天线频率介绍

天线频率介绍
天线频率介绍

ISM 頻帶與短距裝置天線基本原理:第1篇

作者: 德州儀器Matthew Loy 與 Iboun Sylla

本文介紹無線射頻與天線的基本原理以及實用的天線設計原則

天線基本原理

天線就像是連結管道,能把電路板等各種電路的射頻訊號轉換為電磁波,以便在無線鏈路發射機與接收機之間的傳輸介質上傳送,或是將電磁波轉換為射頻訊號給電路使用。

發射機天線會激勵其週圍 (近場) 的電場或磁場,將電氣訊號轉換為電磁波。激勵電場的天線稱為電場天線,激勵磁場的天線稱為磁場天線。電場或磁場振盪會產生電磁波,並以光速向外傳播。光在自由空間的速度c 0為每秒30萬公里,在相對介電常數為εr 的介質裡則減為:

r

o εc c = 假設光速為c ,則下列公式可用來計算頻率為f 的訊號波長:

f c λ=

若採用常用單位,則上式變為:

(MHz)

300)( 頻率公尺波長= 此公式代表電磁波在自由空間的波長。若電磁波在電路板材料之類的電介質中行進,則波長就要除以相對介電常數εr 的平方根。電磁波產生的場區 (field region) 可分為三種,分別是電抗近場 (reactive near field)、輻射近場 (radiating near field) 和遠場 (far field):

? 在電抗近場區,電抗場分量遠大於輻射場,表示只要電場天線的電特性或磁場天線的磁特性出現任何改變,都會對天線饋入點的阻抗產生很大影響。從天線到電抗近場區邊界的距離通常假設為:

π

2λR1×=

? 輻射近場區則由輻射場佔優勢,且其週圍介質對天線阻抗的影響很小。但此區與天線的距離仍很近,所以天線尺寸不能被忽略,這表示輻射場型 (radiation pattern) 的角分佈與距離有關。在測量輻射場型時,測量點與天線的距離應大於輻射近場邊界,否則得到的場型會與實際情形不同。輻射近場的直徑為:

λ

D 2R 2

2×= 其中D 是天線的最大尺寸。

? 距離超過R 2就算進入遠場區,此時輻射場型與距離無關。在實際應用裡,發射機與接收機天線的距離通常都在這個區域。

接收機天線會蒐集電磁波能量,再把它轉換為電路的電壓或電流。為了便於理解,在說明天線參數時通常都以發射天線為例,但多數情形下只要不涉及非線性的鐵氧體,天線在發射和接收模式下的特性就完全相同。

天線特性

偏振是電磁波行進時,電場向量末端所形成的跡線。遠場電磁波可視為平面波,而平面電磁波的電場與磁場向量不但互相垂直,還會垂直於行進方向。在一般情形下,電場向量末端會順著橢圓螺線的軌跡移動,產生橢圓偏振現象。當電磁波行進時,如果電場向量末端順著時鐘方向旋轉,則將此電磁波稱為右旋偏振,反之則稱為左旋偏振。

如果橢圓的兩個軸長度相同,則稱為圓形偏振。如果橢圓的兩個軸中,有任何一個軸等於零,則稱為線性偏振。同樣的,若電場向量延著地面垂直方向振盪,則稱為垂直偏振;若振盪方向與地面平行,則稱為水平偏振。

在理想情形下,發射機與接收機天線的偏振應完全相同,讓傳輸系統擁有最大效能。如果一端是圓形偏振,另一端是線性偏振,那麼效能會比理想情形減少3dB 。如果兩端都是線性偏振,卻彼此互相垂直,則在理論上將完全收不到能量。如果一端是右旋偏振,另一端是左旋偏振,那也無法收到能量。

室內傳輸路徑的反射現象可能造成偏振改變,將使接收波的偏振方向很難預測。對於可攜式天線,設計人員必須確定它在任何位置都能收到訊號,此時比較好的方式是讓一端使用圓形偏振,另一端使用線性偏振;這種做法雖會造成3dB 損失,但能避免完全收不到訊號的問題。

在說明輻射功率和天線增益時,常用到等向輻射體 (isotropic radiator) 的概念。等向輻射體是一種假設性的天線,會將無線射頻功率延著所有方向均等地輻射出去。因此在與等向輻射體相距為r 的地方,其功率密度就等於進入天線的功率除以半徑為r 的球面面積。

圖1:等向輻射體

若在距離受測裝置某個距離的地方測量功率密度,則其有效等向輻射功率 (EIRP) 將等於系統需為等向輻射體提供多少功率,才能在同樣的距離產生同樣的功率密度。EIRP 代表裝置及其天線的功率輻射能力。

從EIRP 可以計算出距離輻射體某個距離的電場強度,許多國家和地區對於這項規格都有限制。如果等向輻射體的總輻射功率為EIRP ,則在距離r 的位置所測量到的輻射功率密度D (W/m 2) 將等於輻射功率除以半徑為r 的球面面積:

2

r π4EIRP dA dP D ××== 電場強度與功率密度的關係就像是電路電壓與功率的關係。

因為自由空間的阻抗Z o = 377? = π × 120?,所以電場強度的均方根值等於:

120?πD Zo D E ××=×=

這可得到:

EIRP 30?r 1r

π4120?πEIRP E 2××=××××= 或者:

30?

r E EIRP 2

2×= 將上式兩邊都取對數,即可得到以dBm 表示的EIRP 值:

EIRP [dBm] = E [dBV/m] + 20log r [公尺] – 10 × log30 – 90dB

標準測試通常是在3公尺的地方測量電場強度,此處則利用下列簡單公式計算EIRP 值:

EIRP [dBm] = E [dB μV/m] – 95.23dB

實際天線則與這種假設的等向輻射體不同,它們多少都有些方向性的輻射特性。若要測量天線的輻射場型,可先在一定距離測量水平和垂直面的輻射功率密度,然後轉換為正規化偏振圖。

天線的等向增益G iso 等於它在主要傳播方向的功率密度除以等向輻射體在同樣距離的功率密度。天線增益並不是將功率放大,而是將可用的輻射功率集中到某些方向。

輻射電阻 (R r ) 代表饋送至天線的射頻電流與天線輻射功率之間的關係。在同樣的射頻電流下,阻抗值為R r 的電阻所消耗的功率會等於天線輻射功率。R r 可計算如下:

2r I P R 輻射

=

輻射電阻是天線饋入點阻抗的一部份。除此之外,需要考慮的還有代表將功率轉換為熱量的損耗電阻R loss ,以及電感L 和電容C 等電抗元件。圖2即為天線在其諧振頻率附近的等效電路。

圖2. 天線等效電路

等效電路的電感和電容形成串聯諧振電路,因此天線阻抗Z 等於:

?????

?×××?×××++=C f π21L f π2 j R R Z loss r 在如下的諧振頻率點上:

C

L π21f res ×××= 電容與電感的電抗會相互抵消,使得天線阻抗只剩下電阻分量。等效電路圖的電感L 和電容C 是由天線幾何決定,因此設計人員若想建造一個特定頻率的天線,就必須找到在操作頻率諧振的天線幾何結構,例如特定長度的電線。

諧振頻率點的天線輸入阻抗等於R r + R loss ,天線效率η則等於輻射功率除以天線所收到的總功率:

loss

r r R R R η+=

在諧振頻率以外的其它頻率,天線輸入阻抗不是電容性就是電感性。這也是只要增加串聯電容或電感就能調整現有天線的原因。

在特定的輻射電阻和損耗電阻下,天線頻寬是由電感對電容的比值決定。如果輻射與損耗都不變,那麼電感對電容的比值越大就表示品質因數Q 越高,頻寬則越小。天線等效電路圖的電感和電容值是由天線的幾何結構決定,設計人員通常可直接觀察出天線幾何的變化會如何影響電感與電容。品質因數也與輻射電阻造成的Q rad 和損耗電阻所造成的Q loss 有關,這使得天線的總品質因數等於:

loss

rad Q 1Q 1Q 1+= 針對無損耗天線的品質因數和頻寬比 (fractional bandwidth),Chu [1] 和Wheeler [2] 分別列出了它們的理論上限值:

3

rad λa π2Q 1BW ??????××==無損耗 其中a 是包住整個天線的最小球形直徑。

天線的選擇性 (selectivity) 雖能抑制不必要的頻外電磁輻射,但並非所有應用都想要很小的頻寬。因為頻寬越小,就表示匹配元件和天線本身的容差要求更嚴格。對於特定尺寸的小型天線,想要增加頻寬的唯一方法是故意引入損耗。基本上,天線的效率若為η,則其頻寬將等於:

η

1λa π2BW 3

×??????××= 天線尺寸固定後,其頻寬與效率的乘積必為常數,此時若提高其中任何一個值,另一個值就會下降。

反射、匹配與調諧

若將發射天線連接到特性阻抗Z O (通常為50?) 的傳輸線,然後將振幅為V IN 的訊號饋送到該傳輸線,則會發生什麼事?由於天線阻抗Z 通常不會剛好等於傳輸線阻抗Z O ,因此只有部份的入射波會傳送到天線,此處以V accept 代表其振幅;其餘則會反射回訊號產生電路,此處以V refl 代表其振幅。

圖3. 不連續處的反射現象

複數反射係數Γ定義為反射波振輻 (如電壓、電流或場強度) 與入射波振幅的比值,其值可由天線阻抗Z 和傳輸線阻抗Z O 計算如下:

o

o Z Z Γ+?=Z Z 對於任意的複數負載阻抗Z ,反射波與入射波的相位差有可能是0到2π之間的任何一個值,因此反射係數會是複數值。設計人員若要將反射損耗減到最小,就必須知道反射係數的振幅和相位角,這兩個參數可從向量網路分析儀測量而得。如果訊號源不是傳輸線,而是半導體元件的輸出,那麼源阻抗也可能是複數值。如果負載阻抗Z 等於源阻抗的共軛複數Z*O ,那麼反射係數就會等於零。這種情形通常稱為天線完全匹配,因為所有的入射波都會進入天線。

反射波與入射波的功率比稱為回波損耗 (Return Loss ,RL),代表反射波功率與入射波功率所相差的dB 數目。完美匹配的天線不會反射電磁波,而會接受所有功率,因此它的回波損耗會等於無限。天線所接受的功率通常會小於入射波功率,其中的相差值稱為失配損耗 (Mismatch Loss ,ML),代表不必要的反射對天線輻射功率的影響。只要利用下列公式和反射係數,即可計算回波損耗和失配損耗:

()2accept in

2refl

in 1log 10P P log 10ML log 20log 10P P log 10RL Γ?×?=×=Γ×?=Γ×?=×=

如果測量傳輸線上的電壓,所看到的將是入射波與反射波的總和,而無法區別兩者。這兩個波會在某些位置形成加強性干涉,有些位置則會互相抵消。

圖4:反射造成的駐波

從圖4可以看出當入射波與反射波加在一起後,其振幅最大值和最小值所在的位置並不會移動,這表示它們會形成駐波,而且反射波的振幅越大,駐波的形狀就越明顯。電壓駐波比 (VSWR) 定義為駐波圖形的最大電壓與最小電壓之比值,其值可利用反射係數的振幅計算如下:

Γ

?Γ+==11V V VSRW min max 電壓駐波比值會在1 (理想匹配負載,沒有駐波) 和無限大 (|Γ| = 1,完全反射或失配) 之間。

電壓駐波比 (VSWR)、反射係數 (Γ)、回波損耗 (RL) 和失配損耗 (ML) 全都是描述反射現象,而且這些參數可彼此任意轉換。電壓駐波比和回波損耗只與反射波的振幅有關,反射係數則因為是複數,所以還包含相位資訊。

天線阻抗通常不會等於饋送傳輸線阻抗,設計人員要將失配損耗減到最少,就須透過匹配電路將其中一種阻抗轉換為另一阻抗的共軛複數。史密斯圖 (Smith Chart) 就是一套強大工具,會在複數平面繪出反射係數Γ,以決定所需的匹配電路。對被動電路而言,反射係數相量 (Γ-phasor) 的大小是在0 (理想匹配) 和1 (完全失配) 之間,入射波與反射波的相

位差f則在0和2π之間。故對被動電路而言,所有可能的Γ-phasor都在半徑為1的圓圈內,而這個圓就是史密斯圖的邊界。

傳輸線末端若為開路,反射係數就等於+1,短路則為-1。電感性負載造成的反射係數會出現在史密斯圖的上方,電容性負載的反射係數則會落在下方。針對特定負載所增加的任何電容或電感,都會讓反射係數在史密斯圖裏繞著圓圈移動:其中串聯零件會讓反射係數繞著通過+1開路點的圓圈移動,並聯零件則會繞著通過-1短路點的圓圈移動。電感會讓反射係數朝著電感性的上半部移動,電容則會讓它移往下半部。圖5顯示串聯或並聯電感與電容如何影響反射係數。

圖5:史密斯圖的串聯和並聯電容及電感

設計人員可利用史密斯圖決定要增加什麼樣的零件,才能將特定天線阻抗的反射係數減至最小。例如在圖5裡,串聯電容會讓反射係數繞著通過開路點(因為它是串聯零件) 的圓圈移動到史密斯圖的下半部,因此只要增加適當的電容值,就能讓反射係數移動到史密斯圖的中心(該點的反射係數為零),並且得到理想匹配。

在一個正規化到50?的系統環境裡,史密斯圖的中心就等於50?。

天线的基本参数

1.1天线得基本参数 从左侧得传输线得角度瞧,天线就是一个阻抗(impedance)为Z得2终端电路单元(2-terminal circuit element),其中Z包含得电阻部分(resistiv eponent)被称为辐射电阻(radiationresistance,Rr);从右侧得自由空间角度来瞧,天线得特征可以用辐射方向图(radiation pattern)或者包含场量得不等于天线材料自己得电阻,而就是天线、天线所处得环境(比如温度)方向图。R r 与天线终端得综合结果。 影响辐射电阻Rr得还包括天线温度(antennatemperature,T A)。对于 与天线材料本身得温度一点都没有关系,而就是与自无损天线来说,天线温度T A 由空间得温度有关。确切地说,天线温度与其说就是天线得固有属性,还不如说就是一个取决于天线“瞧到”得区域得参数。从这个角度瞧,一个接收天线可以被视作能遥感测温设备。 辐射电阻Rr与天线温度T A都就是标量。另一方面,辐射方向图包括场变量或者功率变量(功率变量与场变量得平方成正比),这两个变量都就是球体坐标θ与Φ得函数。 1.2天线得方向性(D,Directivity)与增益(G,Gain) D=4π/ΩA,其中ΩA就是总波束范围(或者波束立体角)、ΩA由主瓣范围(立+副瓣范围(立体角)Ωm。 体角)Ω M 如果就是各向同性得(isotropic)天线,则ΩA=4π,因此D=1。各向同性天线具有最低得方向性,所有实际得天线得方向性都大于1。 如果一个天线只对上半空间辐射,则其波束范围ΩA=2π,因此D=4π/2π=2=3.01dBi、 简单短偶极子具有波束范围ΩA=2.67πsr,与定向性D=1、5(1、76dBi)。 如果一个天线得主瓣在θ平面与Φ平面得半功率波束宽度HPBW都就是20度,则D=4πsr/ΩA sr=41000deg2/(20deg)*(20 deg) ≈103≈20dBi(dB over isotropic)。这意味着,当输入功率相同时,该天线在主瓣方向得辐射功率就是各向同性天线得103倍。 天线增益G既考虑天线得方向性,又考虑天线得效率。G=kD。只要天线不就是100%损耗,那么G就小于D。k就是天线得效率因子(0≤k≤1)。天线效率只与天线得欧姆电阻损耗有关、在发射状态时,这些电阻损耗使得收到得能量没有被

天线的主要性能指标和相关知识

天线的主要性能指标 1、方向图: 天线方向图是表征天线辐射特性空间角度关系的图形。以发射天线为例,从不同角度方向辐射出去的功率或场强形成的图形。一般地,用包括最大辐射方向的两个相互垂直的平面方向图来表示天线的立体方向图,分为水平面方向图和垂直面方向图。平行于地面在波束最大场强最大位置剖开的图形叫水平面方向图;垂直于地面在波束场强最大位置剖开的图形叫垂直面方向图。 描述天线辐射特性的另一重要参数半功率宽度,在天线辐射功率分布在主瓣最大值的两侧,功率强度下降到最大值的一半(场强下降到 最大值的0.707倍,3dB衰耗)的两个方向的夹角,表征了天线在指定方向上辐射功率的集中程度。一般地,GSM定向基站水平面半功 率波瓣宽度为65° 在120°的小区边沿,天线辐射功率要比最大辐射方向上低9-10dB。 2、方向性参数 不同的天线有不同的方向图,为表示它们集中辐射的程度,方向图的尖锐程度,我们引入方向性参数。理想的点源天线辐射没有方向性,在各方向上辐射强度相等,方向是个球体。我们以理想的点源天线作为标准与实际天线进行比较,在相同的辐射功率某天线产生于某点的电场强度平方E2与理想的点源天线在同一点产生的电场强度的平方E02的比值称为该点的方向性参数D=E2/E02? 3、天线增益 增益和方向性系数同是表征辐射功率集中程度的参数,但两者又不尽相同。增益是在同一输出功率条件下加以讨论的,方向性系数是在同一辐射功率条件下加以讨论的。由于天线各方向的辐射强度并不相等,天线的方向性系数和增益随着观察点的不同而变化,但其变化趋势是一致的。一般地,在实际应用中,取最大辐射方向的方向性系数和增益作为天线的方向性系数和增益。 另外,表征天线增益的参数有dBd和dBi。DBi是相对于点源天线的增益,在各方向的辐射是均匀的;dBd相对于对称阵子天线的增益 dBi=dBd+2.15。相同的条件下,增益越高,电波传播的距离越远。 4、入阻输入阻抗 输抗是指天线在工作频段的高频阻抗,即馈电点的高频电压与高频电流的比值,可用矢量网络测试分析仪测量,其直流阻抗为0Q。 般移动通信天线的输入阻抗为50 Q。 5、驻波比 由于天线的输入阻抗与馈线的特性阻抗不可能完全一致,会产生部分的信号反射,反射波和入射波在馈线上叠加形成驻波,其相邻的电 压最大值与最小值的比即为电压驻波比VSWR假定天线的输入功率P1,反射功率P2,天线的驻波比VSWR=( +) / (-)。一般地说,移 动通信天线的电压驻波比应小于 1.5,但实际应用中VSWR应小于1.2。 6、极化方式 根据天线在最大辐射(或接收)方向上电场矢量的取向,天线极化方式可分为线极化,圆极化和椭圆极化。线极化又分为水平极化,垂 直极化和土45o极化。发射天线和接收天线应具有相同的极化方式,一般地,移动通信中多采用垂直极化或土45o极化方式。 7、双极化天线隔离度 双极化天线有两个信号输入端口,从一个端口输入功率信号P1dBm,从另一端口接收到同一信号的功率P2dBm之差称为隔离度,即隔 离度=P1-P2。 移动通信基站要求在工作频段内极化隔离度大于28dB。土45o双极化天线利用极化正交原理,将两副天线集成在一起,再通过其他的一 些特殊措施,使天隔离度大于30dB。 天线常识

RLC串联电路谐振条件和谐振频率

平山县职业教育中心教案首页 编号:_10_号授课教师:___宋翠平_____授课时间:_5_月____

步骤教学容教学 方法 教学 手段 学生 活动 时间 分配 明确目标一、明确目标: 教师解读学习目标 二、引入 任务1: 在无线电技术中常应用串联谐振的选频特性来选择信 号。收音机通过接收天线,接收到各种频率的电磁波,每一 种频率的电磁波都要在天线回路中产生相应的微弱的感应电 流。为了达到选择信号的目的,通常在收音机里采用如图1 所示的谐振电路。 讲授 (口 述) 演示 启发 提问 讨论 展示 实物 展示 课件 板书 个别 回答 小组 讨论 代表 发言 7分 钟 操作示一、教师讲解RLC串联电路谐振条件和谐振频率 1、谐振条件——电阻、电感、电容串联电路发生谐振的条件 是电路的电抗为零,即: = - = C L X X X。则电路的阻抗 角为:。φ=0说明电压与电流同相。我 们把RLC串联电路中出现的阻抗角φ=0,电流和电压同相的 情况,称作串联谐振。 2、谐振频率——RLC串联电路发生谐振时,必须满足条件: 教师 示 课件 演示 教师 提问 课件 板书 演示 学生 抢答 小组 抢答 10 分钟

任务3 学生分析讨论串联谐振电路的通频带 实际应用中,既要考虑到回路选择性的 优劣,又要考虑到一定围回路允许信号 通过的能力,规定在谐振曲线上, 所包含的频率围叫做电路的通频带,用字 BW表示,如图2所示。 理论和实践证明,通频带BW与f0、Q的关系为: 式中f0——电路的谐振频率,单位是赫[兹],符号为Hz; Q——品质因数; BW——通频带,单位是赫[兹],符号为Hz; 上式表明,回路的Q值越高,谐振曲线越尖锐,电路的通频带就越窄,选择性越好;反之,回路的Q值越小,谐振曲线越平坦,电路的通频带就越宽,选择性越差。即选择性与频带宽度是相互矛盾的两个物理量。

天线简介

天线一般理论简介 为了有效斯将能量从发射机馈送到天线,需要解决如下三个问题:1、有效地进行能量转换,提高辐射功率或提高天线系统的信噪比,天线作为传输线的终端负载,要求天线与传输线匹配;2、天线作为一种辐射或接受器件,应具有向所需方向辐射无线电波的能力;3、天线作为一种极化器件,可分为线极化,圆极化和椭圆极化。在同一系统中收发天线应具有相同的极化形式。天线一般都是可逆的,即同一副天线即可用做接收天线,也可用作发射天线。天线按结构形式分为两大类:一类是导线,金属棒或金属板构成的天线,称为线天线;另一类是似声学或光学设备,由金属面或介质面构成的面天线。 一、基本元的辐射: 1、电基本振子的辐射 给出在球坐标原点沿z 轴放置的电基本振子在各向同性理想均匀无限大自由空间的表达式: 3202 32022 cos 41sin 41 sin 40 jkr A r jkr A jkr A r I l j k E e r r I l j k jk E e r r r I l jk H e r r H H E θ?θ?θπωεθπωεθπ---? ?= -+ ?????=-+- ?????= + ??? ===注:9 02 2 000 010 362/E 120H k k θ? εεπ πλωεμηπ-== === =相移常数;波阻抗(远区场) (1)近区场

当kr<<1时称为近区场,此时 2 3 3 sin 42 cos 41 sin 40 A A r A r I l H r I l E j r I l E j r H H E ?θθ?θ πθωεπθ ωεπ= =-=-=== 不难看出,上述表达式和稳态场的公式完全相符,因此,近区场又称为似稳区。场随距离的增大而迅速减少。电场滞后于磁场90度,因此复坡印延矢量是虚数(12S E H =?),每周平均 辐射的功率为零。这种没有能量向外辐射的场称之为“感应场”。 (2)远区场 当kr>>1时称为远区场,此时60sin e sin e 20 jkr A jkr A r r I l E j r I l H j r E H H E θ? θ?πθλθλ--==≈=== 此时,有电场和磁场两个分量在空间相互垂直且与r 矢径方向垂直,三者构成右手螺旋系统。电场、磁场在时间上同相,其复坡印延矢量* 12S E H =?是实数,为有功功率且指向r 增加的 方向上。二者比值为一实数0 120η π =,所以仅需讨论二者之一。 且电基本振子远区场是沿着径向向外传播的横电磁波TEM 。在0180 o o θ =、方向上辐射为0,在90 o θ =方向辐射最强。方向图: E 面(包含振子轴)为一个8字形,H 面(垂直振子轴)为一个圆。 (3)辐射功率

第一讲 天线基本原理

第一讲天线基本原理 1、天线的基本概念 1.天线的作用 在任何无线电通信设备中,总存在一个向空间辐射电磁能量和从空间接收电磁能量的装置,这个装置就是天线。 天线的作用就是将调制到射频频率的数字信号或模拟信号发射到空间无线信道,或从空间无线信道接收调制在射频频率上的数字或模拟信号。 2.天线问题的实质 从电磁场理论出发,天线问题实质上就是研究天线所产生的空间电磁场分布,以及由空间电磁场分布所决定的电特性。空间任何一点的电磁场满足电磁场方程——麦克斯韦方程及其边界条件。因此,天线问题是时变电磁场问题的一种特殊形式。 从信号系统的角度出发,天线问题可以理解为考察由一个电磁波激励源产生的电磁响应特性。从通信系统的角度出发,天线可以理解为信号发射和接收器,收发天线之间的无线电信号强度满足通道传输方程和多径衰落特性。 3.对天线结构的概念理解 采用不同的模型,对天线可以有不同的理解。典型的模型比如:开放的电容 [思考] 野外电台或电视发射塔,无线电视或电台接收机,为什么能构成一个天线,其电流回路在什么地方? 开放的传输线 从传输线理论理解,天线可以看做是将终端开路的传输线终端掰 开。 TM mn型波导 将天线辐射看做是在4π空间管道中传输的波导,则对应的传输波型是TM型波,但在传输过程中不断遇到波导的不连续性,因此不断激励

高次模。 由电磁波源和电磁波传输媒质形成电磁波传输的机构 波的形成都需要波源和传输媒质。在一盆水中形成机械波纹,可以使用点激励源产生波,并在水面上传播。波的传播特性只与媒质特性有关而与波源无关。将一个肉包子扔出去,这个肉包子可能产生不同的结果,或者被狗吃了,或者掉在什么地方了,都与扔包子的人不再有任何关系。而对天线来说,馈点的激励源就是这种波源,天线导体和外界空间就是传输媒质。不过电磁波的传输媒质可以是真空。 [思考] 电磁波具有波粒二象性。频率越低,波动性越强;频率越高,粒子性越强。所以光波主要表现出粒子性,而长波表现出波动性。射频电磁波就是介于这二者之间的一种电磁波,它既有显著的波动性,又有显著的粒子性。只要认清这一点,许多问题就会变得易于理解。认清事物的本质规律我们才能很好地利用它,我们不能把一头驴当马使,否则就会出现许多荒唐的错误。有人认为射频很复杂,有人认为很简单,就是这个道理。 [哲学启示] 电磁波由于看不见,摸不着,所以在很多人看来它很抽象。但考虑到世界是普遍联系的,尽管不同的事物也有许多不相同点,但找到它们之间的联系,就能获得认识抽象事物的“火眼金睛”。 2、电磁场基本方程 1.麦克斯韦方程 (电生磁。若电场变化,则磁场随之变化) (磁生电。若磁场变化,则电场随之变化) (磁力线是无始无终的封闭闭合曲线) (电力线出发和终止于自由电荷)

1.2米车载天线产品介绍

北京安迪诺数字系技术有限公司车载卫星通信天线系统 北京海淀丰慧中路7号新材料创业大厦A903室

车载卫星通信天线系统 综述 一、概述 北京安迪诺数字系统技术有限公司向用户提供高可靠性的车载卫星通信天线系统。产品覆盖Ku、C等频率段及0.9、1.2、1.8等诸多尺寸。天线系统具有体积小、重量轻、可靠性高、操作简便等优点,可用 于支持VSAT通信、高速数据传输、视频回传以及大功率SNG新闻采集 等应用。 上述天线不仅能够提供优异的低旁瓣特性和交叉极化性能,而且整机坚固耐用,安装便捷。优异的天线电气特性加之牢固的伺服机构,令该产品被军队、民防、水利等行业用户所广泛使用。 本车载天线系统运用优势明显: 1.无须穿顶就可方便的安装于商用车、越野车、SUV、MPV及军用方舱 顶部; 2.具有优秀的可靠性、可维护性及环境适应性,适于野外及城市工况使用; 3.初次安装易于标定,标定精度高; 4.天线自动化程度达到国际先进水平,提供“单键对星”功能,无须培训 即可进行操作; 5.配置的GPS精度高,电子罗盘抗干扰性强,保证了对星功能的环境适应 性和程序对星的准确性,在无遮蔽且车辆能够安全停放的位置,天线均 能够自动对星; 6.天线自动对星时间不超过2分40秒(典型值); 7.天线控制器提供丰富的参数信息且友好的人机界面; 8.梯形天线馈源臂,适合安装BUC/ODU; 9.具有自动告警、机械限位、软件限位等多重保护功能,天线运转更安全;

10.系统交付前进行严格的功能测试与环境试验,保证设备的产品质量。 二、系统组成 三、系统特点 1、天伺馈系统 ?反射面可采用铝、玻璃钢、碳纤维等材质的产品,满足用户的不同需要。 ?电动天线平台结构紧凑,垂直尺寸小(优于大部分进口产品),外观精巧。 ?传动机构选用直流力矩电机及航天谐波传动机构,运转轻盈可靠。 ?馈源网络发射支路采用波导形式,配合极化、俯仰和方位三个波导腔式旋转关节,功率容量大,损耗小。如ODU/BUC还可在馈源臂上直接安 装(安装空间大,驱动能力强)。 ?馈源臂通过空气弹簧与天线座连接,反射面不直接承力。 2、天线控制系统 ?天线控制系统配置高精度GPS及抗干扰电子罗盘,能根据当地地理坐标及天线平台姿态计算寻找卫星。 ?提供三种对星模式:一键自动对星、程序控制对星、手动电控对星。 ?天线状态参数、天线控制参数、天线操作状态等都在天控器面板上的大

天线的几个重要参数介绍

一、天线的几个重要参数介绍 1.天线的输入阻抗 天线的输入阻抗是天线馈电端输入电压与输入电流的比值。天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。匹配的优劣一般用四个参数来衡量,即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。在我们日常维护中,用的较多的是驻波比和回波损耗。 xx: 它是行波系数的倒数,其值在1到无穷大之间。驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。在移动通信系统中,一般要求驻波比小于 1.5。回波损耗: 它是反射系数绝对值的倒数,以分贝值表示。回波损耗的值在0dB的到无穷大之间,回波损耗越大表示匹配越差,回波损耗越大表示匹配越好。0表示全反射,无穷大表示完全匹配。在移动通信系统中,一般要求回波损耗大于 14dB。 2.天线的极化方式 所谓天线的极化,就是指天线辐射时形成的电场强度方向。当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。因此,在移动通信系统中,一般均采用垂直极化的传播方式。另外,随着新技术的发展,最近又出现了一种双极化天线。就其设计思路而言,一般分为垂直与水平极化和±45°极化两种方式,性能

PCB线圈的电参数对谐振频率的影响探究

龙源期刊网 https://www.360docs.net/doc/a27168433.html, PCB线圈的电参数对谐振频率的影响探究作者:王燊魏志强迟浩坤 来源:《电子技术与软件工程》2016年第16期 摘要 本文运用三维电磁仿真软件,对布线2层的PCB线圈进行仿真实验。分别对层间距、线宽与层间距、线圈中心距对谐振频率的影响两组实验进行了分析。得出的结论是:在层间距固定不变的情况下,随着线宽的不断增加,谐振频率是逐渐减小的;但当谐振频率减小到一定程度时,则不再发生变化。在线宽固定不变的情况下,随着层间距值的不断增大,谐振频率的值也是不断增大的,且增长是越来越缓慢的。在层间距固定不变的情况下,随着线圈中心距的不断增加,谐振频率是逐渐增大的;增大的趋势是越来越明显的。在线圈中心距固定不变的情况下,随着层间距值的不断增大,谐振频率的值也是不断增大的,且增长是越来越缓慢的。 【关键词】三维电磁仿真软件印刷电路板谐振频率线宽层间距线圈中心距 近些年来,谐振耦合式无线电能传输技术发展迅猛。在该传能系统中,发射线圈和接收线圈为具有相同谐振频率的自谐振线圈,是该系统的关键部分。对于线圈,在设计上必须满足保证自谐振频率精确性、尽可能提高其品质因数等要求,还必须在其设计阶段能够较准确的对其特性(谐振频率、品质因数等)进行仿真计算。在研究过程中有许多种线圈结构可以选择,其中,基于PCB的平板型线圈由于具有高精度、高稳定性、易于制造等优点,尤其适用于人体植入式医疗设备等各种小功率场合。PCB线圈有自身的电参数:线宽、层间距,线圈中心距等,其中无论哪一项指标发生改变,都会对谐振频率和品质因数产生影响。系统的谐振频率关系到传输效率的大小。因此,对PCB线圈的线宽、层间距、线圈中心距对谐振频率的影响的研究对于研究系统电能传输效率具有非常重要的意义。 文献[1][2]介绍了S.C.Tang和Wing C.Ho两人分别对双层和多层圆形PCB线圈的电感值进行了理论分析;文献[3]介绍了基于线栅法计算矩形平面螺旋电感线圈的电感值与工作频率的 关系;文献[4]介绍了Greenhouse基于直导体电感的计算公式,提出一种计算矩形螺旋电感的方法;文献[5]介绍了RamRakhyani等人分析了多匝螺线管线圈的电感等关键电参数,并对这些参数进行了分析验证,得出了对无线传能系统效率的影响结果;以上的文献都只是在PCB 线圈板上对电感进行了研究,而没有研究谐振频率的特性。文献[6]介绍了平面螺旋线圈的分 布电容随频率的变化而变化;文献[7]指出了系统频率波长λ、传输距离D和线圈半径r之间存在相互制约关系,是设计无线电能传输系统必须考虑的问题;文献[8]研究介绍了发生谐振时 螺旋天线的谐振频率与其几何参数的经验公式;文献[9]针对传输距离的变化引起的频率分裂 现象所导致的传输效率剧变的问题进行了细致的研究,提出来一种自动奇频率跟踪方法。文献[10][11]利用互感电路模型,对频率分裂现象的成因以及一般规律进行了研究,并采用频率跟踪的方法提高了近距离传输效率。文献[12]详细介绍了采用利兹线或镀银的导线减小趋肤效应的方法,同时线圈的不同缠绕方式对谐振频率也会有影响。虽然以上文献对无线传能技术中的

各种天线参数和分类

汽车天线 汽车天线又叫车载天线,一般汽车上的天线用于车上的收音机和电台,可分汽车内置天线和外置天线。但根据不同用途的汽车也有安装其他的天线。如公交车有DVB-T天线,车载TV天线。物流及出租车还装有GSM天线、GPS卫星天线。收音机和电台天线主要就是AM/FM天线、软PCB数字天线、AM/FM/TV天线等。根据不同的功能和用途,所用的天线的频率也不同。 目录 名词释义: 又叫车载天线,是指设计安装在车辆上的移动通讯天线。最常见就是吸盘天线。由于吸盘天线安装摆放容易,所以在一些简易设台场合常常用吸盘天线代替基地天线。 结构分类: 车载天线结构上有缩短型、四分之一波长、中部加感型、八分之五波长、双二分之一波长等形式的天线,理论上它们的效率依次增加,同样工作频段的天线的长度也依次增加。 缩短型: 由于车辆本身有限高,加上过长的天线在车辆高速行进时形成的风阻,过桥洞、进入地下车库都是问题,所以车载天线并不是越长越好,一般要求轿车天线不超过70厘米,面包车类要求天线更短。缩短型天线体积小巧,虽然增益不高,但适合使用于需要隐蔽天线的场合。 八分之五波长和中部加感型

一般的警用车辆建议安装高增天线,尤其是在活动区域范围比较大的车辆,350MHZ高增益天线多分为八分之五波长加感的形式,在距天线顶部二分之一波长距离处有一个加感线圈。400MHZ频段双二分之一波长天线具有较高的增益,它的外观特征是天线的振子上有两个加感线圈。八分之五波长和中部加感型也有较高的增益,且价格比较便宜,因此得到广泛的使用。在作为临时固定台天线使用的场合可以考虑选用增益高的吸盘天线,天线的长度不必有过多限制。由于吸盘天线是根据汽车使用环境而设计所以在作为固定使用时在其下吸一块半径大于1米的金属板(如铁皮)会有更好的使用效果。由于进口原装的车载天线价格非常昂贵且优势不突出,所以一般都选用国产车载天线。在天线选型阶段主要参考天线的外型和增益。建议选用大厂家的名牌产品,他们提供的参数真实性比较高,制造工艺也有保证。如果是批量采购完全可以到专业天线制造厂家按使用频段定制,以取得最佳的使用效果。 汽车天线(8张) 频率分类: GSM天线 1. 工作频率:900MHZ/1800MHZ 900MHZ增益:3dBi 1800MHZ 增益:3dBi 2. VSWR:GSM〈1.8 DCS 〈1.8 3.线长:RG174线,3米/5米 4.安装方式:磁铁吸附 5.适用接头:SMA/SMB/GT5/BNC/MCX/MMCX 6.工作温度:-20℃~+85℃ 7.贮藏温度:-40℃~+90℃ TV天线 1.电源电压DC 10.5∽16.5V 2.电源60∽100MA 3.工作频率48∽860MHZ 4.增益15±3DB 5.噪声系数≤7DB 6.输出阻抗 75Ω 7.输出驻波≤3 8.环境温度 -20℃∽+70℃

天线基础知识大全

天线基础知识大全 1天线1.1天线的作用与地位无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。对于众多品种的天线,进行适当的分类是必要 1天线 1.1 天线的作用与地位 无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。 *电磁波的辐射 导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。如图1.1 a 所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图1.1 b 所示,电场就散播在周围空间,因而辐射增强。必须指出,当导线的长度L 远小于波长λ时,辐射很微弱;导线的长度L 增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。 1.2 对称振子 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子,见图1.2a 。另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子,见图1.2 b。 1.3 天线方向性的讨论

天线性能的主要参数

天线性能的主要参数 有方向图,增益,输入阻抗,驻波比,极化方式等。 1 天线的输入阻抗 天线的输入阻抗是天线馈电端输入电压与输入电流的比值。天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。匹配的优劣一般用四个参数来衡量即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。在我们日常维护中,用的较多的是驻波比和回波损耗。一般移动通信天线的输入阻抗为50Q。 xx: 它是行波系数的倒数,其值在 1 到无穷大之间。驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。在移动通信系统中,一般要求驻波比小于1.5,但实际应用中VSWR应小于1.2。过大的驻波比会减小基站的覆盖并造成系统内干扰加大,影响基站的服务性能。 回波损耗: 它是反射系数绝对值的倒数,以分贝值表示。回波损耗的值在OdB的到无 穷大之间,回波损耗越大表示匹配越差,回波损耗越大表示匹配越好。 0 表示全反射,无穷大表示完全匹配。在移动通信系统中,一般要求回波损耗大于14dB。 2 天线的极化方式 所谓天线的极化,就是指天线辐射时形成的电场强度方向。当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而 使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅

天线基本原理

第一讲天线基本原理 一、天线的基本概念 1.天线的作用 在任何无线电通信设备中,总存在一个向空间辐射电磁能量和从空间接收电磁能量的装置,这个装置就是天线。 天线的作用就是将调制到射频频率的数字信号或模拟信号发射到空间无线信道,或从空间无线信道接收调制在射频频率上的数字或模拟信号。 2.天线问题的实质 从电磁场理论出发,天线问题实质上就是研究天线所产生的空间电磁场分布,以及由空间电磁场分布所决定的电特性。空间任何一点的电磁场满足电磁场方程——麦克斯韦方程及其边界条件。因此,天线问题是时变电磁场问题的一种特殊形式。 从信号系统的角度出发,天线问题可以理解为考察由一个电磁波激励源产生的电磁响应特性。从通信系统的角度出发,天线可以理解为信号发射和接收器,收发天线之间的无线电信号强度满足通道传输方程和多径衰落特性。 3.对天线结构的概念理解 采用不同的模型,对天线可以有不同的理解。典型的模型比如: ●开放的电容 [思考] 野外电台或电视发射塔,无线电视或电台接收机,为什么能构成一个天线,其电流回路在什么地方? ●开放的传输线 从传输线理论理解,天线可以看做是将终端开路的传输线终端掰开。 ●TM mn型波导 将天线辐射看做是在4π空间管道中传输的波导,则对应的传输波型是TM型波,但在传输过程中不断遇到波导的不连续性,因此不断激励高次模。

由电磁波源和电磁波传输媒质形成电磁波传输的机构 波的形成都需要波源和传输媒质。在一盆水中形成机械波纹,可以使用点激励源产生波,并在水面上传播。波的传播特性只与媒质特性有关而与波源无关。将一个肉包子扔出去,这个肉包子可能产生不同的结果,或者被狗吃了,或者掉在什么地方了,都与扔包子的人不再有任何关系。而对天线来说,馈点的激励源就是这种波源,天线导体和外界空间就是传输媒质。不过电磁波的传输媒质可以是真空。 [思考] 电磁波具有波粒二象性。频率越低,波动性越强;频率越高,粒子性越强。所以光波主要表现出粒子性,而长波表现出波动性。射频电磁波就是介于这二者之间的一种电磁波,它既有显著的波动性,又有显著的粒子性。只要认清这一点,许多问题就会变得易于理解。认清事物的本质规律我们才能很好地利用它,我们不能把一头驴当马使,否则就会出现许多荒唐的错误。有人认为射频很复杂,有人认为很简单,就是这个道理。 [哲学启示] 电磁波由于看不见,摸不着,所以在很多人看来它很抽象。但考虑到世界是普遍联系的,尽管不同的事物也有许多不相同点,但找到它们之间的联系,就能获得认识抽象事物的“火眼金睛”。 二、电磁场基本方程 1.麦克斯韦方程 (电生磁。若电场变化,则磁场随之变化) (磁生电。若磁场变化,则电场随之变化) (磁力线是无始无终的封闭闭合曲线) (电力线出发和终止于自由电荷) 麦克斯韦方程的物理含义:变化的电场可以产生磁场,变化的磁场可以产生电场,这是电磁波可以脱离辐射体在空间存在的物理基础。 [思考] 自然界存在一些有趣的现象,尽管机理与电磁波不完全一致,但是其过程却可以帮助我们加深对我们问题的理解。请大家考虑一下,孩童吹肥皂泡时,肥皂泡能够

天线基础知识培训资料

天线基础知识 1 天线 1.1 天线的作用与地位 无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。 *电磁波的辐射 导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。如图1.1 a 所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图 1.1 b 所示,电场就散播在周围空间,因而辐射增强。必须指出,当导线的长度 L 远小于波长λ 时,辐射很微弱;导线的长度 L 增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。 图1.1 a 图1.1 b 1.2 对称振子 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子, 见图1.2 a。另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子, 见图1.2 b。

天线基本参数说明

天线有五个基本参数:方向性系数、天线效率、增益系数、辐射电阻和天线有效高度。这些参数是衡量天线质量好坏的重要指标。 【天线的方向性】是指天线向一定方向辐射电磁波的能力。它的这种能力可采用方向图,方向图主瓣的宽度,方向性系数等参数进行描述。所以方向性是衡量天线优劣的重要因素之一。天线有了方向性,就能在某种程度上相当于提高发射机或接收机的效率,并使之具有一定的性和抗干扰性。 【方向性图】方向性图是表示天线方向性的特性曲线,即天线在各个方向上所具有的发射或接收电磁波能力的图形。 实用天线处在三度几何空间中,所以,它的方向性图应该是个立体图。在这个立体图中,由于所取的截面不同而有不同的方向性图。最常用的是水平面的方向性图(即和平行的平面的方向性图)和垂直面的方向性图(即垂直于的平面的方向性图)。有的专业书籍上也称赤道面方向性图或子午面方向性图。 【波瓣宽度】有时也称波束宽度。系指方向性图的主瓣宽度。一般是指半功率波瓣宽度。当 L/λ数值不同时,其波瓣宽度也不同。L/λ比值增加时,方向图越尖锐,但当(L/λ)>0.5时,除了与振子轴垂直的方向有最大的主瓣外,还可能出现付瓣。因此,波瓣宽度越小,其方向性越强,性也强,干扰邻台的可能性小。所以,对于超短波,微波等所用的天线,登记主瓣宽度这一指标,是十分重要的。

【方向性系数】方向性系数是用来表示天线向某一个方向集中辐射电磁波程度(即方向性图的尖锐程度)的一个参数。为了确定定向天线的方向性系数,通常以理想的非定向天线作为比较的标准。 任一定向天线的方向性系数是指在接收点产生相等电场强度的条件下,非定向天线的总辐射功率对该定向天线的总辐射功率之比。 按照上面的定义,由于定向天线在各个方向上的辐射强度不等,故天线的方向性系数也随着观察点的位置而不同,在辐射电场最大的方向,方向性系数也最大。通常如果不特别指出,就以最大辐射方向的方向性系数作为定向天线的方向性系数。 在中波和短波波段,方向性系数约为几到几十;在米波围,约为几十到几百;而在厘米波波段,则可高达几千,甚至几万。 【辐射电阻】发射天线的辐射功率与馈电点的有效电流平方之比,称为天线的辐射电阻。 辐射电阻是一个等效电阻,如果用它来代替天线,就能消耗天线实际辐射的功率。因此,采用辐射电阻这个概念,可以简化天线的有关计算。 辐射电阻的大小取决于天线的尺寸、形状以及馈电电流的波长。因为发射天线的任务是辐射电磁波,所以在装置天线时总是适当地选择其尺寸和形状,使辐射电阻尽可能大一些。

天线简介

天线介绍

版本历史 版本/状态责任人发布日期备注V1.0 张鑫2010年7月天线简介第一版

目录 一、基础知识 (4) 1.1天线的定义 (4) 1.2天线的原理 (4) 1.3天线的基本参数 (5) 1.3.1 谐振频率 (5) 1.3.2 增益 (5) 1.3.3 驻波比 (6) 1.3.4 极化 (7) 1.3.5 辐射方向图 (8) 1.3.6 波瓣宽度 (9) 1.3.7 天线类型 (9) 二、天线的类型与选购 (11) 2.1 全向天线 (11) 2.1.1 普通全向天线 (11) 2.1.2 室内吸顶天线 (11) 2.2 定向天线 (12) 2.2.1 平板定向天线(Patch Antenna) (12) 2.2.2 八木天线(Yagi Antenna) (14) 2.2.3 抛物面栅状天线(Grid Antenna) (15) 2.3 天线配件 (15) 2.3.1 接头 (16) 注解:如何辨别天线接头的公母类型 (19) 2.3.2 射频电缆 (20) 2.3.3 其他配件 (21) 2.4 法律法规 (22) 三、无线传输 (23) 3.1影响室内无线传输的因素 (23) 3.2 室外传输和增益选择 (24) 3.2.1 视距传输(Line of Sight Propagation) (24) 3.2.2 自由空间路径损耗与传输距离 (25) 3.2.3 衰落余量和距离计算 (25) 3.2.4 Fresnel Zone (26) 3.2.5 计算举例 (26)

一、基础知识 1.1天线的定义 天线(Antenna)是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。 天线是在无线电设备中用来发射或接收电磁波的部件。无线电通信、广播、电视、雷达、导航、电子对抗、遥感、射电天文等工程系统,凡是利用电磁波来传递信息的,都依靠天线来进行工作。此外,在用电磁波传送能量方面,非信号的能量辐射也需要天线。一般天线都具有可逆性,即同一副天线既可用作发射天线,也可用作接收天线。同一天线作为发射或接收的基本特性参数是相同的。这就是天线的互易定理。 1.2天线的原理 当导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。如图a所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图b、c所示,电场就散播在周围空间,因而辐射增强。必须指出,当导线的长度L远小于波长λ时,辐射很微弱;导线的长度L增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。

天线基础知识介绍

天线基础知识介绍 2014-12-28DSRC专用短程通信技术 1.1 什么是天线? 空间的无线电波信号通过天线传送到电路;电路里的交流电流信号最终通过天线传送到空间中去。因此,天线是空间无线电波信号和电路里的交流电流信号的一种转换装置,如图1所示。 图1 空间电波与电路电流通过天线转换的示意图 1.2 天线有哪些基本参数? 天线既然是空间无线电波信号和电路中的交流电流信号的转换装置,必然一端和电路中的交流电流信号接触,一端和自由空间中的无线电波信号接触。因此,天线的基本参数可分两部分,一部分描述天线在电路中的特性(即阻抗特性);一部分描述天线与自由空间中电波的关系(即辐射特性);另外从实际应用方面出发引入了带宽这一参数。 描述天线阻抗特性的主要参数:输入阻抗。 描述天线辐射特性的主要参数:方向图、增益、极化、效率。 除了带宽之外,后文将对每个参数进行介绍。 图2 天线的一些基本参数

1.3 输入阻抗 天线输入阻抗的意义在于天线和电路的匹配方面。 当天线和电路完全匹配时,电路里的电流全部送到天线部分,没有电流在连接处被反射回去。完全匹配状态是一种理想状态,现实中,不太可能做到理想的完全匹配,只有使反射回电路的电流尽可能小,当反射电流小到我们要求的程度的时候,就认为天线和电路匹配了。 通常,电路的输出阻抗都设计成50Ω或者75Ω,要使天线和电路连接时匹配,那么天线的输入阻抗应设计成和电路的输出阻抗相等。但通常天线的输入阻抗很难准确设计成等于电路的输出阻抗,因此在实际的天线和电路的连接处始终存在或多或少的反射电流,即一部分功率被反射回去,不能向前传输,如图3所示。 描述匹配的参数如表1所示。电压驻波比和回波损耗都是描述匹配的参数,只是表达的形式不同而已。 图3 电流在传输线不连续处产生反射的示意图 表1 描述匹配的一些参数 参数 对参数的一些描述 电压驻波比(VS WR ) 设输入电流大小为1,被反射回去的电流为Γ,那么电压驻 波比为: (1+Γ)/(1-Γ) 电压驻波比只是个数值,没有单位。 Γ=1/3,电压驻波比则为2;当电流被全部反射时,Γ=1,电压驻波比为+∞;当没有反射电流时,Γ=0,电压驻波 比为1。 反射功率按Γ2计算,如反射电流是Γ=1/3,那么反射功率 是Γ2=1/9。

LTE天线产品介绍

——LTE天线产品

目录 一、1.8G/2.1G双极化天线 (1) ODP-065R15K-G(B) (1) ODP-065R18K (2) ODV-065R18K-G(B) (3) 二、1.8G/2.1G/2.6G双极化天线 (4) ODP-065R18J06 (4) ODV-065R18J (5) 三、800M/900M+1.8G/2.1G多频共享天线 (6) ODV-065R15B18K (6) ODV-065R17E18K-G (7) 四、800M/900M+1.8G/2.1G/2.6G多频共享天线 (8) ODV-065R15E18J-G (8) ODV-065R17E18J-G (9) 五、1.8G/2.1G+1.8G/2.1G多频共享天线 (10) ODV2-065R18K-G (10) 六、1.8G/2.1G/2.6G+1.8G/2.1G/2.6G多频共享天线 (11) ODV2-065R18J (11) 七、1.8G/2.1G/2.6G+1.8G/2.1G/2.6G+1.8G/2.1G/2.6G多频共享天线 (12) ODV3-065R18J (12) 八、800M/900M+1.8G/2.1G+1.8G/2.1G多频共享天线 (13) ODV-065R18EKK-G (13) ODV-065R15B18K18K-G (14) 九、800M/900M+1.8G/2.1G/2.6G+1.8G/2.1G/2.6G多频共享天线 (15) ODV-065R15E18J18J-G (15) ODV-065R15EJJ (16) ODV-065R17EJJ-G(Ⅱ) (17) ODV-065R18EJJ-G(Ⅱ) (18)

天线的基本参数

1.1天线的基本参数 从左侧的传输线的角度看,天线是一个阻抗(impedance)为Z的2终端电路单元(2-terminal circuit element),其中Z包含的电阻部分(resistive component)被称为辐射电阻(radiation resistance,R r);从右侧的自由空间角度来看,天线的特征可以用辐射方向图(radiation pattern)或者包含场量的方向图。R r不等于天线材料自己的电阻,而是天线、天线所处的环境(比如温度)和天线终端的综合结果。 影响辐射电阻R r的还包括天线温度(antenna temperature,T A)。对于无损天线来说,天线温度T A和天线材料本身的温度一点都没有关系,而是与自由空间的温度有关。确切地说,天线温度与其说是天线的固有属性,还不如说是一个取决于天线“看到”的区域的参数。从这个角度看,一个接收天线可以被视作能遥感测温设备。 辐射电阻R r和天线温度T A都是标量。另一方面,辐射方向图包括场变量或者功率变量(功率变量与场变量的平方成正比),这两个变量都是球体坐标θ和Φ的函数。 1.2天线的方向性(D,Directivity)和增益(G,Gain) D=4π/ΩA,其中ΩA是总波束范围(或者波束立体角)。ΩA由主瓣范围(立体角)ΩM+副瓣范围(立体角)Ωm。 如果是各向同性的(isotropic)天线,则ΩA=4π,因此D=1。各向同性天线具有最低的方向性,所有实际的天线的方向性都大于1。 如果一个天线只对上半空间辐射,则其波束范围ΩA=2π,因此D=4π/2π=2=3.01dBi。 简单短偶极子具有波束范围ΩA=2.67πsr,和定向性D=1.5(1.76dBi)。 如果一个天线的主瓣在θ平面和Φ平面的半功率波束宽度HPBW都是20度,则D=4πsr/ΩA sr=41000 deg2/(20 deg)*(20 deg) ≈103≈20dBi(dB over isotropic)。这意味着,当输入功率相同时,该天线在主瓣方向的辐射功率是各向同性天线的103倍。 天线增益G既考虑天线的方向性,又考虑天线的效率。G=kD。只要天线不是100%损耗,那么G就小于D。k是天线的效率因子(0≤k≤1)。天线效率只

相关文档
最新文档