的性质

⑨内切球半径 r= S ^OB +S ^OC +S ^OC ~S m c a + b +c 与正四面体的6条棱都相切,则此线段就是该球的直径。) 1 a = arccos — 3 (5)对棱互相垂直。 ⑺外接球半径 R= —a ; 4 (8)内切球半径 r= 逅a 12 (9)正四面体内任意一点到四个面的距离之和为定值 (等于正四面体的高). 直角四面体的性质 有一个三面角的各个面角都是直角的四面体叫做直角四面体 . 如图,在直角四面体 AOC 中,/ AOB M BOC M COA=90 , OA=a ,OB=b ,OC=c . 则 ① 不含直角的底面ABC 是锐角三角形; ② 直角顶点O 在底面上的射影H 是^ ABC 的垂心; 1 ③ 体积 V= - a b c ; 6 ④ 底面面积 S AAB (=-J a 2b 2 + b 2c 2 +c 2a 2 ; 2 2 2 2 & ⑥S △Bo +S △Ao +S △ AO =S △ABC 1 1 + -- ? 2 2 J b c R= 1 J a 2 + b 2 +c 2 ; (1)全面积 (2)体积 V=返 a 3 12 (3)对棱中点连线段的长 d= 匹a ;(此线段为对棱的距离,若一个球 2 ⑷相邻两面所成的二面角 ⑹ 侧棱与底面所成的角为 P =arccos ⑤ S △ BO =S BHC ? & ABC ⑧外接球半径 C

2 ⑨内切球半径r= S^OB +S^OC +S^OC~S m c a + b +c

⑨内切球半径 r= S ^OB +S ^OC +S ^OC ~S m c a + b +c 与正四面体的6条棱都相切,则此线段就是该球的直径。) 1 a = arccos — 3 (5)对棱互相垂直。 ⑺外接球半径 R= —a ; 4 (8)内切球半径 r= 逅a 12 (9)正四面体内任意一点到四个面的距离之和为定值 (等于正四面体的高). 直角四面体的性质 有一个三面角的各个面角都是直角的四面体叫做直角四面体 . 如图,在直角四面体 AOC 中,/ AOB M BOC M COA=90 , OA=a ,OB=b ,OC=c . 则 ① 不含直角的底面ABC 是锐角三角形; ② 直角顶点O 在底面上的射影H 是^ ABC 的垂心; 1 ③ 体积 V= - a b c ; 6 ④ 底面面积 S AAB (=-J a 2b 2 + b 2c 2 +c 2a 2 ; (1)全面积 (2)体积 V=返 a 3 12 (3)对棱中点连线段的长 d= 匹a ;(此线段为对棱的距离,若一个球 2 ⑷相邻两面所成的二面角 ⑹ 侧棱与底面所成的角为 P =arccos C

典型的晶体结构

典型的晶体结构 1.铁 铁原子可形成两种体心立方晶胞晶体:910℃以下为α-Fe,高于1400℃时为δ-Fe。在这两种温度之间可形成γ-面心立方晶。这三种晶体相中,只有γ-Fe能溶解少许C。问:1.体心立方晶胞中的面的中心上的空隙是什么对称?如果外来粒子占用这个空隙,则外来粒子与宿主离子最大可能的半径比是多少? 2.在体心立方晶胞中,如果某空隙的坐标为(0,a/2,a/4),它的对称性如何?占据该空隙的外来粒子与宿主离子的最大半径比为多少? 3.假设在转化温度之下,这α-Fe和γ-F两种晶型的最相邻原子的距离是相等的,求γ铁与α铁在转化温度下的密度比。 4.为什么只有γ-Fe才能溶解少许的C? 在体心立方晶胞中,处于中心的原子与处于角上的原子是相接触的,角上的原子相互之间不接触。a=(4/3)r。 ①②③ 1.两个立方晶胞中心相距为a,也等于2r+2r h[如图①],这里r h是空隙“X”的半径,a =2r+2r h=(4/3)r r h/r=0.115(2分) 面对角线(2a)比体心之间的距离要长,因此该空隙形状是一个缩短的八面体,称扭曲八面体。(1分) 2.已知体心上的两个原子(A和B)以及连接两个晶体底面的两个角上原子[图②中C和D]。连接顶部原子的线的中心到连接底部原子的线的中心的距离为a/2;在顶部原子下面的底部原子构成晶胞的一半。空隙“h”位于连线的一半处,这也是由对称性所要求的。所以我们要考虑的直角三角形一个边长为a/2,另一边长为a/4[图③],所以斜边为16 /5a。(1分)r+r h=16 /5a=3/5r r h/r=0.291(2分) 3.密度比=42︰33=1.09(2分) 4.C原子体积较大,不能填充在体心立方的任何空隙中,但可能填充在面心立方结构的八面体空隙中(r h/r=0.414)。(2分) 2.四氧化三铁 科学研究表明,Fe3O4是由Fe2+、Fe3+、O2-通过离子键而组成的复杂离子晶体。O2-的重复排列方式如图b所示,该排列方式中存在着两种类型的由O2-围成的空隙,如1、3、6、7的O2-围成的空隙和3、6、7、8、9、12的O2-围成的空隙,前者为正四面体空隙,后者为正八面体空隙,Fe3O4中有一半的Fe3+填充在正四面体空隙中,另一半Fe3+和Fe2+填充在正八面体空隙中,则Fe3O4晶体中正四面体空隙数与O2-数之比为2:1,其中有12.5%正四面体空隙填有Fe3+,有50%正八面体空隙没有被填充。 Fe3O4中三价铁离子:亚铁离子:O原子=2:1:4 晶胞拥有8个正四面体空隙,4个O2-离子;所以2:1 一半三价铁离子放入正四面体空隙,即一个三价铁离子,所以为1/8=12.5%晶胞实际拥有4个正八面体空隙,其中已经有一个放Fe3+,另外一个Fe2+占据一个正八面体空隙,所以50%的正八面体空隙没有被填充。

正四面体性质及其应用

正四面体的性质及其应用 正四面体是四个面都是等边三角形的凸多面体,它是一个很规则的几何体,因此具有一些特有的性质,设正四面体的棱长为a ,则 (1) 全面积S 全= 3 a 2; (2) 高h = 6 3 a ; (3) 体积V = 2 12 a 3 ; (4) 对棱中点的连线是对棱的公垂线,其长为d = 2 2 a ; (5) 相邻两面所成的二面角α=arccos 1 3; (6) 棱与其相交的面所成的角 β=a rctan 2 ; (7) 正四面体的内切球和外接球的球心重合,内切球半径 r = 6 12a ,外接球半径R = 6 4 a ,r ︰R =1︰3; (8) 正四面体内任一点到四个面的距离之和为定值(等于正四面体的高)。 将正四面体置于正方体中,结合正方体的性质以上诸性质容易得到证明。考查正四面体的性质多出选择或填空题,熟记以上八条性质对快速求解相关问题有很大帮助,例如: 例1:已知半径为1的球面上有A 、B 、C 三个点,且它们之间的球面距离都为π 3 ,则球 心O 到平面ABC 的距离为( ) A 3 2 B 6 3 C 12 D 21 7 解析:如右图所示,OA=OB=OC =1 又3 π = ==⌒ ⌒ ⌒ CA BC AB ,球的半径r =1 ∴∠AOB=∠BOC=∠COA =π 3 ,则AB=BC=CA =1 所以O -ABC 为棱长为1的正四面体,则由正四面体的性质得球心O 到平面ABC 的 距离即其高为 6 3 ,答案B 。 例2:(05年湖南省十所示范校联考)已知棱长为a 的正四面体ABCD 有内切球O ,经过该棱锥A -BCD 的中截面为M ,则O 到平面M 的距离为( ) A a 4 B 6 6a C 6 12a D 2 8 a 解析:直接运用正四面体的性质,内切球的半径r = 6 12 a ,中截面到底面的距离为高的一半 6 6a ,则O 到平面M 的距离为 6 6a - 6 12a = 6 12 a ,因此选 例3:(06年陕西卷)将半径为R 心到桌面的距离为 。 解析

六方最密堆积中正八面体空隙和正四面体空隙中心的分数坐标

密堆积中正八面体空隙和正四面体空隙 晶体结构的密堆积原理密堆积结构是指在由无方向性的金属键,离子键和范德华力结合的晶体中,原子、分子或离子等微粒总是趋向于相互配位数高,能充分利用空间的堆积密度大的那些结构。密堆积方式由于充分利用了空间,从而可使体系的势能尽可能降低。结构稳定。最常见的密堆积型式有:面心立方最密堆积(A1),六方最密堆积(A3)和体心立方密堆积(A2)。 我们主要介绍面心立方密堆积和六方密堆积。 等径圆球紧密排列形成密置层, 如图所示。 在密置层内,每个圆球周围有六 个球与它相切。相切的每三个球又围 出一个三角形空隙。仔细观察这些三 角形空隙,一排尖向上,接着下面一 排尖向下,交替排列。而每个圆球与 它周围的六个球围出的六个三角形空 隙中,有三个尖向上,另外三个尖向下。如图所示,我们在这里将尖向上的三角形空隙记为 B,尖向下的三角形空隙记为C。 第二密置层的球放在B之上,第三 密置层的球投影在C中,三层完 成一个周期。这样的最密堆积方式 叫做立方最密堆积(ccp,记为 A1型),形成面心立方晶胞。

若第三密置层的球投影 与第一密置层的球重合,两 层完成一个周期。这样的最 密堆积方式叫做六方最密堆 积(hcp,记为A3型),形 成六方晶胞,如图所示。 在这两种堆积方式中, 任何四个相切的球围成一个 正四面体空隙;另外,相切 的三个球如果与另一密置层 相切的三个球空隙对应,它们六个球将围成一个正八面体空隙。也就是说,围成正八面体空隙的这六个球可以分为相邻的两层,每层的正三角 形中心的连线垂直于正三角形所在的密置层,参 看下图,黑色代表的不是球而是正八面体的中 心。 在这两种最密堆积方式中,每个球与同一密置层 的六个球相切,同时与上一层的三个球和下一层 的三个球相切,即每个球与周围十二个球相切 (配位数为12)。中心这个球与周围的球围出八个正四面体空隙,平均分摊到每个正四面体空隙的是八分之一个球。这样,每个正四面体空隙分摊到的球数是四个八分之一,即半个。中心这个球周围还围出六个八面体空隙,它平均分摊到每个正八面体空隙的是六分之一个球。这样,每个正八面体空隙分摊到的球数是六个六分之一,即一个。总之,这两种最密堆积中,球数: 正八面体空隙数: 正四面体空隙数= 1:1:2 。等径球的两种最密堆积具有相同的堆积密度,都为%.

正四面体性质及其应用

正四面体性质及其应用 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

正四面体的性质及其应用 正四面体是四个面都是等边三角形的凸多面体,它是一个很规则的几何体,因此具有一些特有的性质,设正四面体的棱长为a ,则 (1) 全面积S 全= 3 a 2; (2) 高h = 6 3a ; (3) 体积V = 2 12 a 3; (4) 对棱中点的连线是对棱的公垂线,其长为d = 2 2a (5) 相邻两面所成的二面角α=arccos 1 3; (6) 棱与其相交的面所成的角 β=arctan 2 ; (7) 正四面体的内切球和外接球的球心重合,内切球半径 r = 6 12a ,外接球半径R = 6 4a ,r ︰R =1︰3; (8) 正四面体内任一点到四个面的距离之和为定值(等于正四面体的高)。 将正四面体置于正方体中,结合正方体的性质以上诸性质容易得到证明。考查正四面体的性质多出选择或填空题,熟记以上八条性质对快速求解相关问题有很大帮助,例如: 例1:已知半径为1的球面上有A 、B 、C 三个点,且它们之间的球面距离都为π 3 ,则球心O 到平面ABC 的距离为( ) A 3 2 B 6 3 C 12 D 21 7 解析:如右图所示,OA=OB=OC =1 又3 π = ==⌒ ⌒ ⌒ CA BC AB ,球的半径r =1 ∴∠AOB=∠BOC=∠COA =π 3,则AB=BC=CA =1

所以O -ABC 为棱长为1的正四面体,则由正四面体的性质得球心O 到平面ABC 的距离即其高为 6 3,答案B 。 例2:(05年湖南省十所示范校联考)已知棱长为a 的正四面体ABCD 有内切球O ,经过该棱锥A -BCD 的中截面为M ,则O 到平面M 的距离为( ) A a 4 B 6 6a C 6 12a D 2 8a 解析:直接运用正四面体的性质,内切球的半径r = 6 12a ,中截面到底面的距离为高的一半 6 6a ,则O 到平面M 的距离为 6 6a - 6 12a = 6 12a ,因此选C 。 例3:(06年陕西卷)将半径为R 球的球心到桌面的距离为 。 解析A 、B 、C 、D ,因为四个球两两相切,则 ABCD 2R 的正四面体,A 到面BCD 的距离为 2 6 3 R ,则上面一个球的球心A 到桌面的距离为R +2 6 3R =(1+2 6 3)R 。 例4:(06年山东卷)如图1,在等腰梯形ABCD 中,AB =2DC =2,∠DAB =60 ○ ,E 为AC 的中点,将△ADE 与△BEC 分别沿重合于点 P ,则三棱锥P -DCE 的外接球的体积为( )A 4 3 27π B 6 2π C 6 8π D 解析:三棱锥P -DCE 实质上是棱长为1的正四面体, 则其外接球的体积为 V = 43πR 3= 43π( 6 4)3= 6 8π。 例5:(06年湖南卷)棱长为2球球心的一个截面如图1

正方体和正四面体

第 1 页 共 4 页 高中化学竞赛辅导专题讲座——三维化学 近年来,无论是高考,还是全国竞赛,涉及空间结构的试题日趋增多,成为目前的热点之一。本文将从最简单的五种空间正多面体开始,与大家一同探讨中学化学竞赛中与空间结构有关的内容。 第一节 正方体与正四面体 在小学里,我们就已经系统地学习了正方体,正方体(立方体或正六面体)有六个完全相同的正方形面,八个顶点和十二条棱,每八个完全相同的正方体可构成一个大正方体。正四面体是我们在高中立体几何中学习的,它有四个完全相同的正三角形面,四个顶点和六条棱。那么正方体和正四面体间是否有内在的联系呢?请先让我们看下面一个例题吧: 【例题1】常见有机分子甲烷的结构是正四面体型的,请计算分子中碳氢键的键角(用反三角函数表示) 【分析】在化学中不少分子是正四面体型的,如CH 4、CCl 4、NH 4+、 SO 42-……它们的键角都是109o28’,那么这个值是否能计算出来呢? 如果从数学的角度来看,这是一个并不太难的立体几何题,首先我们把它抽象成一个立体几何图形(如图1-1所示),取 CD 中点E ,截取面ABE (如图1-2所示),过A 、 B 做AF ⊥BE ,BG ⊥AE ,AF 交BG 于O ,那么 ∠AOB 就是所求的键角。我们只要找出AO (=BO )与AB 的关系,再用余弦定理,就能圆满地解决例题1。当然找出AO 和AB 的关系还是有一定难度 的。先把该题放下,来看一题初中化学竞赛题: 【例题2 】CH 4分子在空间呈四面体形状,1个C 原 子与4个H 原子各共用一对电子对形成4条共价键,如 图1-3所示为一个正方体,已画出1个C 原子(在正方体 中心)、1个H 原子(在正方体顶点)和1条共价键(实线表 示),请画出另3个H 原子的合适位置和3条共价键,任 意两条共价键夹角的余弦值为 ① 【分析】由于碳原子在正方体中心,一个氢原子在顶点,因为碳氢键是等长的,那么另三个氢原子也应在正方 体的顶点上,正方体余下的七个顶点可分成三类,三个为 棱的对侧,三个为面对角线的对侧,一个为体对角线的对 侧。显然三个在面对角线对侧上的顶点为另三个氢原子的 位置。 【解答】答案如图1-4所示。 【小结】从例题2中我们发现:在正四面体中八个顶点中不相邻的四个顶点(不共棱)可构成一个正四面体, 图1-1 图1-2 图1-3 图1-4

典型的晶体结构

典型得晶体结构 1、铁 铁原子可形成两种体心立方晶胞晶体:910℃以下为α-Fe,高于1400℃时为δ-Fe。在这两种温度之间可形成γ-面心立方晶。这三种晶体相中,只有γ-Fe能溶解少许C。问: 1.体心立方晶胞中得面得中心上得空隙就是什么对称?如果外来粒子占用这个空隙,则外来粒子与宿主离子最大可能得半径比就是多少? 2.在体心立方晶胞中,如果某空隙得坐标为(0,a/2,a/4),它得对称性如何?占据该空隙得外来粒子与宿主离子得最大半径比为多少? 3.假设在转化温度之下,这α-Fe与γ-F两种晶型得最相邻原子得距离就是相等得,求γ铁与α铁在转化温度下得密度比。 4.为什么只有γ-Fe才能溶解少许得C? 在体心立方晶胞中,处于中心得原子与处于角上得原子就是相接触得,角上得原子相互之间不接触。a=(4/3)r。 ①②③ 1.两个立方晶胞中心相距为a,也等于2r+2r h[如图①],这里r h就是空隙“X”得半径,a =2r+2r h=(4/3)r r h/r=0、115(2分) 面对角线(2a)比体心之间得距离要长,因此该空隙形状就是一个缩短得八面体,称扭曲八面体。(1分) 2.已知体心上得两个原子(A与B)以及连接两个晶体底面得两个角上原子[图②中C与D]。连接顶部原子得线得中心到连接底部原子得线得中心得距离为a/2;在顶部原子下面得底部原子构成晶胞得一半。空隙“h”位于连线得一半处,这也就是由对称性所要求得。所以我们要考虑得直角三角形一个边长为a/2,另一边长为a/4[图③],所以斜边为16 /5a。(1分) r+r h=16 /5a=3/5r r h/r=0、291(2分) 3.密度比=42︰33=1、09(2分) 4.C原子体积较大,不能填充在体心立方得任何空隙中,但可能填充在面心立方结构得八面体空隙中(r h/r=0、414)。(2分) 2、四氧化三铁 科学研究表明,Fe3O4就是由Fe2+、Fe3+、O2-通过离子键而组成得复杂离子晶体。O2-得重复排列方式如图b所示,该排列方式中存在着两种类型得由O2-围成得空隙,如1、3、6、7得O2-围成得空隙与3、6、7、8、9、12得O2-围成得空隙,前者为正四面体空隙,后者为正八面体空隙,Fe3 O4中有一半得Fe3+填充在正四面体空隙中,另一半Fe3+与Fe2+填充在正八面体空隙中,则Fe3O4晶体中正四面体空隙数与O2-数之比为 2:1,其中有12、5%正四面体空隙填有Fe3+,有 50%正八面体空隙没有被填充。ClMXxzK。zNa2qb4。 Fe3O4中三价铁离子:亚铁离子:O原子=2:1:4 晶胞拥有8个正四面体空隙,4个O2-离子;所以2:1 一半三价铁离子放入正四面体空隙,即一个三价铁离子,所以为1/8=12、5% 晶胞实际拥有4个正八面体空隙,其中已经有一个放Fe3+,另外一个Fe2+占据一个正八面体空隙,所以50%得正八面体空隙没有被填充。USLphY1。N1iF2Vt。

第一节 正方体与正四面体

近年来,无论是高考,还是全国竞赛,涉及空间结构的试题日趋增多,成为目前的热点之一。本文将从最简单的五种空间正多面体开始,与大家一同探讨中学化学竞赛中与空间结构有关的内容。 第一节 正方体与正四面体 在小学里,我们就已经系统地学习了正方体,正方体(立方体或正六面体)有六个完全相同的正方形面,八个顶点和十二条棱,每八个完全相同的正方体可构成一个大正方体。正四面体是我们在高中立体几何中学习的,它有四个完全相同的正三角形面,四个顶点和六条棱。那么正方体和正四面体间是否有内在的联系呢?请先让我们看下面一个例题吧: 【例题1】常见有机分子甲烷的结构是正四面体型的,请计算分子中碳氢键的键角(用反三角函数表示) 【分析】在化学中不少分子是正四面体型的,如CH 4、CCl 4、NH 4+、 SO 42-…… 它们的键角都是109o28’,那么这个值是否能计算出来呢? 如果从数学的角度来看,这是一个并不太难的立体几何题,首先我们把它抽象成一个立体几何图形(如图1-1所示),取CD 中点E ,截取面ABE (如图1-2所示),过A 、B 做AF ⊥BE ,BG ⊥AE ,AF 交 BG 于O ,那么 ∠AOB 就是所求的键角。我们只要找 出AO (=BO )与AB 的关系,再用余弦定理,就能圆满地解决例题1。当然找出AO 和AB 的关系还是有一定难度的。先把该题放下,来看一题初中化学竞赛题: 【例题 2】CH 4分子在空间呈四面体形状,1个C 原子与4 个H 原子各共用一对电子对形成4条共价键,如图 1-3所示为一 个正方体,已画出1个C 原子(在正方体中心)、1个H 原子(在正 方体顶点)和1条共价键(实线表示),请画出另3个H 原子的合适 位置和3条共价键,任意两条共价键夹角的余弦值为 ① 【分析】由于碳原子在正方体中心,一个氢原子在顶点,因 为碳氢键是等长的,那么另三个氢原子也应在正方体的顶点上, 正方体余下的七个顶点可分成三类,三个为棱的对侧,三个为面 对角线的对侧,一个为体对角线的对侧。显然三个在面对角线对 侧上的顶点为另三个氢原子的位置。 【解答】答案如图1-4所示。 【小结】从例题2中我们发现:在正四面体中八个顶点中不 相邻的四个顶点(不共棱)可构成一个正四面体,正四面体的棱 长即为正方体的棱长的2倍,它们的中心是互相重合的。 【分析】回到例题1,将正四面体ABCD 放入正方体中考虑,设正方体的边长为1,则AB 为面对角线长,即2,AO 为体对角线长的一半,即3/2, 图1-1 图1-2 图1-3 图1-4

相关文档
最新文档