用89S51单片机实现模拟信号和数字信号的转换

用89S51单片机实现模拟信号和数字信号的转换
用89S51单片机实现模拟信号和数字信号的转换

利用单片机实现的模拟信号和数字信号单线混合传输

2004.1 电子设计应用 www.eaw.com.cn 68 图1 模拟信号和数字信号单线混合传输硬件框图 信号传输在现代工程中是很重要的一个技术环节,通常使用多芯电缆将模拟信号和数字信号独立多线传输。但在信号传输中,数字信号将对模拟信号产生干扰,不得不采用互相屏蔽的多芯缆来降低干扰。这样不仅使电缆的线径和重量增加,而且成本提高。在特殊的地理环境,特别是在野外气温很低的情况下,粗线径的电缆将给现场操作带来很大的困难。本文设计的系统是利用单片机来实现模拟信号和很高的信号传输。 硬件构成及电路 本文硬件电路实现二路数字脉冲信号和一路模拟信号的单线混合传输,功能框图如图1所示,其中包括数字脉冲信号接收转换和模拟信号分时输出等技术环节。单片机对二路数字脉冲信号进行计数,并利用DAC TLC5618和模拟开关MAX319把当前的计数值和模拟信号分时传送出去。 图2所示,采用单片机AT89C2051和12位DAC TLC5618。 在电路中用了一个可充电电池,输出电压为7.2V,经过一个低差压线性稳压器LM2940,输出电压为+5V,可供单片机、TLC5618、MAX319等使用。再接一个微型DC/DC模块IA0512M,输出电压±12V,可供放大器TLE2062和MAX319使用。 AT89C2051是一种带2kB字节闪速可编程、可擦除、只读存储器CMOS 8位微控它有两个可编程的16位定时;15个可编程的通道;128字节片内RAM存储有6个中断源,而且其输出可以LED。它可以在2.7V ̄6VTLC5618是带有缓冲基准输入的双路12位电压输出输出电压范围可编程为有两个输出端口 ,且它们可以同步刷新。此外, 利用单片机实现的模拟信号 和数字信号单线混合传输 ■ 西安交通大学机械结构强度与振动国家重点实验室 徐明龙 王赤虎 本项目是国家自然科学基金重点项目,编号为50135030。

1、模拟信号到数字信号的转换

模拟信号到数字信号的转换(A/D转换) (胥永刚) 现在大部分传感器输出的信号都是模拟信号,主要包括电压信号和电流信号两种,当然也有直接输出数字信号的传感器。对于传感器输出的模拟信号,除了一些简单的仪表直接进行显示之外,大部分都需要转换成数字信号,以便在网络上进行传输,并保存在硬盘、CF卡等存储介质上,用于后续的分析和处理,如此,就需要用专门的器件将模拟信号转换成数字信号。对于部分技术人员来说,了解模数转换的原理,对深入了解测试仪器,开发测试系统,修正仪器的技术参数等有着很大的帮助。 对于一个完整的带反馈控制的监控系统来说,大体可以用图1这个框图来描述,从图中可以看出来,一般而言,模数转换(A/D)大多在数模转换(D/A)之前,但在很多教材上,往往是先讲数模转换(D/A),再讲模数转换(A/D),因为模数转换电路里要用到数模转换。当然这是从理论上来讲的,对于现在工程中实际应用的数模转换究竟基于什么原理,我也不是很清楚,但并不妨碍我们对模数转换的理解。. 因此,我们尝试着讲解数模转换原理,因为从对应关系上来说,这两者是一样的,只是转换电路不同而已。 图1 典型的监控系统(带反馈控制) 1、数模转换原理 图2是很多教材上给出的数模转换电路,要想讲清楚这个,需要用到电工电子方面的知识,这里我们就不详细展开了。(原谅我一次一次提到教材二字,因为在高校里工作,养成习惯了,^_^) 图2 数模转换电路

图1是一个4位的数模转换电路,意思是将一个4位的二进制数转换成对应的电压。4位的二进制数可以表示成3210d d d d ,翻译成十进制数,就是 32103210 2*+2*+2*+2*d d d d (1) 式(1)中的四位二进制数,每个位上要么是0,要么是1,不可能是其它数字。 因此,四位二进制数最大可表示十进制的15,最小可表示十进制的0。 若我们任意给一个四位的二进制数,可以按照如下公式进行数字和电压之间的换算。 321043210=(2+2+2+2)32F R o R U U d d d d R (2) 比如,我们假设这个四位的数模转换器参考电压=10R U V ,=3F R R ,若输入的四位二进制数是0000(对应的十进制数是0),则输出的电压为: 3210 410=(2*0+2*0+2*0+2*0)=032 F o R U V R 若输入的四位二进制数是1101(对应的十进制数是13),则输出的电压为: 321041010130=(2*1+2*1+2*0+2*1)=(8+4+0+1)=321616 F o R U V R 也就是说,要是输入的十进制数是0,则输出电压0V,若输入的十进制数是13,则输出的电压为13016 V ,如此类推,我们就可以得知,输入任意一个四位二进制数(对应的十进制数在0~15之间),就可以按照式(2)得到一个对应的电压值。如此,就实现了数字信号到模拟信号的转换。 当然,现在市场上很少能买到4位的数模转换器,大部分都是12位,16位,24位的,转换规律是一样的,参考下式: -1-20-1-20= (2+2++2)32F R n n n o n n R U U d d d R (3) 2 关于数模转换的直观理解 不理解上面那几个公式也没关系,只要明白下面这个对应关系也可以。 不管是数模转换(D/A)还是模数转换(A/D),就是根据某一个公式实现电压信号和对应的数字信号之间的转换。 比如,一个数模转换器允许输入的数字范围是0~4095,对应输出的电压为-5V~+5V。之所以这样假设,是因为大多数数模转换输入的是十进制数字,12位的二进制信号对应的十进制数字就是000000000000对应着十进制的0,111111111对应着十进制的4095,常见的数模转换和模数转换电压范围为-5V~+5V。 在这个假设下,如图4所示,若是数模转换,意味着输入数字为0时,输出电压是-5V,输入数字为4095时,输出电压为+5V,输入数字为2048时,输出电压为0V。

模拟信号和数字信号的特点分别是什么

模拟信号和数字信号的特点分别是什么

第一章 复 习 题 1、模拟信号和数字信号的特点分别是什么? 2、设数字信号码元时间长度为1s μ,如采用四电平传输,求信息传输速率及符号速率。 3、接上题,若传输过程中2秒误1个比特,求误码率。 4、假设频带宽度为1024kHz ,可传输2048s kbit /的比特率,试问其频带利用率为多少? 第一章 复习题答案 1、答:模拟信号的特点是幅度取值是连续的。 数字信号的特点是幅度取值是离散的。 2、答:符号速率为 Bd t N B B 661010 1 1=== - 信息传输速率为 s Mbit s bit M N R B b /2/1024log 10log 6262=?=?== 3、答:误码率=发生误码个数/传输总码元数 7 6 105.210221-?=??= 4、答: Hz s bit //21010241020483 3 =??==频带宽度信息传输速率η 第二章 复 习 题 1、某模拟信号频谱如题图2.1所示,求满足抽样定理时的抽样频率s f 。若kHz f s 10=,试 画出抽样信号的频谱,并说明此频谱出现什么现

象? 2、画出9=l 的均匀量化信噪比曲线(忽略过载区内的量化噪声功率)。 3、画出6.87,7==A l 的A 律压缩特性的非均匀量化信噪比曲线。 4、为什么A 律压缩特性一般A 取87.6。 5、A 律13折线编码器,8=l ,一个样值为? =93S i ,试 将其编成相应的码字,并求其编码误差与解码误 差。 6、A 律13折线编码器,8=l ,过载电压mV U 4096=,一个样值为mV u S 796-=,试将其编成相应的码字,并求 其编码电平与解码电平。 第二章 复 习 题 答 案 1、kHz f f B kHz f kHz f M M 415,5,10 =-=-=== B f <0 ∴此信号为低通型信号 满足抽样定理时,应有 kHz f f M s 10522=?=≥

(完整版)外文翻译--模拟与数字转换器-精品

模拟与数字转换器 前面我们已经提到,人们在模拟转换器、信号调节器和A/D转换器等的使用上已经积累了大量的经验。因此,目前大部分的系统自然都采用这些技术。然而,还有很大一部分测量方法实质是数字的,在个别的测量仪中使用这些方法时,需要用到一些积分电路,如频率计数和计时电路等来提供指示输出。另外,如果把这种转换器和电脑相连的话,就可以省去一些器材;因为很多有积分电路执行的工作可以由计算机程序代为执行。 柯林斯把在控制和测量系统中处理的信号分为以下几类: (1)模拟式。尽管系统的被测数最初通过传感器得到的是模拟信号,然后通过设计或采用原有的方法将模拟形式的信号转换成电模拟信号。 (2)数字码式。产生的信号是并行的数字信号,每一位的基数权重由预先编定的号码系统决定。在本书中这些仪器称作直接数字转换器。 (3)数字式。其中的函数是指测量参数时用到的量度标准,如对重复信号取平均值。这些仪器在后来称为频域转换器。 特别地,一些模拟转换器适合用一些特别的技术来把模拟量转换成数字输出。其中最通用的方法是同步法和相似仪器的方法,即产生载波频率的调制输出的方法。在用作普通的模拟量输出仪器时,输出量必须经过解调。解调后输出的是直流信号,支流信号的大小和方向描述了转换器运动元件的偏移。虽然使用传统的A/D转换技术可以用来产生数字信号,在提供高精度时采用这些新技术将同步输出直接变为数字输出,比用A/D转换方法更快。 直接数字转换器实际上用得很少,因为在自然现象中很少有那种由温度变化、压力变化等因素作用而产生的可测量的离散的变化量。在普通的仪器系统中使用直接数字转换器有如下优点(即使在完成安装时不使用计算机):(1)容易产生、处理和存储信号,如打控带、磁带等; (2)高精度和高分辨率的需要; (3)高介数字信号对外部噪声的抗干扰性; (4)在简化数据描述时的人机工程学优势(例如:数字读出器能避免读刻度或图表时的判度错误)。 在直接数字转换器中最能起作用的发展是轴编码器。轴编码器在机床和飞行系统中被广泛应用。利用这些设备能达到很高的精度和分辨率,而且这些设备能进行激动连接,给出任何可测量物理偏移的直接数字输出。这类系统通常的缺点是仪器的惯性及编码器限制了相应的速度,因而也限制了操作频率。 频域转换器在线系统(测量量较少时)有着特殊的地位。因为计算机能担当

模拟信号和数字信号的对比

模拟信号是将源信号的一些特征未经编码直接通过载波的方式发出,是连续的数字信号则是通过数学方法对原有信号进行处理,编码成二进制信号后,再通过载波的方式发送编码后的数字流,是离散的特点:模拟信号:将26个字母对应26种不同的颜色要传递时用不同颜色的滤光片改变电筒射出的光的颜色这里就会表现出模拟信号不可靠(容错性差、易受干扰)的缺点人对颜色的识别可能会有偏差大气对不同颜色的光线吸收程度不同数字信号:将26个字母编码成二进制数字(可参考莫尔斯电码)通过电筒光线的闪烁来传递信号由于光线的闪烁很容易分辨且不容易受到干扰这个通信方案的可靠性就比模拟信号更强模拟信号指幅度的取值是连续的(幅值可由无限个数值表示)。时间上连续的模拟信号连续变化的图像(电视、传真)信号等,时间上离散的模拟信号是一种抽样信号,数字信号指幅度的取值是离散的,幅值表示被限制在有限个数值之内。二进制码就是一种数字信号。二进制码受噪声的影响小,易于有数字电路进行处理,所以得到了广泛的应用。1.模拟通信模拟通信的优点是直观且容易实现,但存在两个主要缺点。(1)保密性差模拟通信,尤其是微波通信和有线明线通信,很容易被窃听。只要收到模拟信号,就容易得到通信内容。(2)抗干扰能力弱电信号在沿线路的传输过程中会受到外界的和通信系统内部的各种噪声干扰,噪声和信号混合后难以分开,从而使得通信质量下降。线路越长,噪声的积累也就越多2.数字通信(1)数字化传输与交换的优越性①加强了通信的保密性。②提高了抗干扰能力。数字信号在传输过程中会混入杂音,可以利用电子电路构成的门限电压(称为阈值)去衡量输入的信号电压,只有达到某一电压幅度,电路才会有输出值,并自动生成一整齐的脉冲(称为整形或再生)。较小杂音电压到达时,由于它低于阈值而被过滤掉,不会引起电路动作。因此再生的信号与原信号完全相同,除非干扰信号大于原信号才会产生误码。为了防止误码,在电路中设置了检验错误和纠正错误的方法,即在出现误码时,可以利用后向信号使对方重发。因而数字传输适用于较远距离的传输,也能适用于性能较差的线路。③可构建综合数字通信网。采用时分交换后,传输和交换统一起来,可以形成一个综合数字通信网。(2)数字化通信的缺点①占用频带较宽。因为线路传输的是脉冲信号,传送一路数字化语音信息需占20?64kHz的带宽,而一个模拟话路只占用4kHz带宽,即一路PCM信号占了几个模拟话路。对某一话路而言,它的利用率降低了,或者详它对线路的要求提高了。②技术要求复杂,尤其是同步技术要求精度很高。接收方要能正确地理解发送方的意思,就必须正确地把每个码元区分开来,并且找到每个信息组的开始,这就需要收发双方严格实现同步,如果组成一个数字网的话,同步问题的解决将更加困难。③进行模/数转换时会带来量化误差。随着大规模集成电路的使用以及光纤等宽频带传输介质的普及,对信息的存储和传输,越来越多使用的是数字信号的方式,因此必须对模拟信号进行模/数转换,在转换中不可避免地会产生量化误差数字信号与模拟信号的区别不在于该信号使用哪个波段(C、KU)进行转发,而在于信号采用何种标准进行传输。如:亚卫2号C波段转发器上是我国省区卫星数字电视节目,它所采用的标准是MPEG-2-DVBS。数字信号与模拟信号的区别不在于该信号使用哪个波段(C、KU)进行转发,而在于信号采用何种标准进行传输。如:亚卫2号C波段转发器上是我国省区卫星数字电视节目,它所采用的标准是MPEG-2-DVBS。模拟信号与数字信号(1)模拟信号与数字信号不同的数据必须转换为相应的信号才能进行传输:模拟数据一般采用模拟信号(AnalogSignal),例如用一系列连续变化的电磁波(如无线电与电视广播中的电磁波),或电压信号(如电话传输中的音频电压信号)来表示;数字数据则采用数字信号(DigitalSignal),例如用一系列断续变化的电压脉冲(如我们可用恒定的正电压表示二进制数1,用恒定的负电压表示二进制数0),或光脉冲来表示。当模拟信号采用连续变化的电磁波来表示时,电磁波本身既是信号载体,同时作为传输介质;而当模拟信号采用连续变化的信号电压来表示时,它一般通过传统的模拟信号传输线路(例如电话网、有线电视网)来传输。当数字信号采用断

单片机实验数据采集_AD转换

单片机实验报告 姓名: XX 班级: XXXXX 学号: XXXXXXX 专业:电气工程与自动化

实验1 名称:数据采集_A/D转换 一、实验目的 ⑴掌握A/D转换与单片机接口的方法; ⑵了解A/D芯片0809 转换性能及编程方法; ⑶通过实验了解单片机如何进行数据采集。 二、实验设备 装有proteus和keil软件的电脑一台 三、实验说明及实验原理: A/D 转换器大致分有三类:一是双积分A/D 转换器,优点是精度高,抗干扰性好,价格便宜,但速度慢;二是逐次逼近式A/D转换器,精度、速度、价格适中;三是并联比较型A/D转换器,速度快,价格也昂贵。实验用ADC0809属第二类,是8位A/D转换器。每采集一次一般需100μs。由于ADC0809A/D 转换器转换结束后会自动产生EOC 信号(高电平有效),取反后将其与8031 的INT0 相连,可以用中断方式读取A/D转换结果。ADC0809 是带有8 位A/D转换器、8 路多路开关以及微处理机兼容的控制逻辑的CMOS组件。它是逐次逼近式A/D转换器,可以和单片机直接接口。 (1) ADC0809 的内部逻辑结构 由图1.1 可知,ADC0809 由一个8 路模拟开关、一个地址锁存与译码器、一个A/D 转换器和一个三态输出锁存器组成。多路开关可选通8 个模拟通道,允许8 路模拟量分时输入,共用A/D 转换器进行转换。三态输出锁器用于锁A/D 转换完的数字量,当OE 端为高电平时, 才可以从三态输出锁存器取走转换完的数据。 (2) ADC0809 引脚结构 ADC0809各脚功能如下: D7 ~ D0:8 位数字量输出引脚。IN0 ~ IN7:8位模拟量输入引脚。 VCC:+5V工作电压。GND:地。 REF(+):参考电压正端。REF(-):参考电压负端。 START:A/D转换启动信号输入端。 ALE:地址锁存允许信号输入端。(以上两种信号用于启动A/D转换). EOC:转换结束信号输出引脚,开始转换时为低电平,当转换结束时为高电平。 OE:输出允许控制端,用以打开三态数据输出锁存器。 CLK:时钟信号输入端(一般为500KHz)。 A、B、C:地址输入线。 (3) ADC0809 对输入模拟量要求:信号单极性,电压范围是0-5V,若信号太小,必须进行放大;输入的模拟量在转换过程中应该保持不变,如若模拟量变化太快,则需在输入前增加采样保持电路。地址输入和控制线:4 条ALE为地址锁存允许输入线,高电平有效。当ALE 线为高电平时,地址锁存与译码器将A,B,C 三条地址线的地址信号进行锁存,经译码后被选中的通道的模拟量进转换器进行转换。A,B 和C为地址输入线,用于选通IN0-IN7 上的一路模拟量输入。通道选择表如下表所示。 C B A 选择模拟通道 0 0 0 IN0 0 0 1 IN1 0 1 0 IN2 0 1 1 IN3 1 0 0 IN4 1 0 1 IN5

模拟数字转换器的基本原理

模拟数字转换器的基本原理 我们处在一个数字时代,而我们的视觉、听觉、感觉、嗅觉等所感知的却是一个模拟世界。如何将数字世界与模拟世界联系在一起,正是模拟数字转换器(ADC)和数字模拟转换器(DAC)大显身手之处。任何一个信号链系统,都需要传感器来探测来自模拟世界的电压、电流、温度、压力等信号。这些传感器探测到的信号量被送到放大器中进行放大,然后通过ADC把模拟信号转化为数字信号,经过处理器、DSP或FPGA信号处理后,再经由DAC还原为模拟信号。所以ADC和DAC在信号链的框架中起着桥梁的作用,即模拟世界与数字世界的一个接口。 信号链系统概要 一个信号链系统主要由模数转换器ADC、采样与保持电路和数模转换器DAC组成,见图1。DAC,简单来讲就是数字信号输入,模拟信号输出,即它是一种把数字信号转变为模拟信号的器件。以理想的4 bit DAC为例,其输入有bit0 到bit3,其组合方式有16种。使用R-2R梯形电阻的4bit DAC在假定Vbit0到Vbit3都等于1V时,R-2R间的四个抽头电压有四种,分别为V1到V4。 采样保持电路也叫取样保持电路,它的定义是指将一个电压信号从模拟转换成数字信号时需要保持稳定性直到完成转换工作。它有两个阶段,一个是zero phase,一个是compare phase。采样保持电路的比较器通常要求其offset比较小,这样才能使ADC的精度更好。通常在比较器的后面需要放置一个锁存器,其目的是为了保持稳定性。 在采样电压快速变化时,需要用到具有FET开关的采样与保持电路。当FET开关导通时,输入电压保存在某个位置如C1中,当开关关断时,电压仍保持在该位置中进行锁存,直到下一个采样脉冲的到来。 ADC与DAC在功用上正好相反,它是模拟信号输入,数字信号输出,是一个混合信号器件。 模数转换器ADC ADC按结构分有很多种,按其采样速度和精度可分为: 多比较器快速(Flash)ADC; 数字跃升式(Digital Ramp)ADC; 逐次逼近ADC; 管道ADC;

模拟信号和数字信号的优缺点

模拟信号和数字信号的优缺点 模拟信号好还是数字信号好,很多人都会说数字信号,但为 什么数字信号好呢?那就有相当一部分人答不出来了,究竟模拟信 号和数字信号的优缺点在哪呢? 模拟通信的优点是直观且容易实现,但存在两个主要缺点。 1)保密性差 模拟通信,尤其是微波通信和有线明线通信,很容易被窃听。只要收到模拟信号,就容易得到通信内容。 2)抗干扰能力弱 电信号在沿线路的传输过程中会受到外界的和通信系统内部 的各种噪声干扰,噪声和信号混合后难以分开,从而使得通信质量 下降。线路越长,噪声的积累也就越多 3)不适宜远距离传输 数字化传输优点 1)加强了通信的保密性。 2)提高了抗干扰能力。 3)可构建综合数字通信网。采用时分交换后,传输和交换 统一起来,可以形成一个综合数字通信网 4)适宜远距离传输

由于数字信号在传输过程中可以不断地通过整形和判决再生,因此它可以实现无噪声积累和无非线性失真的高质量长途传输。光 纤所具有的极宽传输带宽和极小传输损耗,使数字通信的广泛应用 成为可能。数字视频光传输与传统的模拟光传输相比,具有如下显 著特性: 1)可级联,随距离的增加,SNR信噪比不会下降。 2)由于是数字传输方式,采用数字编码纠错方式,具有高 稳定性和高可靠性。 3)多路信号同传时,采用数字时分复用技术(TMD),不会 产生模拟传输时的交调失真。 4)稳定性好,环境适应性高,比模拟传输系统易于维护与 调节。 5)易于实现大容量传输,且性价比高。 6)采用无压缩编码,图像信号质量高,达广播级。 在传输中,如视频监控,数据传输等,基本上都是由光端机 来进行的,而视频监控中采用最多的则是视频光端机这类传输设备。

数字-模拟音频转换器

用户手册 数字-模拟音频转换器 2路光纤+2路同轴音频切换器 使用手册 产品型号:ADSW0006M1 聆听自然的声音! 备注 本公司保留不需要通知本手册读者而对产品实物的包装及其相关文档进行修改的权利。 ? 2012 本公司版权所有

引言 尊敬的客户: 您好! 非常感谢您购买本公司的产品。为了实现产品的最佳效果和保证安全,请您在对产品进行连接、操作、调试前仔细阅读本手册。此手册请予以保留,以备将来查阅。 本公司所生产的HDMI转换器、切换器、网线延长器、矩阵、分配器等系列产品,其设计之目的是为了让您的影音设备使用起来更便捷,更舒适,更高效,更节能。 这款音频转换器可以把四路SPDIF信号(2路光纤+2路同轴)信号自由切换到一路光纤信号输出,同时将LPCM格式的数字音频转换成立体声模拟音频输出。可广泛用于DVD播放机、蓝光机、网络播放器、高清播放器、PS2、PS3、Xbox360、PC等数字音频转换输出。 本公司所生产设备为以下应用提供解决方案:如对噪声、传输距离及安全有限制的场所、数据中心控制、信息分配、会议室演示以及教学环境和公司培训场所。 真诚服务是我们的理念,顾客满意是我们的宗旨。本公司将以最优惠的价格提供给客户最好的产品,并竭诚为客户提供优质服务。 产品简介 产品特点: ●4路SPDIF(2路光纤+2路同轴)数字音频输入,自由切换到一路光纤输出,同时转换成 1路L/R模拟音频输出和1路耳机输出 ●采用192KHz/24bit DAC音频转换芯片 ●光纤输出支持杜比AC3、DTS、THX、 HDCD、LPCM等数字音频格式 ●支持LPCM数字音频格式转换成模拟音频输出 ●自动检测识别输入数字音频信号格式,非LPCM音频输入时模拟输出自动静音 ●音频输入状态指示。当无音频输入或者输入错误数据时,对应通道指示灯开始闪烁 ●一键切换输入源及电源待机,操作方便快捷 ●耳机放大输出,能直接驱动3.5mm插头通用耳机 ●高品质音质,低噪音 ●断电记忆功能,重新开机后自动切换到上次使用信号通道 ●使用DC5V/1A外置电源适配器供电

数字信号与模拟信号的特点

信号数据可以用于表示任何信息,如符号、文字、语音、图像等,从表现形式上可归结为两类:模拟信号和数字信号。模拟信号与数字信号的区别可根据幅度取什是否离散来确定。模拟信号指幅度的取值是连续的(幅值可由无限个数值表示)。时间上连续的模拟信号连续变化的图像(电视、传真)信号等,如图1-1(a)所示。时间上离散的模拟信号是一种抽样信号,如图1-1(b)所示,它是对图1-1(a)的模拟信号每隔时间T抽样一次所得到的信号,虽然其波形在时间上是不连续的,但其幅度取值是连续的,所以仍是模拟信号,称之为脉冲幅度调制(PAM,简称脉幅调制)信号。 数字信号指幅度的取值是离散的,幅值表示被限制在有限个数值之内。二进制码就是一种数字信号。二进制码受噪声的影响小,易于有数字电路进行处理,所以得到广泛的应用。1.模拟通信 模拟通信的优点是直观且容易实现,但存在两个主要缺点。 (1)保密性差 模拟通信,尤其是微波通信和有线明线通信,很容易被窃听。只要收到模拟信号,就容易得到通信内容。 (2)抗干扰能力弱 电信号在沿线路的传输过程中会受到外界的和通信系统内部的各种噪声干扰,噪声和信号混合后难以分开,从而使得通信质量下降。线路越长,噪声的积累也就越多。 2.数字通信 (1)数字化传输与交换的优越性 ①加强了通信的保密性。语音信号经A/D变换后,可以先进行加密处理,再进行传输,在接收端解密后再经D/A变换还原成模拟信号。 数字加密处理可简单描述如下,Y1表示语音变成的数字信号Y1=1011101100001,采用8位密码C=10001101。在送到传输线路之前,将密码“加”到语音码中去,X=Y1+C(密码C连续重复),则传输的数字信号为 X=Y1+C=1011101100001 Y1 +1000110110001 C ————————————— 0011011010000 X 显然X≠Y1,即便有人窃听到X码,也不能马上得到Y1码。在接收端,只要再将相同密码C与数码X相加,就能丰碑成原来的语音数码Y1,即 Y1=X+C=0011011010000 X +1000110110001 C ————————————— 1011101100001 Y1 可见,语音数字化为加密处理提供了十分有利的条件,且密码的位数越多,破译密码就越困难。 ②提高了抗干扰能力。数字信号在传输过程中会混入杂音,可以利用电子电路构成的门限电压(称为阈值)去衡量输入的信号电压,只有达到某一电压幅度,电路才会有输出值,并自动生成一整齐的脉冲(称为整形或再生)。较小杂音电压到达时,由于它低于阈值而被过

单片机的数据采集

第二章数据采集 本章主要围绕着下位单片机的工作进行展开的,即主要实现下位单片机对外界模拟信号和数字信号的采集,下面分别给予介绍,在介绍之前先对单片机AT89C51做适当的介绍。 2.1 AT89C51简介 AT89C51是一种带4K字节FLASH存储器(FPEROM—Flash Programmable and Erasable Read Only Memory)的低电压、高性能CMOS 8位微处理器,俗称单片机。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器, AT89C51单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。 主要管脚介绍如下: VCC:供电电压。 GND:接地。 P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P0口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。 P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。 P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

模拟信号与数字信号之间的转换

模拟数据(Analog Data)是由传感器采集得到的连续变化的值,例如温度、压力,以及目前在电话、无线电和电视广播中的声音和图像。数字数据(Digital Data)则是模拟数据经量化后得到的离散的值,例如在计算机中用二进制代码表示的字符、图形、音频与视频数据。目前,ASCII美国信息交换标准码(American Standard Code for Information Interchange)已为ISO国际标准化组织和CCITT国际电报电话咨询委员会所采纳,成为国际通用的信息交换标准代码,使用7位二进制数来表示一个英文字母、数字、标点或控制符号;图形、音频与视频数据则可分别采用多种编码格式。 模拟信号与数字信号 (1)模拟信号与数字信号 不同的数据必须转换为相应的信号才能进行传输:模拟数据一般采用模拟信号(Analog Signal),例如用一系列连续变化的电磁波(如无线电与电视广播中的电磁波),或电压信号(如电话传输中的音频电压信号)来表示;数字数据则采用数字信号(Digital Signal),例如用一系列断续变化的电压脉冲(如我们可用恒定的正电压表示二进制数1,用恒定的负电压表示二进制数0),或光脉冲来表示。当模拟信号采用连续变化的电磁波来表示时,电磁波本身既是信号载体,同时作为传输介质;而当模拟信号采用连续变化的信号电压来表示时,它一般通过传统的模拟信号传输线路(例如电话网、有线电视网)来传输。当数字信号采用断续变化的电压或光脉冲来表示时,一般则需要用双绞线、电缆或光纤介质将通信双方连接起来,才能将信号从一个节点传到另一个节点。 (2)模拟信号与数字信号之间的相互转换 模拟信号和数字信号之间可以相互转换:模拟信号一般通过PCM脉码调制(Pulse Code Modulation)方法量化为数字信号,即让模拟信号的不同幅度分别对应不同的二进制值,例如采用8位编码可将模拟信号量化为2^8=256个量级,实用中常采取24位或30位编码;数字信号一般通过对载波进行移相(Phase Shift)的方法转换为模拟信号。计算机、计算机局域网与城域网中均使用二进制数字信号,目前在计算机广域网中实际传送的则既有二进制数字信号,也有由数字信号转换而得的模拟信号。但是更具应用发展前景的是数字信号。

模拟信号和数字信号的特点分别是什么

第一章 复 习 题 1、模拟信号和数字信号的特点分别是什么? 2、设数字信号码元时间长度为1s μ,如采用四电平传输,求信息传输速率及符号速率。 3、接上题,若传输过程中2秒误1个比特,求误码率。 4、假设频带宽度为1024kHz ,可传输2048s kbit /的比特率,试问其频带利用率为多少? 第一章 复习题答案 1、答:模拟信号的特点是幅度取值是连续的。 数字信号的特点是幅度取值是离散的。 2、答:符号速率为 Bd t N B B 661010 11===- 信息传输速率为 s Mbit s bit M N R B b /2/1024log 10log 6262=?=?== 3、答:误码率=发生误码个数/传输总码元数 76105.210 221-?=??= 4、答:Hz s bit //210 102410204833 =??==频带宽度信息传输速率η 第二章 复 习 题 1、某模拟信号频谱如题图2.1所示,求满足抽样定理时的抽样频率s f 。若kHz f s 10=,试 画出抽样信号的频谱,并说明此频谱出现什么现象? 2、画出9=l 的均匀量化信噪比曲线(忽略过载区内的量化噪声功率)。 3、画出6.87,7==A l 的A 律压缩特性的非均匀量化信噪比曲线。 4、为什么A 律压缩特性一般A 取87.6。 5、A 律13折线编码器,8=l ,一个样值为?=93S i ,试将其编成相应的码字,并求其编码误差与解码误差。 6、A 律13折线编码器,8=l ,过载电压mV U 4096=,一个样值为mV u S 796-=,试将其编

成相应的码字,并求其编码电平与解码电平。 第二章 复 习 题 答 案 1、kHz f f B kHz f kHz f M M 415,5,100=-=-=== B f <0 ∴此信号为低通型信号 满足抽样定理时,应有 kHz f f M s 10522=?=≥ 若kHz f s 10=,抽样信号的频谱为: 此频谱的一次下边带与原始频带重叠,即没有防卫带。 2、 e e e x x x N N S N l lg 2059lg 205123lg 20lg 203lg 20)/(512 ,9q +=+?=+?===均匀 3、 x x x N N S A N l q lg 2047lg 201283lg 20lg 203lg 20)/(6 .87,128,7+=+?=+?====均匀 246.87ln 16.87lg 20ln 1lg 20=+=+=A A Q )39lg 20(dB x -≤

51单片机数据采集系统[1]

课程设计报告书 设计任务书 一、设计任务 1一秒钟采集一次。 2把INO口采集的电压值放入30H单元中。 3做出原理图。 4画出流程图并写出所要运行的程序。 二、设计方案及工作原理 方案: 1. 采用8051和ADC0809构成一个8通道数据采集系统。 2. 能够顺序采集各个通道的信号。

3. 采集信号的动态范围:0~5V。 4. 每个通道的采样速率:100 SPS。 5.在面包板上完成电路,将采样数据送入单片机20h~27h存储单元。 6.编写相应的单片机采集程序,到达规定的性能。 工作原理: 通过一个A/D转换器循环采样模拟电压,每隔一定时间去采样一次,一次按顺序采样信号。A/D转换器芯片AD0809将采样到的模拟信号转换为数字信号,转换完成后,CPU读取数据转换结果,并将结果送入外设即CRT/LED显示,显示电压路数和数据值。 目录 第一章系统设计要求和解决方案 第二章硬件系统 第三章软件系统 第四章实现的功能 第五章缺点及可能的解决方法 第六章心得体会

附录一参考文献 附录二硬件原理图 附录三程序流程图 第一章系统设计要求和解决方案 根据系统基本要求,将本系统划分为如下几个部分: 信号调理电路 8路模拟信号的产生与A/D转换器 发送端的数据采集与传输控制器 人机通道的接口电路 数据传输接口电路 数据采集与传输系统一般由信号调理电路,多路开关,采样保持电路,A/D,单片机,电平转换接口,接收端(单片机、PC或其它设备)组成。系统框图如图1-1所示

信号采集分析 被测电压为0~5V 直流电压,可通过电位器调节产生。 信号采集 多路数据采集系统多采用共享数据采集通道的结构形式。 数据采集方式选择程序控制数据采集。 程序控制数据采集,由硬件和软件两部分组成。,据不同的采集需要,在程序存储器中,存放若干种信号采集程序,选择相应的采集程序进行采集工作,还可通过编新的程序,以满足不同采样任务的要求。如图1-3所示。 程序控制数据采集的采样通道地址可随意选择,控制多路传输门开启的通道地址码由存储器中读出的指令确定。即改变存储器中的指令内容便可改变通道地址。 由于顺序控制数据采集方式 缺乏通用性和灵活性,所以本设计中选用程序控制数据采集方式。 采集多路模拟信号时,一般用多路模拟开关巡回检测的方式,即一种数据采集的方式。利用多路开关(MUX )让多个被测对象共用同一个采集通道,这就是 图1-3 程序控制数据采集原理 图1-1 一般系统框图

八位模拟信号转换成数字信号

八位模拟信号转换成数字信号的实验设计报告 一、实验目的 1、了解A/D转换的基本知识及ADC0804的工作原理。 2、掌握基本的编程方法。 3、熟练掌握protel画电路原理图及PCB板的方法。 4、掌握运用keil软件编写单片机C语言。 二、基本原理 1、所谓A/D转换此就是模拟/数字转换器(ADC),是将输入的模拟信号转换 成数字信号。信号输入端可以使传感器或转换器的输出,而ADC输出的数字信号可以提供给微处理器,以便更广泛地应用。 2、AT89S52的基本介绍: AT89S52是一种低功耗、高性能CMOS8位微控制器,具有8K 在系统可 编程Flash 存储器,与工业80C51 产品指令和引脚完全兼容,此实验中 采用AT89S52芯片。 3、ADC0804的主要技术指标: (1) 高阻抗状态输出(2) 分辨率:8 位(0~255) (3) 存取/转换时间:135 ms/100 ms (4) 模拟输入电压范围:0V~5V (5) 参考电压:2.5V (6) 工作电压:5V 3、ADC0804电压输入与数字输出关系

三、电路原理图

四、原理图接线分析 1、ADC0804芯片主要端口接线原理: (1) (CS ):片选端。与RD、WR 接脚的输入电压高低一起判断读取或写入 与否,此实验直接接地让其处于选通状态。 (2) ( RD ):当CS 、RD 皆为低位准(low) 时,ADC0804 会将转换后的数字 讯号经由DB7 ~ DB0 输出至其它处理单元。 (3) (WR ):启动转换的控制讯号。当CS 、WR 皆为低位准(low) 时,ADC0804 做清除的动作,系统重置。当WR 由0→1且CS =0 时,ADC0804会开始转换信号,此时INTR 设定为高位准(high)。 (4) (CLK IN、CLKR):频率输入/输出。频率输入可连接处理单元的讯号频率 范围为100 kHz 至800 kHz。而频率输出频率最大值无法大于640KHz,一般可选用外部或内部来提供频率。在CLK R 及CLK IN 加上电阻及电容,构成RC振荡电路,则可产生ADC 工作所需的时序,其频率约为:f=1/1.1RC ≈640KHz, (5) ( INTR ):中断请求。转换期间为高位准(high),等到转换完毕时INTR 会 变为低位准(low)告知其它的处理单元已转换完成,可读取数字数据,此实验不用中断控制,接去MCU其中某个引脚。 (6) (VIN(+)、VIN(-)):差动模拟讯号的输入端。输入电压VIN=VIN(+) -VIN(-), 此图使用单端输入,而将VIN(-)接地,VIN(+)由电位器R1控制其电压从0~5V 变化,产生了模拟量。 (7) (A GND):模拟电压的接地端。 (8) (VREF/2):滑动变阻器R2和R3利用分压原理提供ADC芯片的基准电压。 2、AT89S52芯片主要端口接线原理: (1) XTAL2、XTAL1:晶振电路中电容C2、C3选取30pF。 (2) REST:复位电路中电容C4隔直作用,Urest=R6/(R5+R6),因为高电平有 效,故R5取小阻值1K, R6取小阻值10K. (3) P0:内部无上拉电阻,故接上1K的上拉排阻。 (3)P1:流水灯采用共阳极接法。 五、控制原理及实验内容 控制原理 根据ADC0804芯片主要端口接线原理部分的介绍,工作控制过程可简单描述如下:调节电位器R4产生连续变化的电压值,ADC0804启动转换,产生与之对应的信号送到单片机中,其高低电平从而控制D1~D8发光二级管的亮灭,这就实现了模拟信号(连续的电压值)到数字信号(高低电平1、0)的转换。

数字转换器

数字—模拟转换器(DAC )原理研究 一.内容描述: D/A 转换器通常是把加权值与二进制码的各比特相对应的电压或者电流,按二进制码进行相加,从而得到模拟信号的方法。产生加权电压和电流的方法有使用负载电阻的方法和使用梯形电阻网络的方法。 二,原理描述 本次实验主要以三位转换器为主要的研究对象。先对其原理进行分析,如下 图所示为建立的电路图: 建立的仿真电路图: 假设输入的数字为D 2D 1D 0=001,即D 0=1时,此时只有一个开关接至电压源,其他的均接地,T 型电阻网络的等效电路: 2 2122 V 0 k Ω1k Ω 1k Ω 2k Ω 2k Ω2k Ω 2k Ω 2V s V s V s

根据戴维南等效电路,每等效一次电压源的值都缩小为原来的一半。下图为其等效电路图的演化过程: =》 =》 由于输出端开路则V0= 32 3 2s V ,同理当输入数字分别为010,100时即D 1, D 2分别单独

接至参考电压源V s ,根据上述方法,可求得D/A 转换器的输出电压分别为 V 0= 32?22s V , V 0=32?2 Vs ,对于任意输入的数字信号D 2D 1D 0, 根据叠加定理,可求得D/A 转换器的输出电压为:V 0= D 0?32?32s V + D 1?32?2 2s V ,+ D 2?32?2 Vs = 32?32 1 ?V D D D )222(001122++s 三 进行仿真实验: 1. 下图为建立的仿真电路图。 首先手动观察V0的值的变化:Di=1:开关接Vs Di=0:开关接地 进行仿真实验得到的结果建立表格得: 二进制数 000 100 101 010 011 001 110 111 电压值(v ) 0 1.0 5.0 2.0 6.0 4.0 3.0 7.0 输出矩形波时的仿真电路图:

模拟信号与数字信号的特点

第1章概述 一、模拟信号与数字信号的特点 模拟信号——幅度取值是连续的连续信号 离散信号 数字信号——幅度取值是离散的二进码 多进码 连续信号 离散信号 ●数字信号与模拟信号的区别是根据幅度取值上是否离散而定的。 ●离散信号与连续信号的区别是根据时间取值上是否离散而定的。 二、模拟通信与数字通信 ●根据传输信道上传输信号的形式不同,通信可分为 模拟通信——以模拟信号的形式传递消息(采用频分复用实现多路通信)。 数字通信——以数字信号的形式传递消息(采用时分复用实现多路通信)。 ●数字通信传输的主要对象是模拟话音信号等,而信道上传输的一般是二进制的数字信 号。 所要解决的首要问题 模拟信号的数字化,即模/数变换(A/D变换) 三、数字通信的构成 ●话音信号的基带传输系统模型 四、数字通信的特点 1、抗干扰能力强,无噪声积累 对于数字通信,由于数字信号的幅值为有限的离散值(通常取二个幅值),在传输过程中受到噪声干扰,当信噪比还没有恶化到一定程度时,即在适当的距离,采用再生的方法,再生成已消除噪声干扰的原发送信号。由于无噪声积累,可实现长距离、高质量的传输。

2、便于加密处理 3、采用时分复用实现多路通信 4、设备便于集成化、小型化 5、占用频带较宽 五、数字通信系统的主要性能指标 ● 有效性指标 P7 ·信息传输速率——定义、公式l n f f s B ??=、物理意义 ·符号传输速率——定义、公式(B B t N 1= )、关系:M N R B b 2 log = ·频带利用率——是真正用来衡量数字通信系统传输效率的指标(有效性) 频带宽度符号传输速率= η Hz Bd / 频带宽度 信息传输速率= η Hz s bit // ● 可靠性指标 P8 ·误码率——定义 ·信号抖动 例1、设信号码元时间长度为s 7106-?,当(1)采用4电平传输时,求信息传输速率和符号传输速率。(2)若系统的带宽为2000kHz ,求频带利用率为多少Hz s bit //。 解:(1)符号传输速率为 Bd t N B B 6 7 1067.110 611?=?= = - 数据传信速率为 s Mbit M N R B b /34.34log 1067.1log 2 6 2 =??== (2)Hz s bit //67.110 20001034.33 6=??= = 频带宽度 信息传输速率η 例2、接上题,若传输过程中2秒误1个比特,求误码率(误比特率)。 解:误码率(误比特率)=差错比特数/传输总比特数 7 6 10 5.110 34.321-?=??=

相关文档
最新文档