原煤仓变形原因分析与处理

原煤仓变形原因分析与处理
原煤仓变形原因分析与处理

原煤仓变形原因分析与处理1概况

沙角发电总厂C厂3台机组锅炉是美国ABB-CE公司生产的亚临界压力中间再热强制循环汽包炉CC+RR-70,四角偏置同心圆燃烧,配6套正压直吹式制粉系统,其中原煤仓的容积为1046m3,煤仓内径为7m,煤仓圆筒高24.3m,煤仓锥体高8.62m,每个煤仓储煤量约

800t。

2000年10月,在2号炉B煤斗处有也洞漏煤,后搭架到漏煤处,发现煤斗处有裂纹。经检查发现1号炉的A、B、C、D、E,2号炉的C、D、E、F,3号炉的A、B、C、E都有相同的缺陷,即煤斗圆筒内凹或外凸,钢板上有明显的皱折(见图1)。

图1煤斗缺陷示例

2原因分析

通过对2号炉各煤斗的现场检验与无损探伤,发现由于腐蚀造成的筒体减薄较严重,如在某些点厚度由10mm变成7.3mm,6mm变成4.26mm等。详细数据见表1。

表1各煤斗的损伤位置和程度

注:(1)筒体节级从上往下数,共13节。1~4节壁厚6mm,5~9节壁厚10mm,10~13节壁厚12mm。

(2)朝W西、N北(汽机侧)、E东、S南(锅炉侧)。

(3)损伤程度:I级,小量塑性变形,油漆变形开裂变色;Ⅱ级,宏观变形明显,一般为单一变形带;Ⅲ级,宏观变形严重,为多变形带交叉区。

经过对煤斗筒体设计、制造、安装及使用的资料查阅及分析,煤斗筒体采用三维壳单元(SHELL63),整改加筋部分采用三维梁单元(BEAM4),考虑到重力、温度、风载等因素的影响,对煤位在40%、60%等几种情况下的煤斗筒体进行对比分析。有关60%煤位的数据见表2。

表260%煤位的数据

项目

加筋前

加筋后

第四强度理论最大MISE应力/MPa 正常工作加温度升高10℃最大MISE 应力/MPa

最大形变/mm

筒体重量/t

抗弯刚度/比值

72.8 87.7

2.15 42 1 48.7 67

9.12

45

4

再经过有限元分析,发现筒体抗弯强度较弱,初步分析原因为:腐

蚀造成筒体减薄,在台风,温度等的作用下,结构局部屈曲。同时,煤斗的变形是在以侧向弯曲力为主,加之一定的轴向压力作用下的

局部屈曲失稳。

3处理方案

按照上面的分析,煤斗整改的思路应该是降低侧向载荷,增加抗弯

刚度,在降低侧向载荷实际较难操作的情况下,提出下面这个旨在

提高煤斗筒体纵、环向刚度的整改方案。具体为:在煤斗筒体上部

原环带之下、下部原筋板之上焊接8条纵向筋板,筋板断面为

12mm×120mm,在筒体一定位置焊接4条环向板筋,环筋断面同纵筋,纵、环筋板用三角筋板撑护,加筋材料采用Q235A(老标准的A3),焊条采用与加筋材料相应的低氢焊条。(何望飞管世强)

变形观测与数据处理复习

《变形观测与数据处理》考试复习要点 题型:填空题(20分) 名词解释(10分) 简答(20分) 综合题(问答、计算、填表、绘图等)(50分) 关注课后思考题 第一章概述:变形监测意义与目的;监测周期、精度;监测点、基准点布设原则; 变形观测的定义 通过一定的观测方法和仪器测定构筑物或 工程建筑物各种变形量大小的工作。 变形观测的目的: 1、分析与评价建筑物的安全状态 2、验证设计数据 3、反馈设计施工质量 4、研究正常变形规律和预报变形的方法 ◆安全:其目的是监测建(构)筑物在施工 过程中和竣工后,投入使用中的安 全情况; ◆设计施工:验证地质勘察资料和设计数据 的可靠程度,以改进设计理论和施 工方法;

◆ 科研:研究变形的原因和规律,建立正确 的预报模型,准确的分析预报。 变形观测的意义 1、安全 2、验证与改进设计 3、科学研究 对于机械技术设备:为改进提供技术数据 对于滑坡:成因预报 对于矿山:开挖量加固方法 对于地壳运动: 监测周期:根据变形物的大小、速度而制定出的监测频次。 1)当埋设的沉降观测点稳固后,在建筑物主体开工前,进行第一次观测。 2)在建(构)筑物主体施工过程中,一般每盖1~2层观测一次。如中途停工时间较长,应在停工时和复工时进行观测。 3)当发生大量沉降或严重裂缝时,应立即或几天一次连续观测。 4)建筑物封顶或竣工后,一般每月观测一次,如果沉降速度减缓,可改为2~3个月观测一次,直至沉降稳定为止。 观测点(监测点/工作点)布设方案 一般原则: ? 反应整体变形(均匀布点); ? 变形量大的地段多布点; ? 工程重点地段多布点; ? 其它原因专门提出; ? 有利于观测 1.3.1 精度确定依据 具体工程建筑物的允许误差大小、变形 速度、变形观测的目的 一般而言:从安全角度:观测中误差应小于 允许变形量的1/10~1/20;典型精度±1mm 或相 对精度为10-6 从科学研究角度:应尽量提高精度 2、精度确立原则: 实用、经济、科学、实际 沉降观测的精度应根据建筑物的性质而定。 1)多层建筑物的沉降观测,可采用DS 3水准仪,用普通水准测量的方法进行,其水准路线的闭合差不应超过 (n 测站数)。 2)高层建筑物的沉降观测,则应采用DS 1精密水准仪,用二等水准测量的方法进行,其水准路线的闭合差不应超过: 沉降监测方法; 观测时先后视水准基点,接着依次前视各沉降观测点,最后再次后视该水准基点,两次后视读数之差不应超过±1mm 。 mm 0 .2n ±mm 0.1n ±

某基坑地面沉降成因分析

某基坑地面沉降成因分析 The analysis of the ground settlement of a pit 胡振烽(福建省第五建筑工程公司362000) [提要]针对泉州市某基坑地面沉降过大的现象,分析相关的影响因素,并得到一些实用的体会。 [关键词]基坑支护;地面沉降;被动区加固;时间效应 Abstract: A ccording to the excessive ground settlement of a pit in QuanZhou, in this paper some relative causes is analyzed and some experience is gained. Keywords: pit retaining; ground settlement; reinforcement for the passive zone; temporal effect 1 工程概况 2 2.1 2.2 动区6φ θ=20 2.3

用二次注浆工艺。图2支护结构设计图 3 基坑监测 在地下室施工期间对基坑进行监测,监测内容主要包括沉降观测和支护结构水平位移观测。监测结果显示,在基坑开挖期间(4月13日至7月22日),基坑支护结构最大侧向位移为20.7mm,3)。

设计中采用基坑内被动区加固以提高围护墙被动土压力区的土体强度和刚性。在基坑抗隆起稳定验算中,对于一般的粘性土,计算按同时考虑c 、φ的抗隆起法[1]。当仅按原状土参数计算,kPa c s 1.11=,?=9.6s φ,抗隆起系数1.186.0≤=s K 。但按被动区加固,kPa c sp 45=,?=9.6sp φ,计算得1.1=s K ,按照规范符合要求。从图4中可以看出:坑内没有被加固的c 区仍处在滑动面以内,显然就会降低抗隆起安全系数,增大土体位移和地面沉降。因此,当嵌固深度下部存在软弱土层时,加固和改善基坑土体的范围尚应考虑产生深部土层滑动范围。 4.2考虑时间效应影响 力学分析及工程实践表明基坑支护施工与地层位移之间,存在一定程度的时间效应。尤其对于淤泥质粘土及软塑粘土,流变性就更明显。由于该基坑面积较大,滑动临空面就大,并且自开挖到设计标高后施工缓慢,至浇好钢筋混凝土底板历时30天(5月10日至6月10日),过程曲线中出现平缓段(5月10日开始),但10天后又出现上升段,直至第57日才逐渐稳定。 综合分析可知,沉降量过大主要是基坑施工速度慢,暴露时间长且面积大,造成基坑被动承压区土体流变的速率和幅度都比较大,亦将增大墙体被动压力区的土体位移和墙外土体向坑内的位移,因而增加地表沉降。按照时空效应法[1],最大地面沉降为v v v δδ δ?+=',非施工因素所增加的施工沉降量∑∑+=?H K t a i i i v αδ,式中i a 某道支撑拖延一天而引起的沉降量(mm/d),i t 拖延天数,i K 某种施工因素所引起的沉降增量系数,H 基坑开挖深度,沉降与深度的关系系数α可根据基坑稳定系数确定。经计算可得mm v 6.395000%9.02.03002.1=??+?=?δ。 4.3考虑降水固结影响 基坑施工期间抽排水同样会引起地面沉降。抽排水过程中在基坑外侧形成漏斗曲线,在降水曲线范围内,饱水地层(如淤泥夹细砂)水位下降形成的渗水附加有效应力所引起土体的压缩,即为渗透固结沉降。 按照土的附加压力计算法[3],土的沉降ε ω+???=1a H P ,式中P ?为土壤骨架的附加压力,H 为土的压缩层厚度,a 为土的压缩系数,ε为孔隙比。沉降计算时主要考虑含水量大,压缩性大的软土层的固结沉降,即淤泥和淤泥夹砂层,经计算可得总沉降范围为8.07~28.06cm ,按照经验抽水20天的沉降约占总沉降量的25%左右,即2.0~7.0cm 。 除以上所述外,还有其他相关的因素影响地面沉降。如支护桩的桩周土和桩端持力层承载能力差,基坑开挖期间支护挡墙在自重和地面超载作用下会产生附加地面沉降。 5 体会 (1)围护结构设计时除应进行稳定性验算外,还需要按照极限平衡设计方法验算围护结构的入土深度,并确定坑内被动区加固范围,以有效减少基坑隆起量,避免出现隆起破坏。 (2)在具有流变性的地层中进行基坑施工,应充分发挥和利用时间效应来控制基坑变形,做到精心组织,科学施工。

变形测量技术总结

变形测量技术设计书

第一部分、测量项目概述 一、任务来源 为了保证黄河水利职业技术学院的建筑物安全,小组接到了对10、11宿舍楼建筑物垂直度监测的任务。 该几栋楼建筑地基为中密卵石土,属中压缩土,地基设计等级为乙级,建筑物变形测量的级别按《建筑变形测量规范》JGJ 8-2007第3.0.4条的规定为二级,沉降观测精度指标为“观测点测站高差中误差为±0.5mm”。 测区概况 河南省开封市东京大道西段(黄河水利职业技术学院新校区); (4)测区内地势平坦,地形并不复杂,但杂草较多。 (5)黄河水院内设有小卖部食堂开水房洗浴中心理发店住宿区,基本符合一般城市生活标准。 测量现有2011年生产的1:500数字化地形图,其坐标北京坐标系,高程为1985年国家高程基准。经现场踏勘,该地形图内测区现有地形基本没改变,可作高程基准点点位设计用。 二、测量项目内容 按照委托方要求,测量项目内容为: 10#、11#楼施工期、使用期头三年的建筑物沉降测量: 沉降测量周期为两天,每两天观测一次,工期为一周共测量测量2次。 三、测量项目所执行的技术标准 建筑物沉降测量依据《建筑变形测量规范》JGJ 8-2007执行;

建筑物垂直度测量依据《工程测量规范》GB50026—2007中8.3.11相关内容执行。 第二部分设计方案 一、高程基准点的布设与测量设计 1、高程基准点应距建筑物施工场地有一定距离,又能保证用较短的水准路线连测到高程工作基点,更重要的是要稳固和安全。根据现场踏勘,建筑物施工场地东面为宿舍区,人员较复杂,很难保证点位稳固和安全,水准路线增长,宿舍区内人员较复杂,点位安全难以保障,因此,我们将高程基准点选择在西面的环路边,且满足《建筑变形测量规范》JGJ 8-2007 “高程基准点点位与邻近建筑物基础最大宽度的2倍”的要求。 2、高程控制网测量方案及点位埋设要求 闭合的水准路线组成高程控制网,为什么我们要布似乎多于的宿舍楼高程基准点呢?一是宿舍楼东面无可靠的布点位置,二是多一组高程基准点能使基准点更安全,不致于发生被破坏后无法实施沉降观测的情况,三是便于对基准点的稳定性进行检验。因此,高程控制网测量时,环路高程基准点为起点,先设站测量两个基点的高差后,再以该站测向工作基点, 高程控制系统采用1985国家高程基准,起算数据从施工控制网引测。 高程基准点的布设及高程控制网测量路线见《工程平面位置图及基准点分布图》 根据《建筑变形测量规范》4.4.1第2、3条的规定,高程控制网水准支线应进行往返测,水准测量作业的基本方法应符合国家标准《国家一、二等水准测量规范》GB/T12897—2006相应规定。

建设工程建筑变形测量监测方案

精品文档 。 - 1 -欢迎下载 1、工程概况 拟建工程位于**市**区胜利和公园路交汇处东北侧,西邻度假村,南面和东面邻动物园。场地内原有建筑物已拆除,南侧偏西残留一小山丘,四周均已形成3~7m 高的较陡人工边坡。基坑开挖前将高出基坑顶面设计标高的土坡、山丘进行平整,后进行开挖。工程基坑底面标高分为34.00m 、33.50m 、31.20m ,基坑顶面标高为43.00m 至35.50m 。本工程采用放坡支护方案,基坑安全等级为三级。 地上为2~16层建筑,地下室1层,地下室埋深5.5m 。本工程主体结构采用天然地基下的扩展基础,局部采用高强混凝土预应力PHC 管桩基础。建筑主体分为:A 组团办公楼;B 组团餐厅;C 、D 、E 组团公寓;F 组团图书馆。 2、执行的标准和技术依据 ①《工程测量规范》(GB50026—2007); ②《国家一、二等水准测量规范》(GB12897—2006); ③《建筑变形测量规范》(JGJ8—2007); ④《建筑基坑工程监测技术规程》(GB50497-2009) ⑤《建筑基坑支护技术规程》(JGJ120-2012) ⑥《**市基坑支护技术规范》(SJG05-2011) ⑦委托人及设计单位有关技术要求; **建筑设计研究院的基坑支护图纸,基坑监测要求。 **建筑设计研究院的建筑物沉降观测监测要求。 ⑧《测绘产品检查验收规定》(CH1002—95);

**建设工程建筑变形监测监测方案 3、监测实施方案 3.1、监测流程 本工程监测工作按以下流程进行。

精品文档 。 - 3 -欢迎下载 3.2、实施方案 3.2.1、监测点位埋设 本工程的基坑监测部分共需埋沉降观测基准点3个,位移观测基准点3个,基坑顶沉降、位移监测点29个,建筑主体沉降监测点149个(办公楼沉降监测点42个、餐厅沉降监测点14个、公寓组团一沉降监测点24个、员公寓组团二沉降监测点24个、公寓组团三沉降监测点24个、图书馆沉降监测点12个、室外连廊沉降监测点3个、地下室沉降监测点6个)。 3.2.2、监测频率与周期 在工程施工过程中,按以下频率进行监测。 (1)基坑部分 ①基坑开挖前,各监测点采集稳定的初始值,且不少于2次; ②在基坑开挖过程中,监测频率为3天/次,结构施工为7天/次;基坑填至±0.00后停止监测。 ③当变形超过有关标准或场地条件变化较大时,进行加密监测,观测时间间隔现场定; ④当有危险事故征兆时,进行连续监测。 (2)建筑主体部分 ①观测工作从基础施工完成后即开始监测,建筑物每升高2层观测一次; ②结构封顶后每月观测一次; ③工程全部竣工后第一年每三个月观测一次; ④第二年每半年观测一次,以后每年一次,直到沉降变形稳定为止。 3.2.3、信息反馈 在工程的监测过程中,监测数据报送的的及时性是发挥监测工作作用的一个重要因素,包括监测快报、周报、月报等。

基坑变形监测及变形机理与规律分析研究

基坑变形监测及变形机理与规律分析研究 【摘要】自改革开放以来,我国的经济得到了飞速的发展,与此同时,高层建筑的数量也在不断增加,这就使建筑基坑工程的开挖深度不断加深、施工难度越来越大,由此基坑的变形监测工作显得尤为重要。所以,本文首先对基坑的变形监测进行了概述,然后通过分析基坑变形的原因和机理,最后总结了基坑变形的规律,为正在从事基坑变形监测的工作人员提供一些参考。 【关键词】基坑;变形监测;变形机理;规律分析 1 前言 在经济高速发展的大背景下,在建筑工程当中出现了越来越多的高层建筑,由此也使得建筑的基坑逐渐朝着深开挖、工作面较窄的方向发展。目前,基坑工程的设计、施工和监测被称为保证基坑工程质量安全的三大基本要素,其中基坑工程的监测包含基坑的变形监测、地下水动态检测和应力检测。由于在基坑的开挖过程中,开挖深度越深,土体原有的平衡被破坏的越严重,因此在土的应力发生变化之后,其支护结构也发生变形,这就容易导致建筑的周边地面产生不均匀沉降的现象,并且在这些现象周而复始、相互影响的作用下,严重威胁着整个工程的施工顺利进行,以及周围临近建筑和基础设施的安全。除此之外,建筑基坑的变形与周围的环境、天气情况、基坑的开挖深度以及开挖方法等诸多因素有关,因此只有对其进行变形监测,才能够实时发现基坑在开挖过程中发生的变化,及时对造成的危险进行预防,避免工程事故的发生。鉴于此,基坑的变形监测是基坑工程开挖过程中不可或缺的重要步骤,加强对于基坑的变形监测研究十分重要。 2 基坑的变形监测 2.1 基坑变形监测的重要作用 在改革开放之前,我国建筑的基坑都比较浅,因此基坑技术并没有得到发展,但是近年来,随着高层建筑的不断涌现,深基坑的数量不断增加,因此对于深基坑的变形监测也得到了施工人员的高度重视。尤其是在大型的建筑工程中,很难单纯的从理论上对基坑的数据进行分析预测,只有将理论、经验和检测相互结合,才能够保证工程的顺利实施。因此,开展基坑变形的现场检测具有非常重要的意义,具体分析如下:首先,基坑的变形监测为工程的实施提供了实时的动态信息。由于基坑在开挖过程中常常受到周边环境、天气等因素的影响,其变化无规律可循,所以容易对周围的建筑物和基础设施造成一定的伤害,一旦危险发生则可能会造成不可挽回的损失。鉴于此,这就需要对施工现场的情况进行实时的检测,从而掌

××工程变形监测技术设计书

××工程变形监测技术设计书 班级:测绘B091 设计人: 学号: 2012年12月15日

第一部分概况 1.1 工程概况 该项目基坑开挖较深,并且开挖处距离水街已有建筑、走马河堤岸较近,有可能扰动基坑周围的地质结构,容易导致基坑周边的基坑墙体出现坍塌,从而影响施工安全,还有可能扰动紧邻基坑的建筑物出现变形。按照规定应对都江堰市水街基坑施工过程中基坑边缘的水平位移和沉降以及周边建筑物的沉降进行观测,从而对基坑以及基坑周边建筑物的安全做出判断,达到为施工决策服务和施工安全的目的。 1.2 任务概况 ××市××公司,拟对××市水街基坑项目基坑开挖过程中,基坑边缘的水平位移、垂直位移以及周边建筑物、构筑物基础沉降情况进行监测,以监视施工过程中基础变形的大小和规律,从而确保基坑和周边建筑物施工过程中的质量和安全,并验证有关设计参数。 1.3 技术依据 1.××水街总平面图.2012年12月; 2.建筑变形测量规程JGJ 8-2007.(中华人民共和国行业标准); 3.工程测量规范GB50026-2007.(中华人民共和国国家标准); 4.国家一、二等水准测量规范GB/T12897-2006.(中华人民共和国国家标准);第二部分水平位移监测方案设计 2.1 基准点与监测点的位置设计与埋设 为监测××市水街基坑边缘的水平位移,根据基坑周围的地形情况,拟在基坑附近稳定的地面上布设3个基坑边缘水平位移监测的基准点,基准点采用常规刻有十字的地面测量标志。 水平位移监测点直接布设在基坑周边抗滑桩外侧1m至2m的地方,拟在××市水街基坑边缘布置16个基坑安全监测的监测点,监测点也采用常规地面测量标志,水平位移监测点点位布置及编号见后附图1所示。 2.2 监测方法及其精度设计

庭住宅小区变形监测设计方案

嘉悦江庭住宅小区变形监测实施方案 中国建筑西南勘察设计研究院有限公司 2016年3月20日

重庆巴南万达广场建筑物沉降监测实施方案 总经理:赵翔 总工程师:康景文 审定:刘兴国 审核:唐传汤 项目负责:唐传汤 方案编写:郭建鹏 中国建筑西南勘察设计研究院有限公司 2016年3月20日

目录 1.工程概况 (1) 2.工程地质条件 (1) 2.1气象水文 (1) 2.2地形地貌 (2) 2.3地质构造 (3) 2.4地层岩性 (3) 2.4.1第四系全新统(Q4) (3) 2.4.2侏罗系中统上沙溪庙组(J2S) (4) 3.方案编制依据 (5) 4.监测方案 (5) 4.1监测方案设计原则 (5) 4.1.1系统性原则 (5) 4.1.2可靠性原则 (5) 4.1.3与建筑物设计相结合的原则 (6) 4.1.4关键部位优先、兼顾全面的原则 (6) 4.1.5与施工方法、工况相结合的原则 (6) 4.1.6经济合理原则 (6) 4.1.7方便实用原则 (7) 4.2监测目的 (7) 4.3监测内容 (8) 4.4监测要求 (8) 4.5监测等级 (9) 4.6监测周期及频率 (9) 4.6.1监测周期 (9) 4.6.2监测频率 (10) 5.基准控制点及监测点的布设 (10) 5.1控制基准网的布设 (10) 5.2监测点布置原则、要求 (11) 5.3观测方法与精度要求 (12) 6.监测数据分析及预警 (15) 6.1监测数据分析 (15) 6.1.1数据采集 (15) 6.1.2数据整理 (15) 6.1.3数据分析 (15) 6.2监测预警 (16) 6.2.1监测预警值 (16)

边坡变形监测方案实施及数据处理分析

边坡变形监测方案实施及数据处理分析 【摘要】边坡工程施工过程中,由于填挖面大,引起周边环境变形的可能性就高,需要对边坡进行有效的变形监测,针对变化及时采取一些方法处理,以保证设施的安全。这种项目就需要正确地采用一个合理的监测方案,对数据处理、分析。本文结合已完成项目的实例,对边坡进行水平位移和沉降监测,采用监测方法为精密二等水准、极坐标法,并对其进行分析。 【关键词】变形监测;基准网;变形点;边角网;极坐标法;闭合水准路线 1 工程概况 某变电站东南侧边坡于2011年发生滑坡,后采用42根抗滑桩进行加固处理。根据施工单位的反映,抗滑桩施工2012年3月施工完毕后至2012年5月初,抗滑桩发生位移,附近水泥地面发现裂缝,呈放大趋势。为了准确了解抗滑桩变形情况,要求对桩顶水平及垂直位移进行变形监测。 2 监测方案的实施 2.1 基准控制点和监测点的布设 2.1.1 基准网的建立 选择通视良好、无扰动、稳固可靠、远离形变护坡高度3倍即45m外比较稳定的地方埋设四个工作基点,其中三个工作基点A1、A2、A3采用有强制归心装置的观测墩,照准标志采用强制对中装置的觇牌。A2、A3为观测墩,地面高度约1.2m,埋深至基岩位置,A4为主要检核点,埋设在加固坎上,地质较为稳定。 A3、D12、SZ1为沉降基准点,D12在是4×4m的高压电塔加固水泥墩上,建成已超过一年,SZ1在另一电塔水泥墩上,墩台3.5×3.5m,建成时间超过三年,非常稳固。 2.1.2 变形点的建立 变形点应布置在边坡变形较大并能严格控制变形的边坡边沿位置。在边坡顶上布置27个变形监测点,编号分别为东侧为1-27。用膨胀螺栓垂直植入护坡混凝土中,螺栓孔深不小于100mm,露出地面30-80mm,用红色油漆在螺栓上做标记,并将螺栓顶部磨半圆。 基准点与各点位埋设完毕等候5天后,水泥凝固稳定后方可开始进行观测。 2.2 监测精度及频率要求

基坑变形稳定性的分析

基坑变形稳定性的分析 关键词:变形监测监测技术监测网研究 随着城市建设的发展,目前各类用途的地下空间已在各大中城市中得到开发利用,地下工程建设项目的数量和规模也迅速增大,如高层建筑物基坑、大型管道的深沟槽、越江隧道的暗埋矩形段及地铁工程中的车站深基坑等。基坑工程是一种临时性工程,与地区性岩土性质有关。基坑工程造价高,并且临近人口稠密区的狭小场地,在岩土性质千变万化,软土、高水位及其他复杂条件下,对周边建筑物、地下构筑物及管线安全造成严重威胁。因此,基坑安全监测反馈的信息化施工应运而生。 基坑的变形预测是基坑设计和施工的重要补充手段。通过预测数据不断调整优化设计从而达到信息化施工的目的,这充分体现了“设计一施工一设计”的科学化施工管理模式。归纳起来基坑变形监测的目的主要为: (1)为信息化施工提供依据。通过监测随时掌握岩土层和支护结构内力、变形的变化情况以及周围环境中各种建筑、设施的变形情况,将监测数据与设计值进行对比、分析,以判断前步施工是否符合预期要求,确定和优化下一步施工工艺和参数,以达到信息化施工目的,使得监测成果成为现场施工工程技术人员作出正确判断的依据。 (2)为基坑周边环境中的建筑、各种设施的保护提供依据。通过对基坑周边建筑、管线、道路等的现场监测,验证基坑工程环境保护方案的正确性,及时分析出现的问题并采取有效措施,以保证周边环境的安全。 (3)为优化设计提供依据。基坑工程监测是验证基坑工程设计的重要方法,设计计算中未曾考虑或考虑不周的各种复杂因素,可以通过对现场监测结果的分析、研究,加以局部的修改、补充和完善,因此基坑工程监测可以为动态设计和优化设计提供重要依据。 一、基坑变形监测研究现状 随着国民经济的发展,特别是近我国大型基础设施、城市高层建筑、地铁等建设规模的不断增大,城市用地日趋紧张。为提高土地的空间利用率,地下室从一层发展到多层,但往往基坑工程周围建筑设施密集,施工条件复杂,因此,无论在国内还是国外,大型基坑变形预测与控制是岩土工程领域的研究热点之一。变形监测的研究,主要围绕监测技术、监测数据的分析处理这两个方面。 1、变形监测技术 科学技术的进步,特别是测量技术和设备以及自动控制技术的发展,基坑工程监测技术亦向自动化和高精度方向不断发张。在过去的二十多年里,各类新型

(完整word版)建筑物沉降观测技术设计书

晋城市城市供水管网提升工程供水站建筑物沉降观测方案 山西太行矿业工程技术有限公司 二O一七年八月

晋城市城市供水管网提升工程供水站建筑物沉降观测方案 方案编写人:李鹏飞 审核人:王青懿 总工:江爱国 单位负责人:冯小华 山西太行矿业工程技术有限公司 二O一七年八月

目录 一、工程基本情况 (1) (一)工程概况 (1) (二)目的与任务 (1) 二、编制依据 (2) 三、沉降观测方案 (2) (一)沉降观测精度、时间、次数: (2) (二)基准点和观测点的布设 (4) (三) 沉降观测设备仪器、技术要求及控制要点 (4) (四)点位的埋设和施测要点 (6) (五)施测方法 (7) 四、沉降观测提交的成果资料 (8) 五、质量控制措施 (8) 六、观测点的保护 (8)

建筑沉降变形观测方案技术设计书 一、工程基本情况 (一)工程概况 晋城市城市供水管网提升工程位于晋城市北石店镇畅安路以东,陵沁路以南,场地南侧为城市规划道路,拟建场地总占地面积6930m2,建筑用地6300m2,道路用地630m2。该工程拟建建筑物包括:调度中心、泵房、维修车间、消毒间、预留滤池、吸水井及清水池,均为1-2层建筑,其中业务用房占地面积613.53 m2,建筑高度5.25 m;泵房占地面积283.81 m2,建筑高度6.15 m;维修车间占地面积152.51 m2,建筑高度4.35m;消毒间占地面积159.25 m2,建筑高度4.35m;吸水井占地面积120 m2,地下高度4.0m,地上高度1.0m;预留滤池占地面积120 m2;清水池一占地面积259.93m2;清水池二占地面积259.79m2。 该工程设计单位为晋城市规划设计研究院,监理单位为德圣工程有限公司,施工单位为山西省工业设备安装集团公司,于2017年4月5日开工建设,主要建筑物含泵房地下一层、地上一层、维修车间、消毒间、业务用房一层。 (二)目的与任务 本次设计的目的及任务是选择安全可靠,经济合理的方案。为了保证建(构)筑物的使用寿命和建(构)筑物的安全性,避免因沉降原因造成

变形测量方案设计来源样本

变形测量方案设计来源:Thea 更新: /3/21 编辑: 花开依然爱 1基本要求 变形测量工作开始前, 应收集相关的地质和水文资料及工程设计图纸, 根据变形体的特点、变形类型、测量目的、任务要求以及测区条件进行施测方案设计, 确定变形测量的内容、精度级别、基准点与变形点布设方案、观测周期、观测方法和仪器设备、数据处理分析方法、提交成果内容等, 编写技术设计书或施测方案。 变形测量的平面坐标系统和高程系统一般应采用国家平面坐标系统和高程系统或所在地方使用的平面坐标系统和高程系统, 但也可采用独立系统。变形观测周期的确定应以能系统地反映所测变形体变形的变化过程、且不遗漏其变化时刻为原则, 并综合考虑单位时间内变形量的大小、变形特征、观测精度要求及外界因素影响情况。 在变形测量过程中, 当出现下列情况之一时, 应即刻通知工程建设单位和施工单位采取相应的措施: (1)变形量达到预警值或接近极限值; (2)变形量或变形速率出现异常变化; (3)变形体、周边建(构)筑物及地表出现异常。如裂缝快速扩大等。 2变形测量等级与精度 当前一般认为, 如果观测目的是为了使变形值不超过某一允许的数值从而确保建筑物的安全, 则其观测的中误差应小于允许变形值的1/10~1/20; 如果观测的目的是为了研究其变形过程, 则其观测精度还应更高。 现行国家标准《工程测量规范》(GB 50026- )规定的变形监测等级和精度要求如表2-8-1所示。 需要注意的是, 表2-8-1中, 变形点的高程中误差和点位中误差, 系相对于邻近基准点而当水平位移变形测量用坐标向量表示时, 向量中误差为表中相应等级点位中误差的倍。 对于变形体是建筑物的情况, 根据现行《建筑变形测量规范》(JGJ8-- ), 变

基坑变形监测方案 (1)

佳·克拉项目 基坑变形监测方案 编制: 甘肃统建建筑装饰工程集团有限公司 佳·克拉项目部 二○一七年九月二十日

目录

附图一:基坑监测点平面布置图

一、编制依据 1、佳·克拉基坑开挖图; 2、佳·克拉岩土工程勘察报告; 3、兰州理工大学建筑勘察设计院《佳·克拉项目基坑支护结构设计》《佳·克拉项目基坑降水设计》; 4、《工程测量规范》GB50026-2007; 5、《建筑工程施工质量验收统一标准》GB50300-2013; 6、《湿陷性黄土地区建筑基坑工程安全技术规程》JGJ167-2009; 7、《建筑基坑工程检测技术规范》GB50497-2009; 8、《建筑变形测量规范》JGJ8-2007; 9、基坑监测强制性条文。 二、工程概况 (一)工程简介 工程名称:佳·克拉。 工程地点:拟建场地位于甘肃省天水市秦州区吴家崖村,场地北邻吴家崖村田地。东侧为吴家崖村,南临山水嘉园1#地块,西临佳·水岸华庭C地块。拟建场地近南北宽约,东西长约。 本工程±绝对标高为。地下二层,地上A塔十八层,B塔十五层,商铺为地上三层。结构形式主楼为剪力墙结构,裙楼为框架结构。本工程基础采用筏板,东塔筏板厚度为1800mm,开挖深度为;西塔筏板厚度为1500mm,开挖深度为,,商铺为300厚的防水板,开挖深度为。 本基坑安全级别属于一级基坑。

(二)地层岩性 在勘察深度范围内,拟建场地地层自上而下依次分布为: al):该层分布于整个勘察场地,属第四系冲积产物;黄褐色,坚硬-硬塑; ①粉质粘土(Q 4 土质均匀,含少量植物根系和少量泥岩碎屑,孔隙较发育,有光泽,无瑶震反应,干强度中等,韧性一般,层厚为~,层面标高~。 al+pl):该层除区域缺失外,基本分布于整个勘察场地,冲、洪积成因,青灰色, ②圆砾(Q 4 重型动力触探试验修正值=~击,中密-密实,接触排列,磨圆度较好,颗粒形状呈圆状-亚圆状,级配较好,颗粒间充填物以中粗砂为主,含少量粉土,骨架颗粒成分主要为变质岩、石英岩和花岗岩等,中风化,圆砾一般粒径为~,偶含卵石及漂石。层面埋深~,厚度~,层面标高~。 ③强风化泥岩(N):该层分布于整个场地,半成岩,褐红色-灰绿色,微裂隙及风华裂隙较发育,中密-密实,矿物成分以蒙脱石、绿泥石,高岭石、白云母等为主,泥钙质胶结,碎屑结构,中厚层状构造,岩芯呈短柱状,具有遇水易软化的特点,强风化泥岩岩体基本质量等级Ⅴ级。层面埋深~,厚度~,层面标高~。 ④中风化泥岩(N):该层分布整个场地,半成岩,褐红色-灰绿色,见微裂隙,致密;矿物成分以蒙脱石、绿泥石、高岭石、白云母、长石、石英等为主,泥钙质胶结,碎屑结构,巨厚层状构造,岩芯呈短桩状,具有遇水易软化的特点,未经扰动时坚硬,岩体基本质量等级为Ⅳ级。层面埋深~,勘察厚度~(未揭穿),层面标高~。 (三)气象 天水市气候类型属暖温带轻冰冻中湿区,据天气气象局资料,本区多年平均气温℃,极端最高气温℃,极端最低气温℃,历年最冷月相对湿度平均62%,最热月平均湿度73%,年最大降水量,降水多集中在7、8、9月份,多暴雨,夏季多东北风,夏季平均风速s,冬季多东风,冬季平均风速s,30年遇最大风速s,年雷暴日天,年沙暴日天,年雾日数天,历年最大积雪厚度15cm,地表有季节性冻土,标准冻土深度,场地内无地表水。 (四)地下水 根据区域水文地质资料和勘察结果,拟建场地地下水为第四系松散岩类孔隙潜水,②圆砾

变形测量(作业)指导细则

变形监测作业细则(一)变形监测工艺流程图 资料归档

(二)变形监测方法及要求 本作业指导书是针对变形测量的特点和作业需要编写的,服务范围是二级以下的变形监测。使用本细则进行测量作业,应遵守《建筑变形测量规程》等规程规范。如业主有特殊要求的,按业主要求执行。 变形监测主要包括沉降观测和位移观测。 一、准备工作 1.收集资料 1.1收集合同文件、工程设计文件、业主文件中有关变形测量的技术要求和规定。 1.2准备相应的规范:《建筑变形测量规程》。 1.3了解测区的行政划分、社会治安、交通运输、物资供应、风俗习惯、气象、地质情况。 2.现场踏勘 踏勘主要了解以下内容: 2.1 调查测区内的地质情况,为基点的埋设做好准备。 2.2调查测区内交通现状,以便确定合理的测量方案,测量时选择适当的交通工具。 2.3现场踏勘应作好记录。 3.技术设计 技术设计是根据工程建设项目的规模和对测量精度的要求,及合同、业主的要求,结合测区自然地理条件的特征,选择测量等级和观测方案,保证在规定期限内多快好省地完成生产任务。 3.1技术设计必须包括下列主要内容: 3.1.1任务概述:说明工程来源、用途、测区范围、地理位置、行政隶属、任务的内容和特点、工作量以及采用的技术依据,观测周期。 3.1.2测区概况:说明测区的地理特征、居民地、交通、气候等情况,并划分测区困难类别。 3.1.3 监测网的布设: 变形测量点可分为控制点和观测点(变形点)。控制点包括基准点、工作基点以及联系点、检核点、定向点等工作点。 平面控制:说明控制网的等级,控制基点以及观测点的布设方案及埋设要求,控

制基点及观测点作业方法以及作业所需使用的仪器。平面测量可采用独立坐标系统。 高程控制:说明高程控制网等级,附合路线长度及其构网图形,高程点或标志的类型与埋设要求;拟定观测与联测方案,观测方法及技术要求等。高程测量宜采用测区内原有高程系统。 3.1.4内业计算: 外业观测成果资料的分析和评价,选用的计算软件,计算与检校的方法及其精度要求,成果资料的要求等。 4.监测网图上设计 根据工程设计意图及其对控制网的精度要求,拟定合理布设方案。 4.1 控制网(点)的布设: 4.1.1 平面控制网的布设应符合下列要求: (1)对于建筑物地基基础及场地的位移观测,宜按两个层次布设,即有控制点组成控制网,由观测点及所联测的控制点组成扩展网; (2)对于单个建筑物上部或构件的位移观测,可将控制点连同观测点按单一层次布设。 (3)控制网可采用GPS网、测角网、测边网、边角网或导线网;扩展网和单一层次布网可采用GPS网、角交会、边交会、边角交会、附合导线等形式。各种布网均应考虑网形强度,长短边不宜悬殊过大。 (4)基准点(包括控制网的基线端点、单独设臵的基准点)、工作基点(包括控制网中的工作基点、基准线端点、导线端点、交会法的测站点等)以及联系点、检核点和定向点应根据不同的布网方式与构进行埋设,每一个测区的基准点不应少于2个,每个测区的工作基点不应少于2个。 4.1.2高程控制网的布设应符合下列要求: (1)对于建筑物较少的测区,宜将控制点连同观测点按单一层次布设; (2) 对于建筑物较多且分散的大测区,宜将两个层次布网,即有控制点组成控制网,由观测点及所联测的控制点组成扩展网; (3)控制网应布设成闭合环、结点网或附合高程路线。扩展网亦布设为闭合或附合高程路线。 (4)每一个测区的水准点不应少于3个;对于小测区,当确认点位稳定可靠时可少于3个,但连同工作基点不得少于3个。水准基点的标石,应埋设在基岩层或原状土层

变形监测及数据处理方案

目录 摘要.............................................................................................................................................. I Abtract.............................................................................................................................................. I I 1 工程概况 (1) 2 监测目的 (2) 3 编制依据 (3) 4 控制点和监测点的布设 (4) 4.1 变形监测基准网的建立 (4) 4.2 监测点的建立 (4) 4.3 监测级别及频率 (5) 5 监测方法及精度论证 (6) 5.1水平位移观测方法 (6) 5.2沉降观测方法 (8) 5.3基坑周围建筑物的倾斜观测 (9) 6 成果提交 (10) 7 人员安排及施工现场注意事项 (11) 8 报警制度 (13) 9 参考文献 (13) 附录1 基准点布设示意图 (15) 附录2 水准观测线路设示意图 (16) 附录3 水平位移和沉降观测监测报表 (17) 附录4 巡视监测报表样表 (18) 附录5 二等水准测量观测记录手薄 (19) 附录6 水平位移记录表 (20)

1 工程概况 黄金广场6#楼基坑支护工程位于合肥市金寨路和黄山路交口西南角,基坑开挖深度为12.4m~13.3m,为临时性工程,为一级基坑,重要性系数1.1,基坑使用期为六个月。 由于多栋建筑物与基坑侧壁距离较近,均在基坑影响范围内。按照国家现行有关规范强制性条文,“开挖深度大于或等于5m或开挖深度小于5m但现场地质情况和周围环境较复杂的基坑工程以及其他需要监测的基坑工程应实施基坑工程监测。”为了及时和准确地掌握基坑在使用期间的变形情况以及基坑相邻建筑物主体结构的沉降变化,需对基坑进行水平位移(或沉降)变形监测,并对相邻建筑物进行沉降监测。为此,编制以下检测方案。

变形观测与数据处理论文

变形观测与数据处理论文 题目:土木工程变形监测研究现状 学院: 专业:测绘工程 班级: 姓名: 学号: 指导教师: 完成日期:2012/12/27 摘要 变形监测是工程施工、安全运行的保证,通过监测进行设计验证,可以达到优化设计的效果,同时也为工程变形预测预报提供依据。根据我国目前已有监测方法,分析了桥梁、大坝、高层建筑物、地下建筑物、滑坡体等变形监测的研究现状,并对今后有待于进一步开展的工作做了展望。

关键词土木工程变形监测现状 1问题的提出 变形监测的对象时多种多样的,变形体的范围大到整个地球,小到一个工程建筑物的块体。也就是说一切关系到人们生活的实物对象都可以成为变形监测的对象,而同一类型的对象,其产生变形的原因不同,则变形分布及其规律也不相同。所以,在变形监测实施之前,必须弄清楚产生变形的原因,才能布设检测控制网,观测得到可靠的变形数据和正确的变形分析结果。本文将对国内近几年来工程监测的方法及其相关问题作综合性的阐述。 2基坑工程变形测量 我国城市化进程正在方兴未艾,基本建设规模庞大。由于城市用地价格昂贵,为提高土地的空间利用率,同时也是为了满足高层建筑抗震和抗风等结构要求,地下室由一层发展到多层,相应的基坑开挖深度也从地表以下5-6m增大到12-13m。例如,北京中国国家大剧院基坑最深处在35m。当前,中国的深基坑工程在数量、开挖深度、平面尺寸以及使用领域等方面都得到高速的发展。 在深基坑开挖过程中,基坑内外的土体将由原来的静止土压力状态向被动和主动土压力状态转变,应力状态的改变引起围护结构承受荷载并导致围护结构和土体的变形,当变形中任一量值超过容许范围时,将造成基坑的失稳破坏或对周围环境造成不利影响。深基坑开挖工程往往在建筑密集的市中心,施工场地四周有建筑物和地下管线,基坑开挖所引起的土体变形将在一定程度上改变这些建筑

基坑坍塌原因分析

摘要:基坑坍塌原因复杂,涉及地质及勘察、支护设计、施工技术和管理、基坑周边环境等。本文分析近三年来发生的重大基坑坍塌事故,提出防范事故建议。 关键词:基坑坍塌 1概述 近三年建设部备案的重大施工坍塌事故中,基坑坍塌约占坍塌事故总数的50%。塌方事故造成了惨重的人员伤亡和经济损失。对施工坍塌的专项治理是近 年来建筑安全工作的重点之一。 基坑坍塌,可大致分为两类: (1)基坑边坡土体承载力不足;基坑底土因卸载而隆起,造成基坑或边坡土体滑动;地表及地下水渗流作用,造成的涌砂、涌泥、涌水等而导致边坡失稳, 基坑坍塌。 (2)支护结构的强度、刚度或者稳定性不足,引起支护结构破坏,导致边 坡失稳,基坑坍塌。 导致基坑坍塌的原因可归结为技术和管理两个层面,本文分析基坑坍塌事故 发生的原因和特点,提出防范建议。 2基坑坍塌事故概况 2.1发生事故的企业,无施工资质和无施工许可证者占企业总数的近50%, 10%左右的企业属三级或者三级以下施工资质。 2.2坍塌事故中,工业与民用建筑约占54%,道路、排水管线沟槽约占38%, 桥涵、隧道的约占8%。 2.3放坡不合理或支护失效引发的事故约占74%,其中无基坑支护设计导致 的事故约占60%。 2.4未编制施工组织设计引发的事故约占56%,施工组织设计不合理导致的事故约占19%,不严格按规范和施工组织设计施工导致的事故约占25%。 2.5发生坍塌的基坑(或边坡)深度从1.9米~22米,发生在1.9米~10米 的事故约占78%,10米~20米的约占17%,20米以上约占5%。 3基坑坍塌事故分析 3.1地质勘察报告不满足支护设计要求 地质勘察报告往往忽视基坑边坡支护设计所需的土体物理力学性能指标,不注重对周边土体的勘察、分析,这使得支护结构设计与实际支护需求不符。某办公楼基坑设计深度6米,仅对建筑物范围内的土体 进行了勘察,而基坑边坡淤泥质土层的相关指标,凭“经验”给出。因提供的

工程测量技术设计书

广西省柳州市雒容至东泉公路工程测量 技 术 设 计 书 陕西力达工程咨询有限公司 2016年11月

广西省柳州市雒容至东泉公路工程测量 编制人:呼海龙日期:2016年11月10日 审核人:张志俊日期:2016年11月12日 审批人:张建利日期:2016年11月12日 陕西力达工程咨询有限公司 2016年11月

目录 1 项目概况 (5) 1.1 概述 (5) 1.2 项目地理位置 (5) 1.3 项目作业范围 (5) 3 工作内容 (7) 3.1 航测及控制测量 (7) 3.1.1 航测 (7) 3.1.2 控制测量 (8) 3.1.2.1平面控制测量 (8) 一般规定 (8) 误差规定 (8) 投影变形规定 (8) 角度、长度和坐标的数字取位要求 (8) 一级GPS测量 (8) 一级GPS点的选点 (9) 3.1.2.2高程控制测量 (11) 水准点规格及布点原则 (11) 高程控制测量技术要求及观测方法 (11) 水准观测 (12) 水准网平差计算 (12) 3.2 初测测量 (13) 3.3 施工图定测 (13) 3.3.1 控制点检核 (13) 3.3.1 控制点检核 (14) 3.3.2 纵断面测量 (14) 3.3.3 横断面测量 (16) 3.3.4 工点测量 (16) 3.3.4 被交路、被交渠、高压线等碎部测量 (17) 4 人力资源及设备保障 (17)

4.1 人力资源 (17) 4.2 设备保障 (19) 5 工期计划 (19) 6 质量保证及后期服务 (21) 7 资料提交 (21)

1 项目概况 1.1 概述 拟建柳州市雒容至东泉公路位于广西壮族自治区柳州市区和柳州市柳城县境内,连接雒容镇、洛埠镇、西安乡、东泉镇,是《广西普通公路省道网规划报告(征求意见稿)》中“横4”“纵6”的重要分支,能有效将柳州及周边的交通引入“横4”“纵6”。,进而与广西的整个公路网形成快捷连接通道。其功能定位为普通省道公路,是广西区普通公路省道网规划中的重要路段,是广西公路网的重要组成部分。该公路的修建对完善广西公路网,提高沿线交通基础设施条件,充分发挥广西公路网的功能与作用,以及促进区域经济的发展具有重要意义。 本标项目为“柳州市雒容至东泉公路工程”,桩号范围:K7+000~K28+150(断链:K9+601=K9+367.890,长链233.110m),路线全长21.383公里。 1.2 项目地理位置 雒容至东泉公路起于柳州市柳东新区雒容工业园区的柳东大道与规划东外环交汇处,向北途径洛埠镇、凉亭村、西安乡、螺田村、东泉镇、新屋村,终点位于柳城县东泉华侨农场中部规划主干道与现状X077县道交汇处,顺接X077县道。 本项目路线全长21.383km,路线桩号K7+000~K28+150(断链:K9+601=K9+367.890,长链233.110m),雒容真至东泉镇段为全部新建;东泉镇至华侨农场一队主要利用X077县道,局部新建。 1.3项目作业范围 项目范围:东经:109?29'-109?32',北纬:24?26'-24?37'。

浅谈深基坑变形成因和预控

浅谈深基坑变形成因和预控 摘要对建筑工程基坑变形的分析,总结深基坑变形的一般特征,并分析基坑变形的影响因素,最后指出如何控制基坑变形的一些有效的方法,提出一些控制基坑变形的措施,为深基坑的设计和施工提供参考。 关键词基坑变形;影响因数;特征分析;预控措施 1基坑变形的影响因素 通过前人对基坑变形分析资料的分析和总结发现,同一基坑中,在满足强度控制设计和正常施工的前提下,围护结构的刚度、入土深度、支撑或锚杆道数和预应力、土体的变形模量这6个方面对基坑变形(基坑坑底隆起、支护结构位移、周边沉降)的影响较为显著,这其中以围护结构入土深度、支撑或锚杆道数和预应力因素尤为突出。 2分析深基坑变形的特征 2.1基坑周围地表的沉降分析及地表沉降原因 1)基坑开挖降水引起周边地下水位下降,形成以抽水井点为中心的降水漏斗,由于基坑周边土层地下水位降低,土体中的孔隙水压力消散,直接导致土体中有效应力增加,土体产生了新的固结沉降。另外,基坑开挖后周边土体处于临空状态,原有的结构平衡遭到破坏,土体开始应力释放容易发生滑动剪切破坏,土体将变得松软压缩性增大,地基土在原有荷载作用下产生新沉降。 2)地表沉降的分布类型:地表沉降的分布形式可近似归纳为“三角形”和“抛物线”两种,前者最大沉降点位于基坑边,后者最大沉降点离基坑边有一定距离,如图1所示。但两种形式的产生条件目前尚无定论。 图1地表沉降的分布类型 3)地表沉降的空间分布规律:①基坑中部附近剖面的地表沉降曲线可能是“三角形”也可能是“抛物线”,而基坑角点附近由于受到另一侧围护结构的支撑作用,其沉降分布形式常常为“抛物线”。②基坑中部附近剖面的地表沉降量远大于基坑端部附近剖面的地表沉降量。③基坑中部附近剖面的沉降分布曲线曲率较大,即在这个区域内不均匀沉降较大。 2.2围护结构的水平位移分布规律 围护结构水平位移随时间的变化规律: 1)在下一工况开始时围护结构的位移曲线紧邻上一工况结束时位移曲线的

相关文档
最新文档