2-练习册-第六章 静电场中的导体与电介质

2-练习册-第六章 静电场中的导体与电介质
2-练习册-第六章 静电场中的导体与电介质

第六章 静电场中的导体与电介质

§6-1 导体和电介质

【基本内容】

一、导体周围的电场

导体的电结构:导体内部存在可以自由移动的电荷,即自由电子。 静电平衡状态:导体表面和内部没有电荷定向移动的状态。 1、导体的静电平衡条件

(1)导体内部场强处处为零0E =内; (2)导体表面的场强和导体表面垂直。 2、静电平衡推论

(1) 静电平衡时,导体内部(宏观体积元内)无净电荷存在; (2) 静电平衡时,导体是一个等势体,其表面是一个等势面。 3、静电平衡时导体表面外侧附近的场强

E σε=

4、静电平衡时导体上的电荷分布

(1) 实心导体:电荷只分布在导体表面。 (2)空腔导体(腔内无电荷):内表面不带电,电荷只分布在导体外表面。 (3)空腔导体(腔内电荷代数和为q ):内表面带电q -,导体外表面的电荷由电荷的守恒定律决定。 5、静电屏蔽

封闭金属壳可屏蔽外电场对内部影响,接地的金属壳可屏蔽内电场对外部的影响。 二、电介质与电场 1、电介质的极化

(1)电介质的极化:在外电场作用下,电介质表面和内部出现束缚电荷的现象。 (2)极化的微观机制

电介质的分类:(1)无极分子电介质——分子的正、负电荷中心重合的电介质;(2)有极分子电介质——分子的正、负电荷中心不重合的电介质。

极化的微观机制:在外电场作用下,(1)无极分子正、负电荷中心发生相对位移,形成电偶极子,产生位移极化;(2)有极分子因有电偶矩沿外电场取向,形成取向极化。 2、电介质中的电场 (1)电位移矢量 D E ε=

其中ε——电介质的介电常数,0r εεε=,r ε——电介质的相对介电常数。

(2)有电介质时的高斯定理0S

D dS q ?=∑?,式中0q ∑指高斯面内自由电荷代数和。

【典型例题】

【例6-1】 三个平行金属板A 、B 和C ,面积都是200cm 2

,A 、B 相距4.0mm ,A 、C 相距2.0mm ,B 、C 两板都接地,

如图所示。如果使A 板带正电3.0×10-7

C ,略去边缘效应。 (1)求B 板和C 板上的感应电荷各为多少? (2)取地的电位为零,求A 板的电位。

【解】(1)由图可知,A 板上的电荷面密度

S Q /21=+σσ

(1) A 板的电位为2211d E d E U A == (2)

图 6.1

1

d 2

d Q

1

Q Q C

B 1

Q 2Q

20

2101d d εσ

εσ= 所以 221212

1σσσ==d d (3) 将(3)式代入(1)式,得S Q /31=σ (4)

由(4)式可求得B 板上的感应电荷为C Q S Q 7110.13/-?-=-=-=σ 同理可得C 板上的感应电荷为C Q S Q 7220.23/2-?-=-=-=σ

(3)由(2)式可求得A 板上的电位为

V d S

Q

d d E U A 310101111025.23?====εεσ

【讨论】导体接地的含义主要有两点:(1)导体接地后与地球同电势,一般定义为电

势零点。

(2)带电导体接地,接地线提供了与地球交换电量的通道,至于电荷向哪流动,取决于导体接地前的电势是高于大地,还是低于大地。当导体的电势高于大地时,接地喉将有正电荷由导体流向大地,直到导体与大地电势相等为止。

【例6-2】 半径为R ,带电量为q 的金属球,浸于相对介电常为r ε的油中。求:

(1)球外电场分布。(2)极化强度矢量。(3)金属球表面油面上的束缚电荷和束缚电荷面密度。 【解】 (1)求电位移矢量 取半径为r 的球面为高斯面,则

2

4S

D dS D r π?=??

0q q =∑

2

2

44q D r q D r r ππ∧

?=?=

(2)求电场强度

由介质性质方程E E D r

εεε==02

04r q E r r

πεε∧

?=

(3)求极化强度矢量∧-=-=r r

q E P r r r

2

04)1()1(πεεεε (4)求束缚电荷及束缚面电荷密度

2/

4)1(cos r

q P P n P r r πεεθσ--=-==?=

'222(1)(1)1

(1)44r r S S r

r r q q

dS q P dS r dS q r r r εεπεπεε∧--=-?=-?=

=-???

【讨论】电介质问题求解方法:所涉及的物理量:q P E D '',,,.,σ

求解方法:(1)求电位移矢量∑?=?0q S d D S

,(2)求电场强度E E D r εεε==0,(3)

求极化强度矢量0(1)r P E εε=-,(4)求束缚电荷面密度θσcos /

P n P =?= ,(5)求束缚电荷q P dS '=-??。

【分类习题】

r

o

R

图 6.2

dS

一、选择题

1.A 、B 是两块不带电的导体,放在一带正电导

体的电场中,如图6.3所示.设无限远处为电势零点,A 的电势为U A ,B 的电势为U B ,则: (A )U B > U A ≠ 0 . (B )U B < U A = 0 . (C )U B = U A .(D )U B < U A .

2.如图6.4所示,一封闭的导体壳A 内有两个导体B 和C 。A 、C 不带电,B 带正电,则A 、B 、C 三导体的电势U A 、U B 、U C 的大小关系是:

(A) U B = U A = U C ; (B) U B > U A = U C ; (C) U B > U C > U A ; (D) U B > U A > U C 。

3.两个同心薄金属球壳,半径分别为)2121R R R R <(和,

若分别带上电量为21q q 和的电荷,则两者的电势分别为21U U 和(无穷远处为电势零点)。现用导线将两者相连接,则它们的电势为:

(A) 1U ; (B) 2U ;

(C) 21U U +; (D)

12U U (+)/2。 4.一带电量为q 半径为r 的金属球A ,放在内外半径分别为21R R 和的不带电金属球B 内的任意位置,如图6.5所示,A 与B 之间及B 外均为真空,若用导线把A,B 连接,则A 球的电势为(设无穷远处电势为零)

(A) 0(B) r

q 04πε

(C)

104R q πε(D)

2

04R q

πε

(E)

)(412

10R q R q -πε 5.半径分别为R 和r 的两个金属球,相距很远. 用一根长导线将两球连接,并使它们带电.在忽略导线影响的情况下,两球表面的电荷面密度之比σR /σr 为:

(A )R /r .(B )R 2/r 2. (C )r 2/R 2.(D )r /R .

6.欲测带正电荷大导体附近P 点处的电场强度,将一带电量为q 0 (q 0 >0)的点电荷放在P 点,如图6.6所示. 测得它所受的电场力为F . 若电量不是足够小.则

(A )F /q 0比P 点处场强的数值小. (B )F /q 0比P 点处场强的数值大.

(C )F /q 0与P 点处场强的数值相等. (D )F /q 0与P 点处场强的数值关系无法确定. 7.一导体球外充满相对电容率为εr 的均匀电介质,若测得导

体表面附近场强为E ,则导体球面上的自由电荷面密度σ为:

(A ) ε0E . (B ) ε0εr E . (C ) εr E .(D )(ε0εr -ε0)E .

8.在一点电荷的静电场中,一块电介质如图6.7所示,以点电荷所在处为球心,作一球形闭合面,则对此球形闭合面:

? q 0

图6.4 图6.5

(A) 高斯定理成立,且可用它求出闭合面上各点的场强。 (B) 高斯定理成立,但不能用它求出闭合面上各点的场强。 (C) 由于电介质不对称分布,高斯定理不成立。 (D) 即使电介质对称分布,高斯定理也不成立。

二、填空题

1.地球表面附近的电场强度为-1

C N 100?。如果把地球看作

半径为m 104.66

?的导体球,则地球表面的带电量Q =。

*2. 一半径r 1 = 5cm 的金属球A ,带电量为q 1 = 2.0×10-8C ;另一

内半径为 r 2 = 10cm 、外半径为 r 3 = 15cm 的金属球壳B ,带电量为 q 2 = 4.0×10-8C ,两球同心放置,如图6.8所示。若以无穷远处为电势零点,则A 球电势U A =,B 球电势U B =。

3.处于静电平衡下的导体(填是或不是)等势体,导体表面

(填是或不是)等势面, 导体表面附近的电场线与导体表面相互,导体体内的电势(填大于,等于或小于) 导体表面的电势.

4.分子中正负电荷的中心重合的分子称分子,正负电荷的中

心不重合的分子称分子.

5.分子的正负电荷中心重合的电介质叫做电介质,在外电场的作用下,分子的正负电荷中心发生相对位移,形成。 三、计算题

1.在靠近地面处场强垂直于地面向下,大小为100C N /;在离地面1.5km 高处,场强垂直于地面向下,大小为25C N /。求从地面到此高度大气中电荷平均体密度;假设地

面处场强完全由均匀分布在地表面的电荷产生,求地表面上电荷面密度。提示:将地球表面视为大导体平面。

*2.两平行放置的大导体平板(面积均为

S )分别带电1Q 和2Q ,如图 6.9。(1)求A 、B 、C 、D 四表面的电荷面密度。(2)如将右板接地,求A 、B 、C 、D 四表面的电荷面密度。

3.如图6.10,有两块面积均为S 的相同金属板,两板间距离为d ,S d <<2,其中一块金属板带电量为q ,另一块金属板带电量为q 2,

求两板间的电势差。

*4.在半径为R 的金属球之外包有一层均匀介质层,介质层的外半径为/

R 。设电介质的相对介电常数为r ε,金属球带电为Q ,求:(1)介质层内外的场强分布;(2)介质层内外的电势分布。(3)介质球壳内外表面的极化电荷.

5.如图6.11所示,面积均为S =0.1m 2的两金属平板A ,B 平行对称

放置,间距为d =1mm ,今给A ,B 两板分别带电 Q 1=3.54×10-

9C ,Q 2=1.77

×10-9

C.忽略边缘效应,求 (1)两板共四个表面的面电荷密度 σ1,σ2,σ3,σ4;(2)两板间的电势差U A -U B .

§6-2 电容 电容器

【基本内容】

一、孤立导体的电容:表征导体容电能力的物理量。

Q 图6.11

2

σ 2 σ 4

图6.8

图6.9 A 图6.10

A

第八章 静电场中的导体和电介质

103 第八章 静电场中的导体和电介质 一、基本要求 1.理解导体的静电平衡,能分析简单问题中导体静电平衡时的电荷分布、场强分布和电势分布的特点。 2.了解两种电介质极化的微观机制,了解各向同性电介质中的电位移和场强的关系,了解各向同性电介质中的高斯定理。 3.理解电容的概念,能计算简单几何形状电容器的电容。 4.了解电场能量、电场能量密度的概念。 二、本章要点 1.导体静电平衡 导体内部场强等于零,导体表面场强与表面垂直;导体是等势体,导体表面是等势面。 在静电平衡时,导体所带的电荷只能分布在导体的表面上,导体内没有净电荷。 2.电位移矢量 在均匀各向同性介质中 E E D r εεε0== 介质中的高斯定理 ∑??=?i i s Q s d D 自 3.电容器的电容 U Q C ?= 电容器的能量 C Q W 2 21= 4.电场的能量 电场能量密度 D E w ?= 2 1 电场能量 ? = V wdV W 三、例题 8-1 下列叙述正确的有(B) (A)若闭合曲面内的电荷代数和为零,则曲面上任一点场强一定为零。 (B)若闭合曲面上任一点场强为零,则曲面内的电荷代数和一定为零。

104 (C)若闭合曲面内的点电荷的位置变化,则曲面上任一点的场强一定会改变。 (D)若闭合曲面上任一点的场强改变,则曲面内的点电荷的位置一定有改变。 (E)若闭合曲面内任一点场强不为零,则闭合曲面内一定有电荷。 解:选(B )。由高斯定理??∑=?0/εi i q s d E ,由 ∑=?=00φq ,但场强则 不一定为零,如上题。 (C )不一定,受静电屏蔽的导体内部电荷的变动不影响外部场强。 (D )曲面上场强由空间所有电荷产生,改变原因也可能在外部。 (E )只要通过闭曲面电通量为0,面内就可能无电荷。 8-2 如图所示,一半径为R的导体薄球壳,带电量为-Q1,在球壳的正上方距球心O距离为3R的B点放置一点电荷,带电量为+Q2。令∞处电势为零,则薄球壳上电荷-Q1在球心处产生的电势等于___________,+Q2在球心处产生的电势等于__________,由叠加原理可得球心处的电势U0等于_____________;球壳上最高点A处的电势为_______________。 解:由电势叠加原理可得,球壳上电荷-Q1在O 点的电势为 R Q U 0114πε- = 点电荷Q2在球心的电势为 R Q R Q U 02 0221234πεπε= ?= 所以,O 点的总电势为 R Q Q U U U 01 2210123ε-= += 由于整个导体球壳为等势体,则 0U U A =R Q Q 01 2123ε-= 8-3 两带电金属球,一个是半径为2R的中空球,一个是半径为R的实心球,两球心间距离r(>>R),因而可以认为两球所带电荷都是均匀分布的,空心球电势为U1,实心球电势为U2,则空心球所带电量Q1=___________,实心球所带电Q2=___________。若用导线将它们连接起来,则空心球所带电量为______________,两球电势为______________。 解:连接前,空心球电势R Q U 2401 1πε= ,所以带电量为

最新第七章静电场中的导体

第七章 静电场中的导体、电介质 一、选择题: 1. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为σ,如 图所示,则板外两侧的电场强度的大小为:[ ] (A )E=02εσ (B )E=02εσ (C )E=0εσ (D )E=02d εσ 2. 两个同心薄金属体,半径分别为R 1和R 2(R 2>R 1),若分别带上电量为q 1和q 2的电荷,则 两者的电势分别为U 1和U 2(选无穷远处为电势零点),现用导线将两球壳相连接,则它们的 电势为[ ] (A )U 1 (B )U 2 (C )U 1+U 2 (D )2 1(U 1+U 2) 3.如图所示,一封闭的导体壳A 内有两个导体B 和C ,A 、C 不带电, B 带正电,则A 、B 、 C 三导体的电势U A 、U B 、U C 的大小关系是 (A )U A =U B =U C (B )U B > U A =U C (C )U B >U C >U A (D )U B >U A >U C 4.一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ,则板的两侧离板的距离均为 h 的两点a 、b 之间的电势差为: [ ] (A )零 (B )02εσ (C )0εσh (D )02εσh 5. 当一个带电导体达到静电平衡时: [ ] (A) 表面上电荷密度转大处电势较高 (B) 表面曲率较大处电势。 (C)导体内部的电势比导体表面的电势高。 (D)导体内任一点与其表面上任一点的电势差等于零。 6. 如图示为一均匀带电球体,总电量为+Q ,其外部同心地罩一内、 外半径分别为r 1、r 2的金属球壳、设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势为: [ ]

大学物理知识总结习题答案(第四章)静电场

第四章 静电场 本章提要 1.电荷的基本性质 两种电荷,量子性,电荷首恒,相对论不变性。 2.库仑定律 两个静止的点电荷之间的作用力 12122 2 04kq q q q r r = = F r r πε 其中 9 2 2 910(N m /C )k =?? 12 2-1 -2 018.8510 (C N m ) 4k -= =??επ 3.电场强度 q = F E 0q 为静止电荷。由 10102 2 04kq q q q r r == F r r πε 得 112 2 04kq q r r = = E r r πε 4.场强的计算 (1)场强叠加原理 电场中某一点的电场强度等于各个点电荷单独存在时在该点产生的电场强度的矢量和。 i = ∑E E (2)高斯定理 电通量:在电场强度为E 的某点附近取一个面元,规定S ?=?S n , θ为E 与n 之间的夹角,通过S ?的电场强度通量定义为

e cos E S ?ψ=?=??v S θ 取积分可得电场中有限大的曲面的电通量 ψd e s S = ??? E 高斯定理:在真空中,通过任一封闭曲面的电通量等于该封闭曲面内的所有电荷电量的代数和除以0ε,与封闭曲面外的电荷无关。即 i 0 1 d s q = ∑?? E S 内 ε 5.典型静电场 (1)均匀带电球面 0=E (球面内) 2 04q r πε= E r (球面外) (2)均匀带电球体 3 04q R πε= E r (球体内) 204q r πε= E r (球体外) (3)均匀带电无限长直线场强方向垂直于带电直线,大小为 02E r λ πε= (4)均匀带电无限大平面场强方向垂直于带电平面,大小为 2E σ ε= 6.电偶极矩 电偶极子在电场中受到的力矩 =?M P E 思考题 4-1 02 0 4q q r = = πεr 与F E E 两式有什么区别与联系。

10静电场中的导体和电介质习题解答

第十章 静电场中的导体和电介质 一 选择题 1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。设无限远处的电势为零,则导体球的电势为 ( ) 2 02 00π4 . D ) (π4 . C π4 . B π4 .A R) (a qa R a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势 ??'±'±='= ' = 'q q q R R q V 0d π41π4d 00 εε 点电荷q 在球心处的电势为 a q V 0π4ε= 据电势叠加原理,球心处的电势a q V V V 00π4ε= '+=。 所以选(A ) 2. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为σ ,如图所示,则板外两侧的电场强度的大小为 ( ) 2 . D . C 2 . B 2 .A εd E= εE= E E σσεσ εσ= = 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且高斯面内电荷为S 2σ,可得 0 εσ= E 。 所以选(C ) 3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d

7《学习指南 第七章 静电场中的导体和电介质

第7章 静电场中的导体和电介质 7.1 要求 1、了解导体静电平衡条件和电介质的极化,了解电容器; 2、掌握计算电容器容量的方法; 3、能熟练应用电介质中的高斯定理以及安培环流定理。 7.2 内容提要 1、静电感应现象 当一个不带电的导体放在电场强度0E 的静电场中,在最初短暂的时间内 (约s 1410-数量级)导体内会有电场存在,驱使电子作定向运动,必然引起导 体内部正、负电荷的重新分布,最后达到静电平衡。在导体的两端出现等量、 异号的电荷,这种现象称为静电感应现象。 2、导体静电平衡状态 导体静电平衡时,其内部场强处处为零,导体内部和表面都没有电荷的定 向移动,导体所处的这种状态称为导体静电平衡状态。 3、导体静电平衡条件 导体内任一点的电场强度都等于零。在带电导体上,电荷只分布在导体的 表面上,导体内部处处都没有未被抵消的净电荷。 推论一:导体是等势体,其表面是等势面 0,=?=-=?b a b a b a d U U U U ; 推论二:导体表面的场强都垂直导体表面(力线正交等势面)。 4、导体的面电荷密度与场强的关系 导体表面附近的场强在数值上等于该处面电荷σ的0/1ε,方向为导体表面 的法线方向,即 n E 0 εσ=。 导体表面各处的电荷分布与其曲率有关,凸出而尖端的地方曲率较大,电 荷面密度较大;平坦的地方曲率较小,电荷面密度较小,凹陷的地方曲率为负, 电荷面密度更小。在导体尖端的附近电场特别强,会发生尖端放电。 5、电容 (1)、孤立导体的电容 附近没有其他导体和带电体的孤立导体,它所带的电量Q 与其电势U 成正 比,即 U Q C =,式中比例系数C 称为孤立导体的电容,它与导体的形状和大小有关,而与Q 和U 无关。电容反映了导体储存电荷和电能的能力,其 单位是F (法拉),在实际中常用F μ和pF 。 (2)、平板电容器的电容 d S C S Q Ed U E 00,,,εσεσ==== (3)、圆柱形电容器的电容

大学物理课后答案第七章静电场中的导体和电介质

大学物理课后答案第 七章静电场中的导 体和电介质 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2 习题7 7-2 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 都接地,如题7-2图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少以地的电势为零,则A 板的电势是多少 解: 如题7-2图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为 2σ 题7-2图 (1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴ 2d d 21===AC AB AB AC E E σσ 且 1σ+2σS q A = 得 ,32S q A = σ S q A 321=σ 而 711023 2 -?-=- =-=A C q S q σC C 10172-?-=-=S q B σ (2) 30 1 103.2d d ?== =AC AC AC A E U εσV

3 7-3 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算: (1)外球壳上的电荷分布及电势大小; (2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; *(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量. 解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势 题7-3图 ? ? ∞ ∞==?=2 2 020π4π4d d R R R q r r q r E U εε (2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生: 0π4π42 02 0=- = R q R q U εε (3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且 0π4' π4'π4'2 02 01 0=+-+ - = R q q R q R q U A εεε

大学物理第7章静电场中的导体和电介质课后习题及答案

大学物理第7章静电 场中的导体和电介质课后习题及答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第7章 静电场中的导体和电介质 习题及答案 1. 半径分别为R 和r 的两个导体球,相距甚远。用细导线连接两球并使它带电,电荷面密度分别为1σ和2σ。忽略两个导体球的静电相互作用和细导线上电荷对导体球 上电荷分布的影响。试证明:R r =21σσ 。 证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以 半径为R 的导体球的电势为 R R V 0211π4επσ= 14εσR = 半径为r 的导体球的电势为 r r V 0222π4επσ= 24εσr = 用细导线连接两球,有21V V =,所以 R r =21σσ 2. 证明:对于两个无限大的平行平面带电导体板来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同。 证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ (1)取与平面垂直且底面分别在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得 S S d E S ?+= =??)(1 0320 σσε 故 +2σ03=σ 上式说明相向两面上电荷面密度大小相等、符号相反。 (2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即 022220 4 030201=---εσεσεσεσ 又 +2σ03=σ 故 1σ4σ= 3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。 解:如图所示,设金属球表面感应电荷为q ',金属球接地时电势0=V 由电势叠加原理,球心电势为 = O V R q dq R 3π4π41 00εε+ ? 03π4π400=+'=R q R q εε

ch7-静电场中的导体和电介质-习题及答案

第7章 静电场中的导体和电介质 习题及答案 1. 半径分别为R 和r 的两个导体球,相距甚远。用细导线连接两球并使它带电,电荷面密度分别为1σ和2σ。忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。试证明: R r =21σσ 。 证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以 半径为R 的导体球的电势为 R R V 0211π4επσ= 14εσR = 半径为r 的导体球的电势为 r r V 0222π4επσ= 24εσr = 用细导线连接两球,有21V V =,所以 R r =21σσ 2. 证明:对于两个无限大的平行平面带电导体板来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同。 证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ (1)取与平面垂直且底面分别在A 、B 部的闭合圆柱面为高斯面,由高斯定理得 S S d E S ?+==??)(1 0320 σσε 故 +2σ03=σ 上式说明相向两面上电荷面密度大小相等、符号相反。 (2)在A 部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即 022220 4 030201=---εσεσεσεσ

又 +2σ03=σ 故 1σ4σ= 3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。 解:如图所示,设金属球表面感应电荷为q ',金属球接地时电势0=V 由电势叠加原理,球心电势为 = O V R q dq R 3π4π4100εε+ ? 03π4π400=+'= R q R q εε 故 - ='q 3 q 4.半径为1R 的导体球,带有电量q ,球外有外半径分别为2R 、3R 的同心导体球壳,球壳带有电量Q 。 (1)求导体球和球壳的电势1V 和2V ; (2)如果将球壳接地,求1V 和2V ; (3)若导体球接地(设球壳离地面很远),求1V 和2V 。 解:(1)应用均匀带电球面产生的电势公式和电势叠加原理求解。 半径为R 、带电量为q 的均匀带电球面产生的电势分布为 ???????>≤=)( 4)( 400 R r r q R r R q V πεπε 导体球外表面均匀带电q ;导体球壳表面均匀带电q -,外表面均匀带电Q q +,由电势叠加原理知,空间任一点的电势等于导体球外表面、导体球壳表面和外表面电荷在该点产生的电势的代数和。 导体球是等势体,其上任一点电势为 )( 413 210 1R Q q R q R q V ++-= πε 球壳是等势体,其上任一点电势为

大学物理同步训练第2版第七章静电场中的导体详解

第七章 静电场中的导体和电介质 一、选择题 1. (★★)一个不带电的空腔导体球壳,内半径为R 。在腔内离球心的 距离为a 处(a

10第十章 静电场中的导体与电介质作业答案

一、选择题 [ B ]1(基础训练2) 一“无限大”均匀带电平面A ,其附近放一与它 平行的有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷 面密度为+σ ,则在导体板B 的两个表面 1和2上的感生电荷面密度为: (A) σ 1 = - σ, σ 2 = + σ. (B) σ 1 = σ21- , σ 2 =σ2 1 +. (C) σ 1 = σ21- , σ 1 = σ2 1 -. (D) σ 1 = - σ, σ 2 = 0. 【提示】“无限大”平面导体板B 是电中性的:σ 1S+σ 2S=0, 静电平衡时平面导体板B 内部的场强为零,由场强叠加原理得: 02220 2010=-+εσεσεσ 联立解得: 122 2 σ σ σσ=- = [ C ]2(基础训练6)半径为R 的金属球与地连接。在与球心O 相距d =2R 处有一电荷为q 的点电荷。如图所示,设地的电势为零,则球上的感生电荷q ' 为: (A) 0. (B) 2q . (C) -2 q . (D) -q . 【提示】静电平衡时金属球是等势体。金属球接地,球心电势为零。球心电 势可用电势叠加法求得: 000'044q dq q R d πεπε' +=?, 00' 01'44q q dq R d πεπε=-?, 'q q R d =-,其中d = 2R ,'2q q ∴=- [ C ]3(基础训练8)两只电容器,C 1 = 8 μF ,C 2 = 2 μF ,分别把 它们充电到 1000 V ,然后将它们反接(如图所示),此时两极板间的电势差 为: (A) 0 V . (B) 200 V . (C) 600 V . (D) 1000 V 【提示】反接,正负电荷抵消后的净电量为 661212(82)101000610Q Q Q C U C U C --=-=-=-??=? 这些电荷重新分布,最后两个电容器的电压相等,相当于并联。并联的等效电容为 512C'10C C F -=+=,电势差为'600()' Q U V C = =。 [ D ]4(基础训练10)两个完全相同的电容器C 1和C 2,串联后与电源连接。现将一各向同性均匀电介质板插入C 1中,如图所示,则(A) 电容器组总电容减小. (B) C 1上的电荷大于C 2上的电荷. (C) C 1上的电压高于C 2上的电压 .(D) 电容器组贮存的总能量增大. 【提示】(A) C 1↑,1/C=(1/C 1)+(1/C 2),∴C ↑ (B) 串联,Q 1=Q 2 (C) U 1=Q/C 1,U 2=Q/C 2 ,∴U 1

大学物理 第7章 真空中的静电场 答案

第七章 真空中的静电场 7-1 在边长为a 的正方形的四角,依次放置点电荷q,2q,-4q 和2q ,它的几何中心放置一个单位正电荷,求这个电荷受力的大小和方向。 解:如图可看出两2q 的电荷对单位正电荷的在作用力 将相互抵消,单位正电荷所受的力为 )41()2 2( 420+= a q F πε=,252 0a q πε方向由q 指向-4q 。 7-2 如图,均匀带电细棒,长为L ,电荷线密度为λ。(1) 求棒的延长线上任一点P 的场强;(2)求通过棒的端点与棒垂直上任一点Q 的场强。 解:(1)如图7-2 图a ,在细棒上任取电荷元dq ,建立如图坐标,dq =λd ξ,设棒的延长线上任一点P 与坐标原点0的距离为x ,则 2 02 0)(4)(4ξπεξ λξπεξ λ-= -= x d x d dE 则整根细棒在P 点产生的电场强度的大小为 )1 1(4)(400 20 x L x x d E L --=-= ? πελξξπελ = ) (40L x x L -πελ方向沿ξ轴正向。 (2)如图7-2 图b ,设通过棒的端点与棒垂直上任一点Q 与坐标原点0的距离为y 2 04r dx dE πελ= θπελcos 42 0r dx dE y = , θπελsin 42 0r dx dE x = 因θ θθθcos ,cos ,2y r d y dx ytg x ===, 习题7-1图 dq ξ d ξ 习题7-2 图a x x dx 习题7-2 图b y

代入上式,则 )cos 1(400θπελ-- =y =)1 1(4220L y y +--πελ,方向沿x 轴负向。 θθπελ θd y dE E y y ??= =0 0cos 4 00sin 4θπελy = = 2204L y y L +πελ 7-3 一细棒弯成半径为R 的半圆形,均匀分布有电荷q ,求半圆中心O 处的场强。 解:如图,在半环上任取d l =Rd θ的线元,其上所带的电荷为dq=λRd θ。对称分析E y =0。 θπεθ λsin 42 0R Rd dE x = ??==πθπελ 00sin 4R dE E x R 02πελ = 2 02 2R q επ= ,如图,方向沿x 轴正向。 7-4 如图线电荷密度为λ1的无限长均匀带电直线与另一长度为l 、线电荷密度为λ2的均匀带电直线在同一平面内,二者互相垂直,求它们间的相互作用力。 解:在λ2的带电线上任取一dq ,λ1的带电线是无限长,它在dq 处产生的电场强度由高斯定理容易得到为, x E 01 2πελ= 两线间的相互作用力为 θ θπελ θd y dE E x x ??-= -=0 0sin 4x 习题7-3图 λ1 习题7-4图

静电场中的导体与电介质考试题及答案

静电场中的导体与电介质考试题及答案 6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( ) (A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势。由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。 6 -2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。若将导体N 的左端接地(如图所示),则( ) (A ) N 上的负电荷入地 (B )N 上的正电荷入地 (C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地 分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关。因而正确答案为(A )。 6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εq V E 0π4,0= = (B )d εq V d εq E 02 0π4,π4== (C )0,0==V E

(D )R εq V d εq E 020π4,π4== 分析与解 达到静电平衡时导体内处处各点电场强度为零。点电荷q 在导 体球表面感应等量异号的感应电荷±q ′,导体球表面的感应电荷±q ′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。因而正确答案为(A )。 6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。下列推论正确的是( ) (A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关 分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关。因而正确答案为(E )。 6 -5 对于各向同性的均匀电介质,下列概念正确的是( ) (A ) 电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (B ) 电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍 (C ) 在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该

大学物理课后答案解析第七章静电场中的导体及电介质1.doc

大学物理课后答案解析第七章静电场中的导体及电介质1习题7 7-2 三个平行金属板A ,B 和C 的面积都是200cm 2 ,A 和B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 都接地,如题7-2图所示.如果使A 板带正电3.0 ×10-7 C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少? 解: 如题7-2图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ 题7-2图 (1)∵AB AC U U =,即∴AB AB AC AC E E d d = ∴ 2d d 21===AC AB AB AC E E σσ且1σ+2σS q A

= 得,32S q A = σS q A 321=σ而711023 2 -?-=- =-=A C q S q σC C 10172-?-=-=S q B σ (2) 30 1 103.2d d ?== =AC AC AC A E U εσV 7-3 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q (1) (2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及 *(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变 解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势

题7-3图 ? ? ∞ ∞==?=2 2 2 0π4π4d d R R R q r r q r E U εε(2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为 q -.所以球壳电势由内球q +与内表面q -产生: 0π4π42 02 0=- = R q R q U εε (3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且

04.静电场中的导体答案

《大学物理》练习题 No .4 静电场中的导体 电介质及能量 班级 ___________ 学号 ___________ 姓名 ___________ 成绩 ________ 一、 选择题 1. 如图4.1,真空中有一点电荷Q 及空心金属球壳A, A 处于静电平衡, 球内有一点M, 球壳中有一点N, 以下说法正确的是 [ E ] (A) E M ≠0, E N =0 ,Q 在M 处产生电场,而在N 处不产生电场; (B) E M =0, E N ≠0 ,Q 在M 处不产生电场,而在N 处产生电场; (C) E M = E N =0 ,Q 在M 、N 处都不产生电场; (D) E M ≠0,E N ≠0,Q 在M 、N 处都产生电场; (E) E M = E N =0 ,Q 在M 、N 处都产生电场. 2.如图4.2,原先不带电的金属球壳的球心处放一点电荷q 1 , 球外放一点电荷q 2 ,设q 2 、金属内表面的电荷、外表面的电荷对q 1的作用力分别为F 1、F 2、F 3 , q 1受的总电场力为F , 则 [ C ] (A) F 1=F 2=F 3=F =0. (B) F 1= q 1 q 2 / ( 4 π ε0 d 2 ) , F 2 = 0 , F 3 = 0 , F =F 1 . (C) F 1= q 1 q 2 / ( 4 π ε0 d 2 ) , F 2 = 0 ,F 3 =- q 1 q 2 / ( 4 π ε0 d 2 ) (即与F 1反 向), F =0 . (D) F 1= q 1 q 2 / ( 4 π ε0 d 2 ) , F 2 = - q 1 q 2 / ( 4 π ε0 d 2 ) (即与F 1反 向) ,F 3 =0, F =0 . (E) F 1= q 1 q 2 / ( 4 π ε0 d 2 ) , F 2=- q 1 q 2 / ( 4 π ε0 d 2 ) (即与F 1反向), F 3 = 0, F =0 . 3. 一导体球外充满相对电容率为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为: [ B ] (A) ε0E . (B) ε0εr E . (C) εr E . (D) (ε0εr -ε0)E . 4. 两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则: [ C ] (A) 空心球电容值大. (B) 实心球电容值大. (C) 两球电容值相等. (D) 大小关系无法确定. 5.平行板电容器充电后与电源断开,然后在两极板间插入一导体平板,则电容C , 极板间电压V ,极板空间(不含插入的导体板)电场强度E 以及电场的能量W 将(↑表示增大,↓表示减小) [ B ] (A) C ↓,U ↑,W ↑,E ↑. (B) C ↑,U ↓,W ↓,E 不变. (C) C ↑,U ↑,W ↑,E ↑. (D) C ↓,U ↓,W ↓,E ↓. ?Q 图4.1, q 图4.2

静电场中的导体

静电场中的导体 2.1 填空题 2.1.1 一带正电小球移近不带电导体时,小球将受到( )力作用;一带负电小球移近不 带电导体时,小球将受到( )力作用;一带正电小球靠近不带电的接地导体时,小球将受到( )力作用。 2.1.2 在一个带正电的大导体附近P 点放置一个点电荷q(电荷q 不是足够小),实际测得它的受力为F ,如果q>0, 则F/q 与P 点场强E 0关系为( ),如果q<0, 则F/q 与P 点场强关系为( ) 2.1.3 导体在静电场中达到静电平衡的条件是( )和( )。 2.1.4 导体处于静电平衡状态时,导体内部电荷体密度( ),电荷只能分布在( )。 2.1.5 导体处于静电平衡状态时,导体是( )体,表面是( )面。 2.1.6 接地导体的电势等于( ),地球与( )等电势。 2.1.7 一导体球壳,内外半径分别为R 1和R 2,带电q ,球壳内还有一点电荷q ,则导体球壳的电势是( )。 2.1.8 一点电荷q 放在一接地的无限大导电平面附近,则导电平面上的总电量为( )。 2.1.9 将一个点电荷+q 移近一个不带电的导体B 时,则导体B 的电势将( )。 2.1.10 一封闭导体壳C 内有一些分别带q 1、q 2…的带电体,导体壳C 外也有一些分别带Q 1、Q 2…的带电体,则q 1、q 2…的大小对导体壳C 外的电场强度( )影响,对C 外的电势( )影响;Q 1、Q 2…的大小对导体壳C 内的电场强度( )影响,对C 内的电势( )影响。 2.1.11 两个同心导体球壳A 、B ,若内球B 上带电q ,则电荷在其表面上的分布呈( )分布;当从外边把另一带电体移近这两个同心球时,则内球B 上的分布呈( )分布。 2.1.12 两导体球半径分别为r A 和r B ,A 球带电q ,B 球不带电,现用一细导线连接,则分布在两球上的电荷之比Q A ∶Q B ( )。 2.1.13 在带等量异号电荷的二平行板间的均匀电场中,一个电子由静止自负极板释放,经t 时间抵达相隔d 的正极板,则两极板间的电场为( ),电子撞击正极板的动能为( )。 2.1.14 中性导体空腔的腔内、腔外分别有一个点电荷q 和Q ,均与导体空腔不接触,则导体空腔内、外表面的电量分别为( )和( )。 2.1.15 当空腔内有带电体时,导体空腔内表面带电,它所带电荷与腔内带电体所带电荷( )。 2.1.16 金属球壳内外半径分别为a 和b ,带电量为Q ,球心O 点的电势为( )。 2.1.17 两个同心导体球,内球带电1Q ,外球带电2Q ,则,外球内表面电量为( );外球外表面电量为( )。 2.1.18 两个同心导体球,内球带电1Q ,外球带电2Q ,若将外球接地,外球内表面电量为( );

电磁场与电磁波课后习题及答案--第四章习题解答

习题解答 如题图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的 电位为零,上边盖板的电位为,求槽内的电位函数。 解 根据题意,电位满足的边界条件为 ① ② ③ 根据条件①和②,电位的通解应取为 由条件③,有 故得到槽内的电位分布 两平行无限大导体平面,距离为,其间有一极薄的导体片由到。 上板和薄片保持 电位,下板保持零电位,求板间电位的解。设在薄 片平面上,从到,电位线性变 化, 故得到 求在上题的解中,除开一项外,其他所有项对电场总储能的贡献。并按定出边缘电容。 解 在导体板()上,相应于的电荷面密度 则导体板上(沿方向单位长)相应的总电荷 相应的电场储能为 其边缘电容为 如题图所示的导体槽,底面保持电位,其余两面电位为零,求槽内的电位的解。 两边同乘以,并从 0 到对积分,得到 解 应用叠加原理,设板间的电位 为 其中,为不存在薄片的平行 位,即;是两个电位为零的 位,其边界条件为: ① ② ③ 根据条件①和②, 由条件 ③有 两边同乘以,并从 无限大导体平面间(电压为)的电 平行导体板间有导体薄片时的电 可设的通 0到对积分,得到 解为 y

解根据题意,电位满足的边界条件为 ① ② ③根据条件①和②,电位的通解应取为 由条件③,有两边同乘以,并从0 到对积分,得到 故得到槽内的电位分布为一长、宽、高分别为、、的长方体表面保持零电位, 体积内填充密度为 题图 的电荷。求体积内的电位。 解在体积内,电位满足泊松方程 (1) 长方体表面上,电位满足边界条件。由此设电位的通解为 代入泊松方程(1),可得 由此可得 或 (2) 由式(2),可得 故 如题图所示的一对无限大接地平行导体板,板间有一与轴平行的线电荷,其位置为。求板间的电位函数。解由于在处有一与轴平行的线电荷,以为界将场空间分割为和两个区域,则这两个区域中的电位和都满足拉普拉斯方程。而在的分界面上,可利用函数将线电荷表示成电荷面密度。 电位的边界条件为 题图

大学物理学第四章静电场中的导体与电介质自学练习题

导体与电介质部分 自学练习题 一、选择题: 1.将一带正电的物体A 从远处移到一个不带电的导体B 附近,导体B 的电势将:( ) (A )升高; (B )降低; (C )不会发生变化; (D )无法确定。 【提示:相当于将B 从无穷远移到A 附近,电势升高】 2.将一带负电的物体M 靠近一个不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷,若将导体N 的左端接地,则:( ) (A )N 上的负电荷入地; (B )N 上的正电荷入地; (C )N 上的所有电荷入地; (D )N 上所有的感应电荷入地。 【提示:N 上感应出来的正电荷被M “吸住”,负电荷入地】 3.如图所示,将一个电荷量为q 的点电荷放在一个半径为R 的不带电导体球附近,点电荷距导体球球心为d ,设无限远处为电势零点,则导体球心O 点的场强和电势为:( ) (A )0E =,04q V d πε= ;(B )2 04q E d πε= ,04q V d πε= ; (C )0E =,0V =; (D )2 04q E d πε=,04q V R πε= 。 【提示:静电平衡状态下,导体球内部不会有电场线;导体球是一个等势体,电势由所在的电场分布决定】 4.如图所示,绝缘带电导体上a 、b 、c 三点, 电荷密度是( ); 电势是( ): (A )a 点最大; (B )b 点最大; (C )c 点最大; (D )一样大。 【提示:在静电平衡状态下,孤立导体在曲率较大处电荷面密度和场强的值较大;导体是等势体】 5.当一个带电导体达到静电平衡时:( ) (A )表面上电荷密度较大处电势较高; (B )表面上曲率较大处电势较高; (C )导体内部的电势比导体表面电势高;(D )导体内任一点与其表面上任一点的电势差为零。 【见上题提示】 6.一个半径为R 带有电量为Q 的孤立导体球电容的决定式为:( ) (A )04Q C R πε= ; (B )2 04Q C R πε= ;(C )0 4C R επ= ;(D )04C R πε=。 【提示:孤立导体球的电势为04Q V R πε= ,利用 Q C V =,有04C R πε=】 7.对于带电的孤立导体球: ( ) (A )导体内的场强与电势大小均为零。(B ) 导体内的场强为零,而电势为恒量。 (C )导体内的电势比导体表面高。 (D )导体内的电势与导体表面的电势高低无法确定。 【见上题提示】

静电场中的导体和电介质习题详解Word版

习题二 一、选择题 1.如图所示,一均匀带电球体,总电量为+Q ,其外部同心地罩一内、外半径分别为1r 和2r 的金属球壳。 设无穷远处为电势零点,则球壳内半径为r 的P 点处的场强和电势为[ ] (A )200, 44Q Q E U r r εε= = ππ; (B )01 0, 4Q E U r ε==π; (C )00, 4Q E U r ε==π; (D )020, 4Q E U r ε== π。 答案:D 解:由静电平衡条件得金属壳内0=E ;外球壳内、外表面分别带电为Q -和Q +,根据电势叠加原理得 00 0202 Q Q Q Q U r r r r εεεε-= + += 4π4π4π4π 2.半径为R 的金属球与地连接,在与球心O 相距2d R =处有一电量为q 的点电荷,如图所示。设地的电势为零,则球上的感应电荷q '为[ ] (A )0; (B )2 q ; (C )2q -; (D )q -。 答案:C D? 解:导体球接地,球心处电势为零,即000044q q U d R πεπε'=+ =(球面上所有感应电荷到 球心的距离相等,均为R ),由此解得2 R q q q d '=-=-。 3.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ] (A )2 200,44r Q Q E D r r εεε= =ππ; (B )22 ,44r Q Q E D r r ε==ππ; (C )220,44Q Q E D r r ε==ππ; (D )22 00,44Q Q E D r r εε==ππ。 答案:C

相关文档
最新文档