地震重现期计算

地震重现期计算
地震重现期计算

地震重现期计算

地震重现期也叫做回归期,英文叫做 recurrence interval 或 return period 。即地震多少年发生一次,用来说明发生的概率,回归期越长,地震发生的概率越低。

设地震重现期为n年,则地震年均发生概率为λ=1/n。则在年限T年内,地震发生的概率 P 近似为波松分布:

一般建筑的设计使用年限为50年,地震的发生概率也以50年为基准周期。基本设防地震定为超越概率为10%的地震

重现期为50的地震在使用年限50年内发生概率为63%,通过下式可以看出。

用同样的算法,超越概率2%的大震重现期为2475年。

对于重要的建筑设计年限为100年,设计基准期也为100年,此时的设防烈度、罕遇烈度的重现期均为一般建筑的2倍,即950年和4950年。

若将每年的地震的发生概率按二项分布计算

T为50年,P分别为63% 10%2%时,则n为50.8,475,2475年。

T为100年,P分别为63% 10%2%时,则n为101,950,4950年。

与按波松分布计算的地震重现期相同。

地震震级=2/3*震中烈度+1

抗震设防烈度=多遇地震下的烈度(众值烈度)+1.55

因此我们国家现在就是按照一个概率来估计该烈度被超过的概率(一般是定众值烈度),然后根据众值烈度来+1.55算设防烈度

一二度人完全感觉不到

三度少数静止中的人有感

四至五度睡觉的人会惊醒,悬挂物摇晃

六度房屋损坏,墙体微细裂缝

七至八度地面裂缝

九至十度房屋倒塌,地面破坏严重

十一至十二度毁灭性的破坏

水平地震作用计算

上海市工程建设规范《建筑抗震设计规程》(DGJ08-9-2013)强制性条文 3 抗震设计的基本要求 3.1.1 抗震设防的所有建筑应按现行国家标准《建筑工程抗震设防分类标准》GB 50223 确定其抗震设防类别及其抗震设防标准。 3.3.1选择建筑场地时,应根据工程需要和地震活动情况、工程地质和地震地质的有关资料,对抗震有利、一般、不利和危险地段做出综合评价。对不利地段,应提出避开要求,当无法避开时应采取有效的措施。对危险地段,严禁建造甲、乙类的建筑,不应建造丙类的建筑。 3.4.1建筑设计应根据抗震概念设计的要求明确建筑形体的规则性。不规则的建筑应按规定采取加强措施;特别不规则的建筑应进行专门研究和论证,采取特别的加强措施;严重不规则的建筑不应采用。 注:形体指建筑平面形状和立面、竖向剖面的变化。 3.5.2结构体系应符合下列各项要求: 1应具有明确的计算简图和合理的地震作用传递途径。 2应避免因部分结构或构件破坏而导致整个结构丧失抗震能力或对重力荷载的承载能力。 3应具备必要的抗震承载力,良好的变形能力和消耗地震能量的能力。 4对可能出现的薄弱部位,应采取措施提高其抗震能力。 3.7.1 非结构构件,包括建筑非结构构件和建筑附属机电设备,自身及其与结构主体的连接,应进行抗震设计。 3.7.4框架结构的围护墙和隔墙,应估计其设置对结构抗震的不利影响,避免不合理设置而导致主体结构的破坏。 3.9.1抗震结构对材料和施工质量的特别要求,应在设计文件上注明。 3.9.2 结构材料性能指标,应符合下列要求: 1 砌体结构材料应符合下列规定: 1)普通砖和多孔砖的强度等级不应低于MU10,其砌筑砂浆强度等级不应低于 M5; 2)混凝土小型空心砌块的强度等级不应低于MU7.5,其砌筑砂浆强度等级不应 低于Mb7.5。 2混凝土结构的材料应符合下列规定: 1) 混凝土的强度等级,框支梁、框支柱及抗震等级为一级的框架梁、柱、节点核 芯区,不应低于C30;构造柱、芯柱、圈梁及其它各类构件不应低于C20; 2) 抗震等级为一级、二级、三级的框架和斜撑构件(含梯段),其纵向受力钢筋采 用普通钢筋时,钢筋的抗拉强度实测值与屈服强度实测值的比值不应小于 1.25;钢筋的屈服强度实测值与屈服强度标准值的比值不应大于1.3,且钢筋 在最大拉力下的总伸长率实测值不应小于9%。 3钢结构的钢材应符合下列规定: 1) 钢材的屈服强度实测值与抗拉强度实测值的比值不应大于0.85; 2) 钢材应有明显的屈服台阶,且伸长率不应小于20%; 3) 钢材应有良好的焊接性和合格的冲击韧性。

水平地震作用计算

上海市工程建设规《建筑抗震设计规程》(DGJ08-9-2013)强制性条文 3 抗震设计的基本要求 3.1.1 抗震设防的所有建筑应按现行标准《建筑工程抗震设防分类标准》GB 50223 确定其抗震设防类别及其抗震设防标准。 3.3.1选择建筑场地时,应根据工程需要和地震活动情况、工程地质和地震地质的有关资料,对抗震有利、一般、不利和危险地段做出综合评价。对不利地段,应提出避开要求,当无法避开时应采取有效的措施。对危险地段,禁建造甲、乙类的建筑,不应建造丙类的建筑。 3.4.1建筑设计应根据抗震概念设计的要求明确建筑形体的规则性。不规则的建筑应按规定采取加强措施;特别不规则的建筑应进行专门研究和论证,采取特别的加强措施;重不规则的建筑不应采用。 注:形体指建筑平面形状和立面、竖向剖面的变化。 3.5.2结构体系应符合下列各项要求: 1应具有明确的计算简图和合理的地震作用传递途径。 2应避免因部分结构或构件破坏而导致整个结构丧失抗震能力或对重力荷载的承载能力。 3应具备必要的抗震承载力,良好的变形能力和消耗地震能量的能力。 4对可能出现的薄弱部位,应采取措施提高其抗震能力。 3.7.1 非结构构件,包括建筑非结构构件和建筑附属机电设备,自身及其与结构主体的连接,应进行抗震设计。 3.7.4框架结构的围护墙和隔墙,应估计其设置对结构抗震的不利影响,避免不合理设置而导致主体结构的破坏。 3.9.1抗震结构对材料和施工质量的特别要求,应在设计文件上注明。 3.9.2 结构材料性能指标,应符合下列要求: 1 砌体结构材料应符合下列规定: 1)普通砖和多砖的强度等级不应低于MU10,其砌筑砂浆强度等级不应低于M5; 2)混凝土小型空心砌块的强度等级不应低于MU7.5,其砌筑砂浆强度等级不应 低于Mb7.5。 2混凝土结构的材料应符合下列规定: 1) 混凝土的强度等级,框支梁、框支柱及抗震等级为一级的框架梁、柱、节点核 芯区,不应低于C30;构造柱、芯柱、圈梁及其它各类构件不应低于C20; 2) 抗震等级为一级、二级、三级的框架和斜撑构件(含梯段),其纵向受力钢筋采 用普通钢筋时,钢筋的抗拉强度实测值与屈服强度实测值的比值不应小于 1.25;钢筋的屈服强度实测值与屈服强度标准值的比值不应大于1.3,且钢筋 在最大拉力下的总伸长率实测值不应小于9%。 3钢结构的钢材应符合下列规定: 1) 钢材的屈服强度实测值与抗拉强度实测值的比值不应大于0.85; 2) 钢材应有明显的屈服台阶,且伸长率不应小于20%; 3) 钢材应有良好的焊接性和合格的冲击韧性。 3.9.4 在施工中,当需要以强度等级较高的钢筋替代原设计中的纵向受力钢筋时,应按照钢筋受拉承载力设计值相等的原则换算,并应满足最小配筋率要求。

爆破安全距离

一、爆破地震安全距离 爆破地震,是指炸药爆炸的部分能量转化为弹性波,在岩土中传播引起的震动。 爆破地震波,对爆区附近的地层、建筑物、构筑物,以及井巷和露天边坡产生破坏作用。 爆破地震波强度的大小主要取决于使用炸药的性能、炸药量、爆源距离、岩石的性质、爆破方法以及地层地形条件。为了最大程度地减小地震波的危害,应采取如下有效措施: (1)爆破前应调查了解爆破区域范围内建筑物、构筑物的结构,露天边坡稳定状况,井巷围岩稳定及支护等情况。 (2)根据爆区的周边环境,采用减震爆破方法和控制炸药量,如微差爆破、缓冲爆破、预裂爆破等爆破方法。 (3)爆破地震安全距离计算公式如下: 式中 R——爆破安全距离(m); Q——炸药量(kg); U——地震安全速度(cm/s); m——药量指数,取1/3; k、a-——与爆破地点地形、地质等条件有关的系数和衰减指数,可按表8—1选取。

二、空气冲击波安全距离 (一)爆破空气冲击波特性 空气冲击波波阵面上的压力决定于离爆破地点的距离与药包半径的比值、炸药爆炸的比能和周围空气的压力。 对于保护爆区及周围居民区人员的安全,一般以超压作为依据,以允许超压来确定安全距离。不同超压对人体的危害情况如表8—2所示。 注:当ΔΡ为~0.4)X105/m2时,气流速度达60~80m/s,夹杂着碎石加重了对人体的危害。 各国常用动物试验结合爆炸事故中伤亡情况的分析来确定对人的允许超压。一般人员不致受伤的超压△p<×105N/m2。安全规程采用的允许超压,对作业者为0.05×105 N/m2,对居民为0.02×105N/m2。 对建筑物,其易损部分为玻璃窗和顶棚抹灰。一般建筑物窗玻璃发生轻微破坏的超压为(0.01~0.005)×105N/m2;门窗破坏,屋面瓦大部分被掀掉,顶棚部分破坏的超压为(1.15—0.3)×105N/m2;砖木结构完全破坏的超压大于2.0×105NN/m2。安全规程规定建筑物的超压取0.01×105N/m2。 空气冲击波沿地下井巷传播时,比沿地面半无穷空间的传播衰减要慢,故要求的安全距离也更大,如表8—3所示。

爆破安全距离

5 爆破安全距离 为了保证爆破地点附近人员、机械和建筑物、构筑物的安全,必须根据爆破产生的各种危害作用确定安全距离。 5.1 爆破地震作用安全距离 1)一般建筑物和构筑物的爆破地震安全性应满足安全震动速度的要求,主要类型的建(构)筑物地面质点的安全震动速度规定如下: 重要工业厂房0.4cm/s; 土窑洞、土坯房、毛石房屋1.0cm/s; 一般砖房、非抗震的大型砌块建筑物2~3cm/s; 钢筋混凝土框架房屋5cm/s; 水工隧洞10cm/s; 交通隧洞15cm/s; 矿山巷道:围岩不稳定有良好支护10cm/s;围岩中等稳定有良好支护15cm /s;围岩稳定无支护20cm/s。 2)爆破地震安全距离可按下式计算: 在特殊建(构)筑物附近或爆破条件复杂地区进行爆破时,必须进行必要的爆破地震效应监测或专门试验,以确定被保护物的安全性。 5.2 爆破冲击波安全距离 露天煤矿应尽量避免裸露爆破,露天裸露爆破

矿山爆破安全距离 爆破时,必然产生爆破地震、空气冲击波、碎石飞散及有害气体,因而危及爆区附近人员、设备、建筑物及井巷等的安全。因此,爆破设计时必须确定爆破危害范围并指定安全距离。主要有以下几个方面: 1.爆破地震安全距离 炸药在岩体中爆炸后,在距爆源一定距离的范围内,岩体产生弹性震动波,即是爆破地震。爆破作业地震强度主要与炸药量、爆源距离、岩石特性、爆破条件和方法以及地质地形条件有关。《爆破安全规程》规定“一般建筑物和构筑物的爆破地震安全性应满足安全振动速度的要求”,并规定了建(构)筑物地面质点振动速度控制标准。 2.爆破空气冲击波的安全距离 空气冲击波的安全距离主要依据以下几个方面来确定:对地面建筑物的安全距离,空气冲击波超压值计算和控制标准,爆破噪声,空气冲击波的方向效应与大气效应。 控制空气冲击波的方法主要有: (1)避免裸露爆破,特别是在居民区更需特别重视,导爆索要掩埋20em或更多,一次爆破孔间延迟不要太长,以免前排带炮使后排变成裸露爆破。 (2)保证堵塞质量,特别是第一排炮孔,如果掌子面出现较大后冲,必须保证足够的堵塞长度。对水孔要防止上部药包在泥浆中浮起。 (3)考虑地质异常,采取措施。例如,断层、张开裂隙处要间隔堵塞,溶洞及大裂隙处要避免过量装药。 (4)在设计中要考虑避免形成波束。 (5)在地下矿山巷道,可利用障碍、阻波墙、扩大室等结构来减轻巷道空气冲击波。 3.个别碎石飞散的安全距离 露天爆破时,有些岩石飞散很远,危及周围人员、牲畜和建(构)筑物。飞石事故超过爆破事故总数的1/4,在设计和施工中必须严格做到: (1)设计合理,测量验收严格,避免单耗失控,是控制飞石危害的基础工作; (2)慎重对待断层、软弱带、张开裂隙、成组发育的节理、溶洞、采空区、覆盖层等地质构造,采取间隔堵塞、调整药量、避免过量装药等措施; (3)保证堵塞质量,不但要保证堵塞长度,而且保证堵塞密实; (4)多排爆破时,要选择合理的延迟时间,防止因前排带炮(后冲),造成后排最小抵抗线大小与方向失控; (5)城市爆破应做好防护。 4.电力起爆的安全距离 电力起爆的安全距离主要考虑爆区与高压线、广播电台和电视台等发射源的安全距离。 5.爆破有害气体扩散安全距离 爆破有害气体主要有CO、NO、NO2、N2O5、SO2、H2S、NH3等,可引起窒息及血液中毒。大量爆破后必须取样监测。有害气体浓度低于容许指标才能下井作业。

第八章水平地震作用下的内力和位移计算

第8章 水平地震作用下的内力和位移计算 8.1 重力荷载代表值计算 顶层重力荷载代表值包括:屋面恒载:纵、横梁自重,半层柱自重,女儿墙自重,半层墙体自重。其他层重力荷载代表值包括:楼面恒载,50%楼面活荷载,纵、横梁自重,楼面上、下各半层柱及纵、横墙体自重。 8.1.1第五层重力荷载代表值计算 层高H=3.9m ,屋面板厚h=120mm 8.1.1.1 半层柱自重 (b ×h=500mm ×500mm ):4×25×0.5×0.5×3.9/2=48.75KN 柱自重:48.75KN 8.1.1.2 屋面梁自重 ()()kN m m m kN m m m kN m m m kN 16.1472 )25.06.6(/495.145.06.616.3)3.03(/495.123.06.7/16.3=?-?+?-?+ +?+?-? 屋面梁自重:147.16KN 8.1.1.3 半层墙自重 顶层无窗墙(190厚):()KN 25.316.66.029.3202.02019.025.14=??? ? ??-???+? 带窗墙(190厚): ()()KN 98.82345.002.02019.025.1428.15.16.66.029.3202.02019.025.14=??? ??? ???????-?+???-???? ??-???+? 墙自重:114.23 KN 女儿墙:()KN 04.376.66.1202.02019.025.14=????+? 8.1.1.4 屋面板自重 kN m m m m kN 78.780)326.7(6.6/5.62=+???

8.1.1.5 第五层重量 48.75+147.16+114.23+37.04+780.78=1127.96 KN 8.1.1.6 顶层重力荷载代表值 G 5 =1127.96 KN 8.1.2 第二至四层重力荷载代表值计算 层高H=3.9m ,楼面板厚h=100mm 8.1.2.1半层柱自重:同第五层,为48.75 KN 则整层为48.75×2=97.5 KN 8.1.2.2 楼面梁自重: ()()kN m m m kN m m m kN m m m kN 3.1542)25.06.6(/6.145.06.63.3)3.03(/6.123.06.7/3.3=?-?+?-?+ +?+?-? 8.1.2.3半墙自重:同第五层,为27.66KN 则整层为2×27.66×4=221.28 KN 8.1.2.4楼面板自重:4×6.6×(7.6+3+7.6)=480.48 KN 8.1.2.5第二至四层各层重量=97.5+154.3+221.28+480.48=953.56 KN 8.1.2.6第二至四层各层重力荷载代表值为: ()KN G 61.111336.65.326.76.65.2%5056.9534-2=??+????+= 活载:Q 2-4=KN 05.160%5036.65.326.76.65.2=???+???)( 8.1.3 第一层重力荷载代表值计算 层高H=4.2m ,柱高H 2=4.2+0.45+0.55=5.2m ,楼面板厚h=100mm 8.1.3.1半层柱自重: (b ×h=500mm ×500mm ):4×25×0.5×0.5×5.2/2=65 KN 则柱自重:65+48.75=113.75 KN 8.1.3.2楼面梁自重:同第2层,为154.3 KN 8.1.3.3半层墙自重(190mm ): ()()KN 14.3145.002.02019.025.142 8 .15.16.66.02 2.4202.02019.025.14=-?+???-??? ? ??-???+? 二层半墙自重(190mm ):27.66 KN 则墙自重为:(31.14+27.66)×4=235.2 KN

地震属性体处理

地震属性体处理 1、分频处理属性 分频处理属性可将地震振幅和属性数据转换成更为清晰的地下地质图像,识别薄层或能量衰减区。将各地震道分解成不同的频带成分,有助于突出复杂的断裂体系以及储层的分布特征。分频处理的技术主要是通过 “Gabor-Morlet” 子波对复数地震道进行谱 分解,类似于小波变换。用来帮助地质家和解 释人员进行如下的勘探研究工作: (1)薄层检测以及薄层厚度估计; (2)衰减分析——直接进行油气检测 (3)提高地震分辨率 该方法通过连续的时频分析来描述时间-- 频率的瞬时信号能量密度。与以往常规的谱分 解使用离散傅立叶变换不同,该方法使用 Gabor-Morley 子波来提高时间-频率的分辨率。 提供了两种计算瞬时能量的方法:等空间中心频率和倍频程频率。输出结果可以分解成多种属性体:时间-频率体、时间切片,然后进行分析。 2、地震属性分析 地震属性分析使我们获得更多极有价值的多方位信息,从而使油藏的描述更准确、更细致。帕拉代姆地震属性库包括丰富的地震属性,如振福包络、瞬时频率、吸收系数以及相对波阻抗等20多 种复地震道(Hilbert )属性、多道几何属性,谱分解属 性和用户自定义属性见图。这些地震属性可分别表征地 震影像的不同特征,从而使解释人员以少量的工作即可 获得大量的地质信息,其中多地震道几何属性包括倾角 体、方位角体、非连续性和照明体。这些属性旨在强化 地震影像的非连续性特征,因此对识别地质体的构造特 征(如断层)、地层边界、河道和地质体的几何样式十 分有效。在这些属性体提取的基础上,利用PCA 主组分 分析技术进行属性优化分析,同时也可借助多属性体交 会VXPLOT 识别异常体。通过多属性体交汇、神经网络 测井参数反演、多属性体的波形分类以及变时窗/等时 窗的地震相划分等综合技术,并借助多属性体立体可视 化浏览技术实现对地下构造、地层和储层岩性的综合解 释。 光照体属性 常用提取的地震属性有信号包络、瞬时频率、瞬时相位、相对波阻抗、分频处理等。

地震等级与设防烈度的关系

地震等级与设防烈度的关系 每次地震发生,可能很多人都会有类似的问题。有时候,有些媒体也会在这里犯一些错误,被大家诟病为「不专业」。当然,这些东西也挺复杂的,媒体搞混了也正常。 一地震震级 地震震级是某次地震的属性,某个地震只会有一个震级。比如1995年阪神大地震是矩震级6.8,2008年汶川大地震是矩震级是7.9。 注意到,可能对于某次地震,不同媒体的报道有所不同,那是因为他们采用了不同的震级标准。由于历史原因,不同的专家学者发明过不同的震级标准,比如里氏震级、面波震级、体波震级等等。比如说,有些国内官方媒体采用的就是面波震级,所以2008年汶川大地震的震级为面波震级8.0。目前大家认为比较合理的、应用较广泛的是矩震级。 震级是什么意思呢?简单说,震级衡量的是地震的大小,或者严谨一点,地震所释放的能量的大小。某次地震所释放的总能量是固定的,所以它的震级也是唯一的。 绝大多数地震是由断层引起的,地震所释放的能量的大小,取决于引发地震的断层的大小、断层两边相对运动的距离、断层处的岩石强度。断层的面积乘以断层移动的距离再乘以岩石的剪切模量,得到的就是Seismic

Moment,也就是所谓的地震矩。这个地震矩的数值,直接反映了地震释放能量的大小。 而矩震级就是对地震矩的衡量,这两者之间的关系是,其中地震矩 M0的单位为牛乘以米。注意到,地震矩和矩震级之间是三分之二 log 的关系。换言之,震级大一级,地震矩变为原来的10的1.5次方倍,也就是31.6倍;震级大两级,地震矩变为原来的31.6的平方倍,也就是 1000 倍。 简单说,8级地震释放的能量,是7级的31.6倍,6级的1000倍,5级的31623倍,4级的1000000倍。 二地震烈度 地震烈度衡量的是某次地震发生之后对某个地区的影响。比如说,1976 年唐山大地震,震中唐山的烈度为11度,天津的烈度为8度,北京为6度,石家庄为5度。通常情况下,越靠近震中最大,越远离震中越小。这也很好理解,越靠近震中受影响越大,越远离震中受影响越小。 你可以想象成一个靶子,震中就是靶心10环,外边一点9环,再靠外8环。同样的地震,震中烈度可能是9度,往外50公里可能降低到8度,再往外150公里可能降低到7度。由于地形地质的不同,所以烈度的分布并不是个完美的同心圆,只是大致上遵循着越靠近震中越大的规律。 烈度的大小与地震震级相关,但并没有明确的数值关系,而是因为其它条件的不同而不同。简单说,烈度是一个主观性比较强的参数,跟震源深浅、

爆破安全距离计算76471

爆破安全距离计算 Blasting safety distance calculation. 爆破中产生对人、设备、建筑物的主要危险有:爆破地震、空气冲击波、水中爆破冲击波、飞石、殉爆、有毒气体(炮烟)、噪音等,因此,必须做好安全措施,并保证足够的安全距离;而且,为了防止杂散电流、静电、射频电引起雷管、炸药的早爆事故,亦应做好安全工作。 1、爆破震动安全距离计算 选用GB6722-2003《爆破安全规程》确定公式:R=α/1'3)/(V KK Q ?。 R —爆破震动安全距离 Q —一次所允许起爆的最大装药量或毫秒延期起爆时的单段最大装药量 K 、α—与爆破点地形、地质等条件有关的系数和衰减指数,见表1-1 K '—修正系数(在拆除爆破中引入此系数),K '=0.25~1,近爆源且临空面少时取大值,反之取小值 V —周围房屋安全允许震动速度,见表1-2 表1-1爆区不同岩性的K 、a 值 岩性 K a 坚硬岩石 50~150 1.3~1.5 中硬岩石 150~250 1.5~1.8 软岩石 250~350 1.8~2 表1-2爆破地震安全速度(V )值 建筑(构)物 V (cm/s ) 土窑洞、土坯房、毛石房屋 1 一般砖房、非抗震的大型砖块建筑物 2~3 钢筋混凝土框架房屋 5

水工隧道 10 交通隧道 15 矿山巷道 围岩不稳定有良好支护 10 围岩中等稳定有良好支护 20 围岩稳定无支护 30 2、爆破空气冲击波安全距离计算 R K Q =,m 式中:R —爆破空气冲击波安全距离,m ; Q —装药量,kg ; K —与装药条件和爆破程度有关的系数。如表2-1。 表2-1系数(K )值 破坏程度 安全级别 裸露药包 全埋药包 完全无损 1 50~150 10~50 偶然破坏玻璃 2 10~50 5~10 玻璃全破坏、门窗局部破坏 3 5~10 2~5 隔墙、门、窗、板棚破坏 4 2~ 5 1~2 砖石结构破坏 5 1.5~2 1.5~1 全部破坏 6 1.5 __ 注:炸药库的设置,空气冲击波对建筑物和人员安全距离,也按此式计算。 根据《爆破安全规程》规定:露天裸露爆破时,一次爆破的装药量不得大于20kg ,并应按下式确定爆破空气冲击波对在掩体内避炮作业人员的安全距离。 325R Q =,m 式中:R —空气冲击波对掩体内人员的安全距离,m Q —一次爆破的装药量,kg 。

地震重现期计算

地震重现期计算 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

地震重现期计算 地震重现期也叫做回归期,英文叫做 recurrence interval 或 return period 。即地震多少年发生一次,用来说明发生的概率,回归期越长,地震发生的概率越低。 设地震重现期为n年,则地震年均发生概率为λ=1/n。则在年限T年内,地震发生的概率 P 近似为波松分布: 一般建筑的设计使用年限为50年,地震的发生概率也以50年为基准周期。基本设防地震定为超越概率为10%的地震 重现期为50的地震在使用年限50年内发生概率为63%,通过下式可以看出。 用同样的算法,超越概率2%的大震重现期为2475年。 对于重要的建筑设计年限为100年,设计基准期也为100年,此时的设防烈度、罕遇烈度的重现期均为一般建筑的2倍,即950年和4950年。 若将每年的地震的发生概率按二项分布计算 T为50年,P分别为63% 10%2%时,则n为,475,2475年。 T为100年,P分别为63% 10%2%时,则n为101,950,4950年。 与按波松分布计算的地震重现期相同。 地震震级=2/3*震中烈度+1 抗震设防烈度=多遇地震下的烈度(众值烈度)+ 因此我们国家现在就是按照一个概率来估计该烈度被超过的概率(一般是定众值烈度),然后根据众值烈度来+算设防烈度 一二度人完全感觉不到 三度少数静止中的人有感 四至五度睡觉的人会惊醒,悬挂物摇晃 六度房屋损坏,墙体微细裂缝 七至八度地面裂缝 九至十度房屋倒塌,地面破坏严重

十一至十二度毁灭性的破坏

地震级别和地震烈度有什么区别

地震级别和地震烈度有什么区别 1、地震级别 地震的大小用地震级别来表示。如6级地震,7.6级地震,7.8级地震,8.9地震等。 地震的级别是根据地震时释放的能量的大小而定的。是鞭炮级的还是手榴弹级的还是炮弹级的,还是原子弹级的,还是氢弹级的,所释放的能量通过测定可以计算出来。一次地震释放的能量越多,地震级别就越大。目前人类有记录的地震的最高震级是8.9级,所释放的能量相当于一颗1800万吨炸药量的氢弹,或者相当于一个100千瓦的发电厂40年的发电量。这次汶川地震所释放的能量大约相当于90万吨炸药量的氢弹,或100千万发电厂2年的发电量(本人估算,仅供参考。)地震级别M与所释放的能量E的关系式如下: ㏒E=4.8+1.5M ; 1级地震所释放的能量为200万J;(J是能量单位)。每提高一级,能量大约增加31倍。 地震级别的测量与计算是美国地震学家里克特在1935年提出来的,所以在说地震级别时常说“里氏”多少多少级地震。 一般来说,3级以下的地震是微震,基本感觉不出来,与鞭炮差不多。

3级到5级的地震就能感觉出来了,称为弱震或小震或有感地震。 5级到7级就会造成破坏了,称为强震或中震或破坏性地震。 7级以上的地震就是大地震了。 2、地震烈度 地震烈度是用来反映地震时对地面和建筑物影响程度的一个概念。是指地震活动所造成的地面和建筑物的破坏程度。 同样是7.8级的地震,震源在地下深处,其破坏力就小,震源距离地表近,其破坏力就大。 从平面距离看,距离震中远的地方,破坏力就小,距离震中近的地方,破坏力就大。一次地震只有一个震级,但远近不同的位置却有不同的烈度。在汶川可能是9度,在西安可能是6度,到了北京就是4度了。 地震烈度不是通过仪器测定的。而是根据人对地震的感觉和地面及地面上建筑物等受到的破坏程度确定的。中国把地震烈度分成了12度。下表是不同地震烈度的大致描述。 地震烈度损坏与感觉 1度无损坏,无感觉。 2度无损坏,基本无感觉。

爆破安全计算计算书

爆破安全计算书 计算依据: 1、《建筑施工计算手册》江正荣编著 2、《水工建筑物岩石基础开挖工程施工技术规范》DL/T5389-2007 一、爆破振速与爆破塌落振速对建筑物影响计算 采用质点垂直振动速度值作为判断、评价爆破点周围建筑物安全程度的标准,可求的爆破振速为: V =K×(Q1/3/R)2=1200×(12001/3/50)2 =54.204 mm/s≤[V]=70 mm/s 安全! 二、爆破安全距离计算 1、飞石安全距离计算 一般抛掷爆破个别飞石安全距离为: R f=K f×20 ×n2×W=1.8×20 ×1.52×3.4= 275.4m ≥[R]=200m 安全! 2、爆破地震安全距离计算 查表2-50 Kc=3

查表2-51 α=0.94 建筑物防爆破地震波影响的安全距离为: R c = K c×α×Q1/3 = 3×0.94×151/3 = 6.955m 3、爆破防毒气安全距离计算 上风向时:K g=160 爆破时有毒气体的影响范围为: R g = K g×Q1/3 = 160×151/3 = 394.594m 4、殉爆安全距离计算 在设置炸药库房位置时,应使某一库房爆炸不得殉爆另一库房,其殉爆安全距离为: R s = K s×Q1/2 = 0.25×151/2= 0.968m 在药库中,雷管与炸药必须分开贮存,雷管库到雷管库或雷管库到炸药库的殉爆安全距离为: R = K×N1/2 = 0.08×10001/2= 2.53m ≥[R]=2m 安全! 5、爆破防冲击波安全距离计算 R B = K B×Q1/2 = 50×151/2 = 193.649m 考虑建筑物允许的冲击波极限超压ΔP B值,计算爆破空气冲击波的安全距离为:R B = 2×(1+n2)×Q1/2/ΔP B1/2 = 2×(1+1.12)×151/2/0.0021/2 = 382.783m

地震等级计算方法是什么

地震等级计算方法是什么 一般情况下仅就烈度和震源、震级间的关系来说,震级越大震源越浅、烈度也越大。一般震中区的破坏最重,烈度最高,这个烈度称为震中烈度。从震中向四周扩展,地震烈度逐渐减小,不同级别地震的破坏力有多大呢?震级是表征地震强弱的量度,通常用字母M表示,它与地震所释放的能量有关。一个6级地震释放的能量相当于美国投掷在日本广岛的原子弹所具有的能量。震级每相差1.0级,能量相差大约32倍;每相差2.0级,能量相差约1000倍。也就是说,一个6级地震相当于32个5级地震,而1个7级地震则相当于1000个5级地震。目前世界上最大的地震的震级为9.5级, 计算公式为:M=lg(A/T)max+ σ ( Δ ) 式中:A ----地震面波最大地动位移,取两水平分向地动位移的矢量和,μm; T ----相应周期,S;

Δ----震中距,(度)。 测量最大地动位移的两水平分量时,要取同一时刻或周期相差在1/8周之内的震动。若两分量周期不一致时,则取加权和: T=(T N ×A N +T E× A E )/(A N +A E ) 式中:A N ------南北分量地动位移,μm; A E ------ 东西分量地动位移,μm; T N ------ A N 的相应周期,S; T E ------ A E 的相应周期,S;

量规函数σ(Δ)为:σ( Δ )=1.66lg Δ +3.5 不能使用与表一中给出的值相差很大的周期来测定地震震级M。地震震级M应根据多台的平均值确定。 中国使用的震级标准,是国际上通用的里氏分级表,共分9个等级,在实际测量中,由于其与震源的物理特性没有直接的联系,因此多用矩震级来表示。 二、震级认定 社会应用,应以国务院地震行政主管部门认定的地震震级M 为准。 表一不同震中距(Δ)选用地震面波周期(T)值

爆破安全距离

、爆破地震安全距离 爆破地震,是指炸药爆炸的部分能量转化为弹性波,在岩土中传播引起的震动。 爆破地震波,对爆区附近的地层、建筑物、构筑物,以及井巷和露天边坡产生破坏作用。 爆破地震波强度的大小主要取决于使用炸药的性能、炸药量、爆源距离、岩石的性质、爆破方法以及地层地形条件。为了最大程度地减小地震波的危害,应采取如下有效措施: (1)爆破前应调查了解爆破区域范围内建筑物、构筑物的结构,露天边坡稳定状况,井巷围岩稳定及支护等情况。 (2)根据爆区的周边环境,采用减震爆破方法和控制炸药量,如微差爆破、缓冲爆破、预裂爆破等爆破方法。 (3)爆破地震安全距离计算公式如下: 式中R――爆破安全距离(m); Q――炸药量(kg); U ――地震安全速度(cm / s); m――药量指数,取1/3; k、a- 与爆破地点地形、地质等条件有关的系数和衰减指数,可按表8 —1选 取。

、空气冲击波安全距离 (一)爆破空气冲击波特性 空气冲击波波阵面上的压力决定于离爆破地点的距离与药包半径的比值、炸药爆炸 的比能和周围空气的压力。 对于保护爆区及周围居民区人员的安全,一般以超压作为依据,以允许超压来确定 安全距离。不同超压对人体的危害情况如表8—2所示。 注:当AP为(0.3?0. 4)X105/m2时,气流速度达60~80m/s,夹杂着碎石加重了对人体的危害。 各国常用动物试验结合爆炸事故中伤亡情况的分析来确定对人的允许超压。一般人 员不致受伤的超压△ p<0.1 X 105N/m2。安全规程采用的允许超压,对作业者为0. 05X 105 N/m2,对居民为0. 02X 105N/m2。 对建筑物,其易损部分为玻璃窗和顶棚抹灰。一般建筑物窗玻璃发生轻微破坏的超 压为(0. 01?0. 005) X 105N/ m2 ;门窗破坏,屋面瓦大部分被掀掉,顶棚部分破坏的超压为(1 . 15—0. 3) X 105N/m2;砖木结构完全破坏的超压大于2. 0X 105NN /m2。安全规程 规定建筑物的超压取0. 01 X 105N/m2。 空气冲击波沿地下井巷传播时,比沿地面半无穷空间的传播衰减要慢,故要求的安 全距离也更大,如表8—3所示。 H序' 冲低超圧对地节理■的?坤 站恂诧廉腔帘 UK 1*1" (N* nr 1 ht W 1ft G. &-*0L 3$魁力豎帝■屁戢卜脱撤?岀龙丸製疲 cm 邢的OU 14 i t *L 1 l?nn 荊AJ 从乩悔7 11淡耕農埠 11 fKfnUtH 4 4K- itLlfi a hZ"AM* 5 * 1幅犀智商峯汹 a *"?札 (二)空气冲击波安全距离

雪风和地震荷载计算方法

雪、风和地震荷载的计算方法 1 雪荷载 1.1 文献[2]中国《建筑结构荷载规范GB 50009-2001》 文献[2]我国《建筑结构荷载规范GB 50009-2001》第6.1.1条规定,屋面水平投影面上的雪荷载标准值,应按下式计算: s k=μr s o(1-1) 式中:s k为雪荷载标准值,[kN/m2];μ r为屋面积雪分布系数;s o为基本雪压,[kN/m2]。 规范第6.1.2条规定,基本雪压应按该规范附录D.4中附表D.4给出的50年一遇的雪压采用。高于1989年同名规范30年一遇的标准。第6.1.3是对规范没有给出基本雪压的地点取值方法的规定。第6.1.4条是对山区基本雪压的规定。屋面积雪分布系数μ r根据屋面形状按表6.2.1确定。 1.2 文献[7]美国《建筑及其它结构最小设计荷载》1994年版 文献[7]美国《建筑及其它结构最小设计荷载》1994年版7.3规定,斜度小于1/12的平屋面的雪荷载按下式计算: p f=αC e C t I p g (1-2) 式中:p f为雪荷载,[lb/ft2];α系数,美国本土为0.7,阿拉斯加为0.6;C e为暴露系数;C t为热力系数;I为重要性系数,根据表1及表20,一般公用发电厂I=1.0;p g为地面雪荷载。据规范解释对7.2的说明,地面雪荷载系基于雪荷载超过的年概率为2%(即平均重现期50年)的数值。 1.3 文献[12]《火力发电厂烟风煤粉管道设计技术规程DL/T5121-2000》 从上可见,文献[7]考虑的系数更多。 为了考虑与文献[12]《火力发电厂烟风煤粉管道设计技术规程DL/T5121-2000》一致,采用文献[2]的标准。因矩形烟风道为平顶,根据后者的表6.2.1第1项取μ r =1.0。 Page 1 of 8

地震震级与地震烈度的关系

地震震级与地震烈度的关系 地震震级是衡量地震大小的一种度量.每一次地震只有一个震级.它是根据地震时释放能量的多少来划分的,震级可以通过地震仪器的记录计算出来,震级越高,释放的能量也越多.我国使用的的震级标准是国际通用震级标准,叫“里氏震级”. 各国和各地区的地震分级标准不尽相同. 一般将小于1级的地震称为超微震:大于、等于1级,小于3级的称为弱震或微震;大于、等于3级,小于4.5级的称为有感地震;大于、等于4.5级,小于6级的称为中强震;大于、等于6级,小于7级的称为强震;大于、等于7级的称为大地震,其中8

级以及8级以上的称为巨大地震. 迄今为止,世界上记录到最大的地震为8.9级,是1960年发生在南美洲的智利地震. 地震烈度:地震烈度是指地面及房屋等建筑物受地震破坏的程度.对同一个地震,不同的地区,烈度大小是不一样的.距离震源近,破坏就大,烈度就高;距离震源远,破坏就小,烈度就低. 中国地震烈度表(简要) Ⅰ度;无感,仅仪器能记录到; Ⅱ度;个别敏感的人在完全静止中有感; Ⅲ度;室内少数人在静止中有感,悬挂物轻微摆动; Ⅳ度;室内大多数人,室外少数人有感,悬挂物摆动,不稳器皿作响; Ⅴ度;室外大多数人有感,家畜不宁门窗作响,墙壁表面出现裂纹Ⅵ度;人站立不稳,家畜外逃,器皿翻落,简陋棚舍损坏陡坎滑坡;Ⅶ度;房屋轻微损坏,牌坊,烟囱损坏,地表出现裂缝及喷沙冒水;Ⅷ度;房屋多有损坏,少数破坏路基塌方,地下管道破裂;

Ⅸ度;房屋大多数破坏,少数倾倒,牌坊,烟囱等崩塌,铁轨弯曲;Ⅹ度;房屋倾倒,道路毁坏,山石大量崩塌,水面大浪扑岸; Ⅺ度;房屋大量倒塌,路基堤岸大段崩毁,地表产生很大变化;ⅩⅡ度;一切建筑物普遍毁坏,地形剧烈变化动植物遭毁灭. 震级与烈度统计对应关系: 震中烈度ⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪXⅡ 震级:1.92.53.13.74.34.95.56.16.77.37.98.5

爆破安全距离计算

爆破安全距离计算 一、一般规定 各种爆破、爆破器材销毁以及爆破器材仓库意外爆炸时,爆炸源与人员和其他保护对象之间的安全距离,应按各种爆破效应(地震、冲击波、个别飞散物等)分别核定并取最大值。 二、爆破地震安全距离 (一)一般建筑物和构筑物的爆破地震安全性应满足安全震动速度的要求,主要类型的建(构)筑物地面质点的安全震动速度规定如下: 1、土窑洞、土坯房、毛石房屋 1.0 cm/s V—地震安全速度,cm/s; m—药量指数,取1/3; K、α—与爆破点地形、地质等条件有关的系数和衰减指数,可按表1选取。或由试验确定。 表1 爆区不同岩性的K、α值 (三)在特殊建(构)筑物附近或爆破条件复杂地区进行爆破时,必须进行必要的爆

破地震效应的监测或专门试验,以确定被保护物的安全性。 三、爆破冲击波安全距离 (一)露天裸露爆破时,一次爆破的炸药量不得大于20kg,并应按式(2)确定空气冲击波对掩体内避炮作业人员的安全距离。 —空气冲击波对掩体内人员的最小安全距离,m; 式中:R k Q—一次爆破的炸药量,kg;秒延期爆破时,Q按各延期段中最大药量计算; 3)计算。 式中:R—水中冲击波的最小安全距离,m; Q—一次起爆的炸药量,kg; —系数,按表4选取。 K 表4 K 值 (六)在水深大于30m的水域内进行水下爆破,水中冲击波安全距离,通过实测和试

验研安确定。 (七)在重要水工、港口设施附近或其它复杂环境中进行水下爆破,应进行测试和邀请专家研究确定安全距离。 四、个别飞散物安全距离 爆破(抛掷爆破除外)时,个别飞散物对人员的安全距离不得小于表5的规定; 对设备或建筑物的安全距离,应由设计确定。 表6 ③为防止船舶、木筏驶进危险区。应在上、下游最小安全距离以外设封锁线和信号。 ④当爆破器置于钻井内深度大于50m时,最小安全距离可缩小至20m。 表6 地面爆破器材库或药堆至住宅区或村庄边缘的最小外部距离 注:表中距离适用于平坦地形,当遇到下列几种特定地形时,其数值可适当增减; ① 当危险建筑物紧靠20~30m高的山脚下布置。山的坡度为10~25度时,危险建筑

抗震设计方法综述

抗震设计方法综述 作者:佚名文章来源:不详 抗震设计方法一:基于承载力设计方法 基于承载力设计方法又可分为静力法和反应谱法。静力法产生于二十世纪初期,是最早 的结构抗震设计方法。上世纪初前后日本浓尾、美国旧金山和意大利Messina的几次大地震 中,人们注意到地震产生的水平惯性力对结构的破坏作用,提出把地震作用看成作用在建筑 物上的一个总水平力,该水平力取为建筑物总重量乘以一个地震系数。意大利都灵大学应用 力学教授M.Panetti建议,1层建筑物取设计地震水平力为上部重量的1/10,2层和3层取 上部重量的1/12。这是最早的将水平地震力定量化的建筑抗震设计方法。日本关东大地震后, 1924年日本都市建筑规范"首次增设的抗震设计规定,取地震系数为0.1。1927年美国UBC 规范第一版也采用静力法,地震系数也是取0.1。用现在的结构抗震知识来考察,静力法没 有考虑结构的动力效应,即认为结构在地震作用下,随地基作整体水平刚体移动,其运动加 速度等于地面运动加速度,由此产生的水平惯性力,即建筑物重量与地震系数的乘积,并沿 建筑高度均匀分布。考虑到不同地区地震强度的差别,设计中取用的地面运动加速度按不同 地震烈度分区给出。根据结构动力学的观点,地震作用下结构的动力效应,即结构上质点的 地震反应加速度不同于地面运动加速度,而是与结构自振周期和阻尼比有关。采用动力学的 方法可以求得不同周期单自由度弹性体系质点的加速度反应。以地震加速度反应为竖坐标, 以体系的自振周期为横坐标,所得到的关系曲线称为地震加速度反应谱,以此来计算地震作 用引起的结构上的水平惯性力更为合理,这即是反应谱法。对于多自由度体系,可以采用振 型分解组合方法来确定地震作用。反应谱法的发展与地震地面运动的记录直接相关。1923年, 美国研制出第一台强震地震地面运动记录仪,并在随后的几十年间成功地记录到许多强震记 录,其中包括1940年的El Centro和1952年的Taft等多条著名的强震地面运动记录。1943 年M.A.Biot发表了以实际地震纪录求得的加速度反应谱。二十世纪50到70年代,以美国的 G. W. Housner、N. M. Newmark和R. W. Clough为代表的一批学者在此基础上又进行了大 量的研究工作。对结构动力学和地震工程学的发展作出了重要贡献,奠定了现代反应谱抗震 设计理论的基础。然而,静力法和早期的反应谱法都是以惯性力的形式来反映地震作用,并 按弹性方法来计算结构地震作用效应。当遭遇超过设计烈度的地震作用,结构进入弹塑性状 态,这种方法显然无法应用。同时,在由静力法向反应谱法过渡的过程中,人们发现短周期 结构加速度谱值比静力法中的地震系数大1倍以上。这使得地震工程师无法解释以前按静力 法设计的建筑物如何能够经受得住强烈地震作用。 抗震设计方法二:基于承载力和构造保证延性设计方法 为解决由静力法向反应谱法的过渡问题,以美国UBC规范为代表,通过地震力降低系数 R将反应谱法得到的加速度反应值am降低到与静力法水平地震相当的设计地震加速度ad, ad=am/R地震力降低系数R对延性较差的结构取值较小,对延性较好的结构取值较高。尽管 最初利用地震力降低系数R将加速度反应降下来只是经验性的,但人们已经意识到应根据结 构的延性性质不同来取不同的地震力降低系数。这是考虑结构延性对结构抗震能力贡献的最 早形式。然而对延性重要性的认识却经历了一个长期的过程。在确定和研究地震力降低系数 R的过程中,G. W. Housner和N. M. Newmark分别从两个角度提出了各自的看法。G. W. Housner认为考虑地震力降低系数R的原因有:每一次地震中可能包括若干次大小不等的较 大反应,较小的反应可能出现多次,而较大的地震反应可能只出现一次。此外,某些地震峰 值反应的时间可能很短,震害表明这种脉冲式地震作用带来的震害相对较小。基于这一观点, 形成了现在考虑地震重现期的抗震设防目标。随着研究的深入,N. M. Newmark认识到结构

关于地震级别和地震烈度

引用关于地震级别和地震烈度 5.5-5.9级地震的震中烈度以七度为主,建筑物破坏现象为:Ⅰ类房屋大多数损坏,少数倾倒。Ⅱ类房屋多数损坏,少数破坏。Ⅲ类房屋大多数轻微损坏,许多损坏。不很坚固的院墙少数破坏,可能有些倒塌。牌坊、砖石砌塔和工厂烟囱可能损坏。 6.0-6.4级地震的震中烈度以八度为主,对建筑物造成如下破坏:Ⅰ类房屋大多数破坏,许多倾倒。Ⅱ类房屋许多破坏,少数倾倒。Ⅲ类房屋大多数损坏,少数破坏(可能有倾倒的)。院墙破坏,局部倒塌。石碑等多移转或倒下。个别地下管道接口处遭到破坏。 多层钢筋混凝土框架房屋,由于地基类别、房屋抗震设计标准和施工质量诸多因素的差别,目前对一个地震烈度八度的地震会造成什么程度的破坏,尚无一个统一标准可以借鉴,因此,据1975年辽宁海域7.3级地震时,营口市遭受地震烈度八度的破坏的调查结果表明,基本完好占50%,轻微损坏占17%,中等破坏占33%。 6.5-6.9级地震的震中烈度为八度和九度,如按九度考虑,建筑物遭到的破坏为:Ⅰ类房屋大多数倾倒。Ⅱ类房屋许多倾倒。Ⅲ类房屋许多破坏,少数倾倒。院墙大部倾倒,较坚固的亦局部倒塌。牌坊、塔及工厂烟囱多破坏甚至倾倒。石碑等多翻倒。地下管道有些破裂。 7.0-7.4级地震的震中烈度一般为九度,个别可达十度。九度的破坏如上述。十度对建筑物破坏很大,Ⅲ类房屋许多倾倒。铁轨轻度弯曲,地下管道破裂。 震级只跟地震释放的能量多少有关,是表示地震大小的度量,所以一次地震只有一个震级;而烈度表示地面受到的影响和破坏程度,则各地不同,但震中烈度只有一个。多数浅源地震的震中烈度与震级的关系如下表: 震级 2 3 4 5 6 7 ≥8 震中烈度1~2 3 4~5 6~7 7~8 9~10 11~12 地球上的地震有强有弱。用来衡量地震强度大小的尺子有两把,一把叫地震震级;另一把叫地震烈度。举个例子来说,地震震级好象不同瓦数的日光灯,瓦数越高能量越大,震级越高。烈度好象屋子里受光亮的程度,对同一盏日光灯来说,距离日光灯的远近不同,各处受光的照射也不同,所以各地的烈度也不一样。 地震震级是衡量地震大小的一种度量。每一次地震只有一个震级。它是根据地震时释放能量的多少来划分的,震级可以通过地震仪器的记录计算出来,震级越高,释放的能量也越多。我国使用的的震级标准是国际通用震级标准,叫“里氏震级”。 各国和各地区的地震分级标准不尽相同。 一般将小于1级的地震称为超微震:大于、等于1级,小于3级的称为弱震或微震;大于、等于3级,小于4.5级的称为有感地震;大于、等于4.5级,小于6级的称为中强震;大于、等于6级,小于7级的称为强震;大于、等于7级的称为大地震,其中8级以及8级以上的称为巨大地震。 迄今为止,世界上记录到最大的地震为8.9级,是1960年发生在南美洲的智利地震。 地震烈度:地震烈度是指地面及房屋等建筑物受地震破坏的程度。对同一个地震,不同的地区,烈度大小是不一样的。距离震源近,破坏就大,烈度就高;距离震源远,破坏就小,烈度就低。

相关文档
最新文档