蔬菜废弃物厌氧发酵制取沼气的试验研究

蔬菜废弃物厌氧发酵制取沼气的试验研究
蔬菜废弃物厌氧发酵制取沼气的试验研究

餐厨垃圾厌氧发酵特性研究

餐厨垃圾厌氧发酵特性研究 摘要:为了实现餐厨垃圾的资源化利用,解决日益严重的餐厨垃圾处理问题,我们以南阳师范学院食堂餐厨垃圾为原料,通过检测分析pH、VFA、产气量等指标,讨论酸化过程及各指标对系统厌氧发酵产沼气性能的影响,得出餐厨垃圾厌氧发酵最佳工艺条件,从而更好的对餐厨垃圾进行厌氧发酵的处理,达到使垃圾减量,环境污染减少的目的。关键词:餐厨垃圾;厌氧发酵;沼气;影响因素;资源化 OF EAT HUTCH GARBAGE ANAEROBIC FERMENTATION CHARACTERISTICS RESEARCH Abstract:in order to achieve the eat hutch garbage recycling use, the growing problem of eat hutch garbage disposal, and we are in the dining room to eat hutch garbage in nanyang normal university as a raw material, through the analysis of the tes t in dices such as pH, VFA, gas production, acidification process are discussed and the indexes of anaerobic fermentation bio-gas production performance of the system, the optimum technological conditions of eat hutch waste anaerobic fermentation, thereby better to eat hutch waste anaerobic fermentation processing, to make waste reduction, reduce environmental pollution. Key words: eat hutch garbage; Anaerobic fermentation. Bio-gas; Influencing factors; Resource recovery 1餐厨垃圾概述 1.1餐厨垃圾来源 餐厨垃圾又称泔脚,是家庭、饮食单位抛弃的剩饭剩菜以及厨房余物的统称,也是城市生活垃圾的重要组成部分[1]。餐厨垃圾是食物垃圾中最主要的一种,其成分复杂,主要是油、水、果皮、蔬菜、米面、鱼、肉、骨头以及废餐具、塑料、纸巾等多种物质的混合物。我国餐厨垃圾数量十分巨大,并呈快速上升趋势。

几种沼气厌氧发酵工艺比较剖析

塞流式工艺 塞流式工艺细分有两种,一种是普通的塞流式反应器(PFR),另一种是改进的高浓度塞流式工艺(HCF)。 1.塞流式反应器(PFR) 图1 (1)原理 PFR也称推流式反应器,是一种长方形的非完全混合式反应器。高浓度悬浮固体发酵原料从一端进入,呈活塞式推移状态从另一端排出。消化器内沼气的产生可以为料液提供垂直的搅拌作用,料液在沼气池内无纵向混合,发酵后的料液借助于新鲜料液的推动作用而排走。进料端呈现较强的水解酸化作用,甲烷的产生随着向出料方向的流动而增强。由于该体系进料端缺乏接种物,所以要进行固体的回流。为减少微生物的冲出,在消化器内应设置挡板以有利于运行的稳定。PFR反应原理及结构见图1。这种工艺能较好地保证原料在沼气池内的滞留时间。许多大中型

畜禽粪污沼气工程采用这种发酵工艺。 (2)特点 优点:适用于高SS废水的处理,尤其适用于牛粪的厌氧消化,固体含量可以提高到12%;用于农场有较好的经济效益;不需要搅拌;池形结构简单,运行方便,故障少,稳定性高。 缺点:固体物容易沉淀池底,影响反应器的有效体积,使HRT和SRT降低,效率较低;需要固体和微生物的回流作为接种物;因该反应器占地面积或体积比较大,反应器内难以保持一致的温度;易产生厚的结壳。 2. 高浓度塞流式工艺(HCF) (1)原理 HCF是一种塞流、混合及高浓度相结合的发酵装置。厌氧罐内设机械搅拌,以塞流方式向池后端不断推动,HCF厌氧反应器的一端顶部有一个带格栅并与消化池气室相隔离的进料口,在厌氧反应器的另一端,料液以溢液和沉渣形式排出。 (2)特点 进料浓度高,干物质含量可达8%;能耗低,不仅加热能耗少,而且装机容量小,耗电量低;与PFR相比,原料利用率高;解决了浮渣问题;工艺流程简单;设施少,工程投资省;操作管理简便,运行费用低;原料适应性强(畜禽粪便、碎秸秆和有机垃圾均可);没有预处理,原料可以直接入池;卧式单池容积偏小,便于组合。

[沼气,废弃物,固体]有机固体废弃物厌氧发酵产生沼气的脱硫技术分析

有机固体废弃物厌氧发酵产生沼气的脱硫技术分析 0引言 随着工农业废弃物厌氧生物处理技术的广泛应用,沼气作为一种可再生能源,越来越受到人们的关注和重视。沼气是一种特殊的生物质能源,因为它的低位发热值较高,所以其经常被用作汽车燃料,还有一些被用作动力能源(如水泵和发电机),也有被用作化工原料(如合成有机玻璃脂和制造甲醛和甲醇等);还有一些国家的沼气净化技术较高,如瑞典将净化后的沼气直接并入国家气网使用。因此,沼气完全可以作为一种绿色能源被开发利用,这种新兴的产业也被人们越来越重视。由于沼气来源于厌氧发酵工艺,因此这种工艺也得到越来越多的产业化应用,不仅能缓解当前存在的能源危机问题,而且能很好地达到保护环境的目的。 各种厌氧发酵微生物在厌氧的条件下,将有机物分解消化的过程中会产生沼气,此时也伴随有H2S的产生。因此,沼气是一种混合气体,其中CHQ和CO2的含量较高,H2, H2S, NH 的含量比较少。发酵原料的种类、各种原料的相对含量、厌氧发酵的条件(温度、时间、pH等)以及厌氧发酵的各个阶段都是影响沼气成分的因素。 硫化氢(H2S)是一种能危害人体健康的有毒性气体,其物理性质上最大的特点是无毒和有强烈的臭鸡蛋气味。另外,大气中H2S的存在是造成酸雨的主要原因之一。由于H2S在化学性质上能与许多金属离子反应,产物是硫化物沉淀,而这些产物又不溶于水或者酸,所以其对铁等金属类物质有很强的腐蚀性。除此之外,当沼气燃烧时,H2S会被氧化成亚硫酸,从而对环境造成严重的污染,也会严重腐蚀设备、管道和仪器仪表等。因此,在利用沼气之前必须将其中的H2S去除,而国家对沼气中H2S含量的标准有严格的规定,不能超过0. 02g/亩。目前,最常用的脱除H2S的方法有干式脱硫、湿式脱硫和生物脱硫。 1.干法脱硫 干法脱硫的具体反应过程是首先通过物理吸附将H2S吸附在吸附剂的表面,然后是吸附剂与H2S发生化学反应生成单质硫的过程。因为干法脱硫所使用的脱硫剂大多数是粉末状或者颗粒状,其整个过程是在完全干燥的环境下进行的,所以脱硫过程不会对设备和管道等产生腐蚀和结垢的影响。干法脱硫的适用范围是含有较低浓度H2S的气体,其优点在于脱硫工艺设备比较简单及工艺技术方面比较成熟。因此,干法脱硫工艺在工业上应用较广。目前,最常用的干法脱硫方法有氧化铁法、氧化锌法、活性炭吸附法和膜分离法等。 1.1氧化铁法脱硫 氧化铁沼气脱硫法是使用较早的一种方法,早在19世纪40年代就开始逐步发展起来了,而此时煤气工业也孕育而生。氧化铁法脱硫的反应原理:常温下沼气到达脱硫机床的表面,此时沼气中的H2S与Fe203发生氧化还原反应,生成的产物为Fe2S3和Fe2;之后,含硫的脱硫剂再被空气中的氧氧化为Fe2 03和SO这也说明了这种脱硫剂是可再生的,可以循环使用很多次;但是如果脱硫剂表面的空隙被大部分覆盖以后,氧化铁脱硫剂就失去了活性。由此可见,影响脱硫效果的因素有沼气的流速和沼气与脱硫剂接触的时间。 氧化铁法脱硫过程中发生的化学反应是不可逆的。反应方程式的反应速率很大,要将沼

餐厨垃圾处理厌氧工艺完整版

餐厨垃圾处理厌氧工艺完整版 厨垃圾是城市日常生活中产生的最为普遍的废弃物,属于城市生活垃圾,其主要成分包括淀粉类食物、植物纤维、肪类等有机物,具有含水率高,油脂、盐份含量高,易腐烂发臭,不利于普通垃圾车运输等特点。这类垃圾若不经,会对环境造成极大的危害。 厨垃圾主要来源于餐饮服务业、家庭和企事业单位食堂等产生的食物加工下脚料(厨余)和食用残余(泔脚)。随济的飞速发展,城市化进程的逐渐加快,餐厨垃圾的产量呈现出逐年上升的趋势。在国内的大型,特大型城市中如深圳等,餐厨垃圾的日产量已达数千吨,全国餐厨垃圾的年产量达到千万吨,单纯填埋的话,占用大量土地,产生和填埋气体也需要后期处理,耗费大量人力,物力。 厨垃圾目前在很多城市尚未进行规范化管理,收集容器摆放地环境脏乱,孳生和招引蚊、蝇、鼠、蟑螂等害虫,易害人民的身体健康。垃圾收集地附近容易产生难闻气味,引起人们感官上的反感;由于餐厨垃圾含水量较高的特性程中存在一系列问题。运输车辆不规范,易发生餐厨垃圾外漏和倾洒,严重影响市容、市貌和交通;最主要的是城垃圾多被养殖户收集,作为养殖饲料直接使用,垃圾未经处理进入人类食物链,危及人民群众的身体健康;同时地起来重新炼制成为廉价食用油,在市场上再次流通,危害人民群众的身体健康。 存在问题的同时,餐厨垃圾因其富含有机物也可作为潜在的能源供应体。通过恰当的处理方法,可以释放出蕴藏在能量,转化为电能,热能,作为常规能源载体的有效补充。在当前我国能源供应日趋紧张的时期,寻求新能源迫在厨垃圾通过成熟工艺技术获取能源不失为合理的解决方案。 厨垃圾概况 餐厨垃圾性质 集的餐厨垃圾成分复杂,不仅包括宾馆、饭店的剩菜、剩饭还包括大量废旧餐具、破碎的器皿,厨房的下脚料等,皮、蔬菜、米面,鱼、肉、骨头以及废餐具、塑料、纸巾等多种物质的混合物。糖类含量高,以蛋白质、淀粉和动,且盐分、油脂含量高。以中国南方某城市为例,下表详细给出了餐厨垃圾的组分与成份: :餐厨垃圾组分 食物垃圾 纸张 金属 骨头 木头 织物 塑料 油脂 75.1% - 90.1% 0.8% 0.1% 5.2% 1.0% 0.1% 0.7%

秸秆厌氧干发酵产沼气的研究

科学研究 秸秆厌萤干发酵产沼与的研皇℃九 陈智远姚建刚 杭州能源环境工程有限公司 摘要:本试验以玉米秸、稻草、烟叶杆、木薯杆为代表的秸秆作为原料,在温度38"C,采用批量发酵工艺进行高浓度厌氧发酵产气研究。试验结果表明,玉米秸、稻草、烟叶杆及木薯杆的Ts产气 率分别为413ml/g、330n1/g、333m]/g、222m1/g,而vs产气率分别为470m1/g、387ml/g、426Tll/g、241m1/u。 关键词:秸秆干发酵产气率 农业固体废弃物是指在整个农业生产过程中被丢弃 的有机类物质,主要包括农业生产和加工过程中产生的 植物残余类废弃物、动物残余类废弃物和农村城镇生 活垃圾等…。据孙永明【11等报道,我国每年产生固体废 弃物高达几十亿吨,而每年产生农作物秸秆总量约7亿 吨,除去用于造纸、饲料及造肥还田外,还有一大部分 未充分利用,大量剩余秸秆的随地堆弃和任意焚烧,造成了大气污染、土壤污染、火灾事故、堵塞交通等大量社会、经济和生态问题【2习j。但实际上秸杆可以通过干发酵工艺得到有效利用,既以固体有机废弃物为原料(总固体含量在20%以上),利用厌氧菌将其分解为CH。、CO。、H。S等气体的发酵工艺【4J。与湿发酵相比,主要优点是可以适应各种来源的固体有机废弃物、运行费用低并提高容积产气率、需水量少或不需水、产生沼液少后续处理费用低等[5】。本文对玉米秸、稻草、烟叶杆及木薯杆的高浓度厌氧发酵产气潜力进行研究。 1.材料与方法 1.1材料与试验装置 玉米秸和稻草取自杭州郊区某农场,烟叶杆与木薯杆分别取自云南昆明郊区某卷烟厂和某农场,经切碎后(2~3cm)左右待用。污泥则取自杭州市种猪试验场的沼气站。原料的TS与VS见表1。厌氧装置采用自制的1.5L发酵装置。采用排水法计量气体,试验装置见图1。 表1原料的TS与VS 项目玉米秸稻草烟叶杆木薯杆污泥TS(%)84.4286.3387.9623.9011.64VS(%)73.9675.0268.6822.007.32 1、止水夹2、胶管3、盖子4、发酵瓶5、胶管 6、集气瓶7、集水瓶 图1反应装置示意图 1.2试验设计 试验设4个试验组和1个为空白组.每组3个平行,在38℃的恒温间内发酵。将1009t-米秸、稻草、烟叶杆分别和8009污泥混合均匀后加入发酵瓶中,将1009木薯杆与6009污泥混合均匀后也加入发酵瓶中,空白则将10009污泥加入发酵瓶中。 1.3分析项目及方法 TS测定是将待测混合物置于已烘干、称重的硬质玻璃杯中,(105±2)℃烘干至恒重,称重计算,而VS测定是将待测混合物置于已烘干、称重的坩埚中.(550-I-10)℃灼烧至恒重,称重计算【6】。PH值采用精密试纸法。 每天定时测定发酵产气量,即测定集水瓶中水的体积量为日产气量。利用沼气分析仪(武汉四方沼气分析仪)及根据沼气燃烧的火焰颜色参照CH。含量标准卡联合检测CH。浓度|7J。 2.结果与讨论 2.1发酵前后的相关测定及分析 从图2可以看出,各试验组发酵前后的TS及VS均有所下降,这说明原料被消耗并生产沼气。图中数据表明玉米秸、稻草、烟叶杆及木薯杆的TS降解率分别为 24 wⅥ唧.ehome.gov.en 万方数据

固体有机废弃物厌氧发酵装置研究进展

固体有机废弃物厌氧发酵装置研究进展 收稿日期:2006-10-13 基金项目:国家自然科学基金项目(20040224001) 作者简介:夏吉庆(1954-),男,汉,安徽人,研究员,硕士,主要从事生物质能源利用研究。 *通讯作者E-mail:liwenzheq@163.com 夏吉庆,李文哲* (东北农业大学工程学院,哈尔滨 150030) 摘要:文章在调查分析现有厌氧发酵设备的基础上,从我国高寒地区实际生产需要出发,提出了开发高效 厌氧发酵设备的基本思路,主要是:产酸阶段和产甲烷阶段设备独立设置;产甲烷阶段采用厌氧滤器和三相分离器有机组合应用;采取有效的污泥回流和全程菌群富集技术以及有效的节能保温措施;加强自动控制使设备高效稳定运行等。 关键词:厌氧发酵装置;适应性;设计 中图分类号:TH16 文献标识码:A 目前我国户用沼气池经过多年发展,技术已经比较成熟。随着规模化养殖的不断扩大,近年来(80年代以后)我国开始发展大型沼气工程,工业化的厌氧发酵设备在我国南方地区应用较多。这些工程多数采用全混合发酵工艺,有的采用复合式反应器,不设保温和增温设施。由于这些设备和工艺不适宜常年在低温状态下运行,所以没有在寒冷地区得到很好推广。另外,这些设备不能很好的适应高浓度物料的厌氧发酵,容易发生堵塞,因此有必要设计出高效、稳定运行而且能够自动精确控制且不易堵塞的系统。 为了使厌氧发酵设备在高寒地区得到较好的推广使用,本文在分析各种厌氧发酵设备研究进展的基础上,探讨适应较高物料浓度和多种畜禽粪便需要的北方寒冷地区固体有机废弃物的厌氧发酵设备的设计思路。 1目前应用于固体废弃物厌氧发酵设 备的特点分析 固体厌氧发酵设备经过国内外多年的研究与实践出现了多种的形式,优缺点分析如下。 1.1常规型反应器 常规型反应器包括常规反应器、完全混合式反 应器和塞流式反应器 (也称推流式反应器)。1.1.1常规反应器 常规反应器 (也称常规沼气池)是一种结构简单,应用广泛的工艺类型。该反应器无搅拌装置,原料在发酵器内呈自然沉淀状态,一般分为4层。从上到下依次为浮渣层、上清液层、活性层和沉淀层,其中厌氧发酵微生物活动旺盛的场所只限于活性层内,多在常温条件下运行,容易出现浮渣层,效率较低。 1.1.2完全混合式反应器 完全混合式反应器是以前使用最多,适用范围 较广的一种反应器。 完全混合式反应器是在常规反应器内安装了搅拌装置,使发酵原料和微生物处于完全混合状态,与常规反应器相比使活性区遍布整个发酵器,其效率比常规反应器有明显提高,曾经被称为高速反应器。该反应器常采用恒温连续投料或半连续投料运行。 优点:该工艺可以处理高悬浮固体含量的原料;反应器内物料均匀分布,避免了分层状态,增加底物和微生物接触的机会;反应器内温度分布均匀;进入反应器内任何一点抑制物质,能够迅速分散保持在最低浓度水平,避免了浮渣结壳、堵塞、气体逸出不畅和沟流现象。 缺点:由于该反应器无法做到使SRT(固体滞 第38卷第5期东北农业大学学报38(5):702 ̄705 2007年10月JournalofNortheastAgriculturalUniversity Oct.2007 文章编号 1005-9369 (2007)05-0702-04

废水生物处理基本原理-厌氧生物处理原理

废水生物处理基本原理 ——废水厌氧生物处理原理 废水厌氧生物处理在早期又被称为厌氧消化、厌氧发酵;是指在厌氧条件下由多种(厌氧或兼性)微生物的共同作用下,使有机物分解并产生CH 4和CO 2的过程。 1.1.1 厌氧生物处理中的基本生物过程——阶段性理论 1、两阶段理论: 20世纪30~60年代,被普遍接受的是“两阶段理论” 第一阶段:发酵阶段,又称产酸阶段或酸性发酵阶段;主要功能是水解和酸化,主要产物是脂肪酸、醇类、CO 2和H 2等;主要参与反应的微生物统称为发酵细菌或产酸细菌;这些微生物的特点是:1)生长速率快,2)对环境条件的适应性(温度、pH 等)强。 图1厌氧反应的两阶段理论图示 内源呼 吸产物 碱性发酵阶段 酸性发酵阶 段 水解胞外酶 胞内酶产甲烷菌 胞内酶产酸菌 不溶性有机物 可溶性有机物 细菌细 胞 脂肪酸、醇 类、H 2、CO 2 其它产物 细菌细胞 CO 2、CH 4

第二阶段:产甲烷阶段,又称碱性发酵阶段;是指产甲烷菌利用前一阶段的产物,并将其转化为CH4和CO2;主要参与反应的微生物被统称为产甲烷菌(Methane producing bacteria);产甲烷细菌的主要特点是:1)生长速率慢,世代时间长;2)对环境条件(温度、pH、抑制物等)非常敏感,要求苛刻。 1.1.2 三阶段理论 对厌氧微生物学的深入研究后,发现将厌氧消化过程简单地划分为上述两个过程,不能真实反映厌氧反应过程的本质; 厌氧微生物学的研究表明,产甲烷菌是一类十分特别的古细菌(Archea),除了在分类学和其特殊的学报结构外,其最主要的特点是:产甲烷细菌只能利用一些简单有机物作为基质,其中主要是一些简单的一碳物质如甲酸、甲醇、甲基胺类以及H2/CO2等,两碳物质中只有乙酸,而不能利用其它含两碳或以上的脂肪酸和甲醇以外的醇类;

餐厨垃圾厌氧消化成套处理系统.doc

餐厨垃圾厌氧消化成套处理系统 餐厨垃圾厌氧消化成套处理系统 系统说明 1、餐厨垃圾称重系统 餐厨垃圾收集车进入厂区时,具有智能化管理能力的称重计量系统自动进行垃圾吨位测量、存储数据并打印记录,并能适时输出相关数据,打印统计报表。 2、预处理系统 预处理系统的主要功能是将收运进厂的餐厨垃圾进行破碎、除杂和均质等预处理工序。(1)卸料、输送 餐厨垃圾运至厂区卸料车间,将餐厨垃圾卸料到接收料斗进行密闭盛放,底部设有输送机,输送过程中餐厨垃圾中所含水分通过螺旋输送的挤压,滤掉一部分,收集在污水槽中,用于物料水力制浆。 (2)分选破碎 物料通过输送机输送到破碎分选系统进行破碎分选。 (3)制浆、除杂物 经破碎后的餐厨垃圾在制浆机内,与回流沼液混合搅拌,在匀浆的同时,破碎刀将物料破碎至所需要的大小粒径,同时将餐厨垃圾中的杂物分离出去。 (4)油水分离 系统进料在经过破碎、分选和沉淀制浆后,进入油水分离设备去除90%的油分,作为制造工业油脂或生物柴油原料暂时储存于油罐中。 (5)水解酸化 经除杂预处理后的餐厨垃圾物料自流到匀浆池,在池内停留3~5天,在搅拌器搅拌作用下混合均匀,同时进行水解酸化,然后被输送到厌氧发酵罐。 3、厌氧发酵系统 经过预处理后的餐厨垃圾进入厌氧发酵产气系统,厌氧消化罐内设有机械搅拌器,用于将罐体内的物料搅拌均匀,同时,每个消化罐外还设置了循环回路,经过泥/水热交换器对循环沼渣进行加热,以保证中温厌氧发酵的温度。 4、沼气净化提纯及利用系统 厌氧发酵系统产生的沼气,经脱硫干燥等净化处理后得到的燃气储存在双层膜球状沼气柜,

可用于场内燃气锅炉燃烧为厌氧罐供热或场内供暖,也可用于提纯生产燃气。 5、沼液脱水系统 餐厨垃圾经厌氧发酵后,沼液直接溢流入沼液调节池,由泵提升至离心脱水机进行脱水。沼渣脱水系统中还设置了絮凝剂加药系统,以便达到更好的沼液脱水效果。脱水后的沼渣含水率约为80%,直接进堆肥系统进行堆肥或进入填埋场处理。滤液进污水处理系统经处理后达标排放或回流至水力制浆机。 工艺流程:

沼气发酵工艺介绍

1.2.2 厌氧处理工艺选择 1、各类厌氧工艺性能概述 (1)完全混合厌氧工艺(CSTR) CSTR是在常规消化器内安装了搅拌装置,使发酵原料和微生物处于完全混合状态,该消化器常采用恒温连续投料或半连续投料运行,适用于高浓度及含有大量悬浮固体原料的处理。在该消化器内,新进入的原料由于搅拌作用很快与发酵期内的发酵液混合,使发酵池底浓度始终保持相对较低的状态。而其排除的料液又与发酵液的底物浓度相等,并且在出料时微生物也一起被排出,所以,出料浓度一般较高。该消化器具有完全混合的状态,其水力停留时间、污泥停留时间、微生物停留时间完全相等,即HRT=SRT=MRT。为了使生长缓慢的产甲烷菌的增殖和冲出速度保持平衡,要求HRT较长,一般要10-15d或更长的时间,进料浓度8%-12%。中温发酵时负荷为3-4kgCOD(m3.d),高温发酵为5-6 kgCOD(m3.d)。 CSTR的优点:1.可以进入高悬浮固体含量的原料;2.消化器内物料的均匀分布,避免了分层状态,增加了底物和微生物接触的机会;3. 消化器内温度分布均匀;4.进入消化器的抑制物质,能够迅速分散,保持较低的浓度水平;5.避免了浮渣、结壳、堵塞、气体逸出不畅和短流现象。 缺点:1.由于消化器无法做到使SRT和MRT在大于HRT的情况下运行,所以需要消化器体积较大;2.要有足够的搅拌,所以能量消耗较高;3.生产用大型消化器难以做到完全混合;4.底物流出该系统时未完全消化,微生物随出料而流失。 (2)厌氧接触工艺反应器 厌氧接触工艺反应器是完全混合式的,是在连续搅拌完全混合式厌氧消化反应器(CSTR)的基础上进行了改进的一种较高效率的厌氧反应器。反应器排出的混合液首先在沉淀池中进行固液分离,污水由沉淀池上部排出,沉淀池下部的污泥被回流至厌氧消化池内。这样的工艺既保证污泥不会流失,又可提高厌氧消化池内的污泥浓度,从而提高了反应器的有机负荷率和处理效率,与普通厌氧消化池相比,可大大缩短水力停留时间。目前,全混合式的厌氧接触反应器已被广泛应用于SS浓度较高的废水处理中。其不足之处在于,厌氧污泥经沉淀池再回流,温度变化较大,影响了厌氧处理效率的提高,同时,厌氧罐内的热能损失也较大。但因受水泵性能的限制,该装置进料的干物质浓度(TS%)为4-6%,故需配兑2.5-3倍于发酵原料重量的配料污水;还需多级“预处理”以去除堵察水泵和管道的秸草等较大固形物。 (3)厌氧滤器(AF) 厌氧滤器是采用填充材料作为微生物载体的一种高速厌氧反应器,厌氧菌在填充材料上附着生长,形成生物膜。生物膜与填充材料一起形成固定的滤床。厌氧滤床可分为上流式厌氧滤床和下流式厌氧滤床二种。污水在流动过程中生长并保持与充满厌氧细菌的填料接触,因为细菌生长在填料上将不随出水流失,在短的水力停留时间下可取得较长的污泥泥龄。厌氧滤器的缺点是填料载体价格较贵,反应器建造费用较高,此外,当污水中SS含量较高时,容易发生短路和堵塞。 (4)上流式厌氧污泥床反应器(UASB) 待处理的废水被引入UASB反应器的底部,向上流过由絮状或颗粒状厌氧污泥的污泥床。随着污水与污泥相接触而发生厌氧反应,产生沼气引起污泥床的扰动。在污泥床产生的沼气有一部分附着在污泥颗粒上,自由气泡和附着在污泥颗粒上的气泡上升至反应器的上部。污泥颗粒上升撞击到三相分离器挡板的下部,这引起附着的气泡释放;脱气的污泥颗粒沉淀回到污泥层的表面。自由状态下的沼气和由污泥颗粒释放的气体被收集在三相分离器锥顶部的集气室内。液体中包含一些剩余的固体物和生物颗粒进入到三相分离器的沉淀区内,剩余固体物和生物颗粒从液体中分离并通过三相分离器的锥板间隙回到污泥层。UASB反应器的特点在于可维持较高的污泥浓度,很长的污泥泥龄(30天以上),较高的进水容积负荷率,

农业废弃物厌氧发酵制取沼气技术的研究进展

农业废弃物厌氧发酵制取沼气技术的研究进展 摘要:为了研究中国农业废弃物制取沼气的研究及利用现状,笔者结合自身及前人的研究成果,通过描述中国农业废弃物的利用现状及厌氧发酵制取沼气技术的机理,产甲烷菌的基本研究以及3种常见农业废弃物厌氧发酵产沼气的研究结果,概括了利用厌氧发酵处理农业废弃物的必要性及技术上的可行性。但同时发现,很多研究成果没有在中国农业废弃物的利用上得到充分利用,本研究的成果在今后对农业废弃物进行合理有效的利用及处理上有很大的参考作用。 0引言 中国每年产生的农业废弃物,仅农作物秸秆的量就约为7亿t,大中城市郊区的集约化养殖场产生的畜禽粪便因超过农田环境自身消纳的能力,也对城市郊区环境造成了较大的污染。本研究通过倡导利用厌氧发酵生沼气技术处理农业废弃物,能有效保护农村及城市郊区的环境,同时能改善当前中国能源利用领域过分依赖煤炭,污染严重,能源利用率低等不合理现象,对解决中国经济发展的瓶颈有重要意义。 当前农业废弃物的利用技术有很多,主要包括:能源化、肥料化、饲料化和材料化技术,而能源化是当前研究的重点,如将玉米秸秆通过等离子体热裂解液化制取生物油,厌氧微生物利用麦麸产氢以及利用甜高粱茎秆汁液发酵制取生物酒精等。与其他农业废弃物能源化的技术相比,厌氧发酵生产沼气技术目前比较成熟,可以实现产业化。如北方“四位一体”沼气生态模式和南方的“猪、沼、果”生态模式等。 与此同时,大量的利用农业废弃物发酵产沼气的基础研究也在进行,如碱预处理对稻草发酵产沼气的效果,同时刘荣厚等还发现蔬菜废弃物用厌氧发酵工艺处理制取沼气是可行的。沼液及沼渣作为沼气发酵的一种副产物,也有很大的作用,50%浓度的沼液能提高草莓的果实品质,添加煤油和洗衣粉的沼液混合物是一种防治菜青虫的良好杀虫剂。 本研究针对农业废弃物制取沼气技术在处理废弃物的实际应用上的不足,与其比较成熟的研究现状脱节的问题,通过全面地概括论证利用厌氧发酵处理农业废弃物的必要性及技术上的可行性,倡导积极发展厌氧发酵制取沼气技术,并在实际中大量应用该技术处理中国的农业废弃物,相信在厌氧发酵制取沼气技术的广发推广上能起到非常积极的作用。 1厌氧发酵制取沼气技术的机理 目前为止,对厌氧发酵制取沼气技术机理的研究比较成熟。沼气发酵的过程,实际上是微生物的物质代谢和能量转换过程,在分解代谢过程中微生物获得能量和物质,以满足自身生长繁殖,同时大部分物质转化为甲烷和二氧化碳。 其基本过程通常可分为液化、产酸、产甲烷3个阶段,前2个阶段合称为不产甲烷阶段,不过目前比较权威的是把沼气发酵理论分为2阶段厌氧发酵理论和3阶段厌氧发酵理论。 2阶段理论主要针对一些可溶性的复杂有机物,第1阶段是在产酸菌的作用下,有机物被分解为低分子的中间产物如有机酸如乙酸、丁酸等及氢气、二氧化碳等气体;第2阶段是产甲烷菌将第1阶段产生的中间产物继续分解为甲烷和二氧化碳。3阶段理论主要针对不溶性的复杂有机物,相对2阶段理论,主要是多了1个水解和发酵的阶段,在这一阶段,复杂有机物在微生物(发酵菌)作用下进行水解和发酵:多糖先水解为单糖,再通过酵解途径进一步发酵成乙醇和脂肪酸等;蛋白质则先水解为氨基酸,再经脱氨基作用产生脂肪酸和氨;脂类转化为脂肪酸和甘油,再转化为脂肪酸和醇类。 也有研究将产甲烷的3阶段理论中的第1阶段拆分为2步,认为沼气发酵应具体分为4个步骤,分别是:聚合物的水解、水解产生的单体发酵生成挥发性脂肪酸酸和乙醇等、中间产物转换为乙酸和氢气、甲烷的形成。 2产甲烷菌的研究 2.1产甲烷菌的种类与基本性质 产甲烷菌是一类能够将无机或有机化合物厌氧消化转化成甲烷和二氧化碳的古细菌,它们生长在严格厌氧的环境中,不能利用复杂的有机物作为能量来源,只能利用氢气、二氧化碳、甲酸、甲醇、甲基胺、乙酸等简单物质合成甲烷进行能量代谢,是厌氧发酵过程的最后一个成员。

厌氧发酵原理及其工艺

1.4 实验研究目的,技术路线 我国目前的农作物发酵制沼气技术与发达国家相比,起步较晚,大型项目的运行经验相对较少。由于我国幅员辽阔,不同地域的农作物资源种类不同,其物理和化学性质也有较大的差别,加之我国不同地区年平均气温差别较大,使我国农作物厌氧发酵制备沼气的大型项目难有统一的设计参数标准。对于不同的大型沼气项目,必须结合项目实际的农作物种类和物性、气候条件、供热条件、沼液和沼渔的消纳和后续处理工艺、农作物的价格和最大运输半径、原料的储存和供料方式、发电机组的选型等因素进行综合考虑,才能使项目实施后获得最佳的经济和社会效益。 根据我国农作物制备沼气技术的应用现状,结合本文研究的农作物制备沼气项目实际案例,本文的研究目的为:;研究发酵原料的物理化学性质和产气率,提出合理估算农作物(主要是黄瓜藤)和粒径的方法,为项目实例提供工艺选择、系统设计和经济性计算提供可靠依据。 为了实现上述目的,本文研究内容主要集中如下几个方面: (1)研究农作物破碎预处理的特点,为合理计算破碎预处理能耗提供计算方法。 (2)研究了黄瓜藤的鲜活度对发酵产气量和产气速率等因素的影响。 (3)不同投配率对发酵产气量和产气速率等因素的影响;为了厌氧发酵反应的持续反应,同时还研究不同投配率对于pH值的影响。 1.5 论文章节安排 本论文共包括六章内容。 第一章介绍课题的研究背景,国内能源消费和可再生能源利用现状,以及课题的主要研究内容和意义。 第二章厌氧发酵反应制备沼气的基本原理和影响参数。

第三章阐述农作物的破碎原理,从中说明粒度与能耗间的关系,并且从能耗的角度分析不同粒度的颗粒的耗能情况。 第四章针对需要采用实验方法对各个因素进行研究,确定实验的数据测量的方法以及实验进行过程中需要的注意事项,防止实验失败。 第五章实验采用定制CSTR厌氧反应器对黄瓜藤在中温条件下进行厌氧消化反应实验,研究系统的稳定性能和产气性能。 第六章作出对课题的总结和展望,总结本课题的研究成果,并提出不足之处和以后还需进一步研究的方向。

有机垃圾厌氧发酵沼气概述

有机垃圾厌氧发酵沼气概述 摘要:本文综述了国内外垃圾处理现状,介绍了发酵沼气的技术,阐述了沼气的原料来源、生产方法、原理机理、发酵菌种的筛选及影响发酵的因素等内容。 关键词:有机垃圾厌氧发酵沼气 Abstract:This article reviews the domestic and overseas garbage disposal status,introduces the technology of fermentation methane gas, elaborated methane sources of raw materials, production method, principle, the screening of the strains for fermentation, the factors affect fermentation etc. Key words:Organic waste;Anaerobic fermentation;Methane gas 垃圾是指不需要或无用的固体、流体物质,我国许多城市每天都会产生大量垃圾,垃圾处理常见的方法是填埋和焚烧,前者会造成土壤、地下水污染等,后者会产生大量CO2及有害气体,两者均会带来环境问题。因此,许多学者都在致力于研究垃圾处理的方法。有机垃圾是指生活垃圾中含有有机物成分的废弃物,主要是废纸、木头等纤维性物质、厨房菜渣、果皮、菜皮叶、剩饭菜、人和动物排泄物等,城市生活垃圾中有机垃圾占了较大比例,而且其中可生物降解物质含量很高,许多发达国家已经开始把城市有机垃圾资源化处理作为一个重要的研究性课题,在我国有机垃圾的回收利用也越来越受到人们重视

国内餐厨垃圾处理工艺简介

国内餐厨垃圾处理工艺简介 餐厨垃圾,又称餐厨废弃物,是指家庭、学校、机关公共食堂以及餐饮行业的食物废料和食物残余,由于国内垃圾分类工作还不完善,餐厨垃圾中常混有部分生活垃圾,杂质较多,成分复杂。目前,国内餐厨垃圾处理工程主要的处理工艺有:厌氧发酵、好氧堆肥、饲料化处理、生化处理机。 1、厌氧发酵 原理:利用不同的微生物厌氧菌的新陈代谢作用,将餐厨垃圾中有机物转化为沼气。 工艺流程:餐厨垃圾在接收仓经过滤分成液相和固相。液相部分进行油水分离,分离出的油可制成生物柴油或其他化工原料,分离出的水和少量渣作为调配水;固相部分经粗分选后,除去体积较大的杂质,剩下的物料与调配水一起经浆化处理、调质匀浆,进入厌氧消化系统。厌氧消化处理产生沼气用于制压缩天然气、锅炉燃料或热电联产;厌氧消化后的消化液经固液分离,固相为沼渣可生产有机肥,液相为沼液可用于生产液态肥或进入污水处理系统。 分类: 厌氧发酵工艺类型较多,从不同的角度可以将厌氧发酵工艺分为以下几类:根据发酵温度的不同可分为常温、中温和高温发酵;按照投料运转方式可分为连续和序批式发酵;按照发酵物料中固含量的多少分为湿式和干式厌氧发酵;按照反应是否在同一反应器进行分为单相和两相厌氧消化。 a常温、中温和高温发酵: 常温发酵一般是物料不经过外界加热直接在自然温度下进行消化处理,发酵温度会随着季节气候昼夜变化有所波动常温发酵工艺简单造价低廉,但是其缺点是处理效果和产气量都不稳定。 中温发酵是指发酵温度一般在30℃~40℃范围之间,中温发酵加热量少,发酵容器散热较少,反应和性能较为稳定,可靠性高,如果物料有较好的前处理,

会提高反应速度和气体发生量;受毒性抑制物阻害作用较小,受抑制后恢复快,会有浮渣、泡沫、沉砂淤积等问题,对浮渣、泡沫、沉砂的处理是工艺难点,其诸多优点使其得到广泛的应用并有很多的成功案例。 高温发酵温度在50℃~60℃之间,需要外界持续提供较多的热量,高温厌氧消化工艺代谢速率、有机质去除率和致病细菌的杀灭率均比中温厌氧消化工艺要高,但是高温发酵受毒性抑制物阻害作用大,受抑制后很难恢复正常,可靠性低;高温厌氧产气率比中温厌氧稍有提高,提高的是杂质气体的量,但沼气中有效成分甲烷的含量并没有提高,限制的高温厌氧的应用;高温发酵罐体及管路需要耐高温耐腐蚀性能好的材料,运行复杂,技术含量高。 b连续发酵和序批式发酵: 所谓连续发酵就是从投加物料启动以后,经过一段时间发酵稳定以后,每天连续定量的向发酵罐内添加新物料和排出沼渣沼液该工艺可保证长期连续的运行,易于控制,运行稳定可靠,适用于处理物料来源稳定的大中型餐厨垃圾处理。序批式发酵就是一次性投加物料发酵,发酵过程中不添加新物料,当发酵结束以后,排出残余物再重新投加新物料发酵,序批式发酵易于控制,操作简单,但是产气不均衡,两种工艺均在实际工程中有应用,具体应用何种工艺根据实际情况决定 c湿式发酵和干式发酵 湿式发酵和干式发酵取决于物料中的含固率,湿式发酵含固率低,预处理设施和发酵设备需要的空间大,设备费用高,后续处理量大,产气效率高。干式发酵含固率高,具有较高的耐冲击负荷能力,后续处理量小;但是由于物料搅拌强度大,物料不均匀,产气效率低,设备易磨损,容易发生故障,发展受到限制。在国外,两种工艺都得到很好的发展,因为国外餐厨垃圾杂质相对较少,干式发酵工艺的处理厂越来越多。在国内,餐厨垃圾成分复杂,杂质较多,湿式发酵是国内的主流工艺。 d单相发酵和两相发酵 单相厌氧发酵作为传统的厌氧消化工艺,产酸菌和产甲烷菌在同一反应器中进行。两相厌氧处理工艺,实现了生物相的分离,使微生物各自最佳生长条件下发酵,从而大大提高反应的速率和运行的稳定性。单相厌氧发酵设备较少系统操

沼气厌氧发酵

沼气厌氧发酵 中国知识资源总库——CNKI 系列数据库输出格式:简单详细引文格式自定义查新RefWorks 自定义:题名作者中文关键词单位中文摘要基金刊名ISSN年期第一责任人 处理结果: 1题名The Relationship Among pH,VFA and Biogas Production in Anaerobic Fermentation of Mixed Manure and Straw with Different Ratios 作者张彤;李伟;李文静;李轶冰;杨改河; 刊名农业环境科学学报 单位西北农林科技大学林学院;陕西省循环农业工程技术研究中心;西北农林科技大学农学院; 中文摘要为探索发酵原料产气量与pH值、挥发性脂肪酸之间的关系,确定最佳原料配比以及发酵温度是关键。通过试验在恒温条件下以不同配比的鸡粪、麦秆混合物为原料,在25~40℃范围内进行厌氧发酵,研究pH值和挥发性脂肪酸对沼气产量的影响。结果显示,在约50d的发酵过程中,以40℃、鸡粪和麦秸3∶1处理的(简称鸡麦3∶1)累积产气量最高,达11492mL,25℃、鸡麦3∶1处理的累积产气量最低,为6227mL。在25、30℃发酵条件下,随着麦秆比例的增加,产气量逐渐增加;在35、40℃发酵条件下,随着麦秆比例的减少,产气量逐渐增加。pH值与日产气量成正比,而挥发性脂肪酸与日产气量成反比。 2题名Study on Characteristics of Anaerobic Fermentation with Wheat Straw and Sweet Potato Vine 作者石勇;邱凌;邵艳秋;罗涛;任虎林; 刊名西北农业学报 单位西北农林科技大学机械与电子工程学院;农业部沼气西北分中心;西北农林科技大学农学院;西北农林科技大学资源与环境学院; 中文摘要在(30±1)℃恒温条件下,按C/N=20∶1,C/N=25∶1,C/N=30∶1的3个不同水平将小麦秸秆和红薯藤叶分别配置成2 000 mL发酵液,其总固体含量TS为8%。对3个不同水平C/N的发酵液进行厌氧发酵试验,测定厌氧发酵过程中的日产气量,pH、CH4和CO2体积分数等动态指标的变化,探究2种物料在不同C/N水平下的发酵特性。结果表明在TS为8%的条件下,C/N为25∶1水平时产气效果最佳,产气量和CH4体积分数都具有明显优势。 3题名Research on the essence and the mechanism of method about fermented soybean in Qi-Min-Yao-Shu (Important Arts for the People,s Welfare) 作者陈苍林 刊名中国酿造 单位漳州市酱油厂福建漳州363000

厨余垃圾课程设计

浙江农林大学 课程实习报告 学生姓名:何杉杉 学号: 校内指导教师:曹玉成 实习课程名称:固体废弃物资源化 学院:环境与资源学院 专业:环境工程122 班 2015年6月23日 目录 目录...................................... 错误!未指定书签。前言...................................... 错误!未指定书签。 1基础资料............................. 错误!未指定书签。 1.1厨余垃圾量..................... 错误!未指定书签。 1.2餐厨垃圾工业成分............... 错误!未指定书签。 2设计方案............................. 错误!未指定书签。 2.1厌氧发酵原理................... 错误!未指定书签。 2.2工艺流程....................... 错误!未指定书签。

3设计计算............................. 错误!未指定书签。 3.1厨余垃圾收集................... 错误!未指定书签。 3.2厨余垃圾储存................... 错误!未指定书签。 3.3调节池......................... 错误!未指定书签。 3.4水解酸化池..................... 错误!未指定书签。 3.5厌氧发酵....................... 错误!未指定书签。 3.6物料平衡分析................... 错误!未指定书签。 3.7能量平衡分析................... 错误!未指定书签。 3.8沼渣和沼液脱水处理后的水....... 错误!未指定书签。小结...................................... 错误!未指定书签。 参考文献.............................. 错误!未指定书签。

厌氧发酵过程三阶段理论

厌氧发酵过程三阶段理论: 一、有机物水解和发酵细菌作用下,使碳水化合物、蛋白质与脂肪转化为单糖氨 基酸、脂肪酸、甘油、CO2、H等 二、把第一阶段产物转化为H、CO2和CH3COOH 三、通过两组生理物质上不同产CH4菌作用,将H和CO2转化为CH4,对CH3脱 羧产生CH4。 厌氧消化原理:有机物厌氧消化过程主要包括产酸和产甲烷两个阶段。而对于不溶性有机物(有机垃圾),一般可认为在上述两个阶段之前多一个“水解 阶段”,水解阶段起作用的细菌包括纤维素分解菌、脂肪分解菌和蛋白质水解菌;在水解酶作用下,转化产生单糖、酞和氨基酸、脂肪酸和甘油。产酸阶段起作用细菌是发酵性细菌,产氢产乙酸和耗氢产乙酸菌在胞内酶作用下,转化产生挥发性脂肪酸、醇类、氢和二氧化碳;产甲烷阶段是产甲烷菌利用H2、CO2、乙酸、甲醇等化合物为基质,将其转化成甲烷,其中H2、CO2和乙酸是主要基质。 名词: VFA: Volatile acid 挥发酸

COD: Chemical oxygen demand 化学需氧量 BOD: Biochemical oxygen demand 生物需氧量 TOD: Total oxygen demand 总需氧量 TOC: Table of content 总有机碳 TS: Total solid 总固体 SS: Suspend solid 悬浮固体 VS: Volatile solid 挥发固体 HRT: 水利滞留时间=消化器有效容积/每天进料量 SRT: 污泥停留时间:单位生物量在处理系统中的平均停留时间 SVT: 污泥体积系数:单位体积水样在静置30min后,污泥体积数 MRT: 微生物滞留时间 PFR:塞流式反应器(Plug flow reactor)高浓度悬浮固体发酵原料一段进入,从另一段排除。 USR:生流式固体反应器(Upflow solid reactor)原料从底部进入消化器,上清从消化器上部溢出 UASB:生流式厌氧污泥床(Upflow anaerobic sludge bed)自下而上流动污水通过膨胀的颗粒状污泥床消化分解,消化器分为污泥床、污泥层和三相分离器。 UBF:污泥床过滤器。将UASB和厌氧过滤器结合为一体的厌氧消化器,下部为污泥床,上部设置纤维填料。 EGSB:膨胀颗粒污泥床(Expanded granular sludge bed)与UASB反应器有相似之处,可分为进水配水系统、反应区、三相分离区和出水渠系统,EGSB没有专门的出水回流系统。 ABR:厌氧折板反应器(Anaerobic baffled reactor) SBR:间歇曝气方式运行活性污泥水处理技术,又称序批式活性污泥发(Sequencing batch reactor actirated sludge process) USSB:(Upflow staged sludge bed)

相关文档
最新文档