高速电子线路的信号完整性设计(一)

高速电子线路的信号完整性设计(一)
高速电子线路的信号完整性设计(一)

高速电子线路的信号完整性设计(一)

北京理工大学电子工程系于波

1、引言

当今电子技术的发展日新月异,大规模超大规模集成电路越来越多地应用到通用系统中。同时,深亚微米工艺在IC设计中的使用,使得芯片的集成规模更大。从电子行业的发展来看,1992年只有40%的电子系统工作在30MHz以上的频率,而且器件多数使用DIP、PLCC等体积大、管脚少的封装形式,到1994年已有50%的设计达到了50MHz的频率,采用PGA,QFP,RGA等封装的器件越来越多。1996年之后,高速设计在整个电子设计领域所占的比例越来越大,100MHz以上的系统已随处可见,Bare Die,BGA,MCM这些体积小、管脚数已达数百甚至上千的封装形式也已越来越多地应用到各类高速超高速电子系统中。图1所示为自80年代末IC封装的发展。

图 1 近年来IC封装的发展

由上图可见,IC芯片的发展从封装形式来看,是芯片体积越来越小、引脚数越来越多。同时,由于近年来IC工艺的发展,使得其速度越来越高。由此可见,在当今快速发展的电子设计领域,由IC芯片构成的电子系统是朝着大规模、小体积、高速度的方向飞速发展的,而且发展速度越来越快。这样就带来了一个问题,即电子设计的体积减小导致电路的布局布线密度变大,而同时信号的频率还在提高,从而使得如何处理高速信号问题成为一个设计能否成功的关键因素。随着电子系统中逻辑和系统时钟频率的迅速提高和信号边沿不断变陡,印刷电路板的线迹互连和板层特性对系统电气性能的影响也越发重要。对于低频设计,线迹互连和板层的影响可以不考虑,当频率超过50MHz时,互连关系必须以传输线考虑,而在评定系统性能时也必须考虑印刷电路板板材的电参数。因此,高速系统的设计必须面对互连延迟引起的时序问题以及串扰、传输线效应等信号完整性问题。

2、高速电子设计的板级信号完整性

处理高速数字系统的振铃和串扰问题一直是一个令人头疼的问题,特别是在今天,越来越多的VLSI 芯片工作在100MHz的频率以上,450MHz的CPU也将广泛应用,信号的边沿越来越陡(已达到ps 级),这些高速器件性能的增加也给高速系统设计带来了困难。同时,高速系统的体积不断减小使得印制板的密度迅速提高。比较现在新的PC主板与几年前的主板,可以看到新的主板上加入了许多端接。信号完整性问题已经成为新一代高速产品设计中越来越值得注意的问题,这已是毋庸置疑的了。

信号完整性(Signal Integrity,简称SI)是指在信号线上的信号质量。差的信号完整性不是由某一单一因素导致的,而是板级设计中多种因素共同引起的。主要的信号完整性问题包括反射、振铃、地弹、串扰等。

源端与负载端阻抗不匹配会引起线上反射,负载将一部分电压反射回源端。如果负载阻抗小于源阻抗,反射电压为负,反之,如果负载阻抗大于源阻抗,反射电压为正。布线的几何形状、不正确的线端接、经过连接器的传输及电源平面的不连续等因素的变化均会导致此类反射。

信号的振铃(ringing)和环绕振荡(rounding)由线上过度的电感和电容引起,振铃属于欠阻尼状态而环绕振荡属于过阻尼状态。信号完整性问题通常发生在周期信号中,如时钟等,振铃和环绕振荡同反射一样也是由多种因素引起的,振铃可以通过适当的端接予以减小,但是不可能完全消除。

在电路中有大的电流涌动时会引起地弹,如大量芯片的输出同时开启时,将有一个较大的瞬态电流在芯片与板的电源平面流过,芯片封装与电源平面的电感和电阻会引发电源噪声,这样会在真正的地平面(0V)上产生电压的波动和变化,这个噪声会影响其它元器件的动作。负载电容的增大、负载电阻的减小、地电感的增大、同时开关器件数目的增加均会导致地弹的增大。

振铃和地弹都属于信号完整性问题中单信号线的现象(伴有地平面回路),串扰则是由同一PCB板上的两条信号线与地平面引起的,故也称为三线系统。串扰是两条信号线之间的耦合,信号线之间的互感和互容引起线上的噪声。容性耦合引发耦合电流,而感性耦合引发耦合电压。PCB板层的参数、信号线间距、驱动端和接收端的电气特性及线端接方式对串扰都有一定的影响。

表1列出了高速电路中常见的信号完整性问题与可能引起该信号完整性的原因,并给出了相应的解决方案。

表 1 常见信号完整性(SI)问题及解决方法

在一个已有的PCB板上分析和发现信号完整性问题是一件非常困难的事情,即使找到了问题,在一个已成形的板上实施有效的解决办法也会花费大量时间和费用。那么,我们就期望能够在物理设计完成之前查找、发现并在电路设计过程中消除或减小信号完整性问题,这就是EDA工具需要完成的任务。先进的EDA信号完整性工具可以仿真实际物理设计中的各种参数,对电路中的信号完整性问题进行深入细致的分析。

新一代的EDA信号完整性工具主要包括布线前/布线后SI分析工具和系统级SI工具等。使用布线前SI分析工具可以根据设计对信号完整性与时序的要求在布线前帮助设计者选择元器件、调整元器件布局、规划系统时钟网络和确定关键线网的端接策略。SI分析与仿真工具不仅可以对一块PCB板的信号流进行分析,而且可以对同一系统内其它组成部分如背板、连接器、电缆及其接口进行分析,这就是系统级的SI分析工具。针对系统级评价的SI分析工具可以对多板、连接器、电缆等系统组成元件进行分析,并可通过设计建议来帮助设计者消除潜在的SI问题,它们一般都包括IBIS模型接口、2维传输线与串扰仿真、电路仿真、SI分析结果的图形显示等功能。这类工具可以在设计包含的多种领域如电气、EMC、热性能及机械性能等方面综合考虑这些因素对SI的影响及这些因素之间的相互影响,从而进行真正的系统级分析与验证。Mentor Graphics公司的ICX设计工具可以在时序与电气规则的驱动下进行TopDown式的布局及无网格布线,并提供多板分析功能,是典型的系统级SI工具。

3、理解和使用IBIS模型

如何在PCB板做板之前分析验证板级信号完整性(SI)问题,是设计成功的关键。这就需要用于SI 分析的包含各种参数的准确模型。大多数SI分析工具都可将PCB板作为板材料和布线几何形状的函数进行分析计算,但是得到一个能够反映板上元件、连接器、电缆等器件的好的模型却相对较难,IBIS模型可以帮助设计者在存在SI约束的设计中获取准确的信息以进行分析和计算。

IBIS(Input/Output Buffer Information Specification)模型是一种基于V/I曲线的对I/O BUFFER快速准确建模的方法,是反映芯片驱动和接收电气特性的一种国际标准,它提供一种标准的文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振铃和串扰等高频效应的计算与仿真。IBIS规范最初由一个被称为IBIS开放论坛的工业组织编写,这个组织是由一些EDA厂商、计算机制造商、半导体厂商和大学组成的。IBIS的版本发布情况为:1993年4月第一次推出Version1.0版,同年6月经修改后发布了Version1.1版,1994年6月在San Diego通过了Version2.0版,同年12月升级为Version2.1版,1995年12 月其Version2.1版成为ANSI/EIA-656标准,1997年6月发布了Version3.0版,同年9月被接纳为IEC 62012-1 标准,1998年升级为Version3.1版,1999年1月推出了当前最新的版本Version3.2版。

现在已有多家半导体器件生产厂家及CAE/EDA公司支持此IBIS规范,提供不同器件的IBIS模型及软件仿真工具,如Mentor Graphics公司既提供使用IBIS模型的仿真工具Interconnect Synthesis,同时提供Zeelan 的IBIS的仿真模型库,另外还可根据用户的特殊需求定制相应器件的IBIS模型。

IBIS本身只是一种文件格式,它说明在一标准的IBIS文件中如何记录一个芯片的驱动器和接收器的不同参数,但并不说明这些被记录的参数如何使用,这些参数需要由使用IBIS模型的仿真工具来读取。欲使用IBIS进行实际的仿真,需要先完成以下四件工作:

(1)获取有关芯片驱动器和接收器的原始信息源;

(2)获取一种将原始数据转换为IBIS格式的方法;

(3)提供用于仿真的可被计算机识别的布局布线信息;

(4)提供一种能够读取IBIS和布局布线格式并能够进行分析计算的软件工具。

IBIS是一种简单直观的文件格式,很适合用于类似于Spice(但不是Spice,因为IBIS文件格式不能直接被Spice工具读取)的电路仿真工具。它提供驱动器和接收器的行为描述,但不泄漏电路内部构造的知识产权细节。换句话说,销售商可以用IBIS模型来说明它们最新的门级设计工作,而不会给其竞争对手透露过多的产品信息。并且,因为IBIS是一个简单的模型,当做简单的带负载仿真时,比相应的全Spice三极管级模型仿真要节省10~15倍的计算量。

IBIS提供两条完整的V-I曲线分别代表驱动器为高电平和低电平状态,以及在确定的转换速度下状态转换的曲线。V-I曲线的作用在于为IBIS提供保护二极管、TTL图腾柱驱动源和射极跟随输出等非线性效应的建模能力。

由上可知,IBIS模型的优点可以概括为:

●在I/O非线性方面能够提供准确的模型,同时考虑了封装的寄生参数与ESD结构;

●提供比结构化的方法更快的仿真速度;

●可用于系统板级或多板信号完整性分析仿真。可用IBIS模型分析的信号完整性问题包括:串扰、反射、振铃、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。IBIS尤其能够对高速振铃和串扰进行准确精细的仿真,它可用于检测最坏情况的上升时间条件下的信号行为及一些用物理测试无法解决的情况;

●模型可以免费从半导体厂商处获取,用户无需对模型付额外开销;

●兼容工业界广泛的仿真平台。

当然,IBIS不是完美的,它也存在以下缺点:

●许多芯片厂商缺乏对IBIS模型的支持。而缺乏IBIS模型,IBIS工具就无法工作。虽然IBIS文件可以手工创建或通过Spice模型自动转换,但是如果无法从厂家得到最小上升时间参数,任何转换工具都无能为力;

● IBIS不能理想地处理上升时间受控的驱动器类型的电路,特别是那些包含复杂反馈的电路;

● IBIS缺乏对地弹噪声的建模能力。IBIS模型2.1版包含了描述不同管脚组合的互感,从这里可以提取一些非常有用的地弹信息。它不工作的原因在于建模方式,当输出由高电平向低电平跳变时,大的地弹电压可以改变输出驱动器的行为。

伴随着大量的信号完整性问题的出现,IBIS已成为一种应用越来越广泛的器件仿真模型。许多公司、组织和大学开发了多种IBIS实用工具,主要的IBIS实用工具有:

● IBISCHK,是IBIS模型的语法分析器,用来检查IBIS模型的语法错误;

● S2iplt,此工具可以以图形方式显示IBIS模型的V/I曲线,它是属于UNIX版本的;

● S2IBIS,此工具可以将现有的HSPICE、PSPICE或SPICE3模型转换为IBIS模型;

● Visual IBIS Editor,是Hyperlynx公司开发的基于Windows平台的IBIS模型编辑、语法检查及V/I 曲线显示工具。

高速数字信号的信号完整性分析

科研训练 设计题目:高速数字信号的信号完整性分析专业班级:科技0701 姓名:张忠凯 班内序号:18 指导教师:梁猛 地点:三号实验楼236 时间:2010.9.14~2010.11. 16 电子科学与技术教研室

摘要: 在高速数字系统设计中,信号完整性(SI)问题非常重要的问题,如高时钟频率和快速边沿设计。本文提出了影响信号完整性的因素,并提出了解决电路板中信号完整性问题的方法。 关键词:高速数字电路;信号完整性;信号反射;串扰 引言: 随着电子行业的发展,高速设计在整个电子设计领域所占的比例越来越大,100 MHz 以上的系统已随处可见,采用CS(线焊芯片级BGA)、FG(线焊脚距密集化BGA)、FF(倒装芯片小间距BGA)、BF(倒装芯片BGA)、BG(标准BGA)等各种BGA封装的器件大量涌现,这些体积小、引脚数已达数百甚至上千的封装形式已越来越多地应用到各类高速、超高速电子系统中。 从IC芯片的封装来看,芯片体积越来越小、引脚数越来越多;这就带来了一个问题,即电子设计的体积减小导致电路的布局布线密度变大,同时信号的上升沿触发速度还在提高,从而使得如何处理高速信号问题成为限制设计水平的关键因素。随着电子系统中逻辑复杂度和时钟频率的迅速提高,信号边沿不断变陡,印刷电路板的线迹互连和板层特性对系统电气性能的影响也越发重要。对于低频设计,线迹互连和板层的影响可以不考虑,但当频率超过50 MHz时,互连关系必须考虑,而在评定系统性能时还必须考虑印刷电路板板材的电参数。因此,高速系统的设计必须面对互连延迟引起的时序问题以及串扰、传输线效应等信号完整性问题。 1.信号完整性的概念: 信号完整性是指信号未受到损伤的一种状态,良好的信号完整性是指在需要时信号仍然能以正确的时序和电压电平值做出响应。差的信号完整性不是由某一单一因素导致的,而是板级设计中多种因素共同引起的。 2.信号完整性问题的分析: 高速不是就频率的高低来说的,而是由信号的边沿速度决定的,一般认为上升时间小于4倍信号传输延迟时可视为高速信号。信号完整性问题的起因是由于不断缩小的上升和下降时间。假如信号的上升沿和下降沿变化比较缓慢,则电路结构和元器件所造成的影响不大,可以忽略。 当信号的上升沿和下降沿变化加快时,整个电路则会转化为传输线问题,即电路的延迟、反射等问题;当电路中有大的电流涌动时会引起地弹,如大量芯片的输出同时开启时,将有一个较大的瞬态电流在芯片与板的电源平面流过,芯片封装与电源平面的电感和电阻会引发电源噪声,这样会在真正的地平面( 0 V)上产生电压的波动和变化,犹如从地面弹回电路的信号一样;通常表现为在一根信号线上有信号通过时,在上与之

五款信号完整性仿真工具介绍

现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 (一)Ansoft公司的仿真工具 现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 Ansoft的信号完整性工具采用一个仿真可解决全部设计问题: SIwave是一种创新的工具,它尤其适于解决现在高速PCB和复杂IC封装中普遍存在的电源输送和信号完整性问题。 该工具采用基于混合、全波及有限元技术的新颖方法,它允许工程师们特性化同步开关噪声、电源散射和地散射、谐振、反射以及引线条和电源/地平面之间的耦合。该工具采用一个仿真方案解决整个设计问题,缩短了设计时间。 它可分析复杂的线路设计,该设计由多重、任意形状的电源和接地层,以及任何数量的过孔和信号引线条构成。仿真结果采用先进的3D图形方式显示,它还可产生等效电路模型,使商业用户能够长期采用全波技术,而不必一定使用专有仿真器。 (二)SPECCTRAQuest Cadence的工具采用Sun的电源层分析模块: Cadence Design Systems的SpecctraQuest PCB信号完整性套件中的电源完整性模块据称能让工程师在高速PCB设计中更好地控制电源层分析和共模EMI。 该产品是由一份与Sun Microsystems公司签署的开发协议而来的,Sun最初研制该项技术是为了解决母板上的电源问题。 有了这种新模块,用户就可根据系统要求来算出电源层的目标阻抗;然后基于板上的器件考虑去耦合要求,Shah表示,向导程序能帮助用户确定其设计所要求的去耦合电容的数目和类型;选择一组去耦合电容并放置在板上之后,用户就可运行一个仿真程序,通过分析结果来发现问题所在。 SPECCTRAQuest是CADENCE公司提供的高速系统板级设计工具,通过它可以控制与PCB layout相应的限制条件。在SPECCTRAQuest菜单下集成了一下工具: (1)SigXplorer可以进行走线拓扑结构的编辑。可在工具中定义和控制延时、特性阻抗、驱动和负载的类型和数量、拓扑结构以及终端负载的类型等等。可在PCB详细设计前使用此工具,对互连线的不同情况进行仿真,把仿真结果存为拓扑结构模板,在后期详细设计中应用这些模板进行设计。 (2)DF/Signoise工具是信号仿真分析工具,可提供复杂的信号延时和信号畸变分析、IBIS 模型库的设置开发功能。SigNoise是SPECCTRAQUEST SI Expert和SQ Signal Explorer Expert进行分析仿真的仿真引擎,利用SigNoise可以进行反射、串扰、SSN、EMI、源同步及系统级的仿真。 (3)DF/EMC工具——EMC分析控制工具。 (4)DF/Thermax——热分析控制工具。 SPECCTRAQuest中的理想高速PCB设计流程: 由上所示,通过模型的验证、预布局布线的space分析、通过floorplan制定拓朴规则、由规

SATA高速差分信号设计规则

PCB设计挑战和建议作为PC、服务器和消费电子产品中重要的硬盘驱动器接口,串行ATA(SATA)发展迅猛并日益盛行。随着基于磁盘的存储在所有电子市场领域中变得越来越重要,系统设计工程师需要知道采用第一代SATA(1.5Gbps)和第二代SATA(3.0Gbps)协议的产品设计中的独特挑战。此外,系统设计工程师还需要了解新的SATA特性,以使其用途更广,功能更强,而不仅仅是简单地代替并行ATA。充分利用这些新特性并克服设计中存在的障碍,对成功推出采用SATA接口的产品非常关键。 日趋复杂的PCB布局布线设计对保证高速信号(如SATA)的正常工作至关重要。由于第一代和第二代SATA的速度分别高达1.5Gbps和3.0Gbps,因此铜箔蚀刻线布局的微小改动都会对电路性能造成很大的影响。SATA信号的上升时间约为100ps,如此快的上升时间,再加上有限的电信号传输速度,所以即使很短的走线也必须当成传输线来对待,因为这些走线上有很大部分的上升(或下降)电压。 高频效应处理不好,将会导致PCB无法工作或者工作起来时好时坏。为保证采用FR4 PCB板的SATA设计正常工作,必须遵守下面列出的FR4 PCB布局布线规则。这些规则可分为两大类:设计使用差分信号和避免阻抗不匹配。 高速差分信号设计规则包括: 1.SATA是高速差分信号,一个SATA连接包含一个发送信号对和一个接收 信号对,这些差分信号的走线长度差别应小于5mil。使差分对的走线长度保持一致非常重要,不匹配的走线长度会减小信令之间的差值,增加误码率,而且还会产生共模噪声,从而增加EMI辐射。差分信号线对应该 在电路板表层并排走线(微带线),如果差分信号线对必须在不同的层走 线,那么过孔两侧的走线长度必须保持一致。 2.差分信号线对的走线不能太靠近,建议走线间距是走线相对于参考平面高 度的6至10倍(最好是10倍)。 3.为减少EMI,差分对的走线间距不要超过150mil。 4.SATA差分对的差分阻抗必须为100欧姆。 5.为减少串扰,同一层其它信号与差分信号线对之间的间距至少为走线相对 于参考平面高度的10至15倍。 6.在千兆位传输速度的差分信号上不要使用测试点。 避免阻抗不匹配的设计规则包括:

高速电路中的信号完整性问题

高速电路中的信号完整性问题 许致火 (07级信号与信息处理 学号 307081002025) 1 信号完整性问题的提出 一般来讲,传统的低频电路设计对于电子工程师并不是多么复杂的工作。因为在低于30MHz的系统中并不要考虑传输线效应等问题,信号特性保持完好使得系统照常能正常工作。但是随着人们对高速实时信号处理的要求,高频信号对系统的设计带来很大的挑战。电子工程师不仅要考虑数字性能还得分析高速电路中各种效应对信号原来 面目影响的问题。 输入输出的信号受到传输线效应严重的影响是我们严峻的挑战 之一。在低频电路中频率响应对信号影响很小,除非是传输的媒介的长度非常长。然而伴随着频率的增加,高频效应就显而易见了。对于一根很短的导线也会受到诸如振玲、串扰、信号反射以及地弹的影响,这些问题严重地损害了信号的质量,也就是导致了信号完整性性能下降。 2 引起信号完整性的原因 2.1 传输线效应 众所周知,传输线是用于连接发送端与接收段的连接媒介。传统的比如电信的有线线缆能在相当长的距离范围内有效地传输信号。但是高速的数字传输系统中,即使对于PCB电路板上的走线也受到传输线效应的影响。如图1所示,对于不同高频频率的PCB板上的电压分布是不同的。 图 1 PCB在不同频率上的电压波动

因为低频电路可以看成是一个没有特性阻抗、电容与电感寄生效应的理想电路。高速电路中高低电平的快速切换使得电路上的走线要看成是阻抗、电容与电感的组合电路。其等效电路模型如图2所示。导线的阻抗是非常重要的概念,一旦传输路径上阻抗不匹配就会导致信号的质量下降。 图 2 传输线等效电路模型 由图2的模型可得电报方程: 2.2 阻抗不匹配情况 信号源输出阻抗(Zs)、传输线上的阻抗(Zo)以及负载的阻抗(ZL)不相等时,我们称该电流阻抗不匹配。也这是说信号源的能量没有被负载全部吸收,还有一部分能量被反射回信号源方向了。反射后又被信号源那端反射给负载,除了吸收一部分外,剩下的又被反射回去。这个过程一直持续,直到能量全部被负载吸收。这样就会出现过冲与下冲(Overshoot/Undershoot)、振铃(ring)、阶梯波形(Stair-step Waveform)现象,这些现象的产生导致信号出现错误。 当传输媒介的特性阻抗与负载终端匹配时,阻抗就匹配了。对于PCB板来说,我们可以选取合适的负载终端策略及谨慎地选择传输介

高速信号走线规则

高速信号走线规则 随着信号上升沿时间的减小,信号频率的提高,电子产品的EMI问题,也来越受到电子工程师的关注。 高速PCB设计的成功,对EMI的贡献越来越受到重视,几乎60%的EMI问题可以通过高速PCB来控制解决。 规则一:高速信号走线屏蔽规则 在高速的PCB设计中,时钟等关键的高速信号线,走需要进行屏蔽处理,如果没有屏蔽或只屏蔽了部分,都是会造成EMI的泄漏。建议屏蔽线,每1000mil,打孔接地。如上图所示。 规则二:高速信号的走线闭环规则 由于PCB板的密度越来越高,很多PCB LAYOUT工程师在走线的过程中,很容易出现这种失误,如下图所示: 时钟信号等高速信号网络,在多层的PCB走线的时候产生了闭环的结果,这样的闭环结果将产生环形天线,增加EMI 的辐射强度。 规则三:高速信号的走线开环规则 规则二提到高速信号的闭环会造成EMI辐射,同样的开环同样会造成EMI辐射,如下图所示:

时钟信号等高速信号网络,在多层的PCB走线的时候产生了开环的结果,这样的开环结果将产生线形天线,增加EMI 的辐射强度。在设计中我们也要避免。 规则四:高速信号的特性阻抗连续规则 高速信号,在层与层之间切换的时候必须保证特性阻抗的连续,否则会增加EMI的辐射,如下图: 也就是:同层的布线的宽度必须连续,不同层的走线阻抗必须连续。 规则五:高速PCB设计的布线方向规则 相邻两层间的走线必须遵循垂直走线的原则,否则会造成线间的串扰,增加EMI辐射,如下图: 相邻的布线层遵循横平竖垂的布线方向,垂直的布线可以抑制线间的串扰。 规则六:高速PCB设计中的拓扑结构规则 在高速PCB设计中有两个最为重要的内容,就是线路板特性阻抗的控制和多负载情况下的拓扑结构的设计。在高速的情况下,可以说拓扑结构的是否合理直接决定,产品的成功还是失败。 如上图所示,就是我们经常用到的菊花链式拓扑结构。这种拓扑结构一般用于几Mhz的情况下为益。高速的拓扑结构我们建议使用后端的星形对称结构。

信号完整性高速互连综述

信号完整性中抖动、噪声研究和发展

信号完整性中抖动、噪声研究和发展 1 引言 随着现代电子产品的开发周期越来越短,工作频率越来越高,尺寸越来越小,产品结构越来越复杂,数字技术的发展日新月异。在20世纪90初,几十兆主 频的X86还是很新鲜的事物,而到如今,频率高达3GHZ的CPU已成为个人电脑的标准配置[1]。手机处理器在10年前ARM7主频还是20MHz,而到了现在2GHz、多核的手机处理器在移动设备上广泛的被应用。处理器遵循着摩尔定律开速的 发展,主频从数十MHz上升到现在的3GHz只用了20年的时间。而在数字产品中,随着工艺的不断改进提升,20前的制造工艺还是微米数量级,而现在已经 步入到了14纳米级工艺。 可见如今的数字电路设计中,芯片的趋势——处理速度越来越快,面积越 来越小,密度却越来越大。数字电路系统的信号速率、时钟频率和集成电路开 关速度[2]的持续增加。这在给广大用户带来更好体验,更便捷应用的同时,也给数字设计者提出了巨大的挑战[3]。信号完整性对于高速电路板和深亚微米(低于0.35微米)芯片设计都是需要考虑的问题[4]。以前在低速设计中可以应 用的方法,在高速电路设计中就编的举步维艰、寸步难行;理论上在设计方法 上应该是正确的,但在实践中却达不到理想的效果。这就涉及到了高速数字电 路设计的问题。I/O速度的提高使得链路总的可用最大抖动预算——单元区间(UI)必将相应的减小。而为了保证设计的整个链路系统有比较好的误码率, 面临的最大挑战就是降低抖动。特征尺寸减小带来的另一个严峻挑战就是功率 损耗和功率密度必须小于某一约束限度,或者说就是使用低功耗设计。 关于抖动的话题对于通信系统的合理设计变得越来越重要,如今,一个通 讯系统的时钟抖动已经成为了影响系统性能的基本限制。时钟抖动的范围与当 今高速串行总线紧密相关,并且数据连接在数字电路系统的设计中,对抖动的 严加控制是必须解决的问题。这是在这种情况下,抖动成为了高速数字通信系 统中,电路设计的一个基本指标。认识什么是抖动,如何描述抖动,成为配置 一个满足性能要求的高速数字系统必不可少的一步。

五款信号完整性仿真分析工具

SI 五款信号完整性仿真工具介绍 (一)Ansoft公司的仿真工具 现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB 设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,An soft公司的仿真工具能够从三维场求解的角度出发,对PCB 设计的信号完整性问题进行动态仿真。 Ansoft 的信号完整性工具采用一个仿真可解决全部设计问题: Slwave是一种创新的工具,它尤其适于解决现在高速PCB和复杂IC封装中普遍存在的电源输送和信号完整性问题。 该工具采用基于混合、全波及有限元技术的新颖方法,它允许工程师们特性化同步开关噪声、电源散射和地散射、谐振、反射以及引线条和电源/地平面之间的耦合。该工具采用一个仿真方案解决整个设计问题,缩短了设计时间。 它可分析复杂的线路设计,该设计由多重、任意形状的电源和接地层,以及任何 数量的过孔和信号引线条构成。仿真结果采用先进的3D 图形方式显示,它还可产生等效电路模型,使商业用户能够长期采用全波技术,而不必一定使用专有仿 (二)SPECCTRAQuest Cade nee的工具采用Sun的电源层分析模块: Cade nee Design System 的SpeeetraQuest PCB信号完整性套件中的电源完整性模块据称能让工程师在高速PCB设计中更好地控制电源层分析和共模EMI 。 该产品是由一份与Sun Microsystems公司签署的开发协议而来的,Sun最初研制该项技术是为了解决母板上的电源问题。 有了这种新模块,用户就可根据系统要求来算出电源层的目标阻抗;然后基于板上的器件考虑去耦合要求,Shah表示,向导程序能帮助用户确定其设计所要求的去耦合电容的数目和类型;选择一组去耦合电容并放置在板上之后,用户就可运行一个仿真程序,通过分析结果来发现问题所在。 SPECCTRAQuest是CADENCE公司提供的高速系统板级设计工具,通过它可以控制与PCB layout相应的限制条件。在SPECCTRAQuest菜单下集成了一下工具: (1)SigXplorer 可以进行走线拓扑结构的编辑。可在工具中定义和控制延时、特性阻抗、驱动和负载的类型和数量、拓扑结构以及终端负载的类型等等。可在

PCB设计与信号完整性仿真

本人技术屌丝一枚,从事PCB相关工作已达8年有余,现供职于世界闻名的首屈一指的芯片设计公司,从苦逼的板厂制板实习,到初入Pcblayout,再到各种仿真的实战,再到今天的销售工作,一步一步一路兢兢业业诚诚恳恳,有一些相关领悟和大家分享。买卖不成也可交流。 1.谈起硬件工作,是原理图,pcb,码农的结合体,如果你开始了苦逼的pcblayout工作,那么将是漫长的迷茫之路,日复一日年复一年,永远搞不完的布局,拉线。眼冒金星不是梦。最多你可以懂得各种模块的不同处理方式,各种高速信号的设计,但永远只能按照别人的意见进行,毫无乐趣。 2.谈起EDA相关软件,形象的说,就普通的PROTEL/AD来说你可能只有3-6K,对于pads 可能你有5-8K,对于ALLEGRO你可能6-10K,你会哀叹做的东西一样,却同工不同酬,没办法这就是市场,我们来不得无意义的抱怨。 3.众所周知,一个PCB从业者最好的后路就是仿真工作,为什么呢?一;你可以懂得各种模块的设计原则,可以优化不准确的部分,可以改善SI/PI可以做很多,这往往是至关重要的,你可以最大化节约成本,减少器件却功效相同;二;从一个pcblayout到仿真算是水到渠成,让路走的更远; 三:现实的说薪资可以到达11-15K or more,却更轻松,更有价值,发言权,你不愿意吗? 现在由于本人已技术转销售,现在就是生意人了哈哈,我也查询过各种仿真资料我发现很少,最多不过是Mentor Graphics 的HyperLynx ,candense的si工具,

但是他们真的太low了,精确度和完整性根本不能保证,最多是定性的能力,无法定量。真正的仿真是完整的die到die的仿真,是完整的系统的,是需要更高级的仿真软件,被收购的xxsigrity,xx ansys,hspicexx,adxx等等,这些软件才是真正的仿真。 本人提供各种软件及实战代码,例子,从基本入门到高级仿真,从电源仿真,到ddr仿真到高速串行仿真,应有尽有,,完全可以使用,想想以后的高薪,这点投入算什么呢?舍不得孩子套不住狼哦。 所有软件全兼容32位和64位系统。 切记本人还提供学习手册,你懂的,完全快速进入仿真领域。你懂的! 希望各位好好斟酌,自己的路是哪个方向,是否想更好的发展,舍得是哲学范畴,投资看得是利润的最大化,学会投资吧,因为他值得拥有,骚年! 注:本人也可提供培训服务,面面俱到,形象具体,包会! 有购买和学习培训兴趣的请联系 QQ:2941392162

高速信号与信号完整性分解

什么是高速数字信号? 高速数字信号由信号的边沿速度决定,一般认为上升时间小于4倍信号传输延迟时可视为高速信号,而高频信号是针对信号频率而言的。高速电路涉及信号分析、传输线、模拟电路的知识。错误的概念是:8KHz帧信号为低速信号。多高的频率才算高速信号? 当信号的上升/下降沿时间< 3~6倍信号传输时间时,即认为是高速信号. 对于数字电路,关键是看信号的边沿陡峭程度,即信号的上升、下降时间,信号从10%上升到90%的时间小 于6倍导线延时,就是高速信号! 即使8KHz的方波信号,只要边沿足够陡峭,一样是高速信号,在布线时需要使用传输线理论。 信号完整性研究:什么是信号完整性? 时间:2009-03-11 20:18来源:sig007 作者:于博士点击:1813次 信号完整性主要是指信号在信号线上传输的质量,当电路中信号能以要求的时序、持续时间和电压幅度到达接收芯片管脚时,该电路就有很好的信号完整性。当信号不能正常响应或者信号质量不能使系统长期稳定工作时,就出现了信号完整性问题,信号完整性主要表现在延迟、反射、串扰、时序、振荡等几个方面。一般认为,当系统工作在50MHz时,就会产生信号完整性问题,而随着系统和器件频率的不断攀升,信号完整性的问题也就愈发突出。元器件和PCB板的参数、元器件在PCB板上的布局、高速信号的布线等 这些问题都会引起信号完整性问题,导致系统工作不稳定,甚至完全不能正常工作。 1、什么是信号完整性(Singnal Integrity)? 信号完整性(Singnal Integrity)是指一个信号在电路中产生正确的相应的能力。信号具有良好的信号完整性(Singnal Integrity)是指当在需要的时候,具有所必须达到的电压电平数值。主要的信号完整性问题包括反射、振荡、地弹、串扰等。常见信号完整性问题及解决方法: 问题可能原因解决方法其他解决方法 过大的上冲终端阻抗不匹配终端端接使用上升时间缓慢的驱动源 直流电压电平不好线上负载过大以交流负载替换直流负载在接收端端接,重新布线或检查地平面

信号完整性与高速PCB设计课程报告pdf

H a r b i n I n s t i t u t e o f T e c h n o l o g y 信号完整性与高速P C B设 计课程报告 院系:航天学院 班级: 1021202 姓名:凌霄飞鸿 学号: 任课教师:老师 哈尔滨工业大学 2012年

信号完整性与高速PCB设计 任课老师:老师 凌霄飞鸿 1.课程概述与心得体会: 随着系统设计复杂性和集成度的大规模提高,电子系统设计师们正在从事100MHZ以上的电路设计,总线的工作频率也已经达到或者超过50MHZ,有的甚至超过100MHZ。目前约50% 的设计的时钟频率超过50MHz,将近20% 的设计主频超过120MHz。 当系统工作在50MHz时,将产生传输线效应和信号的完整性问题;而当系统时钟达到120MHz时,除非使用高速电路设计知识,否则基于传统方法设计的PCB将无法工作。因此,高速电路设计技术已经成为电子系统设计师必须采取的设计手段。只有通过使用高速电路设计师的设计技术,才能实现设计过程的可控性。 印制电路板的抗干扰设计与具体电路有着密切的关系,这里仅就PCB抗干扰设计的几项常用措施做一些说明。 1.电源线设计 根据印制线路板电流的大小,尽量加粗电源线宽度,减少环路电阻。同时,使电源线、地线的走向和数据传递的方向一致,这样有助于增强抗噪声能力。 2.地线设计 在电子产品设计中,接地是控制干扰的重要方法。如能将接地和屏蔽正确结合起来使用,可解决大部分干扰问题。电子产品中地线结构大致有系统地、机壳地(屏蔽地)、数字地(逻辑地)和模拟地等。在地线设计中应注意以下几点:(1)正确选择单点接地与多点接地 在低频电路中,信号的工作频率小于1MHz,它的布线和器件间的电感影响较小,而接地电路形成的环流对干扰影响较大,因而应采用一点接地的方式。当信号工作频率大于10MHz时,地线阻抗变得很大,此时应尽量降低地线阻抗,应采用就近多点接地。当工作频率在1~10MHz时,如果采用一点接地,其地线长度不应超过波长的1/20,否则应采用多点接地法。 (2)数字地与模拟地分开。 电路板上既有高速逻辑电路,又有线性电路,应使它们尽量分开,而两者的地线不要相混,分别与电源端地线相连。低频电路的地应尽量采用单点并联接地,实际布线有困难时可部分串联后再并联接地。高频电路宜采用多点串联接地,地线应短而粗,高频元件周围尽量用栅格状大面积地箔。要尽量加大线性电路的接地面积。 (3)接地线应尽量加粗。 若接地线用很细的线条,则接地电位则随电流的变化而变化,致使电子产品的定时信号电平不稳,抗噪声性能降低。因此应将接地线尽量加粗,使它能通过三倍于印制电路板的允许电流。如有可能,接地线的宽度应大于3mm。 (4)接地线构成闭环路。 设计只由数字电路组成的印制电路板的地线系统时,将接地线做成闭路可以明显地提高抗噪声能力。其原因在于:印制电路板上有很多集成电路元件,尤其遇

信号完整性分析

信号完整性背景 信号完整性问题引起人们的注意,最早起源于一次奇怪的设计失败现象。当时,美国硅谷一家著名的影像探测系统制造商早在7 年前就已经成功设计、制造并上市的产品,却在最近从生产线下线的产品中出现了问题,新产品无法正常运行,这是个20MHz 的系统设计,似乎无须考虑高速设计方面的问题,更为让产品设计工程师们困惑的是新产品没有任何设计上的修改,甚至采用的元器件型号也与原始设计的要求一致,唯一的区别是 IC 制造技术的进步,新采购的电子元器件实现了小型化、快速化。新的器件工艺技术使得新生产的每一个芯片都成为高速器件,也正是这些高速器件应用中的信号完整性问题导致了系统的失败。随着集成电路(IC)开关速度的提高,信号的上升和下降时间迅速缩减,不管信号频率如何,系统都将成为高速系统并且会出现各种各样的信号完整性问题。在高速PCB 系统设计方面信号完整性问题主要体现为:工作频率的提高和信号上升/下降时间的缩短,会使系统的时序余量减小甚至出现时序方面的问题;传输线效应导致信号在传输过程中的噪声容限、单调性甚至逻辑错误;信号间的串扰随着信号沿的时间减少而加剧;以及当信号沿的时间接近0.5ns 及以下时,电源系统的稳定性下降和出现电磁干扰问题。

信号完整性含义 信号完整性(Signal Integrity)简称SI,指信号从驱动端沿传输线到达接收端后波形的完整程度。即信号在电路中以正确的时序和电压作出响应的能力。如果电路中信号能够以要求的时序、持续时间和电压幅度到达IC,则该电路具有较好的信号完整性。反之,当信号不能正常响应时,就出现了信号完整性问题。从广义上讲,信号完整性问题指的是在高速产品中由互连线引起的所有问题,主要表现为五个方面:

高速USB设计

高速USB2.0设备的PCB板设计 通用串行总线(Universal Serial Bus)从诞生发展到今天,USB协议已从1.1过渡到2.O,作为其重要指标的设备传输速度,从1.5 Mbps;的低速和12 Mbps的全速,提高到如今的480 Mbps的高速。USB接口以其速度快、功耗低、支持即插即用、使用安装方便等优点得到了广泛的应用。目前,市场上以USB2.0为接口的产品越来越多,绘制满足USB2.0协议高速数据传输要求的PCB板对产品的性能、可靠性起着极为重要的作用,并能带来明显的经济效益。 USB2.0接口是目前许多高速数据传输设备的首选接口,实践表明:在高速USB主、从设备的研发过程中,正确设计PCB板能充分发挥USB2.O高速性能。但是,若PCB板设计不当,则传输速率可能根本达不到预期目的,甚至会导致高速USB2.0设备只能工作在全速状态。 下面介绍USB2.0设备高速数据传输PCB板设计。 1 USB2.0接口差分信号线设计 USB2.0协议定义由两根差分信号线(D+、D-)传输高速数字信号,最高的传输速率为480 Mbps。差分信号线上的差分电压为400 mV,差分阻抗(Zdiff)为90(1±O.1)Ω。在设计PCB板时,控制差分信号线的差分阻抗对高速数字信号的完整性是非常重要的,因为差分阻抗影响差分信号的眼图、信号带宽、信号抖动和信号线上的干扰电压。差分线2D模型如图1所示。 差分线由两根平行绘制在PCB板表层(顶层或底层)发生边缘耦合效应的微带线(Microstrip)组成的,其阻抗由两根微带线的阻抗及其和决定,而微带线的阻抗(Zo)由微带线线宽(W)、微带线走线的铜皮厚度(T)、微带线到最近参考平面的距离(H)以及PCB板材料的介电常数(Er)决定,其计算公式为:Zo={87/sqrt(Er+1.41)]}ln[5.98H/(0.8W+T)]。影响差分线阻抗的主要参数为微带线阻抗和两根微带线的线间距(S)。当两根微带线的线间距增加时,差分线的耦合效应减弱,差分阻抗增大;线间距减少时,差分线的耦合效应增强,差分阻抗减小。差分线阻抗的计算公式为:Zdiff=2Zo(1-0.48exp(-0.96S/H))。微带线和差分线的计算公式在

千兆位设备PCB的信号完整性设计

千兆位设备PCB的信号完整性设计 本文主要讨论在千兆位数据传输中需考虑的信号完整性设计问题,同时介绍应用PCB设计工具解决这些问题的方法,如趋肤效应和介质损耗、过孔和连接器的影响、差分信号及布线考虑、电源分配及EMI控制等。 通讯与计算机技术的高速发展使得高速PCB设计进入了千兆位领域,新的高速器件应用使得如此高的速率在背板和单板上的长距离传输成为可能,但与此同时,PCB设计中的信号完整性问题(SI)、电源完整性以及电磁兼容方面的问题也更加突出。 信号完整性是指信号在信号线上传输的质量,主要问题包括反射、振荡、时序、地弹和串扰等。信号完整性差不是由某个单一因素导致,而是板级设计中多种因素共同引起。在千兆位设备的PCB板设计中,一个好的信号完整性设计要求工程师全面考虑器件、传输线互联方案、电源分配以及EMC方面的问题。 高速PCB设计EDA工具已经从单纯的仿真验证发展到设计和验证相结合,帮助设计者在设计早期设定规则以避免错误而不是在设计后期发现问题。随着数据速率越来越高设计越来越复杂,高速PCB系统分析工具变得更加必要,这些工具包括时序分析、信号完整性分析、设计空间参数扫描分析、EMC设计、电源系统稳定性分析等。这里我们将着重讨论在千兆位设备PCB设计中信号完整性分析应考虑的一些问题。 高速器件与器件模型 尽管千兆位发送与接收元器件供应商会提供有关芯片的设计资料,但是器件供应商对于新器件信号完整性的了解也存在一个过程,这样器件供应商给出的设计指南可能并不成熟,还有就是器件供应商给出的设计约束条件通常都是非常苛刻的,对设计工程师来说要满足所有的设计规则会非常困难。所以就需要信号完整性工程师运用仿真分析工具对供应商的约束规则和实际设计进行分析,考察和优化元器件选择、拓扑结构、匹配方案、匹配元器件的值,并最终开发出确保信号完整性的PCB布局布线规则。因此,千兆位信号的精确仿真分析变得十分重要,而器件模型在信号完整性分析工作中的作用也越来越得到重视。 元器件模型通常包括IBIS模型和Spice模型。由于板级仿真只关心输出管脚经过互联系统到输入管脚的信号响应,同时IC厂家不希望泄漏器件内部详细的电路信息,且晶体管级Spice模型仿真时间通常难以忍受,所以IBIS模型在高速PCB设计领域逐渐被越来越多的器件厂家和信号完整性工程师所接受。 对于千兆位设备PCB系统的仿真,工程师经常会对IBIS模型的精确性提出质疑。当器件工作在晶体管的饱和与截止区时,IBIS模型缺乏足够详细的信息来描述,在瞬态响应的非线性区域,用IBIS模型仿真的结果不能像晶体管级模型那样产生精确的响应信息。然而,对于ECL类型器件,可以得到和晶体管级模型仿真结果很吻合的IBIS模型,原因很简单,ECL驱动器工作在晶体管的线性区域,输出波形更接近于理想的波形,按IBIS标准可以得到较为精确的IBIS模型。 随着数据传输速率提高,在ECL技术基础上发展起来的差分器件得到很大发展。LVDS标准和CML等使得千兆位信号传输成为可能。从上面的讨论可知,由于电路结构和相应的差分技术应用,IBIS标准仍然适用于千兆位系统的设计。已发表的一些IBIS模型在2.5Gbps LVDS 和CML设计中的应用文章也证明了这一点。 由于IBIS模型不适用于描述有源电路,对于许多有预加重电路进行损耗补偿的Gbps器件,IBIS模型并不合适。因此,在千兆位系统设计中,IBIS模型只有在下列情况下才可以有效工作: 1.差分器件工作在放大区(线性V-I曲线) 2.器件没有有源预加重电路

PCB高速信号电路设计的三大布线技巧详解

PCB高速信号电路设计的三大布线技巧详解 PCB 板的设计是电子工程师的必修课,而想要设计出一块完美的PCB 板也并不是看上去的那么容易。一块完美的PCB 板不仅需要做到元件选择和设置合理,还需要具备良好的信号传导性能。本文将会就PCB 高速信号电路设计中的布线技巧知识,展开详细介绍和分享,希望能够对大家的工作有所帮助。 合理使用多层板进行PCB 布线 在PCB 板的实际设计过程中,大部分工程师都会选择使用多层板来完成高速信号布线工作,这种多层板既是必不可少的组成部分,也是帮助工程师降低电路干扰的有效手段。在利用多层板来完成PCB 的高速信号电路设计时,工程师需要合理的选择层数来降低印制板尺寸,充分利用中间层来设置屏蔽,实现就近接地,能有效降低寄生电感,缩短信号传输长度,降低信号间的交叉干扰等等,所有这些方法对高速电路的可靠性工作都是非常有利的。 除了上面所提到的几种利用多层板提升PCB 信号传输可靠性的方法外,还有一部分权威资料显示,同种材料时四层板要比双面板的噪声低20dB。引线弯折越少越好,最好采用全直线,需要转折,可用45 度折线或圆弧转折,可以减小高速信号对外的发射和相互间的耦合,减少信号的辐射和反射。 高速电路器件管脚间的引线越短越好 在进行PCB 高速信号电路的设计和布线过程中,工程师需要尽可能的缩短高速电路器件管脚之间的引线,以为引线越长,带来的分布电感和分布电容值越大,这将会导致高速电路系统发生反射、振荡等。 除了要尽可能的缩短高速电路元件管脚之间的引线之外,在PCB 布线的过程中,各个高速电路器件管脚间的引线层间交替越少越好,就是元件连接过程中所用的过孔越少越好。通常来说,一个过孔可带来约0.5pF 的分布电容,这将

高速PCB设计中的信号完整性和传输延时分析

第19卷 第2期 天 中 学 刊 Vol .19 No .2 2004年4月 Journal of Tianzhong Apr .2004 收稿日期:2004-02-10 作者简介:冯志宇(1972? ),男,河南正阳人,电子科技大学电子工程学院信号与信息处理专业硕士研究生. 高速PCB 设计中的信号完整性和传输延时分析 冯志宇 (电子科技大学,四川 成都 610054) 摘 要:信号完整性问题及由传输延时引起的时序问题是高速PCB 设计中的主要问题,借助功能强大的Cadence/SpecctraQuest 仿真软件,对高速信号线进行布局布线前仿真,可以发现和解决这些问题,从而缩短设计周期. 关键词:信号完整性;时序;仿真 随着IC 工艺的提高,驱动器的上升沿和下降沿越来越陡,由原来的十几ns 提高到几ns ,有的甚至达到几ps ,同时电子系统的时钟频率也在不断提高.对于低频电路设计而言,器件管脚间的逻辑连接可以看成是简单的线迹互联.但对频率超过50 MHz 的高频电路,互连关系必须按传输线考虑,由此产生的信号完整性问题及时序问题成为高速PCB 设计中的主要问题.借助功能强大的Cadence/SpecctraQuest 仿真软件对高速信号线进行布局布线前仿真,可以发现和解决这些问题,从而缩短设计周期. 1 高速移动接入系统的信号完整性问题 信号完整性(Signal Integrity )简称SI ,是指信号在信号线上的传输质量,主要包括反射、振荡、地弹、串扰等性能参数.信号具有良好的信号完整性是指当在需要的时候,具有所必需达到的电压电平数值.信号完整性是由板级设计中多种因素共同决定的. 图1所示是我们所设计的高速移动接入系统,其中虚线框中为该系统高速数据通路的中频和基带部分.A/D 部分通过采样、量化、编码将模拟中频信号转换成数字中频信号,然后利用DDC 部分对其进行混频(解调)、抽取、滤波,将中频带通信号混频成基带信号;DSP 模块负责完成基带信号的调制/解调、数据交织/解交织、数据编码/解码、数据纠错和检验、数据加密/解密、语音压缩/解压缩等; 图1 高速移动接入系统框图 DUC 和D/A 部分则是DDC 和A/D 部分的逆过程.该系统的中频部分既有频率较高的数字信号又有敏感度很高的模拟信号,基频部分DSP 与SDRAM 之间的数据交换速率高达100 Mb/s ,由此产生的信号完整性及时序问题十分突出. 在高速PCB 设计中,信号完整性问题是系统能否正常工作的关键因素之一.因此,有必要在布线前利用仿真软件对该高速系统进行关键信号线的仿真.当信号完整性满足要求后就可以进行时序分析 中图分类号:TN405.97 文献标识码:A 文章编号:1006-5261(2004)02-0018-04

五款信号完整性仿真分析工具

SI五款信号完整性仿真工具介绍 (一)Ansoft公司的仿真工具 现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 Ansoft的信号完整性工具采用一个仿真可解决全部设计问题: SIwave是一种创新的工具,它尤其适于解决现在高速PCB和复杂IC封装中普遍存在的电源输送和信号完整性问题。 该工具采用基于混合、全波及有限元技术的新颖方法,它允许工程师们特性化同步开关噪声、电源散射和地散射、谐振、反射以及引线条和电源/地平面之间的耦合。该工具采用一个仿真方案解决整个设计问题,缩短了设计时间。 它可分析复杂的线路设计,该设计由多重、任意形状的电源和接地层,以及任何数量的过孔和信号引线条构成。仿真结果采用先进的3D图形方式显示,它还可产生等效电路模型,使商业用户能够长期采用全波技术,而不必一定使用专有仿真器。 (二)SPECCTRAQuest Cadence的工具采用Sun的电源层分析模块: Cadence Design Systems的SpecctraQuest PCB信号完整性套件中的电源完整性模块据称能让工程师在高速PCB设计中更好地控制电源层分析和共模EMI。 该产品是由一份与Sun Microsystems公司签署的开发协议而来的,Sun最初研制该项技术是为了解决母板上的电源问题。 有了这种新模块,用户就可根据系统要求来算出电源层的目标阻抗;然后基于板上的器件考虑去耦合要求,Shah表示,向导程序能帮助用户确定其设计所要求的去耦合电容的数目和类型;选择一组去耦合电容并放置在板上之后,用户就可运行一个仿真程序,通过分析结果来发现问题所在。 SPECCTRAQuest是CADENCE公司提供的高速系统板级设计工具,通过它可以控制与PCB layout相应的限制条件。在SPECCTRAQuest菜单下集成了一下工具: (1)SigXplorer可以进行走线拓扑结构的编辑。可在工具中定义和控制延时、特性阻抗、驱动和负载的类型和数量、拓扑结构以及终端负载的类型等等。可在

100条使信号完整性问题最小化的通用设计原则

A. A.1一个网络中质量问题的最小化 策略——保持信号在整个路径中感受到的瞬态阻抗不变。 设计原则: 1、使用可控阻抗布线。 2、理想情况下,所有的信号应使用地电压平面作为参考平面。 3、如果使用不同的电压平面作为参考平面,则这些平面之间必须是紧耦合。为此,用最薄的介质材料将不同的电压平面隔开,并使用多个电感量晓得去耦合电容。 4、使用2D场求解计算给定特性阻抗的层叠设计规则,其中包括阻焊层和布线厚度的影响。 5、在点到点拓扑结构中,无论单向的还是双向的,都要使用串联端接策略。 6、在多点总线中要端接总线上的所有节点 7、保持桩线的时延小于最快信号的上升时间的20%。 8、终端电阻应尽可能接近峰壮焊盘。 9、如果10PF电容的影响不要紧,就不用担心拐点的影响。 10、每个信号都必须有返回路径,它位于信号路径的下方,其宽度至少是信号线宽的3倍。 11、即使信号路径布线绕道进行,也不要跨越返回路径上的突变处。 12、避免在信号路径中使用电器性能变化的布线。 13、保持非均匀区域尽量短。 14、在上升时间小于1NS的系统中,不要使用轴向引脚电阻,应使用SMT电阻并使其回路电感最小。 15、当上升时间小于150PS时,尽可能减小终端SMT电阻的回路电感,或者采用集成电阻以及嵌入式电阻。 16、过孔通常呈容性,减小捕获焊盘和增加反焊盘出沙孔的直径可以减小过孔的影响。 17、可以考虑给低成本线接头的焊盘增加一小电容来补偿它的高电感。 18、在布线时,使所有差对的差分阻抗为一常量。 19、在差分中尽量避免不对称性,所有部线都应该如此。 20、如果差分对中的线间距发生改变,也应该调整线宽来保持差分阻抗不变。 21、如果在差分对的一跟线上添加一根延时线,则应添加到布线的起始端附近,并且要将这一区域内的线条间进行耦合。 22、只要能保持差分阻抗不变,我们可以改变差分对紧耦合状态。 23、一般来说,在实际中应尽量视差分对紧耦合。 24、在决定到底采用边缘耦核差分还是侧向耦合差分对时,应考虑布线的密度、电路板的厚度等制约条件,以及销售厂家对叠层厚度的控制能力。如果作得比较好,他们是等效的。 25、对于所有的板级差分对,平面上存在很大的返回电流,所以要尽量避免返路径中的所有突变。如果有突变,对差分对中的每条线要做同样的处理。 26、如果接收器的共模抑制比很低,就要考虑端接共模信号。端接共模信号并不能消除共模信号,只是减小它的振铃。 27、如果损耗很严重,应使用尽可能宽的信号线,不要使用小于5MIL的布线。 28、如果损耗很严重,应使布线尽量短。 29、如果损耗很严重,尽量做到使容性突变最小化。 30、如果损耗很严重,设计信号过孔使其具有50欧姆的阻抗,这样做意味着可以尽

高速电子线路的信号完整性设计(一)

高速电子线路的信号完整性设计(一) 北京理工大学电子工程系于波 1、引言 当今电子技术的发展日新月异,大规模超大规模集成电路越来越多地应用到通用系统中。同时,深亚微米工艺在IC设计中的使用,使得芯片的集成规模更大。从电子行业的发展来看,1992年只有40%的电子系统工作在30MHz以上的频率,而且器件多数使用DIP、PLCC等体积大、管脚少的封装形式,到1994年已有50%的设计达到了50MHz的频率,采用PGA,QFP,RGA等封装的器件越来越多。1996年之后,高速设计在整个电子设计领域所占的比例越来越大,100MHz以上的系统已随处可见,Bare Die,BGA,MCM这些体积小、管脚数已达数百甚至上千的封装形式也已越来越多地应用到各类高速超高速电子系统中。图1所示为自80年代末IC封装的发展。 图 1 近年来IC封装的发展

由上图可见,IC芯片的发展从封装形式来看,是芯片体积越来越小、引脚数越来越多。同时,由于近年来IC工艺的发展,使得其速度越来越高。由此可见,在当今快速发展的电子设计领域,由IC芯片构成的电子系统是朝着大规模、小体积、高速度的方向飞速发展的,而且发展速度越来越快。这样就带来了一个问题,即电子设计的体积减小导致电路的布局布线密度变大,而同时信号的频率还在提高,从而使得如何处理高速信号问题成为一个设计能否成功的关键因素。随着电子系统中逻辑和系统时钟频率的迅速提高和信号边沿不断变陡,印刷电路板的线迹互连和板层特性对系统电气性能的影响也越发重要。对于低频设计,线迹互连和板层的影响可以不考虑,当频率超过50MHz时,互连关系必须以传输线考虑,而在评定系统性能时也必须考虑印刷电路板板材的电参数。因此,高速系统的设计必须面对互连延迟引起的时序问题以及串扰、传输线效应等信号完整性问题。 2、高速电子设计的板级信号完整性 处理高速数字系统的振铃和串扰问题一直是一个令人头疼的问题,特别是在今天,越来越多的VLSI 芯片工作在100MHz的频率以上,450MHz的CPU也将广泛应用,信号的边沿越来越陡(已达到ps 级),这些高速器件性能的增加也给高速系统设计带来了困难。同时,高速系统的体积不断减小使得印制板的密度迅速提高。比较现在新的PC主板与几年前的主板,可以看到新的主板上加入了许多端接。信号完整性问题已经成为新一代高速产品设计中越来越值得注意的问题,这已是毋庸置疑的了。 信号完整性(Signal Integrity,简称SI)是指在信号线上的信号质量。差的信号完整性不是由某一单一因素导致的,而是板级设计中多种因素共同引起的。主要的信号完整性问题包括反射、振铃、地弹、串扰等。 源端与负载端阻抗不匹配会引起线上反射,负载将一部分电压反射回源端。如果负载阻抗小于源阻抗,反射电压为负,反之,如果负载阻抗大于源阻抗,反射电压为正。布线的几何形状、不正确的线端接、经过连接器的传输及电源平面的不连续等因素的变化均会导致此类反射。

相关文档
最新文档