数学模型抽象的过程与方法 (抽样方法 第5课时)

数学模型抽象的过程与方法 (抽样方法 第5课时)
数学模型抽象的过程与方法 (抽样方法 第5课时)

数学模型抽象的过程与方法(抽样方法第5课时)

张永凤

数学模型建立的过程是一个复杂的系统工程,整体上分为模型的抽象过程与求解过程,即一方面要用数学的语言和方法,对具体问题进行抽象、假设、简化,建立能有效解决问题的数学关系,另一方面,需要对所建立的数学关系,通过计算机进行求解,并对求解结果进行解释、分析、检验、修改.而在模型的抽象过程中,对问题的理解角度不同,进行不同的假设简化,采用的数学方法不同,影响着所建模型求解的难度和模型的精确性及实用性,因此,模型的抽象过程是建立数学模型的关键.由于实际问题的复杂性,无法给出若干条普遍使用的建模的准则和技巧,在此,仅给出模型抽象过程中解决问题的思考方法与步骤.

1.数学模型抽象的过程

首先对问题进行正确的理解和分析,了解问题的实际背景,明确建模的目的,搜集建模必需的各种信息,在这一过程中要对问题的复杂性和解决问题的难度有充分的思想准备,仔细检查问题的各个组成部分,确定影响问题的所有变量因素和条件,从内部联系和外部表现上把握其本质,从运动变化中把握规律,此外,为了对问题有更直观的理解,可考虑对问题进行重新表达,如变语言表达为图形表达,用增加、舍弃或重排某些因素的方法改变问题的表达形式,还可以详细考查一部分而忽略其他部分,或考虑问题的整体特征而忽略其他部分,从而去除因素之间的关系,使复杂问题简单化,杂乱无章的因素明朗化,突出问题中的主要因素,初步确定用哪一类数学方法建立模型.

其次,根据前面对问题的理解与分析,进行合理的,必要的假设简化,假设简化的目的是把实际问题转化为数学问题,用数学关系表达问题的实质.假设简化的依据有三个:其一,出于对问题内在规律的认识,对感性材料进行深入的分析,从问题的内部联系和外部表现上把握其实质,比较各因素之间的异同,把各种表面形象进行加工和改造,通过分解、重组形成新的形象,在头脑中进行创新性的构思,把未知关系化为已知关系,在不同的对象或完全不相关的对象中;识别与已有知识相同或相似的关系,而在表面上相似或相同的事物之间找出本质属性的不同点,在分析这一现象的基础上,进行假设简化,寻找解决问题的关键和与之模拟的数学方法.其二,通过理想化抽象方法或其他抽象方法进行假设,不仅赋予所研究对象在现实原型中抽象出来的性质,还赋予原始对象所没有的想象的性质,用研究理想化形象的方法,使对客观原型的研究简化,在归纳的基础上,避开事物的某些属性,抓住事物的本质特征.其三,是对资料现象的分析,也可以是二者的综合,由于假设简化时不能把重要的因素漏掉,以免影响模型的精确度和使用的效果,同时,也不应当把一些无用的冗余的变量放在模型中,这不仅增加模型的复杂性,还会给使用带来麻烦,因此,根据问题的原有假设、分析和构成的需要,以及对实际背景的调查研究,可以补充或舍掉甚至修改题目所给的参数和已知条件,把注意力放在所研究对象的本质特征上,辨明问题的主次,抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.因此,用精确的数学语言做出合理的假设,是建立模型的关键.作假设时,既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要使无意识思维开动起来,充分发挥想象力、洞察判断力,通过联想、想象、归纳,模拟重现已学过的知识或查找与之相关的知识,如常用的有规划论、图论、微分方程、概率统计等,从而承担起构造各种各样思想组合的复杂任务,找到相应的数学方法,达到解决问题的目的.

经过前面的分析和假设简化,我们对所要解决的问题有了比较直观的认识,但对建立解决问题的数学关系还可能处于几种可供选择的途径中,选择什么样的途径,采取什么样的策略是解决问题的关键.选择策略的原则是尽量采用成熟的数学关系和已有模型,同时注意新方法的应用.具体用哪一方面的数学知识来解决,需要在分析问题的各种关系的基础上,通

过假设,在适合模型需要的前提下,基于对某一数学分支的熟悉程度,从解决问题的不同角度寻求与之模拟的数学关系或利用已经掌握的知识,联想与假设和结论密切相关的已知法则,寻找与经典模型作模拟的条件虽然经典模型可能并不完全适合我们需要建立的模型系统的真实情况,但可作为我们分析、归纳问题的指南.其实,许多为不同种类的系统建立的数学模型,常常具有相似的数学表达形式,如预报人口增长的指数模型和阻滞增长模型是经典模型,而传染病问题、捕鱼问题、耐用消费品的销售等在一定条件下,都服从于人口增长模型.另外,可利用计算机进行模拟,在计算机上尽可能真实地创造一种实验环境,模仿某种系统的实际运行过程,重现所要描绘的客观现象,从而对这种现象所存在的某些规律做出描绘、判断、预测,找出描绘该规律的数学关系,建立模型.

2.数学模型抽象的方法

在建模的抽象过程中,用到多种数学方法,然而,由于建模的复杂性,无法给出若干条普遍采用的建模的准则和技巧,在此发散思维方法如想象力、洞察力、判断力、直觉和灵感起的作用更大,理想化抽象方法、类比方法、美学方法、数学实验方法等融合在建模的抽象过程中.

理想化抽象方法是指以抽象的、理想的形态来表现现实对象的性质,虽然有些性质并非实际的存在于具体事物中,而是同实际明显分离.数学建模过程中,为了某种需要已将它们看成现实的对象,但作为理想的对象来处理,通过理想化抽象对实际问题进行简化,把注意力放在所研究对象的本质特征上,首先给出实际问题中含理想成分比较多的简单模型,然后接受实际的检验,根据检验的结果,进行分析,重新假设,减少理想成分,修改模型,或者进行推广,从而逐步逼近达到解决实际问题的目的.如物理学中研究摆的摆动时,忽略了线的张力以及摆自身长短的限制,认为摆线是绝对坚硬的,空气阻力与悬挂点摩擦力等于零,这种现象的数学模型包含了关于理想化的摆振动的全部信息,保留了摆的本质,若考虑到被理想化的方法,如线的张力、空气阻力等,只对上述理想化的模型附带一定的修正.因此,理想化抽象在数学建模的过程中起着重要的作用,其思维方法是在归纳的基础上,避开事物的某些属性,抓住事物的本质特征,而建立理想化模型和假设的一种方法,这种方法不仅推动数学科学的发展,而且密切各门科学分支之间的联系,使数学科学更广泛的应用于其他科学分支.

类比方法是指人们对两个事物表面的外在表现进行比较,以获得对研究对象的新认识的过程.由于建模的复杂性,使得类比方法在数学建模的过程中常常是含糊的和不确定的,类比时,需注意到所研究对象与已熟悉的另一对象具有某些共性,比较其相同点和相异点,在表面上差异很大的事物之间找出本质属性的共同点,在表面上相似的事物之间找出本质属性的不同点,根据已有的知识,明确待解决问题的性质,在分析一种现象的基础上联想与问题所给的条件和问题要求的事项密切相关的已知法则,把各种表象形象通过分解重组,以数学语言、符号和解析式为依据,以有关记忆的形象材料为基础形成新的形象,或把几种表象形式连接起来,从而获得对研究对象的新认识.具体用哪一方面的知识来建立模型,需要在上述分析的基础上,基于对某一数学理论知识的熟悉程度,在适合模型需要的前提下,通过假设简化,或从解决问题的不同角度考虑,寻求与之类比的数学知识.同时还可以利用前人建立的一些日趋完善的经典模型作类比,如人口模型、存储模型、经济增长模型、交通流模型等,这些模型具有一般性,它不为对象的所属领域所独有,没有区域的限制.建立模型时可根据问题的要求,通过假设、联想,寻找与经典模型作类比的条件.虽然经典模型并不完全适合我们需要建立模型系统的真实情况,但可作为分析、归纳实际问题的指南,事实上,许多为不同种类的系统建立的数学模型,常常具有相似的数学表达式,如预报人口增长的模型是经典模型,而传染病问题、捕鱼问题、耐用消费品的销售问题等都服从于人口模型,因此,与经典模型作类比,找出相似点,通过假设简化建立简单模型,由此发现实际问题与有关模

型之间的差异,有助于建立更复杂、更准确的模型.

美学方法是指在研究问题的过程中,按照数学美的准则,追求数学美的境界,免除定向思维所带来的条条框框的束缚,从容不迫的帮助大脑选择数学知识与方法的最佳组合,从繁杂中概括出简单明了的规律,这也是模型抽象所遵循的原则.数学美是指数学的统一美、对称美、简洁美、奇异美.首先,对统一美的追求,能保持建立模型时,紊乱的思维程序化,不满足用单一的、孤立的方式思考问题,而是从整体上把握问题的实质;对称美的展现,使学生能够从问题的对立方去分析,在思维方向的选择上,既会顺向,又会逆向,机动灵活地从一种思维过程转移到另一种思维过程,正确选择模型抽象所需要的数学知识和数学思想方法;数学的简洁美,不单指理论内容和数学表达形式.

(选录《数学通报》·2003.03)

建立数学模型的方法、步骤、特点及分类

建立数学模型的方法、步骤、特点及分类 [学习目标] 1.能表述建立数学模型的方法、步骤; 2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非 预制性、条理性、技艺性和局限性等特点;; 3.能表述数学建模的分类; 4.会采用灵活的表述方法建立数学模型; 5.培养建模的想象力和洞察力。 一、建立数学模型的方法和步骤 —般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.测试分折将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型。这种方法称为系统辨识(System Identification).将这两种方法结合起来也是常用的建模方法。即用机理分析建立模型的结构,用系统辨识确定模型的参数. 可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具有反映内部特性的物理意义。那么应该以机理分析方法为主.当然,若需要模型参数的具体数值,还可以用系统辨识或其他统计方法得到.如果对象的内部机理基本上没掌握,模型也不用于分析内部特性,譬如仅用来做输出预报,则可以系统辩识方法为主.系统辨识是一门专门学科,需要一定的控制理论和随机过程方面的知识.以下所谓建模方法只指机理分析。 建模要经过哪些步骤并没有一定的模式,通常与实际问题的性质、建模的目的等有关,从 §16.2节的几个例子也可以看出这点.下面给出建模的—般步骤,如图16-5所示. 图16-5 建模步骤示意图 模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料. 模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.

数学建模知识及常用方法

数学建模知识——之新手上路 一、数学模型的定义现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图像、框图等描述客观事物的特征及其内在联系的数学结构表达式。一般来说数学建模过程可用如下框图来表明:数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予更为重要的意义。二、建立数学模型的方法和步骤 1. 模型准备要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 2. 模型假设根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。 3. 模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 4. 模型求解可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。 5. 模型分析 对模型解答进行数学上的分析。“横看成岭侧成峰,远近高低各不同”,能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差分析,数据稳定性分析。例题:一个笼子里装有鸡和兔若干只,已知它们共有 8 个头和 22 只脚,问该笼子中有多少只鸡和多少只兔?解:设笼中有鸡 x 只,有兔 y 只,由已知条件有 x+y=8 2x+4y=22 求解如上二元方程后,得解 x=5,y=3,即该笼子中有鸡 5 只,有兔 3 只。将此结果代入原题进行验证可知所求结果正确。根据例题可以得出如下的数学建模步骤: 1)根据问题的背景和建模的目的做出假设(本题隐含假设鸡兔是正常的,畸形的鸡兔除外) 2)用字母表示要求的未知量 3)根据已知的常识列出数学式子或图形(本题中常识为鸡兔都有一个头且鸡有 2 只脚,兔有 4 只脚) 4)求出数学式子的解答 5)验证所得结果的正确性这就是数学建模的一般步骤三、数模竞赛出题的指导思想传统的数学竞赛一般偏重理论知识,它要考查的内容单一,数据简单明确,不允许用计算器完成。对此而言,数模竞赛题是一个“课题”,大部分都源于生产实际或者科学研究的过程中,它是一个综合性的问题,数据庞大,需要用计算机来完成。其答案往往不是唯一的(数学模型是实际的模拟,是实际问题的近似表达,它的完成是在某种合理的假设下,因此其只能是较优的,不唯一的),呈报的成果是一篇论文。由此可见“数模竞赛”偏重于应用,它是以数学知识为引导计算机运用能力及文章的写作能力为辅的综合能力的竞赛。四、竞赛中的常见题型赛题题型结构形式有三个基本组成部分: 1. 实际问题背景涉及面宽——有社会,经济,管理,生活,环境,自然现象,工程技术,现代科学中出现的新问题等。一般都有一个

19-20 第5章 5.6 5.6.1 匀速圆周运动的数学模型 5.6.2 函数y=Asin(ωx+φ)的图象

5.6 函数y =A sin(ωx +φ) 5. 6.1 匀速圆周运动的数学模型 5.6.2 函数y =A sin(ωx +φ)的图象 1.φ对y =sin(x +φ),x ∈R 的图象的影响 2.ω(ω>0)对y =sin(ωx +φ)的图象的影响 3.A (A >0)对y =A sin(ωx +φ)的图象的影响 1.把函数y =sin x 的图象向左平移π 3个单位长度后所得图象的解析式为

( ) A .y =sin x -π 3 B .y =sin x +π 3 C .y =sin ? ?? ?? x -π3 D .y =sin ? ?? ?? x +π3 D [根据图象变换的方法,y =sin x 的图象向左平移π 3个单位长度后得到y =sin ? ?? ?? x +π3的图象.] 2.为了得到函数y =4sin ? ????12x -π6,x ∈R 的图象,只需将函数y =4sin ? ????x -π6, x ∈R 的图象上的所有点( ) A .横坐标伸长到原来的2倍,纵坐标不变 B .横坐标缩短到原来的1 2倍,纵坐标不变 C .纵坐标伸长到原来的2倍,横坐标不变 D .纵坐标缩短到原来的1 2倍,横坐标不变 A [函数y =4sin ? ???? x -π6的图象上各点横坐标伸长为原来的2倍,纵坐标不 变,得到y =4sin ? ?? ?? 12x -π6的图象.] 3.函数y =A sin(ωx +φ)+1(A >0,ω>0)的最大值为5,则A =________. 4 [由已知得A +1=5,故A =4.] 三角函数图象之间的变换 【例1】 (1)将函数y =2cos ? ? ???2x +π3的图象向左平移π3个单位长度,再向下 平移3个单位长度,则所得图象的解析式为________. (2)将y =sin x 的图象怎样变换可得到函数y =2sin2x +π 4+1的图象?

什么是数学模型与数学建模

1. 什么是数学模型与数学建模 简单地说:数学模型就是对实际问题的一种数学表述。 具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。 更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。 数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。 2.美国大学生数学建模竞赛的由来: 1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。这并不是偶然的。在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。该竞赛每年2月或3月进行。 我国自1989年首次参加这一竞赛,历届均取得优异成绩。经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。

数学建模的基本步骤

数学建模的基本步骤 一、数学建模题目 1)以社会,经济,管理,环境,自然现象等现代科学中出现的新问题为背景,一般都有一个比较确切的现实问题。 2)给出若干假设条件: 1. 只有过程、规则等定性假设; 2. 给出若干实测或统计数据; 3. 给出若干参数或图形等。 根据问题要求给出问题的优化解决方案或预测结果等。根据问题要求题目一般可分为优化问题、统计问题或者二者结合的统计优化问题,优化问题一般需要对问题进行优化求解找出最优或近似最优方案,统计问题一般具有大量的数据需要处理,寻找一个好的处理方法非常重要。 二、建模思路方法 1、机理分析根据问题的要求、限制条件、规则假设建立规划模型,寻找合适的寻优算法进行求解或利用比例分析、代数方法、微分方程等分析方法从基本物理规律以及给出的资料数据来推导出变量之间函数关系。 2、数据分析法对大量的观测数据进行统计分析,寻求规律建立数学模型,采用的分析方法一般有: 1). 回归分析法(数理统计方法)-用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式。 2). 时序分析法--处理的是动态的时间序列相关数据,又称为过程统计方法。 3)、多元统计分析(聚类分析、判别分析、因子分析、主成分分析、生存数据分析)。 3、计算机仿真(又称统计估计方法):根据实际问题的要求由计算机产生随机变量对动态行为进行比较逼真的模仿,观察在某种规则限制下的仿真结果(如蒙特卡罗模拟)。 三、模型求解: 模型建好了,模型的求解也是一个重要的方面,一个好的求解算法与一个合

适的求解软件的选择至关重要,常用求解软件有matlab,mathematica,lingo,lindo,spss,sas等数学软件以及c/c++等编程工具。 Lingo、lindo一般用于优化问题的求解,spss,sas一般用于统计问题的求解,matlab,mathematica功能较为综合,分别擅长数值运算与符号运算。 常用算法有:数据拟合、参数估计、插值等数据处理算法,通常使用spss、sas、Matlab作为工具. 线性规划、整数规划、多元规划、二次规划、动态规划等通常使用Lindo、Lingo,Matlab软件。 图论算法,、回溯搜索、分治算法、分支定界等计算机算法, 模拟退火法、神经网络、遗传算法。 四、自学能力和查找资料文献的能力: 建模过程中资料的查找也具有相当重要的作用,在现行方案不令人满意或难以进展时,一个合适的资料往往会令人豁然开朗。常用文献资料查找中文网站:CNKI、VIP、万方。 五、论文结构: 0、摘要 1、问题的重述,背景分析 2、问题的分析 3、模型的假设,符号说明 4、模型的建立(局部问题分析,公式推导,基本模型,最终模型等) 5、模型的求解 6、模型检验:模型的结果分析与检验,误差分析 7、模型评价:优缺点,模型的推广与改进 8、参考文献 9、附录 六、需要重视的问题 数学建模的所有工作最终都要通过论文来体现,因此论文的写法至关重要:

数学建模常用方法

数学建模常用方法 建模常用算法,仅供参考: 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必 用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用M a t l a b作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通 常使用L i n d o、L i n g o软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种 暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计 算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文 中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用M a t l a b进行处理) 一、在数学建模中常用的方法: 1.类比法 2.二分法 3.量纲分析法 4.差分法 5.变分法 6.图论法 7.层次分析法 8.数据拟合法 9.回归分析法 10.数学规划(线性规划、非线性规划、整数规划、动态规划、目标规划) 11.机理分析 12.排队方法

建立数学模型的方法、步骤、特点及分类 ()

薅§16.3建立数学模型的方法、步骤、特点及分类 螁[学习目标] 蚀1.能表述建立数学模型的方法、步骤; 蒆2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非预制性、条理性、技艺性和局限性等特点;; 羆3.能表述数学建模的分类; 蒃4.会采用灵活的表述方法建立数学模型; 葿5.培养建模的想象力和洞察力。 薆一、建立数学模型的方法和步骤 膃—般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.§16.2节的示例都属于机理分析方法。测试分折将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型。这种方法称为系统辨识(SystemIdentification).将这两种方法结合起来也是常用的建模方法。即用机理分析建立模型的结构,用系统辨识确定模型的参数. 袁可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具有反映内部特性的物理意义。那么应该以机理分析方法为主.当然,若需要模型参数的具体数值,还可以用系统辨识或其他统计方法得到.如果对象的内部机理基本上没掌握,模型也不用于分析内部特性,譬如仅用来做输出预报,则可以系统辩识方法为主.系统辨识是一门专门学科,需要一定的控制理论和随机过程方面的知识.以下所谓建模方法只指机理分析。 膈建模要经过哪些步骤并没有一定的模式,通常与实际问题的性质、建模的目的等有关,从 薆§16.2节的几个例子也可以看出这点.下面给出建模的—般步骤,如图16-5所示. 薄图16-5建模步骤示意图 蚃模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料. 芁模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.

数学建模方法模型

数学建模方法模型 一、统计学方法 1 多元回归 1、方法概述: 在研究变量之间的相互影响关系模型时候用到。具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。 2、分类 分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx 可以转化为 y=u u=lnx 来解决;所以这里主要说明多元线性回归应该注意的问题。 3、注意事项 在做回归的时候,一定要注意两件事: (1) 回归方程的显著性检验(可以通过 sas 和 spss 来解决) (2) 回归系数的显著性检验(可以通过 sas 和 spss 来解决) 检验是很多学生在建模中不注意的地方,好的检验结果可以体现出你模型的优劣,是完整论文的体现,所以这点大家一定要注意。 4、使用步骤: (1)根据已知条件的数据,通过预处理得出图像的大致趋势或者数据之间的大致关系; (2)选取适当的回归方程; (3)拟合回归参数; (4)回归方程显著性检验及回归系数显著性检验 (5)进行后继研究(如:预测等)

2 聚类分析 1、方法概述 该方法说的通俗一点就是,将 n个样本,通过适当的方法(选取方法很多,大家可以自行查找,可以在数据挖掘类的书籍中查找到,这里不再阐述)选取 m 聚类中心,通过研究各样本和各个聚类中心的距离 Xij,选择适当的聚类标准,通常利用最小距离法(一个样本归于一个类也就意味着,该样本距离该类对应的中心距离最近)来聚类,从而可以得到聚类结果,如果利用sas 软件或者 spss 软件来做聚类分析,就可以得到相应的动态聚类图。这种模型的的特点是直观,容易理解。 2、分类 聚类有两种类型: (1) Q型聚类:即对样本聚类; (2) R型聚类:即对变量聚类; 通常聚类中衡量标准的选取有两种: (1) 相似系数法 (2) 距离法 聚类方法: (1) 最短距离法 (2) 最长距离法 (3) 中间距离法 (4) 重心法 (5) 类平均法 (6) 可变类平均法 (7) 可变法

数学建模 图与网络模型及方法

第五章 图与网络模型及方法 §1 概论 图论起源于18世纪。第一篇图论论文是瑞士数学家欧拉于1736 年发表的“哥尼斯堡的七座桥”。1847年,克希霍夫为了给出电网络方程而引进了“树”的概念。1857年,凯莱在计数烷22 n n H C 的同分异构物时,也发现了“树”.哈密尔顿于1859年提出“周游世界”游戏,用图论的术语,就是如何找出一个连通图中的生成圈,近几十年来,由于计算机技术和科学的飞速发展,大大地促进了图论研究和应用,图论的理论和方法已经渗透到物理、化学、通讯科学、建筑学、生物遗传学、心理学、经济学、社会学等学科中。 图论中所谓的“图"是指某类具体事物和这些事物之间的联系.如果我们用点表示这些具体事物,用连接两点的线段(直的或曲的)表示两个事物的特定的联系,就得到了描述这个“图”的几何形象。图论为任何一个包含了一种二元关系的离散系统提供了一个数学模型,借助于图论的概念、理论和方法,可以对该模型求解。哥尼斯堡七桥问题就是一个典型的例子。在哥尼斯堡有七座桥将普莱格尔河中的两个岛及岛与河岸联结起来问题是要从这四块陆地中的任何一块开始通过每一座桥正好一次,再回到起点。当 然可以通过试验去尝试解决这个问题,但该城居民的任何尝试均未成功.欧拉为了解决 这个问题,采用了建立数学模型的方法.他将每一块陆地用一个点来代替,将每一座桥用连接相应两点的一条线来代替,从而得到一个有四个“点”,七条“线”的“图”.问题成为从任一点出发一笔画出七条线再回到起点。欧拉考察了一般一笔画的结构特点,给出了一笔画的一个判定法则:这个图是连通的,且每个点都与偶数线相关联,将这个判定法则应用于七桥问题,得到了“不可能走通”的结果,不但彻底解决了这个问题,而且开创了图论研究的先河. 图与网络是运筹学(Operat ions Research )中的一个经典和重要的分支,所研究的问题涉及经济管理、工业工程、交通运输、计算机科学与信息技术、通讯与网络技术等诸多领域.下面将要讨论的最短路问题、最大流问题、最小费用流问题和匹配问题等都是图与网络的基本问题. 我们首先通过一些例子来了解网络优化问题. 例1 最短路问题(SPP -shorte st pat h p rob lem ) 一名货柜车司机奉命在最短的时间内将一车货物从甲地运往乙地。从甲地到乙地的公路网纵横交错,因此有多种行车路线,这名司机应选择哪条线路呢?假设货柜车的运行速度是恒定的,那么这一问题相当于需要找到一条从甲地到乙地的最短路。 例2 公路连接问题 某一地区有若干个主要城市,现准备修建高速公路把这些城市连接起来,使得从其中任何一个城市都可以经高速公路直接或间接到达另一个城市.假定已经知道了任意两个城市之间修建高速公路的成本,那么应如何决定在哪些城市间修建高速公路,使得总

常用数学建模方法

数学建模常用方法以及常见题型 核心提示: 数学建模方法一、机理分析法从基本物理定律以及系统的结构数据来推导出模型 1.比例分析法--建立变量之间函数关系的最基本最常用的方法。 2.代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。3. 逻辑方法--是数学理论研的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。4.常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式。 5.偏微分方程--解决因变量与两个以上自 数学建模方法 一、机理分析法从基本物理定律以及系统的结构数据来推导出模型 1.比例分析法--建立变量之间函数关系的最基本最常用的方法。 2.代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。 3. 逻辑方法--是数学理论研的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。 4.常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式。 5.偏微分方程--解决因变量与两个以上自变量之间的变化规律。 二、数据分析法从大量的观测数据利用统计方法建立数学模型 1.回归分析法--用于对函数f(x)的一组观测值(xi,fi)I=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。

2.时序分析法--处理的是动态的相关数据,又称为过程统计方法。 3.回归分析法--用于对函数f(x)的一组观测值(xi,fi)I=1,2,…,n,确定函数的表达式,于处理的是静态的独立数据,故称为数理统计方法。 4.时序分析法--处理的是动态的相关数据,又称为过程统计方法。 三、仿真和其他方法 1.计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验。 ①离散系统仿真--有一组状态变量。 ②连续系统仿真--有解析达式或系统结构图。 2.因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构。 3.人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统。 数学建模题型 赛题题型结构形式有三个基本组成部分: 一、实际问题背景 1.涉及面宽--有社会,经济,管理,生活,环境,自然现象,工程技术,现代科学中出现的新问题等。 2.一般都有一个比较确切的现实问题。

建立数学模型的一般方法

建立数学模型的一般方法 —般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义. 模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料. 模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样. 模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量(常量和变量)之间的等式(或不等式)关系或其他数学结构.这里除需要一些相关学科的专门知识外,还常常需要较广阔的应用数学方面的知识,以开拓思路.当然不能要求对数学学科门门精通,而是要知道这些学科能解决哪一类问题以及大体上怎样解决.相似类比法,即根据不同对象的某些相似性,借用已知领域的数学模型,也是构造模型的一种方法.建模时还应遵循的一个原则是,尽量采用简单的数学工具,因为你建立的模型总是希望能有更多的人了解和使用,而不是只供少数专家欣赏. 模型求解可以采用解方程、画图形、证明定理、逻辑运算、数值计算等各种

数学建模常用统计方法

数学建模常用统计方法 1.1多元回归 1、方法概述: 在研究变量之间的相互影响关系模型时候,用到这类方法,具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。 2、分类 分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx 可以转化为 y=u u=lnx来解决;所以这里主要说明多元线性回归应该注意的问题。 3、注意事项 在做回归的时候,一定要注意两件事: (1) 回归方程的显著性检验(可以通过sas和spss来解决) (2) 回归系数的显著性检验(可以通过sas和spss来解决) 检验是很多学生在建模中不注意的地方,好的检验结果可以体现出你模型的优劣,是完整论文的体现,所以这点大家一定要注意。 4、使用步骤: (1)根据已知条件的数据,通过预处理得出图像的大致趋势或者数据之间的大致关系; (2)选取适当的回归方程; (3)拟合回归参数; (4)回归方程显著性检验及回归系数显著性检验 (5)进行后继研究(如:预测等)

这种模型的的特点是直观,容易理解。 这体现在:动态聚类图可以很直观地体现出来~ 当然,这只是直观的一个方面~ 2、分类 聚类有两种类型: (1) Q型聚类:即对样本聚类; (2) R型聚类:即对变量聚类; 聚类方法: (1) 最短距离法 (2) 最长距离法 (3) 中间距离法 (4) 重心法 (5) 类平均法 (6) 可变类平均法 (7) 可变法 (8) 利差平均和法 在具体做题中,适当选取方法; 3、注意事项 在样本量比较大时,要得到聚类结果就显得不是很容易,这时需要根据背景知识和 相关的其他方法辅助处理。 还需要注意的是:如果总体样本的显著性差异不是特别大的时候,使用的时候也要 注意~

建立数学模型的方法、步骤

§16.3 建立数学模型的方法、步骤、特点及分类 [学习目标] 1.能表述建立数学模型的方法、步骤; 2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非预制性、条理 性、技艺性和局限性等特点;; 3.能表述数学建模的分类; 4.会采用灵活的表述方法建立数学模型; 5.培养建模的想象力和洞察力。 一、建立数学模型的方法和步骤 —般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.§16.2节的示例都属于机理分析方法。测试分折将研 究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以 此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好 的模型。这种方法称为系统辨识(System Identification).将这两种方法结合起来也是常用的建模方法。即用机理分析建立模型的结构,用系统辨识确定模型的参数. 可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具有反映内部特性的物理意义。那么应该 以机理分析方法为主.当然,若需要模型参数的具体数值,还可以用系统辨识或其他统计方法得到.如果对象的内部机理基本上没掌握,模型也不用于分析内部特性,譬如仅用来做输出预报,则可以系统辩识方法为主.系统辨识是一门专门学科,需要一定的控制理论和随机过程方面的 知识.以下所谓建模方法只指机理分析。 建模要经过哪些步骤并没有一定的模式,通常与实际问题的性质、建模的目的等有关,从§16.2节的几个例子也可以看出这点.下面给出建模的—般步骤,如图16-5所示. 图16-5 建模步骤示意图 模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握 第一手资料. 模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译 成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或 过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图 把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假 设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的 综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥

《统计分析与SPSS的应用(第五版)》课后练习答案(第5章)

《统计分析与SPSS的应用(第五版)》(薛薇) 课后练习答案 第5章SPSS的参数检验 1、某公司经理宣称他的雇员英语水平很高,如果按照英语六级考试的话,一般平均得分为75分。现从雇员中随机选出11人参加考试,得分如下: 80, 81, 72, 60, 78, 65, 56, 79, 77,87, 76 请问该经理的宣称是否可信。 原假设:样本均值等于总体均值即u=u0=75 步骤:生成spss数据→分析→比较均值→单样本t检验→相关设置→输出结果(Analyze->compare means->one-samples T test;) 采用单样本T检验(原假设H0:u=u0=75,总体均值与检验值之间不存在显著差异); 分析:指定检验值:在test后的框中输入检验值(填75),最后ok!

分析:N=11人的平均值(mean)为73.7,标准差(std.deviation)为9.55,均值标准误差(std error mean)为2.87.t统计量观测值为-4.22,t统计量观测值的双尾概率p-值(sig.(2-tailed))为0.668,六七列是总体均值与原假设值差的95%的置信区间,为(-7.68,5.14),由此采用双尾检验比较a和p。T统计量观测值的双尾概率p-值(sig.(2-tailed))为0.668>a=0.05所以不能拒绝原假设;且总 体均值的95%的置信区间为(67.31,80.14),所以均值在67.31~80.14内,75包括在置信区间内,所以经理的话是可信的。 2、在某年级随机抽取35名大学生,调查他们每周的上网时间情况,得到的 数据如下(单位:小时): (1)请利用SPSS对上表数据进行描述统计,并绘制相关的图形。 (2)基于上表数据,请利用SPSS给出大学生每周上网时间平均值的95%的置信区间。 (1)分析描述统计描述、频率 (2)分析比较均值单样本T检验

数学模型方法的定义及基本步骤

数学模型方法的定义及基本步骤 3.1数学模型方法的定义 数学模型方法(MathematicalModelingMethod)是利用数学模型解决问题的一般数学方法,简称MM方法。它是处理各种数学理论问题、解决各种实际问题的小可或缺的方法,无疑,数学教师在日常教学中都应当注意让学生了解并掌握这种方法,最大可能地培养其构造数学模型的能力。这绝对小是一个轻松的过程。首先,学生必须先掌握一定的数学知识,让他们学“杂”一些,使得建立模型解题才有了可能性厂其次,要让学生多接触题目,多动脑。 3.2数学建模方法的基本步骤 一般来说数学建模方法大体上可分为机理分析和测试分析两种.机理分析是根据客观事物特征的认识,找出反应内部机理的数量规律,建立的数学模型常有明确的物理意义。测试分析是将研究对象看作一个“黑箱”(不考虑内部机理),通过对测量数据的统计分析,找出与数据拟合得最好的模型。 建模的步骤一般分为下列几步: 3.2.1调查研究 在建模前应对实际问题的历史背景和内在机理要有深刻的了解,必须对该问题进行全面的、深入细微的调查和研究.首先要明确所解决问题的目的要求和着手收集数据.数据悬为建立模型而收集的.因此,如果在调查研究时对建立什么样的模型有所考虑的话,那么我们就按模型的需要更有目的地,更合理地来收集有关数据.收集数据时应注意精度的要求,在耐曩;际问题作深入了解时,应向有关专家或从事实际工作的人员请教。将使你对问题的了解更快和走捷径。

3.2.2现实问题的理想化 现实问题错综复杂,涉及面非常之广.因此要想建立一个数学模型来反映一小现实问题面面俱到、无所不包是不可能的,也是没有必要的.一个模型,只要能反映我们所需要的某一‘个侧面就行了,或者在此基础之上进一步提高.建模前必须先将问题理想化,简单化,即首先抓住主要因素。暂不考虑次要因素.在相对比较简单的情况下,理清变量之闻的:廷系,建立树应的模型(读者在三级火箭模型,人口模型和传染病传播模型中会有较深的体会)_勾此对昕给问题给予必要的假设,不同的假设会得到不同的模型。这一步是建立模型的关键.如果假设合理,则模型与实际问题比较吻合;如果假设不合理或过于简单(即过爹地忽略了一些因素),则模型与实际情况不吻合,或部分吻合,就要修改假设,修改模型。 3.3.3建立模型 在已有假设的基础上,可以着手建立数学模型,建模时应注意以下几点: (1)分清变量类型恰当使用数学工具。如果实际问题中的变量是确定性变量,建模时数学工具多用微积分、微分方程、线性规划、非线性规划、网络、投入产出、确定性存贮论等.如果变量是随机变量,建模时数学工具多用概率、统计、随机性存贮论、排队论、对策论、决策论、随机微分方程等.由于数学分支很多,又加之相互交叉渗透,派生出许多分支.建模具体用什幺舒芝好,一是因问题而异,二是因人而异。应看自己对哪门学科比较熟悉精通,尽量发挥自己的特长。总之,对变量进行分析是建立模型的基础。 (2)抓住问题的本质,简化变量之间的关系。因为模型过于复杂,则无法求解或求解困难,就不能反映客观实际.因此应尽可能瑚简单的模型如线性化,均匀化等来描述客观实际.建模的原则是:模型尽可能简单、明了.思路清晰,能不采用则尽量不用高深的数学知识,不要追求模型技术的完美,侧重于实际应喇.只要问题能解决,模型越简单越能被决策者所采用。

数学建模的一般方法

建立数学模型的方法并没有一定的模式,但一个理想的模型应能反映系统的全部重 要特征:模型的可靠性和模型的使用性 建模的一般方法: 1.机理分析 机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的 规律,所建立的模型常有明确的物理或现实意义。 (1)比例分析法--建立变量之间函数关系的最基本最常用的方法。 (2)代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。 (3)逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。 (4)常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式。 (5)偏微分方程--解决因变量与两个以上自变量之间的变化规律。 2.测试分析方法 测试分析方法就是将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,通 过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准 则在某一类模型中选出一个数据拟合得最好的模型。 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。 时序分析法--处理的是动态的相关数据,又称为过程统计方法。 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。 时序分析法--处理的是动态的相关数据,又称为过程统计方法。

将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法 来确定模型的参数,也是常用的建模方法, 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定。 3.仿真和其他方法 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验。 离散系统仿真--有一组状态变量。 连续系统仿真--有解析表达式或系统结构图。 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的 模型结构。 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统。

高中数学第5章三角函数5.6.1匀速圆周运动的数学模型5.6.2函数y=Asin(ωx+φ)的图象讲义新人教A版

5.6.1 匀速圆周运动的数学模型5.6.2 函数y =A sin(ωx +φ)的 图象 1.φ对y =sin(x +φ),x ∈R 的图象的影响 2.ω(ω>0)对y =sin(ωx +φ)的图象的影响 3.A (A >0)对y =A sin(ωx +φ)的图象的影响 1.把函数y =sin x 的图象向左平移π 3个单位长度后所得图象的解析式为( ) A .y =sin x -π 3 B .y =sin x +π 3 C .y =sin ? ????x -π3 D .y =sin ? ????x +π3 D [根据图象变换的方法,y =sin x 的图象向左平移π3个单位长度后得到y =sin ? ????x +π3的图象.]

2.为了得到函数y =4sin ? ????12x -π6,x ∈R 的图象,只需将函数y =4sin ? ????x -π6,x ∈R 的 图象上的所有点( ) A .横坐标伸长到原来的2倍,纵坐标不变 B .横坐标缩短到原来的1 2倍,纵坐标不变 C .纵坐标伸长到原来的2倍,横坐标不变 D .纵坐标缩短到原来的1 2 倍,横坐标不变 A [函数y =4sin ? ????x -π6的图象上各点横坐标伸长为原来的2倍,纵坐标不变,得到y =4sin ? ????12 x -π6的图象.] 3.函数y =A sin(ωx +φ)+1(A >0,ω>0)的最大值为5,则A =________. 4 [由已知得A +1=5,故A =4.] 三角函数图象之间的变换 【例1】 (1)将函数y =2cos ? ????2x +π3的图象向左平移π3个单位长度,再向下平移3个 单位长度,则所得图象的解析式为________. (2)将y =sin x 的图象怎样变换可得到函数y =2sin2x +π 4+1的图象? [思路点拨] (1)依据左加右减;上加下减的规则写出解析式. (2)法一:y =sin x →纵坐标伸缩→横坐标伸缩和平移→向上平移. 法二:左右平移→横坐标伸缩→纵坐标伸缩→上下平移. (1)y =-2cos 2x -3 [y =2cos ? ????2x +π3的图象向左平移π3个单位长度, 得y =2cos ??????2? ????x +π3+π3=2cos(2x +π)=-2cos 2x , 再向下平移3个单位长度得y =-2cos 2x -3的图象.] (2)[解] 法一:(先伸缩法)①把y =sin x 的图象上所有点的纵坐标伸长到原来的2倍,得到y =2sin x 的图象;②将所得图象上所有点的横坐标缩短到原来的1 2倍,得y =2sin 2x 的图象;③将所得图象沿x 轴向左平移π8个单位,得y =2sin 2? ????x +π8的图象;

相关文档
最新文档