中厚板轧制

中厚板轧制
中厚板轧制

中、厚板轧制

厚度4mm以上的钢板材称中、厚板,简称中厚板。用于造船、建筑构件、机器制造、交通运输、军事工业等部门,以及用于制造大口径焊管、容器、锅炉等。工业发达国家的中厚板产量占钢材总产量的10~22%。轧制中厚板的轧机全世界约有260套,其中将近一半是轧辊辊身长3米以上的宽厚板轧机。此外带钢热轧机也能生产厚4~25.4mm的中厚板(见轧机)。

18世纪初,西欧出现了二辊轧机,轧制出小块中厚板。1854年欧洲建成用蒸汽机传动的二辊可逆式中厚板轧机。1864年美国建成三辊劳特式中厚板轧机,曾经盛行一时。1891年美国建成世界上第一台四辊可逆式中厚板轧机。后来又出现了双机架、半连续式和连续式中厚板轧机。到70年代,一般认为中厚板轧机以四辊式双机架配置方式较好。

原料中厚板轧机使用的原料有初轧板坯、连铸板坯、钢锭和锻坯。初轧坯最宽达2300mm,最厚达610mm,最重达45吨。连续铸钢技术的发展,不但提高了中厚板车间的成材率,降低了生产成本,而且使钢板的质量也提高了。所以中厚板轧机采用连铸坯的比例不断上升,有的已达100%。加上新工艺的采用,中厚板轧机从板坯到成品钢板的成材率有的已达94.2%。如无初轧板坯和连铸板坯,可用扁钢锭作原料。只在生产特殊的中厚板时才用锻坯作原料。

产品中厚板除按尺寸区分外,还有按强度、化学成分、用途和交货状态分类的。按强度分类一般以抗张强度的下限分级,抗张强度50kgf/cm2以上的称高强度钢板。按化学成分分为普通钢板和特殊钢板,后者包括不锈钢板和复合钢板。按用途大致分为造船钢板、焊接结构钢板、锅炉和压力容器钢板、低温钢板、耐腐蚀钢板、焊管用钢板以及特殊用途的钢板等。按交货状态分为轧制钢板、热处理钢板和抛丸、涂层钢板三种,因大型结构和造船的需要,抛丸、涂层钢板的产量,逐年增加。

生产流程中厚板的生产流程通常如图1所示。为配合控制轧制,采用低温出炉的加热制度,可节省燃料消耗。轧制工艺分三个阶段:①成形轧制,消除板坯表面的影响和提高宽度控制的精度,沿板坯长度方向或斜向进行1~4道轧制。把坯料轧至所要求的厚度。②展宽轧制,这是中厚板不同于其他种类板材轧制的重要工序。为达到轧制成品规格所要求的宽度,板坯转90°、沿板宽方向轧制。③精轧,展宽轧制后再转90°,转回原坯料长度方向,轧制到成品板厚度。妥善制定中厚板轧制工艺能提高轧机的生产能力、钢板的质量和成材率。要确保钢板的平直度,除采取各种保证板形的措施外,对厚度40mm以下的钢板每块均需经过热矫直,对不平直的冷钢板进行冷矫直。为冷剪切成品板,钢板要冷至150℃以下,冷却要均匀,冷却速度应适宜;自从采用滚切式剪机剪切后,基本上解决了剪弯缺陷问题;调整剪刃间隙可以大大提高钢板剪切断面的质量。根据钢板质量要求,用超声波进行不同深度的探伤,对焊管用板的四个板边要全面进行探伤。热处理时除了保证板的机械性能外,还要保证板形良好。抛丸涂层法多用于生产造船和桥梁用板,抛丸去除氧化铁皮后,再涂层防锈,涂层后应快干。钢板表面尺寸形状的检查主要靠人工进行,打印标记工序已实现机械化,并可由计算机控制操作。

中国制造的宽厚板轧机60年代中期,中国设计建造了一套4200mm厚板轧机(见彩图)。成品钢板尺寸:厚度8~250mm,宽度1500~3900mm,长度达18米(特殊的达27米)。原料用钢锭或锻坯,最大单重为40吨。轧机为单机架四辊可逆式,工作轧辊直径为980mm,辊身长度为4200mm,支承辊直径为1800mm,采用油膜轴承。主电动机共2台,容量各为4600kW,转速为40/80rpm。立辊轧机的轧辊直径为1000mm,辊身长度为1100mm,开口度为800~4200mm。加热炉有三种,均热炉和车底式炉用于加热钢锭和锻坯;推钢式炉则专用于加热板坯。用钢锭生产厚度较薄的钢板时,先开成坯,再加热,后轧成板。生产某些品种(如不锈钢)时,板坯在修磨机上全面修磨,清除缺陷。轧出的钢板,一般经热矫直和冷却后进入剪切线,切成

用户要求的尺寸。车间内还设有辊底式、外部装出料式和车底式等热处理炉,根据品种和交货状态的要求,可进行常化、淬火、回火、退火和调质等金属热处理。

中厚板轧机的发展60年代以来,宽厚板轧机有了较大的发展。这种轧机的宽度越来越大,新建的宽度小于3米的已不多见。日本在60年代后期,为满足造船等大型结构的需要,建成了6套4.7米级的双机架宽厚板轧机,每套年生产能力已达到200多万吨。70年代,日本为了生产直径1626mm焊管和特大油船用的宽板,又建成4套5.5米级宽厚板轧机,并大量采用新技术。这类轧机的年生产能力很大,单机架的就高达180万吨。目前世界上有10套5米以上的宽厚板轧机,日本占一半,其余分别建在美国、苏联和联邦德国。

典型的现代化高产量宽厚板轧机的设备平面布置见图2。

现代化宽厚板轧机用的板坯,最大重量已达80~110吨、最高轧制速度已达每秒钟7.5米,轧件的最大长度达65米,钢板最大宽度达5300mm,一套双机架宽厚板轧机的年生产能力已从200万吨增至300万吨以上。在板形控制方面,随着轧件的加长,采用了液压自动厚度控制、弯辊装置、轧辊偏心控制和加大支承辊直径,减少了钢板纵向厚度偏差和横向厚度偏差,采用了各种平面板形控制技术后,使钢板成材率大大提高。控制轧制已广泛应用于厚板轧机,提高了钢板的机械性能,减少了热处理量,节省了能耗。在加热炉方面,广泛采用步进梁式加热炉。这种炉子虽设备费和维修费较高,但加热质量好、黑印少、下表面无划伤、炉长不受坯厚的限制、操作灵活,能更适用于小批量多品种生产的要求。为了有效地去除铁鳞,普遍采用水压达170~200kgf/cm2的高压水除鳞装置。轧后钢板的精整设备,多数采用四重式矫直机、步进格板式冷床、连续自动超声波探伤装置、滚切式双边剪以及自动打印机等,使钢板的尺寸偏差、平直度、表面和内部质量等得到了保证。在热处理方面,采用双步进梁式炉,解决了下表面的划伤,并以辊式代替了压力式淬火机,提高了淬火质量。在自动化方面,除轧机上采用计算机过程控制外,加热炉和剪切线也开始实现了计算机过程控制。这样,从板坯仓库到成品板发货,一般采用若干台过程监控机,过程控制机和1~2台专用管理机构成三级计算机系统,实现了全车间的综合自动控制,并已收到效益。

参考书目

〈圧延技術の進步〉特集号,《鉄と鋼》V.59, No.13, 1973。

鞍钢中板厂编写组编:《中板生产》,冶金工业出版社,北京,1975。

中厚板轧制规程设计课程设计

前言 板钢轧制制度的确定要求充分发挥设备潜力、提高产量、保证制度,并且操作方便、设备安全。合理的轧制规程设计必须满足下列原则和要求:在设备允许的条件下尽量提高产量,充分发挥设备潜力提高产量的途径不外是提高压下量、减少轧制道次、确定合理速度规程、缩短轧制周期、提高作业率、合理选择原料增加坯重等。在保证操作稳定的条件下提高质量,为保证钢板操作的稳定,要求工作辊缝成凸型,而且凸型值愈大操作愈稳定。 压下规程是钢板轧制制度中最基本的核心内容,它直接关系着轧机的产量和产品的质量。轧制制度中得其他内容如温度制度、速度制度都是以压下制度为核心展开的。反过来,温度制度、速度制度也影响到压下速度。

目录 1·制定生产工艺和工艺制度………………………………………………………… 1·1制定生产工艺流程…………………………………………………………… 1·2制定生产工艺制度……………………………………………………………2·压下规程制定…………………………………………………………………… 2·1坯料的选择……………………………………………………………………… 2·2确定轧制方法…………………………………………………………………… 2·3轧制道次的确定,分配各道次压下量………………………………………… 2·4咬入能力的校核…………………………………………………………………3·速度制度确定…………………………………………………………………………4·温度制度确定…………………………………………………………………………5·压下规程表的制定……………………………………………………………………6·各道次变形程度和变形速率的制定………………………………………………… 6.1 变形程度的确定………………………………………………………………… 6.2 变形速率的确定…………………………………………………………………7·轧制压力的制定………………………………………………………………………… 7.1 变形抗力的确定………………………………………………………………… 7.2 平面变形抗力的确定…………………………………………………………… 7.3 计算平均压力p………………………………………………………………… 7.4 轧制压力的确定…………………………………………………………………8·电机输出力矩的制定………………………………………………………… 8.1 传动力矩的计算……………………………………………………… 8.2 附加摩擦力矩的确定………………………………………………… 8.3 空转力矩的计算……………………………………………………… 8.4 动力矩的计算………………………………………………………… 8.5 电机输出力矩的计算………………………………………………… 8.6 电机额定力矩的计算…………………………………………………9·电机的校核………………………………………………………………… 9.1 主电机能力的限制…………………………………………………

中厚板轧钢车间设计

中厚板轧钢车间设计 创建时间:2008-08-02 中厚板轧钢车间设计 (design of plate mill) 以板坯或扁锭为原料,经加热轧制生产中厚钢板的车间设计。中国规定,钢板厚度大于4~20mm 的为中板,厚度大于20~60mm的为厚板,厚度大于60mm的为特厚板,统称为中厚板,中厚钢板主要用于造船、建筑、机器制造、交通运输以及军事工业等部门,还可用作制造螺旋焊管,UOE焊管与焊接钢梁的原料。在工业发达国家,中厚钢板的产量占钢材总产量的10%~20%。厚度为4~25.4mm的中厚钢板也可以在带钢热轧机上生产。车间设计的原则及方法见轧钢厂设计。 简史 18世纪初,西欧开始用二辊轧机轧制出小块中厚钢板。1854年欧洲建成用蒸汽机传动的二辊可逆式中厚板轧机。1864年美国建成三辊劳特式中厚板轧机。1891年美国建成世界上第一台四辊可逆式中厚板轧机,1918年美国又建成主要生产装甲钢板,其辊身长5000mm以上的宽厚板轧机。以后,世界上又陆续出现了双机架、半连续式、连续式中厚板轧机。20世纪70年代是中厚板车间建设得最多的时期,不少轧机是4000~5500mm的双机架宽厚板轧机。 1871年中国福州船政局已开始轧制造船板,1907年汉冶萍公司建设了2440mm中板轧机。1936年在鞍山建成了第一套2300mm三辊劳特式中板轧机。1958年及1966年鞍山钢铁公司和武汉钢铁公司分别建成了2800mm中厚板轧机,其粗轧机为二辊式、精轧机为四辊式。1978年设计建成了舞阳钢铁公司4200mm宽厚板车间,1990年上海第三钢铁厂的4200/3300mm厚板车间投产。 坯料选择有扁锭、初轧板坯、连铸板坯和锻坯。在满足轧制压缩比的条件下,尽可能采用连铸板坯为原料。某些特殊钢种,根据需要采用锻坯。 设计规模和产品方案设计规模主要取决于轧机和辅机性能、设备组成、市场需求和坯料条件等。轧机尺寸、组成与设计规模的关系见表1。 产品方案根据市场需要、坯料条件和设备条件确定。中厚钢板的厚度范围一般为4.0~1 50mm(最厚达300mm),宽度范围为1000~5200mm,宽度大于2800mm的中厚钢板有时称为宽厚板。中厚钢板的定尺长度为3000~30000mm。交货状态有热轧状态和热处理状态如常化、退火、调质和固溶化等。

中厚板轧制试卷

第二章习题 一、填空 1.中厚板轧机有、、和万能式等四种型式。 二辊可逆式三辊劳特式四辊可逆式 2.中厚板轧机一般采用来命名。 工作辊的辊身长度 3.四辊可逆式轧机由一对小直径和一对大直径组成。 工作辊支承辊 4.万能式轧机是在在四辊(或二辊)可逆轧机的一侧或两侧带有的轧机。 立辊 5.中厚板轧机的布置型式有、、三种形式。 单机座、双机座、半连续式或连续式、 6.中厚板轧机常采用的布置形式是。 双机座 7.双机座布置是把粗轧和两个阶段的任务分到两个机座上完成。 精轧 8.中厚板加热炉的型式主要有、、三种。连续式加热炉室状式加热炉均热炉 9.用于板坯加热的连续式加热炉主要是和两种型式。 推钢式步进式 10.三段式加热炉,三段指的是预热段、加热段和__________。 均热段 11.中厚板的轧制分为、、三个阶段。 除鳞粗轧精轧 12.中厚板精轧阶段的主要任务是控制。 质量 13.中厚板的展宽方法有、、和角轧-纵轧法四种。 全纵轧法、全横轧法、横轧-纵轧法、 14.平面形状控制是指钢板的控制。

矩形化 15.厚板的轧制分为、和三个阶段。 整形轧制展宽轧制精轧 16.展宽比是指展宽轧制后的与之比。 板宽轧前板宽 17.轧制比是指伸长轧制后的与之比。 钢板长度轧前板坯长度 18.中厚板的冷却方式有和两种。 自然冷却、控制冷却(工艺冷却) 19.中厚板矫直机一般为式矫直机。 辊 20.中厚板划线的目的是。 将毛边钢板剪切或切割成合格的最大矩形。 21.划线的方法有、和等多种方法。 人工划线小车划线光标投射 22.中厚板剪切机的任务是、切尾、、剖分、及取样。 切头切边定尺剪切 23.中厚板生产中常用的热处理作业有常化、淬火、、四种。 回火退火 24.中厚板生产中常用的热处理作业有、、回火、退火四种。 常化淬火 25.速度制度是指变化的曲线图。 轧辊转速随时间 26.可逆式轧机有和两种速度制度。 梯形、三角形 27.当轧件较长时一般采用速度制度。 梯形 28.当轧件较短时一般采用速度制度。 三角形 29.轧件在每道中的轧制时间由、、匀速轧制时间、组成。

中厚板轧制制造执行系统的设计与实现

中厚板轧制制造执行系统的设计与实现 中厚板轧制过程计算机控制系统通常采用三级结构设计。一级为基础自动化级,二级为过程控制级,三级为生产管理级。过程控制级(二级机)系统,亦即中厚板轧制制造执行系统MES处于厂级生产管理控制系统(三级机)和电气与仪表基础自动化系统(一级机)之间。中厚板轧制MES是连接一级和三级系统的重要环节,它们一起协同工作实现对中厚板整个轧制过程的自动化控制。本文建立了中厚板轧制过程MES 系统的过程处理模型,分析和构建了系统的体系结构,对其中的数据管理、信息处理和稳定的数据通信技术进行了研究。 1过程处理模型 中厚板轧制MES系统连接基础自动化级系统、人机界面(Huma nMachi ne In terface ,HMI)、生产管理级系统。系统主要包括以下以下几个功能模块:轧制规程计算模块、冷却控制计算模块、模型自学习模块、过程跟踪调度模块以及数据管理模块等等。该系统的过程处理模型如图1所示。

H耳版初ME马 1― 亂屈現fifil ff 卫卉罹臨诉出 理 图1中厚板轧制MES系统过程处理模型 轧制规程计算模块根据生产调度人员输入的原料数据和轧制目标等信息计算出对应的轧制规程,包括轧制总道次数、每道次相对辊缝、每道次轧制力(矩)、每道次出口厚度等等,这些数据为理论数据或经验数据。该模块同时根据实际轧制过程中产生的数据对轧制规程进行修正。 冷却控制计算模块根据轧制参数以及控冷需求等信息计算出 对应的冷却方式,包括集管开启方式、开启数量、喷水量等,这些数据为理论数据或经验数据。该模块同时根据轧制结束后实际的辊道速度信息及轧件温度信息等来对冷却方式进行修正。数据管理模块对生产原料数据、轧制过程数据以及轧制规程数据等等一系列数据进行管理,实现对数据库的操作。过程跟踪调度模块则主要是负责与数据通讯模块之间进行数据交换,对中厚板的轧制现场传回的数据(包括热金属检测仪

热轧带钢轧制规程设计(DOC)

热轧带钢轧制规程设计 摘要 钢铁行业是国民经济的支柱产业,而热轧带钢生产是钢铁生产中的主要环节。热轧带钢工艺的成熟,为冷轧生产提供了优质的原料,大大地满足了国民生产和生活的需要。本车间参考鞍钢1700ASP生产线,本设计中主要包括六部分,第一部分从热轧带钢机的发展、国外带钢生产先进技术以及我国带钢发展等几个方面阐述了热轧带钢发展情况;第二部分参考了鞍钢ASP1700生产线以及实际设计情况确定了车间的轧钢机械设备及参数;第三部分以典型产品Q235,3.8×1200mm为例从压下规程、轧制速度、轧制温度等方面确定了生产工艺制度;第四部分以典型产品为例进行了轧制力和力矩计算;第五部分根据设备参数和实际制定的生产工艺进行了咬入、轧辊强度的校核;第六部分本次设计总结。 关键词:热轧带钢,轧制工艺制度,轧辊强度

目录 1综述 (1) 1.1引言 (1) 1.2 热轧带钢机的发展现状 (1) 1.3热轧板带钢生产的工艺流程 (2) 1.4 热轧板带钢生产的生产设备 (3) 1.5ASP1700热轧板带钢生产的新技术 (3) 2 主要设备参数 (4) 3 典型产品轧制工艺确定 (6) 3.1 生产工艺流程图 (6) 3.2 坏料规格尺寸的选定 (7) 3.3 轧制工艺制定 (7) 3.3.1 加热制度 (7) 3.3.2 初轧和精轧各自压下制度 (7) 3.3.3 精轧轧制速度 (9) 3.3.4 精轧温度制度 (10) 4力能参数计算 (10) 4.1 精轧各机架轧制力计算 (10) 4.2 精轧各机架轧制力矩的计算 (13) 5设备强度及能力校核 (13) 5.1 精轧机咬入角校核 (13) 5.2 轧辊强度校核 (14) 5.2.1 辊身弯曲强度校核 (17) 5.2.2 辊颈弯曲和扭转强度校核 (19) 5.2.3 辊头扭转强度校核 (20) 5.2.4接触应力的校核 (20) 6结语 (22) 参考文献 (23)

热轧普通板带

学习情景1:热轧普通板带 任务说明书

1. 了解我国目前普通板带钢轧制的一些情况。 2. 掌握各种热轧带钢大致的生产流程 教学方法:讲授、讨论 1.1 概述 目前我国钢铁企业能生产的热轧带钢厚度范围为0.8~25.4mm,最大宽度 可达1900mm,最大轧制速度为25.1m/s,最大卷重为43.6t,热轧带钢车间年产量最高为400万t/a。 一般热轧带钢车间生产的钢种有普碳钢、优质钢、低合金钢等,代表我国常规工艺最先进水平、1997年投产的1580mm热连轧生产线主要产品钢种有:冷轧用热轧卷SPCC、SPCD、SPCE,镀锡板用热轧卷T1~T5,热轧卷SPHC、SPHD、SPHZ,一般结构用钢SS330、SS440、SS490、SS540,焊接用钢SM400A、SM520B,焊管用钢SPHT1、SPHT2,机械结构用钢S20C、S36C,汽车结构钢 SAPH310~SAPH440,耐大气钢NAW400~NAW490,冷轧取向硅钢Z8H~Z12,冷轧无取向硅钢S5~S60等;生产中执行的标准有JIS G3101、G3114、G3131、GB709-88、GB710-88、GB711-88、GB712-88、GB2517-81、GB4171-84等。 目前我国热连轧带钢生产线既有二代到五代的常规热连轧生产线,也有代表当今世界热轧带钢生产工艺最先进水平的的薄板坯连铸连轧生产线(短流程工

艺)。用薄板坯连铸连轧的一些先进适用的技术来改造常规热连轧带钢生产线已成为一种趋势。本章仅介绍常规工艺。 由于先进的计算机控制技术、CVC轧机、控制轧制、(精轧机组的)无头轧制、在线磨辊、热轧工艺润滑等一系列新技术应用于热轧带钢生产中,使可生产的热轧带钢厚度不断减小,厚度精度、表面质量和组织性能不断提高,生产成本不断降低,导致部分厚规格热轧带钢可以当中厚板用,部分薄规格热轧带钢可以当冷轧带钢用,目前已出现了热轧带钢生产企业争夺冷轧带钢生产企业、中厚板生产企业的市场份额的苗头,特别是具有连铸连轧工艺的热轧带钢生产企业竞争力更强。 1.2 生产流程及车间设备平面布置 常规热轧带钢生产工艺流程如图1-1所示,这种传统工艺具有以下特征:1)原料是厚度较大的连铸板坯,连铸机为厚板坯连铸机,铸速较慢;2)连铸与轧钢分属两个互相独立的车间,它们往往相距较远,没有统一的计划、调度和指挥;3)两个车间都有较大的板坯库用来堆放连铸坯;4)钢水经连铸机变成板坯后,往往要经过冷却、检查、人工离线表面缺陷清理、库内堆放、备料等多个环节;5)由于离开连铸机后,经过了长时间冷却,连铸坯入炉温度基本为室温,虽然有的企业采取了某些抢温保温等措施,实现了一定程度的热送热装,但连铸坯入炉温度一般在A1以下,因此,在轧制前需要在加热炉内进行长时间加热。 图1-1常规热轧带钢工艺的轧制工艺流程 常规热轧带钢工艺的轧制工序由粗轧和精轧组成。图1-1中各个工序的主要作用为: (1)原料准备为加热和热轧准备质量合格的连铸板坯。它一般包括连铸车间对连铸坯检查、表面缺陷清理、堆放,轧钢车间验收、按照轧制计划备料、堆放等环节。 (2)加热提高连铸坯温度,改善其塑性,降低其变形抗力,改善其内部组织和性能,以满足轧制的要求。

年产150万吨中厚板车间工艺设计.docx

.................大学 本科生毕业设计开题报告 题目:年产150万吨中厚板车间工艺设计 学院:冶金与能源学院 专业:材料成型及控制工程 班级: 姓名: 学号: 指导教师: 2015年11 月15 日 一.选题背景 1.1题目来源 冶金行业经过了近8年的高速发展,行业的钢材产能已经达到近6亿吨/年。已有和在建的中厚板生产线近70条,中厚板生产能力达到接近7000万吨/年。但是国际金融危机的影响和国内经济周期的调整,钢铁产品市场成了典型的买方市场。冶金企业如何在这一轮经济调整中,实现技术和产品的转型成了决定企业生存的关键。各中厚板生产厂纷纷根据自身的技术装备特点、技术研发能力、市场客户需求确定自己的产品战略定位。综合实力强的企业,全力体现出产品的差异化战略,坚持不懈地开发生产其他企业无法生产或难于生产的市场短线、高档产品。高档次产品开发离不开性能控制技术,性能控制的新技术不仅提高钢板的性能,还可以带来生产成本的降低。 1.2项目概述: 经过对国内外中厚板市场现状的分析以及前景预测,综合对当地各种物料供应、能源等其它资源的分析,我们选择区域与资源优势居一体的唐山曹妃甸地区作为建厂厂址,设计一座年产量150万吨4300热轧中厚板车间,并且能够生产规格齐全、性能优良,能满足市场需求的产品。 1.3中厚板简介 中厚钢板:厚度大于4mm的钢板属于中厚钢板。其中,厚度4.0-20.0mm的钢板称为中厚板,厚度20.0-60.0mm的称为厚板,厚度超过60.0mm的为特厚板。 中厚板的用途: 中厚板主要用于建筑工程、机械制造、容器制造、造船、桥梁等行业,并且随着国民经济建设其需求量非常之大,范围也十分广。 (1)造船钢板:用于制造海洋及内河船舶船体。要求强度高、塑性、韧性、冷弯性能、焊接性能、耐蚀性能都好。 (2)桥梁用钢板用于大型铁路桥梁。要求承受动载荷、冲击、震动、耐蚀等。 (3)锅炉钢板:用于制造各种锅炉及重要附件,由于锅炉钢板处于中温(350℃以下)高压状态下工作,除承受较高压力外,还受到冲击,疲劳载荷及水和气腐蚀,要求保证一定强度,还要有良好的焊接及冷弯性能。 (4)压力容器用钢板:主要用于制造石油、化工气体分离和气体储运的压力容器或其

中厚板生产压下规程课程设计-轧制规程设计

《塑性成型工艺(轧制)》课程设计说明书 课题名称15×2100×9000mm轧制规程设计指导教师 专业小组 小组成员 2013年06月15日

《塑性成型工艺(轧制)》课程设计任务书 10级材料成型与控制工程专业 设计小组:第12小组成员: 设计课题:中厚板轧制规程设计指导教师:张金标 设计小组学生学号产品牌号产品规格/mm 1Q23510×2000×9000 24510×1900×10000 312CrNi3A12×1800×10000 44Cr1313×1700×9000 5Q23512×2100×12000 6458×1800×13000 712CrNi3A14×2000×9000 84Cr1312×2000×8000 9Q2359×2050×12000 104510×2300×12000 1112CrNi3A13×1900×12000 124Cr1315×2100×9000 二、设计条件 机组:双机架串列式可逆机组(二辊可逆轧机粗轧,四辊可逆轧机精轧)。 主电机:二辊轧机主电机型号ZD250/120,额定功率25002kw,转速0~40~80rpm,过载系数2.25,最大允许传递扭矩1.22MN.m;四辊轧机主电机型号ZD250/83,额定功率20502kw,转速0~60~120rpm,过载系数2.5,最大允许传递扭矩0.832MN.m。 三、设计内容 制定生产工艺及工艺制度;确定轧制方法;确定轧制道次,分配道次压下量;设计变形工具;计算力能参数;校核轧辊强度及主电机负荷;绘制轧辊零件图、轧制表。 四、设计时间 设计时间从2013年06月03日至2013年06月14日,为期两周。 五、设计要求 每个设计小组提供6个以上设计方案,1成员完成1个设计方案的全部设计工作;组内分析、评价各个方案的设计结果,以最佳方案作为本组设计方案;小组提交最佳方案的设计说明书1份,组员提交个人的设计小结(简述方案、设计思路、计算过程和结果评价)。 材料成型教研室

热轧板带课程设计

材料成型课程设计 热轧薄板工艺与规程设计 学校:安徽工业大学 姓名: 班级: 型102 学号: 指导老师:

目录 1.设计目的及要求 (5) 1.1 设计目的 (5) 1.2制定轧制制度的原则和要求 (5) 1.3原料及产品规格 (5) 1.4Q235A产品技术要求 (5) 2.工艺流程 (8) 2.1 工艺流程 (8) 2.2绘制工艺简图3.轧制规程设计 (8) 3.轧制规程设计 (9) 3.1 轧制方法 (9) 3.1.1 粗轧机组 (9) 3.1.2 精轧机组 (9) 3.1.3 确定轧制设备 (9) 3.2安排轧制规程 (10) 3.3校核咬入能力 (12) 3.4确定速度制度 (12) 3.4.1粗轧机组的速度制度 (12) 3.4.2精轧机组的速度制度 (12)

3.5.1粗轧机组轧制延续时间 (13) 3.5.2精轧机组轧制延续时间 (15) (1)精轧机组的间隙时间: (15) (2)加速前的纯轧时间: (15) (3)加速段轧制时间: (16) (4)加速后的恒速轧制时间: (16) (5)精轧机最后一架的纯轧时间为: (16) (6)精轧轧制周期为: (16) (7)带坯在中间辊道上的冷却时间为: (15) 3.6 轧制温度的确定 (17) 3.6.1粗轧机组轧制温度确定 (17) 3.6.2精轧机组轧制温度确定 (18) 3.7 计算各道的变形程度 (19) 3.8 计算各道的平均变形速度 (19) 3.9 计算各道的平均单位压力P及轧制力P (19) 3.9.1各道次平均单位压力 (19) 3.9.2各道次轧制压力P (20) 3.10 计算各道轧制力矩 (21) 4.电机与轧辊强度校核 (23) 4.1电机校核: (22) 4.1.1 粗轧机组电机校核 (23) (1)温升校核: (22) (2)过载校核: (22) 1)轧制力矩 (23) 2)附加摩擦力矩 (23)

中厚板压下规程课程设计

辽宁科技大学 课程设计说明书 设计题目:EH32中厚板轧制规程的编制学院、系:材料与冶金学院 专业班级:材料加工工程11级2班 学生姓名: 指导教师: 成绩: 2014年12 月31 日

目录 1前言 (2) 1.1 EH32中厚板产品介绍 (2) 1.2 EH32中厚板成分介绍: (2) 2中厚板生产工艺流程简介 (2) 3. 轧制规程编制 (5) 3.1轧制工艺参数设计 (5) 3.1.1选择坯料 (5) 3.1.2坯料尺寸的确定 (5) 3.1.3确定轧制方法 (5) 3.1.4确定轧制道次 (6) 3.1.5道次压下量的分配 (6) 3.1.6速度制度 (8) 3.1.7轧制时间 (8) 3.1.8温度制度 (9) 3.2轧制力的计算 (11) 3.2.1平均单位压力 (11) 3.2.2总轧制力的计算 (11) 3.3计算传动力矩 (12) 3.3.1轧制力矩的计算 (12) 3.3.2附加摩擦力矩的计算 (12) 3.3.3空转力矩的计算 (13) 3.3.4动力矩的计算 (13) 4辊型设计计算 (15) 5设备校核 (18) 5.1轧辊强度校核 (18) 5.1.1支撑辊强度校核 (19) 5.1.2 工作辊强度计算 (19) 5.1.3接触应力的计算 (20) 5.2主电机功率校核 (21) 5.2.1电机过载校核 (21) 5.2.2电机的发热校核 (21) 6结语 (22) 7参考文献 (23)

1前言 1.1 EH32中厚板产品介绍 一般船体结构钢A、B、D、E级是根据钢材冲击温度来区分的,各等级钢的冲击值均相同,不是根据强度等级区分的。 A级钢是在常温下(20℃)所受的冲击力。 B级钢是在0℃下所受的冲击力。 D级钢是在-20℃下所受的冲击力。 E级钢是在-40℃下所受的冲击力。 高强度船体结构钢又可分为AH32 DH32 EH32 AH36 DH36 EH36。 1.2 EH32中厚板成分介绍: EH32化学成分: 碳(C)≤0.18 锰(Mn)0.90~1.60 铝(Al)≥0.015 硅(Si)0.10~0.50 磷(P)≤0.04 硫(S)≤0.04 屈服强度σs (MPa)315 2中厚板生产工艺流程简介 中厚板的生产工艺流程根据每个厂的生产线布置情况、车间内物流的走向以及其主要产品品种和交货状态的不同而具有其各自的特点,但加热、轧制、冷却和精整剪切仍是中厚板生产工艺流程的核心部分,而具体的工艺流程一般可根据成品的交货状态,分为直接轧制交货、热处理交货和抛丸或涂漆交货。 工艺流程简介图:原料检查→原料清理→加热→除鳞→粗轧→精轧→矫直→冷却→表面检查→切头切尾→精整。 原料的选择与加热

1250热轧板带轧制规程设计轧钢车间设计

1250热轧板带轧制规程设计轧钢车间设计

学号:20 7 H EBEI P OLYTECHNIC U NIVERSITY 课程设计 论文题目: 1250热轧板带轧制规程设计 学生姓名: 专业班级:0 成型班 学院: 指导教师:教授 2010年03月12日

目录 1 产品特点和轧制特点1 2原料及产品介绍 2 3 轧机的选择3 3.1 轧机布置 (3) 3.2 立辊选择 (4) 3.3 粗轧机的选择 (5) 3.4 精轧机的选择 (5) 4 压下规程设计7 4.1 压下规程设计 (7) 4.2 道次选择确定 (7) 4.3 粗轧机组压下量分配 (7) 4.4 精轧机组的压下量分配 (8) 4.5 校核咬入能力 (9) 4.6 确定速度制度 (9) 4.7 轧制温度的确定 (12) 4.8 轧制压力的计算 (13) 4.9 辊缝计算 (16) 4.10 精轧轧辊转速计算 (16) 4.11 传动力矩 (17) 5 轧辊强度校核与电机能力验算19 5.1 轧辊的强度校核 (19) 5.1.1 支撑辊弯曲强度校核 (19) 5.1.2 工作辊的扭转强度校核 (21) 5.2 电机的校核 (22) 5.2.1 静负荷图 (22) 5.2.2 主电动机的功率计算 (23) 5.2.3 等效力矩计算及电动机的校核 (23) 5.2.4 电动机功率的计算 (24) 6 板凸度和弯辊25 6.1 板型比例凸度计算 (25) 6.2 板型控制策略 (26) 6.3 凸度控制模型 (27) 6.4 影响辊缝形状的因素 (28) 6.4.1 轧辊挠度计算 (28) 6.4.2 轧辊热膨胀对辊缝的影响 (30) 6.4.3 轧辊的磨损对辊缝的影响 (31) 6.4.4 原始辊型对辊缝的影响 (31) 6.4.5 入口板凸度对辊缝的影响 (32) 6.5 弯辊装置 (32) 6.5.1 弯曲工作辊 (32) 6.5.2 弯曲支撑辊 (32)

中厚板压下规程设计

第一章选择坯料 1.1制定生产工艺 产品牌号:45钢 产品规格:l ?=10?1900?10000mm b h? 本次所设计的产品为中厚板,连铸坯节能,组织和性能好,成材率高,主要用于生产厚度小于80mm中厚板,所以坯料选用连铸坯。 根据车间设备条件及原料和成品的尺寸,确定生产工艺过程如下:原料的加热→除鳞→轧制(粗轧、精轧)→矫直→冷却→划线→剪切→检查→清理→打印→包装。 板坯加热时宜采用步进式连续加热炉,加热温度应控制在1200℃左右,以保证开轧温度达到1150℃的要求。另外,为了消除氧化铁皮和麻点以提高加热质量,可采用“快速、高温、小风量、小炉压”的加热方法。该法除能减少氧化铁皮的生成外,还提高了氧化铁皮的易除性。 板坯的轧制有粗轧和精轧之分,对双机架轧机通常将第一架称为粗轧机,第二架称为精轧机。粗轧阶段主要是控制宽度和延伸轧件。精轧阶段主要使轧件继续延伸同时进行板形、厚度、性能、表面质量等控制。精轧时温度低、轧制压力大,因此压下量不宜过大。 1.2 确定坯料尺寸 所设计的产品的尺寸为l ?=10?1900?10000mm,加上切边余量,将宽度设计为 b h? 1950mm,长度暂时不定,设计坯料的尺寸。 产品的厚度h为10mm,首先选取压缩比,压缩比由经验值选取,选取的最低标准为6-8,因此压缩比选取9,则坯料厚度H为90mm,由b=1950mm,坯料L=b-600, 取坯料长度L=1350mm,由于体积不变,坯料在轧制过程中会产生废料,选择烧损为98%,切损设计为98%,所以成材率K=98%×98%=96%,则 h? ?=K b l H? ? ? H B 计算得到B=1680mm,最终确定坯料尺寸为:L ?=90?1680?1350mm 。 H? B

轧制规程

附热轧板带产品的工艺制度制定实例 某热轧生产线,产品规格1.8*1200mm 带卷,材质STE255 1 轧制方法 综合轧制法,由2架粗轧机组和7架四辊不可逆式轧机组成的连轧机组共同完成轧制过程。 2 安排轧制规程 2.1粗轧机组的轧制规程 粗轧机组的形式:由 2 架粗轧机组。第一架为二辊可逆式轧机,板坯在此机架上轧制3道次,为控制宽展R1 前设有立辊E1;第二架为四辊可逆式轧机,板坯在此机架上轧制3 道次,为控制宽展R2前设有立辊E2。粗轧机组设备主要有粗轧机辊道,侧导板,高压水除鳞装置,立辊轧机,中间辊道、废品推出机等组成。。生产线布置如图 1. 图2.1粗轧机生产线布置图 2.1.1原料的确定 根据现场实际选择坯料:210?1250?4800mm 连铸板坯。材料的特性见下表。 表2.1 STE255成品的化学成分及力学性能 牌号 化学成分 / % 力学性能 C Si Mn P S 屈服/Mpa (不小于) 抗拉强 度Mpa 伸长率 (不小于)

STE25 5 ≤0.18≤0.400.5-1.3 ≤0.035 ≤0.0 3 255 360-48 25 表2.2 根据经验确定各粗轧机轧制道次及粗轧目标厚度 机架E1 R1 E2 R2 目标厚 度 道次 2 3 2 3 30 2.1.2分配各道次压下 轧机组压下量分配原则 (1)粗轧时轧件温度高,变形抗力小,塑性好,轧件又短;考虑到粗轧机组与精轧机组轧制节奏和负荷的平衡。粗轧机组的总压下量应尽可能大,以便减轻精轧机组负荷,一般粗轧机组总延伸率为7~10,最大可达12。粗轧机组变形量要占总变形量的70~80%; (2)为保证精轧机组的终轧温度,应尽可能提高粗轧机组出的精轧坯的温度;尽可能减少粗轧道次和提高粗轧机的轧制速度。,减少温降。 (3)为简化精轧机组的调整,粗轧机组轧出的精轧坯的厚度范围尽可能的少。一般粗轧机组轧出的精轧坯厚20~40mm。 (4)粗轧机各道次压下量分配规律为:第一道次考虑咬入及配料厚度偏差不能给以最大压下量;中间各道次应以设备能力所允许的最大压下量轧制;最后道次为了控制出口厚度和带坯的板形,应适当减小压下量。 (5)粗轧机组的立辊,除了立辊破磷机考虑道破磷和调节板坯宽度给予较大的压下量(50~100mm)处,其它万能机座上的立辊压下量都不大,约等于宽展量。宽展量约为4~32mm。 表2.3粗轧机组各道相对压下率分配表 机座号或道次 1 2 3 4 5 6

中厚板生产课程设计指导书..

目录

1 产品标准和技术要求 1.1.1钢材的尺寸、外形及允许偏差 钢板和钢带的尺寸、外形及允许偏差见国标GBT/709-2006《热轧钢板和钢带的尺寸、外形、重量及允许偏差》(国标可从网上下载,下同)。 1.1.2技术要求 合金牌号和化学成分可查国标,如碳素结构钢可查GB/T700-2006,低合金结构钢可查GB/T1591,优质碳素结构钢 GB/T 699-1999等 另外,技术要求可查找GB 3524-2005《碳素结构钢和低合金结构钢热轧钢带》,GB/T4237-2007《不锈钢热轧钢板和钢带》,GB/T8749-2008《优质碳素结构热轧钢带》等。 (1)钢的牌号、化学成分和力学性能见表1-6。

2 生产工艺流程及主要设备参数 2.1生产工艺流程 根据车间设备条件及原料和成品的尺寸,生产工艺过程一般如下:原料的加热→除鳞→轧制(粗轧、精轧)→矫直→冷却→划线→剪切→检查→清理→打印→包装。 板坯的轧制有粗轧和精轧之分,但粗轧与精轧之间无明显的划分界限。在单机架轧机上一般前期道次为粗轧,后期道次为精轧;对双机架轧机通常将第一架称为粗轧机,第二架称为精轧机。粗轧阶段主要是控制宽度和延伸轧件。精轧阶段主要使轧件继续延伸同时进行板形、厚度、性能、表面质量等控制。精轧时温度低、轧制压力大,因此压下量不宜过大。 中厚板轧后精整主要包括矫直、冷却、划线、剪切、检查及清理缺陷,必要时还要进行热处理及酸洗等,这些工序多布置在精整作业线上,由辊道及移送机纵横运送钢板进行作业,且机械化自动化水平较高。 2.2 主要生产工艺 (1)加热 板坯加热目的:中厚板加热目的是提高钢的塑性,降低变形抗力,利于轧制;生成表面氧化铁皮,去除表面缺陷;加热到足够高的温度,使轧制过程在奥氏体化温度区域内完成;在可能的下并可以溶解在后阶段析出的氮化物和碳化物。 一般厚板加热炉的型式有两种:连续式和半连续式。比较而言,连续式加热炉的产量高、热效率高,装入,抽出方便间歇式加热炉产量一般在10~20t/h,热效率也低。这里采用的加热炉为步进梁式加热炉。 中厚板加热工艺的特点:由于厚板的产品种类较多,板坯的规格变化大,所以加热温度的变化范围较广,一般在950~1250°C左右,这与热连轧的情况不完全一样,由于生产的批量小,炉内板坯的温度变化频繁,这样就造成加热炉的热负荷变化较大,加热温度的控制要求较高。 (2)轧制 中厚板轧制过程包括除鳞、粗轧、精轧三个阶段。随控制轧制技术的应用,为满足控制轧制时的温度条件,在粗轧过程中或粗轧后还有一个控制钢板温度的阶段。轧制过程主要包括以下几个阶段: 1)除鳞:钢板表面质量是钢板重要的质量指标之一,加热时高温下生成的氧

热轧板带钢生产压下规程设计

攀枝花学院 学生课程设计(论文) 题目:6×1700㎜热轧带钢精轧压下规程设计 学生姓名:乔红林学号:201111102049 所在院(系):材料工程学院 专业:材料成型及控制工程 班级: 2011级压力加工班 指导教师:肖玄职称:助教 2014年10 月13 日 攀枝花学院教务处制

攀枝花学院本科学生课程设计任务书

摘要 压下规程设计的主要任务就是要确定由一定的板坯轧成所要求的板、带产品的变形制度,亦即要确定所需采用的轧制方法、轧制道次及每道次压下量的大小,在操作上就是要确定各道次辊缝的位置(即辊缝的开度)和转速。因而,还要涉及到各道次的轧制速度、轧制温度及前后张力制度及道次压下量的合理选择,从而达到充分发挥设备能力,提高产量和质量,并使操作方便,设备安全的目的。 本课题设计了6×1700㎜热轧带钢精轧压下规程制定。事实证明影响热轧带钢成品质量的主要因素有坯料缺陷、轧制温度、轧制张力、轧辊磨损及表面粗糙度等,而该课程设计任务就是采用合理压下规格以提高热轧带钢的产量和质量。 关键词压下规程设计,轧制,热轧带钢

目录 摘要........................................................... IV 1 设计任务 (2) 1.1设计任务 (2) 1.2坯料及产品规格 (2) 2 设计方案 (3) 2.1产品规格 (3) 2.2设计原则 (3) 3 压下规程设计 (4) 3.1精轧道次,分配压下量 (4) 3.1.1轧制道次的确定 (4) 3.1.2精轧机组的压下量分配 (5) 3.2咬入能力的校核 (6) 3.3计算轧制时间 (6) 3.3.1精轧速度制度确定 (6) 3.3.2各道轧件速度的计算 (7) 3.4轧制压力的计算 (8) 3.4.1精轧机组温度确定 (8) 3.4.2精轧段轧制力计算 (8) 3.5轧辊强度校核 (9) 3.5.1支撑辊弯曲强度校核 (9) 3.5.2工作辊的扭转强度校核: (11) 4 结论 (12) 参考文献 (15)

中厚板相关论文

中厚板相关论文 浅谈中厚板轧区成材率的影响因素及提高措施摘要:成材率的高低直接影响着企业的生产成本。针对莱钢4300生产线成材率状况,探讨了影响成材率的因素,并采取相应的措施,着重解决轧制区在生产中遇到的实际问题,从而达到提高成材率的目的。通过措施的实施,成材率显著提高,企业获得了可观的经济效益。 关键词:成材率;影响因素;措施 前言 莱钢4300宽厚板生产线由宽厚板轧钢作业区及其辅助设施两大部分组成。该工程由山东冶金设计院设计,法国V AI—CLECIM公司技术总负责,采用热装、平面形状控制、控制轧制和控制冷却、在线超声波探伤、滚切式剪切、高刚度大矫直力全液压矫直机、无氧化热处理等新技术。采用三级自动化,对每一个环节的工艺参数进行实时调整,使轧制达到高成材率的目的。 1.莱钢4300宽厚板成材率状况 莱钢4300宽厚板自08年试生产至投产以来成材率不到90%,与国内同行业相比,差距还很大,究其原因主要是轧区对成材率的影响较大,而轧区拥有世界一流的设备,相信只要我们经过技术功关,找出轧区制约成材率的瓶颈因素,制定出相应的措施,成材率必定能够提高。

2.影响成材率的主要因素 成材率=成品钢板重量/合格钢板重量+废品+损耗 上式中的废品包括轧废、切废、以及炼钢原因所造成的钢板裂纹而判废等,但轧钢作业区造成的轧废主要是中间废、异物压入、辊印、性能不合等废品,它主要取决于轧机的稳定性、轧钢工的操作水平及处理异常问题的能力、钢板轧制工艺、坯料的加热均匀性等。 耗品包括加热烧损、二次氧化铁皮、切损及亏吨等。加热烧损即钢坯在加热过程中,与炉气中的氧化性气体发生反应,生成铁的氧化物,造成金属的损失就是钢坯的氧化烧损。二次氧化铁皮是指钢坯从出炉到轧制成材所形成的氧化铁皮。虽然二次氧化铁皮在金属损耗中比例很小,但二次氧化铁皮的形成会造成成品表面缺陷,如红锈、夹杂等,因此它也不容忽视。切损是指切头、尾、切边、取样损失等造成的金属损耗。粗略统计切边和切头尾损失占总损耗的49%,这是一个相当大的比例,轧制板型及矩形度的好坏直接影响钢板的切损。板型提高,相信成材率会有一个大的突破。 3.轧区提高成材率措施 3.1认真贯彻执行工艺操作规程,形成作业区和部双重工艺检查,严格控制工艺,稳定轧制秩序。上料工要及时测量、清理和检查坯料,以防因原料不够或有结疤造成钢板短尺,加热工要严格控制炉内气氛,不准有过热和过烧、粘炉等情况发生,要保证钢温的均匀性,任何时候都不能因抢产量而出低温钢。正常生产或停车都要及时调整加

30×2000×6000(Q235) 中厚板生产规程设计

湖南工业大学 课程设计 资料袋 冶金工程学院(系、部)2012 ~ 2013 学年第 1 学期课程名称金属材料专业课程设计2 指导教师王生朝职称副教授 学生姓名xx 专业班级金属材料工程学号xxxxx 题目30×2000×6000(Q235)中厚板生产规程设计 成绩起止日期2013 年 1 月7 日~2013 年 1 月18 日 目录清单 序号材料名称资料数量备注 1 课程设计任务书 1 份 2 课程设计说明书 1 本 3 课程设计图纸0 张4 5 6

金属材料专业课程设计2 设计说明书 30×2000×6000(Q235)中厚板生产规程设计 起止日期:2013 年1 月7 日至2013 年1 月18 日 学生姓名xxxx 班级金属材料093班 学号xxxxx 成绩 指导教师(签字) 冶金工程学院 2013年1月17 日

湖南工业大学 课程设计任务书 2012 —2013 学年第 1 学期 冶金工程学院学院金属材料工程专业金属材料093 班级课程名称:金属材料专业课程设计2 设计题目:30×2000×6000(Q235)中厚板生产规程设计 完成期限:自2013 年 1 月7 日至2013 年 1 月17 日共两周 内容及任务一、设计的主要技术参数 (1)3800或2800中厚板轧机等 (2)原料规格: 厚度:180、220、260、300mm 宽度:1200—2300mm 长度:双排2200—3600mm 单排4200—7500mm 标准板坯尺寸:220×2100×3300mm 最大坯料尺寸: 单排料:260×2300×7500mm 双排料:260×2300×3600mm (3)成品尺寸: 20—100×1500—3600×长度 二、设计任务 (1)收集设计所需的资料 (2)确定生产设计产品的典型工艺流程 (3)确定生产方式及生产主设备的布置形式,并确定其主要参数(4)选择生产产品的原料,确定轧制规程 (5)力能参数计算 (6)书写或打印说明书 (7)设计答辩 三、设计工作量 按要求写出设计任务书 进度安排 起止日期工作内容 2013.1.7至2013.1.8查阅相关书籍资料 2013.1.9至2013.14计算相关参数 2013.1.15至2013.1.17输入计算机并整理成设计说明书2013.1.18答辩

1580热轧板带轧制规程设计

河北理工大学冶金与能源学院 课程设计 题目:1580热轧板带轧制规程设计 专业:材料成型与控制工程 班级:07成型(2) 学生姓名:李壮志 学号:200706040213 指导老师:冯运莉 日期:2011年3月10日

目录 1.1700热轧带生产工艺.......................................... 错误!未定义书签。 1.1 原料及产品介绍 (1) 1.2 主要设备的选择 (1) 1.2.1 立辊选择 (1) 1.2.2 轧机布置 (2) 1.2.3 粗轧机的选择: (3) 1.2.4 精轧机的选择: (4) 2 压下规程设计与辊型设计 (5) 2.1 压下规程设计 (5) 2.2 道次选择确定 (5) 2.3 粗轧机组压下量分配 (5) 2.4 精轧机组的压下量分配 (6) 2.5 校核咬入能力 (7) 2.6 确定速度制度 (7) 2.7 轧制温度的确定 (10) 2.8 轧制压力的计算 (11) 2.9 传动力矩 (14) 3 轧辊强度校核 (15) 3.1 轧辊的强度校核 (15) 3.1.1 支撑辊弯曲强度校核 (16) 3.1.2 工作辊的扭转强度校核: (18) 参考文献 (19) 2

1.1 原料及产品介绍 依据任务要求典型产品所用原料: 规格:板坯厚度:250mm 钢种:Q235 最大宽度:1050mm 长度:8.5m 产品规格: 厚度: 6mm 因为所给坯料宽度较小,并且在粗轧机前部安装有大立辊,所以侧压有效,可以少量控制成品宽度。 坯料选用250mm厚需要较多道次,但对保证压缩比,生产优质板材具有重要意义,生产普板时可以降低原料厚度,以减少道次增加产量。 坯料宽度限定8.5m,加热炉内宽度9.2m,有利于设计高温(1350℃)步进炉,以便为今后生产高牌号硅钢、低合金管线钢储留设备能力。 1.2 主要设备的选择 轧钢机是完成金属轧制变形的主要设备,因此,轧钢机能力选取的是否合理对车间生产产量、品种和规格具有非常重要的影响。 选择轧钢设备原则: (1)有良好的综合技术经济指标; (2)轧机结构型式先进合理,制造容易,操作简单,维修方便; (3)有利于实现机械化,自动化,有利于工人劳动条件的改善; (4)备品备件要换容易,并有利于实现备品备件的标准化; (5)在满足产品方案的前提下,使轧机组成合理,布置紧凑; (6)保证获得质量良好的产品,并考虑到生产新品种的可能; 热带轧机选择的主要依据是:车间生产的钢材品种和规格。轧钢机选择的主要内容是:选取轧机的架数、能力、结构以及布置方式。最终确定轧钢机的结构形式及其主要技术参数。 1.2.1 立辊选择 立压可以齐边(生产无切边带材)、调节板坯宽度并提高除磷效果。立压轧机包括:大立辊、小立辊及摆式压力机三种,各自特点如下: 大立辊:占地较多,设备安装在地下,造价高,维护不方便。而其能力较强,用来调节坯料宽度。 小立辊:能力较小,多用于边部齐边。 1

热轧带钢压下规程设计

热轧带钢压下规程设计

材料成型课程设计 热连轧板带钢工艺与规程设计 目录 1. 题目及要求 2. 工艺流程图 3. 轧制规程设计 3.1 轧制方法 3.2 安排轧制规程 3.3 校核咬入能力 3.4 确定速度制度 3.5 确定轧制延续时间 3.6 轧制温度的确定 3.7 计算各道的变形程度 3.8 计算各道的平均变形速度 3.9 计算各道的平均单位压力P及轧制力P和各道轧制力矩 4.电机与轧辊强度校核 4.1 轧辊校核 4.2 电机校核 5. 车间平面布置图 指导老师:丽颖 晶晶 学号:1004040114 班级: 材料101 姓名:小七

(1)题目及要求 1) 设计题目 已知原料规格为300×2500×12000mm,钢种为Q345,产品规格为20×3000mm。 2)Q345的产品技术要求 (1)碳素结构钢热轧板带产品标准(GB912-89),尺寸、外形、重量及允许偏差应符合 GB-709-88标准 钢板长度允许偏差 公称厚度钢板长度长度允许偏差 >4-16 ≤2000 +10 >2000-6000 +25 >6000 +30 公称厚度宽度宽度允许偏差 >4-16 ≤1500 +10 >1500 +15 (2)牌号、化学成分及机械性能:低合金结构钢 1)碳素结构钢热轧板带产品标准(GB912-89) 2)力学性能:综合力学性能良好,低温性能亦可,塑性和焊接性良好,

用做中低压容器、油罐、车辆、起重机、矿山机械、电站、桥梁等承受动荷的结构、机械零件、建筑结构、一般金属结构件,热轧或正火状态使用,可用于-40℃以下寒冷地区的各种结构。 3)表面质量:表面要缺陷少,需要平整,光洁度要好。 (2)工艺流程图 1)工艺流程 坯料→加热→除鳞→定宽→粗轧→(热卷取→开卷)→精轧→冷却→剪切→卷取2)绘制工艺简图 3)确定轧制设备 粗轧机:二辊、四辊 轧辊的主要参数的确定(辊身直径D 、辊身长度L )决定板带轧机轧辊尺寸时,应先确定辊身长度L,然后再根据强度、刚度和有关工艺条件确定其直径D。辊身长度L:应大于所轧钢板的最大宽度bmax,即L=bmax+a;a值视钢板宽度及轧机类型而定,当bmax=1000~2500mm时,a=150~200mm,故取a=200mm,则L=2500+200=2700mm,又因为L/D=2.2~2.7,所以取D=1.00m 精轧机:四辊PC轧机 轧辊长度:L= b max+a,取a=200mm,L =200mm,则L=2500, 又因为 横移量 L/D=2.1~4.0,所以取D=0.8m. 1 粗轧机组 由2 架粗轧机组。第一架为二辊可逆式轧机,板坯在此机架上轧制1~3道次。为控制宽展R1 前设有立辊E1。第二架为四辊可逆式轧机,板坯在此机架上轧制1~3 道次。各轧机采用单独传动。粗轧机组设备主要有粗轧机辊道,侧导板,高压水除鳞装置,定宽压力机,立辊轧机,中间辊道,热卷箱和废品推出机等组成。 2 精轧机组 由7架四辊不可逆式轧机组成连轧机组。各机架采用PC 轧机。前三架主要完成压下,后四架主要控制板形。各机架负荷分配亦不同,因此前三台采用工作辊辊径较大,后四架采用较小的工作辊。精轧机组前设置边部加热器。精轧机 F1~F7全部为液压压下并设弯辊装置。 3 轧机机组主要参考性能参数:

相关文档
最新文档