三层交换机生成树协议

竭诚为您提供优质文档/双击可除三层交换机生成树协议

篇一:网络工程技术生成树协议

1.生成树stp的计算推导

(1)手工计算推导出下图中的根交换机、根端口、指定端口和阻塞端口(假设每条链路带宽均为100mbps),最后在packettracer6.0模拟器上进行验证,通过抓包路径跟踪的方法演示当主链路出现故障后的收敛过程和结果。

(2)若使收敛时间更快速,可以采用哪种该进协议,该方法的优势是什么?

优势:

a、stp没有明确区分端口状态与端口角色,收敛时主要依赖于端口状态的切换。Rstp比较明确的区分了端口状态与端口角色,且其收敛时更多的是依赖于端口角色的切换。

b、stp端口状态的切换必须被动的等待时间的超时。而

Rstp

端口状态的切换却是一种主动的协商。

c、stp中的非根网桥只能被动的中继bpdu。而Rstp中的非根网桥对bpdu的中继具有一定的主动性。

1、为根端口和指定端口设置了快速切换用的替换端口(alternateport)和备份端口(backupport)两种角色,在根

端口/指定端口失效的情况下,替换端口/备份端口就会无时延地进入转发状态,而无需等待两倍的转发时延(Forwarddelay)时间。

2、在只连接了两个交换端口的点对点链路中,指定端

口只需与下游网桥进行一次握手就可以无时延地进入转发

状态。如果是连接了三个以上网桥的共享链路,下游网桥是不会响应上游指定端口发出的握手请求的,只能等待两倍Forwarddelay时间进入转发状态。

3、将直接与终端相连而不是与其他网桥相连的端口定

义为边缘端口(edgeport)。边缘端口可以直接进入转发状态,不需要任何延时。由于网桥无法知道端口是否直接与终端相连,因此需要人工配置。

(3)交换机端口的颜色灯和闪烁频率,分别代表哪些含义?若要求交换机的端口直接接用户的pc机而不参与stp

运算,应如何进行设置?

颜色灯:

绿色灯表示可以发出

而黄色灯表示阻塞,不能发出闪烁频率:灯光闪烁说明有数据在传输,闪的快就说明比较频繁,也就是连续在端口上配置spanning-treeportfast或

spanning-treeportfastoruplinkfast二、根据现有进度学习,分析实现接入二层交换机设备的安全,具体有哪些主要的技术?结合packettracer6.0依次进行验证阐述1:l2-l4层过滤

2:802.1x基于端口的访问控制

3:流量控制

4:snmpv3及ssh安全网管

5:syslog和watchdog

6:双映像文件

三、案例配置

某业务公司由销售部(28人)、研发部(22人)、人事部(6人)、网管员(1人)等4个部门组成,公司的内部交换网络采用扁平化的二层架构组网(接入层+核心层),如下图所示,红色文字给出了公司内部网络的部分需求和功能(根据学习进度,其他功能配置待续)。

首先,是对核心层即三层交换机进行配置,划分Vlan,还有就是配置dhcp地址池以及网关,可以使下面的用户pc 机自动获取到相应的Vlan下的ip地址。对三层,二层交换机进行配置管理ip地址,方便管理员进行远程管理配置。最后通过手动配置管理员的pc机的ip地址。

再者就是为了安全进行配置ssh还有将mac地址与端口绑定以及防aRp欺骗,启用dhcpsnooping

以下为代码:

s3----------------------------------enconfigtnoipdo main-lookup

hostnames3

https://www.360docs.net/doc/a27194333.html,vlan10vlan20vlan30exitvtpdomai https://www.360docs.net/doc/a27194333.html,vtpmodeservervtppasswordccnainterrangef0/1 -3switchporttrunkencapdot1qswitchportmodetrunkexiti ntervlan10ipadd192.168.10.1255.255.255.0noshutexiti ntervlan20ipadd192.168.20.1255.255.255.0noshutexiti ntervlan30

ipadd192.168.30.1255.255.255.0

篇二:实验报告8_交换机生成树_白露露

实验报告8

篇三:锐捷三层交换机命令大全

交换机>enable进入特权模式

#exit返回上一级操作模式

#end返回到特权模式

#writememory或copyrunning-configstartup-config 保存配置文件#delflash:config.text删除配置文件(交换机及1700系列路由器)#erasestartup-config删除配置文件(2500系列路由器)

#delflash:vlan.dat删除Vlan配置信息(交换机)

#configureterminal进入全局配置模式

(config)#hostnameswitcha配置设备名称为switcha (config)#bannermotd&配置每日提示信息&为终止符

(config)#enablesecretlevel10star配置远程登陆密码为star(config)#enablesecretlevel150star配置特权密码为star

level1为普通用户级别,可选为1~15,15为最高权限级别;0表示密码不加密

(config)#enableservicesweb-server开启交换机web 管理

services可选以下:web-server(web管理)、

telnet-server(远程登陆)等查看信息

#showrunning-config查看当前生效的配置信息

#showinterfacefastethernet0/3查看F0/3端口信息

#showinterfaceserial1/2查看s1/2端口信息

#showinterface查看所有端口信息

#showipinterfacebrief以简洁方式汇总查看所有端口信息

#showipinterface查看所有端口信息

#showversion查看版本信息

#showmac-address-table查看交换机当前mac地址表信

STP生成树协议原理及配置--从入门到精通

STP生成树协议原理及配置—从入门到精通 生成树协议(Spanning-Tree Protocol,以下简称STP)是一个用于在局域网中消除环路的协议。运行该协议的交换机通过彼此交互信息而发现网络中的环路,并适当对某些端口进行阻塞以消除环路。由于局域网规模的不断增长,STP已经成为了当前最重要的局域网协议之一。 STP的算法 STP将一个环形网络生成无环拓朴的步骤: 选择根网桥(Root Bridge) 选择根端口(Root Ports) 选择指定端口(Designated Ports) 选择根网桥的依据 网桥ID(BID) 网桥ID是唯一的,交换机之间选择BID值最小的交换机作为网络中的根网桥 STP选择根网桥举例 根据网桥ID选择根网桥 选择根端口的依据 在非根网桥上选择一个到根网桥最近的端口作为根端口 选择根端口的依据是: 根路径成本最低 直连(上游)的网桥ID最小 端口(上游)ID最小 根路径成本 根路径成本(开销)-是网桥到根网桥的路径上所有链路的成本之和,默认10M/100M自适应的路径开销为200000 STP选择根端口举例 在非根桥上,选择一个根端口(RP) 选择指定端口的依据 在每个网段上,选择1个指定端口 根桥上的端口全是指定端口 非根桥上的指定端口: 根路径成本最低

端口所在的网桥的ID值较小 端口ID值较小 STP选择指定端口举例 在每个网段选择1个指定端口(DP) STP计算结果 经过STP计算,最终的逻辑结构为无环拓朴 STP举例 经过STP计算后的逻辑拓朴 BPDU(桥协议数据单元) 交换机之间使用BPDU来交换STP信息 BPDU Bridge Protocol Data Unit -桥协议数据单元 使用组播发送BPDU,组播地址为: 01-80-c2-00-00-00 BPDU分为2种类型: 配置BPDU -用于生成树计算 拓朴变更通告(TCN)BPDU -用于通告网络拓朴的变化 BPDU包含的关键字段 STP使用BPDU选择根网桥2-1 交换机启动时,假定自己是根网桥,在向外发送的BPDU中,根网桥ID 字段填写自己的网桥ID STP使用BPDU选择根网桥2-2 当接收到其他交换机发出的BPDU后,比较网桥ID,选择较小的添加到根网桥ID中 STP使用BPDU计算根路径成本2-1 根网桥发送根路径成本为0的BPDU STP使用BPDU计算根路径成本2-2 其他交换机接收到根网桥的BPDU后,在根路径成本上添加接收接口的路径成本,然后转发 生成树端口的状态 生成树计时器 STP状态机 在STP选举过程中,端口是不能转发用户数据的。端口一开始处于阻塞状态,这个状态只能接收BPDU;

理解快速生成树协议(RSTP)

快速生成树协议(802.1w) 注:本文译自思科的白皮书Understanding Rapid Spanning Tree Protocol(802.1w). ---------------------------------------------------------------------------------------------------------------------- 介绍 Catalyst 交换机对RSTP的支持 新的端口状态和端口角色 端口状态(Port State) 端口角色(Port Roles) 新的BPDU格式 新的BPDU处理机制 BPDU在每个Hello-time发送 信息的快速老化 接收次优BPDU 快速转变为Forwarding状态 边缘端口 链路类型 802.1D的收敛 802.1w的收敛 Proposal/Agreement 过程 UplinkFast 新的拓扑改变机制 拓扑改变的探测 拓扑改变的传播 与802.1D兼容 结论 ---------------------------------------------------------------------------------------------------------------------- 介绍 在802.1d 生成树(STP)标准设计时,认为网络失效后能够在1分钟左右恢复,这样的性能是足够的。随着三层交换引入局域网环境,桥接开始与路由解决方案竞争,后者的开放最短路由协议(OSPF)和增强的内部网关路由协议(EIGRP)能在更短的时间提供备选的路径。 思科引入了Uplink Fast、Backbone Fast和Port Fast等功能来增强原始的802.1D标准以缩短桥接网络的收敛时间,但这些机制的不足之处在于它们是私有的,并且需要额外的配置。快速生成树协议(RSTP;IEEE802.1w)可以看作是802.1D标准的发展而不是革命。802.1D 的术语基本上保持相同,大部分参数也没有改变,这样熟悉802.1D的用户就能够快速的配置新协议。在大多数情况下,不经任何配置RSTP的性能优于思科的私有扩展。802.1w能够基于端口退回802.1D以便与早期的桥设备互通,但这会失去它所引入的好处。

RSTP快速生成树协议的配置课程设计

石河子大学 信息科学与技术学院 <网络技术>课程设计成果报告
2014—2015 学年第一学期
题目名称:
利用快速生成树协议(RSTP) 实现现交换机之间的冗余链路备份
专 班 学
业: 级: 号:
计算机科学与技术 计科 2012(一)班 2012508013 蒋 曹 能 传 凯 东
学生姓名: 指导教师:
完成日期:二○一五

一 月 七




一 课题介绍 ......................................................................................................................................................... - 3 1.1 课题名称 ............................................................................................................................................... - 3 1.2 课题简介 ............................................................................................................................................... - 3 1.3 课题拓展 ............................................................................................................................................... - 3 二 RSTP 简介....................................................................................................................................................... - 3 三 实验环境介绍 ................................................................................................................................................. - 5 3.1 实验软硬件环境 ................................................................................................................................... - 5 3.2 实验参数 ............................................................................................................................................... - 5 3.3 实验拓扑图 ........................................................................................................................................... - 8 四 实验内容 ......................................................................................................................................................... - 8 五 实验详细步骤 ................................................................................................................................................. - 9 5.1 绘制实验拓扑 ....................................................................................................................................... - 9 5.2 交换机及 PC 的基本配置 .................................................................................................................... - 9 5.3 Spanning-tree 的配置 .......................................................................................................................... - 13 5.3 链路测试 ............................................................................................................................................. - 14 六 课题总结 ....................................................................................................................................................... - 17 附录 A 参考文献................................................................................................................................................ - 18 -

华为stp生成树协议笔记

STP 为什么会有stp 为了保证可靠,设计了一种环网拓扑,又因为交换机的工作原理,会出现环路问题,为了解决环路,才有了stp生成树 1 mac地址表震荡 2 广播风暴 作用:在保证可靠的基础上,解决环路问题 原理:阻塞端口(预备端口)通过选举阻塞端口,来防止环路 1 根桥(根交换机): 1 比较每台交换机上的网桥id (优先级+mac地址)越小越优先 默认优先级 32768 修改优先级修改的时候要改成4096的倍数 交换机上有默认的stp版本为mstp (多实例生成树)stp (生成树)rstp (快速生成树) [系统]stp mode stp 修改stp的模式 Stp priority 4096 修改优先级 2 根端口:非根交换机到达根交换机的最优端口 比较规则 1 路径开销值 2 对端网桥id 3 对端对口id 4 本端端口id (hub) 3 指定端口:每条链路上到达根交换机最优端口根交换机上所有端口都是指定端口 比较规则 1 路径开销 2 本端网桥id

3 本端端口id (端口优先级和端口编号)端口优先级默认是128 4 剩下的端口就叫做阻塞端口 Stp中的报文交互 BPDU 桥协议数据单元 两种bpdu 1 配置bpdu 作用:用于角色(端口)选举 维护网络拓扑 2秒1次最多20秒20 秒没有根的回应,则认为根down掉 2 tcn bpdu 拓扑变化bpdu 作用:当拓扑发生变化时,会发tcn bpdu Bpdu 字段 1 bpdu flsges标识字段 Tca 位拓扑变化确认位 Tc 位拓扑变化位 发生变化时置1 2 root identifier 根网桥id 3 root path cost 到达根的开销值 4 bridge id 本交换机的网桥id 5 port id 端口id 0x8001 前面的80 代表优先级128 , 01代表端口号 6 message age 消息寿命每经过一台交换机message age +1 7 max age 最大寿命 20 秒 8 hello time 2秒 9 forward delay 转发延迟 15秒 端口的状态变化 1 disable 开启stp时特点:不进行stp计算 2 blocking 阻塞端口直接进入blocking 状态 3 listening 非阻塞端口才进入侦听状态特点:加速mac地址表老化 中间有15秒的间隔时间,目的是为了加速mac地址表老化,mac地址表老化时间300秒 4 learning 学习状态 中间有相隔15秒的时间,加速mac地址表的学习 5 forwarding 转发状态

STP 生成树协议配置

实验八生成树配置 实验1 【实验名称】 生成树协议STP 【实验目的】 理解生成树协议STP的配置及原理。 【背景描述】 某学校为了开展计算机教学和网络办公,建立了一个计算机教室和一个校办公区,这两处的计算机网络通过两台交换机互连组成内部校园网,为了提高网络的可靠性,网络管理员用2条链路将交换机互连,现要在交换机上做适当配置,使网络避免环路。 本实验以2台S2126G交换机为例,2台交换机分别命名为SwitchA, SwitchB。PC1与PC2在同一个网段,假设IP地址分别为192.168.0.137,192.168.0.136,网络掩码为255.255.255.0 。 【实现功能】 使网络在有冗余链路的情况下避免环路的产生,避免广播风暴等。 【实验拓扑】 F0/3F0/3 【实验设备】 S2126G(2台) 【实验步骤】

第一步:在每台交换机上开启生成树协议.例如对SwitchA做如下配置: SwitchA#configure terminal !进入全局配置模式 SwitchA(config)#spanning-tree !开启生成树协议 SwitchA(config)#end 验证测试:验证生成树协议已经开启 SwitchA#show spanning-tree !显示交换机生成树的状态 StpVersion : MSTP SysStpStatus : Enabled BaseNumPorts : 24 MaxAge : 20 HelloTime : 2 ForwardDelay : 15 BridgeMaxAge : 20 BridgeHelloTime : 2 BridgeForwardDelay : 15 MaxHops : 20 TxHoldCount : 3 PathCostMethod : Long BPDUGuard : Disabled BPDUFilter : Disabled ###### MST 0 vlans mapped : All BridgeAddr : 00d0.f8ef.9e89 Priority : 32768 TimeSinceTopologyChange : 0d:0h:0m:8s TopologyChanges : 0 DesignatedRoot : 800000D0F8EF9D09 RootCost : 200000 RootPort : Fa0/1 CistRegionRoot : 800000D0F8EF9E89 CistPathCost : 0 SwitchA#show spanning-tree interface fastthernet 0/1 !显示交换机接口fastthernet 0/1的状态 PortAdminPortfast : Disabled PortOperPortfast : Disabled PortAdminLinkType : auto PortOperLinkType : point-to-point PortBPDUGuard: Disabled PortBPDUFilter: Disabled

Cisco快速生成树协议RSTP协议原理及配置

Cisco快速生成树协议RSTP协议原理及配置

实验8 Cisco 快速生成树协议RSTP 协议原理及配置 一、相关知识介绍 1、生成树协议的主要功能有两个:一是在利用生成树算法、在以太网络中,创建一个以某台交换机的某个 端口为根的生成树,避免环路。二是在以太网络拓扑发生变化时,通过生成树协议达到收敛保护的目的。 2、根网桥的选择流程: (1)第一次启动交换机时,自己假定是根网桥,发出BPDU报文宣告。 (2)每个交换机分析报文,根据网桥ID选择根网桥,网桥ID小的将成为根网桥(先比较网桥优先级,如果相等,再比较MAC地址)。 (3)经过一段时间,生成树收敛,所有交换机都同意某网桥是根网桥。 (4)若有网桥ID值更小的交换机加入,它首先通告自己为根网桥。其它交换机比较后,将它当作新的根网桥而记录下来。 3、RSTP 协议原理 STP并不是已经淘汰不用,实际上不少厂家目前还仅支持STP。STP的最大缺点就是他的收敛时间太长,对于现在网络要求靠可靠性来说,这是不允许的,快速生成树的目的就是加快以太网环路故障收敛 的速度。 (1)RSTP 5种端口类型 STP定义了4种不同的端口状态,监听(Listening),学习(Learning),阻断(Blocking)和转发(Forwarding),其端口状态表现为在网络拓扑中端口状态混合(阻断或转发),在拓扑中的角色(根 端口、指定端口等等)。在操作上看,阻断状态和监听状态没有区别,都是丢弃数据帧而且不学习MAC 地址,在转发状态下,无法知道该端口是根端口还是指定端口。RSTP有五种端口类型。根端口和指定端口这两个角色在RSTP中被保留,阻断端口分成备份和替换端口角色。生成树算法(STA)使用BPDU来决定端口的角色,端口类型也是通过比较端口中保存的BPDUB来确定哪个比其他的更优先。 1)根端口:非根桥收到最优的BPDU配置信息的端口为根端口,即到根桥开销最小的端口,这点和STP 一样。请注意图8-16上方的交换机,根桥没有根端口。按照STP的选择根端口的原则,SW-1和SW-2和根连接的端口为根端口。 2)指定端口:与STP一样,每个以太网网段段内必须有一个指定端口。假设SW-1的BID比SW-2 优先,而且SW-1的P1口端口ID比P2优先级高,那么P1为指定端口,如图8-17所示。

交换机快速生成树协议配置

交换机生成树协议配置 一、实验目的: 1.理解生成树协议工作原理; 2.掌握快速生成树协议的配置方法。 二、实验环境: 操作系统:windows XP professional SP3 Cisco公司开发的packet tracer软件平台。 三、实验步骤: 1.打开cisco packet tracer软件平台,构建网络拓扑图,如图1.1; 其中两台普通台式机的FastEthernet端口分别与两台2960交换机的FastEthernet0/7 端口用双绞线连接,两台交换机再用双绞线连接,端口号对应都是fastEthernet0/1、FastEhernet0/2。 图1.1 2.配置PC1的IP Address:192.168.0.7,Subnet Mask:255.255.255.0 Gateway:192.168.0.1 PC2的IP Address:192.168.0.17,Subnet Mask:255.255.255.0 Gateway:192.168.0.1 此时两台主机是已经彼此连通,可用ping命令检测,如图1.2;

图1.2 交换机之间经过传送BPDU协议单元选出跟交换机和根端口,以确定各端口的转发状态。有图1.1可看出两台交换机相连之间的四个端口有三个是“绿色的”,即处于转发,还有一个端口是“红色的”,即处于堵塞状态。一般交换的的生成树协议是开启的,生成树协议的开启保证了交换机之间的物理环路的断开,在逻辑上让一个端口处于“堵塞状态”备用,这样避免了网络上的广播风暴;当原来的网络不通时,即启用备用的堵塞端口,并进行重新选举根交换机和根端口。 但是,要更改生成树协议为快速生成树协议,需要手动进行配置。 3.对两个交换机都进行配置快速生成树协议,步骤相同如下: 首先划分fastEthernet0/7端口到vlan 2(即port vlan)如图1.3; 然后设置fastEthernet0/1-2两个端口为trunk端口(即tag vlan),如图1.4; 最后更改生成树协议为“快速生成树协议”,如图1.5。 图1.3

快速生成树协议(RSTP)

快速生成树协议(RSTP)

目录 1.RSTP定义 (1) 2.STP技术原理 (1) 3.端口状态 (1) 4.RSTP的P/A机制 (4) 5.RSTP相对于STP的改进 (4)

RSTP(生成树协议) 1. RSTP定义 快速生成树协议(rapid spanning Tree Protocol IEEE802.1w)是由生成树协议(STP IEEE802.1d)发展而来,该协议在网络结构发生变化时,能更快的收敛网络。它比802.1d 多了两种端口类型:预备端口类型(alternate port)和备份端口类型。 2. STP技术原理 RSTP是从STP发展而来,其实现基本思想与STP一致,但它更进一步处理了网络临时失去连通性的问题。RSTP规定在某些情况下,处于Blocking状态的端口不必经历2倍的Forward Delay时延而可以直接进入转发状态。如网络边缘端口(即直接与终端相连的端口),可以直接进入转发状态,不需要任何时延。或者是网桥旧的根端口已经进入Blocking状态,并且新的根端口所连接的对端网桥的指定端口仍处于Forwarding状态,那么新的根端口可以立即进入Forwarding状态。即使是非边缘的指定端口,也可以通过与相连的网桥进行一次握手,等待对端网桥的赞同报文而快速进入Forwarding状态。当然,这有可能导致进一步的握手,但握手次数会受到网络直径的限制。 功能介绍生成树协议最主要的应用是为了避免局域网中的网络环回,解决成环以太网网络的“广播风暴”问题,从某种意义上说是一种网络保护技术,可以消除由于失误或者意外带来的循环连接。STP也提供了为网络提供备份连接的可能,可与SDH保护配合构成以太环网的双重保护。新型以太单板支持符合ITU-T 802.1d标准的生成树协议STP及802.1w规定的快速生成树协议RSTP,收敛速度可达到1s。 3. 端口状态 (1)STP(802.1d)端口状态 STP定义了的5种端口状态:阻塞blocking、监听listening、学习learning、转发forwarding、关闭(disable)。 Blocking:处于这个状态的端口不能够参与转发数据报文,但是可以接收配置消息,并交给CPU进行处理。不过不能发送配置消息,也不进行地址学习。 Listening:处于这个状态的端口也不参与数据转发,不进行地址学习;但是可以接收并发送配置消息。 Learning:处于这个状态的端口同样不能转发数据,但是开始地址学习,并可以接收、处理和发送配置消息。 Forwarding:一旦端口进入该状态,就可以转发任何数据了,同时也进行地址学习和配置消息的接收、处理和发送。

STP协议原理及配置

Cisco基础:STP协议原理及配置 【内容摘要】一、stp概述stp(生成树协议)是一个二层管理协议。在一个扩展的局域网中参与stp的所有交换机之间通过交换桥协议数据单元bpdu(bridgeprotocoldataunit)来实现;为稳定的生成树拓扑结构选择一个根桥;为每个交换网段选择一台指定交换机;将冗余路径上的交换机置为blocking,来消除网络中的环路。ieee802.1d是最早关于stp的标准,它提供了网络的动态冗余切换机制。stp使您能…… ----------------------------------------------------------------------------- 一、stp概述 stp(生成树协议)是一个二层管理协议。在一个扩展的局域网中参与stp的所有交换机之间通过交换桥协议数据单元bpdu(bridge protocol data unit)来实现;为稳定的生成树拓扑结构选择一个根桥;为每个交换网段选择一台指定交换机;将冗余路径上的交换机置为blocking,来消除网络中的环路。 ieee 802.1d是最早关于stp的标准,它提供了网络的动态冗余切换机制。stp使您能在网络设计中部署备份线路,并且保证: * 在主线路正常工作时,备份线路是关闭的。 * 当主线路出现故障时自动使能备份线路,切换数据流。 rstp(rapid spanning tree protocol)是stp的扩展,其主要特点是增加了端口状态快速切换的机制,能够实现网络拓扑的快速转换。 1.1 设置stp模式 使用命令config spanning-tree mode可以设置stp模式为802.1d stp或者802.1w rstp. 1.2 配置stp 交换机中默认存在一个default stp域。多域stp是扩展的802.1d,它允许在同一台交换设备上同时存在多个stp域,各个stp域都按照802.1d运行,各域之间互不影响。它提供了一种能够更为灵活和稳定网络环境,基本实现在vlan中计算生成树。 1.2.1 创建或删除stp 利用命令create stpd和delete stpd可以创建或删除stp. 缺省的default stp域不能手工创建和删除。 1.2.2 使能或关闭stp 交换机中stp缺省状态是关闭的。利用命令config stpd可以使能或关闭stp. 1.2.3 使能或关闭指定stp的端口 交换机中所有端口默认都是参与stp计算的。使用命令config stpd port可以使能或关闭指定的stp端口。 1.2.4 配置stp的参数 运行某个指定stp的stp协议后,可以根据具体的网络结构调整该stp的一些参数。交换机中可以调整以下的stp协议参数: * bridge priority * hello time * forward delay * max age 另外每个端口上可以调整以下参数: * path cost * port priority

第06章 RSTP(快速生成树协议)配置

第六章RSTP(快速生成树协议)配置 6.1 生成树简介 STP(Spanning Tree Protocol)是生成树协议的英文缩写。STP的目的是通过协商一条到根交换机的无环路径来避免和消除网络中的环路。它通过一定的算法,判断网络中是否存在环路并阻塞冗余链路,将环型网络修剪成无环路的树型网络,从而避免了数据帧在环路网络中的增生和无穷循环。 STP在网络中选择一个被称为根交换机的参考点,然后确定到该参考点的可用路径。如果它发现存在冗余链路,它将选择最佳的链路来负责数据包的转发,同时阻塞所有其它的冗余链路。如果某条链路失效了,就会重新计算生成树拓扑结构,自动启用先前被阻塞的冗余链路,从而使网络恢复通信。 MyPower S41xx以太网交换机所实现的快速生成树协议RSTP,是生成树协议的优化版。其快速体现在根端口和指定端口进入转发状态的延时在某种条件下大大缩短,从而缩短了网络拓扑稳定需要的时间。 6.2 RSTP配置任务列表 只有启动RSTP后各项配置任务才能生效,在启动RSTP之前可以配置设备或以太网端口的相关参数。RSTP关闭后这些配置参数仍然有效。 RSTP 主要配置任务列表如下: ◆启动/关闭设备RSTP 特性 ◆启动/关闭端口RSTP 特性 ◆配置RSTP 的工作模式 ◆配置交换机的Bridge 优先级 ◆配置交换机的Forward Delay 时间 ◆配置交换机的Hello Time时间 ◆配置交换机的Max Age 时间 ◆配置交换机路径耗费值的版本号

◆配置特定端口是否可以作为EdgePort ◆配置端口的Path Cost ◆配置端口的优先级 ◆配置端口是否与点对点链路相连 ◆配置端口的mCheck 变量 6.2.1 启动/关闭设备RSTP特性 配置命令 spanning-tree {enable|disable} 【配置模式】全局配置模式。 【缺省情况】缺省RSTP功能是“enable”。 6.2.2 启动/关闭端口RSTP特性 为了灵活的控制RSTP工作,可以关闭指定以太网端口的RSTP特性,使这些端口不参与生成树计算。 配置命令 【配置模式】端口配置模式。 【缺省情况】各个端口缺省情况下均参与RSTP算法。 注意: 当这些端口不参与生成树的计算时,则该端口在链路up时始终处于Forwarding状态并进行数据转发,有可能会形成回路。 6.2.3 配置RSTP 的工作模式 RSTP 可以和STP互通,如果交换网络中存在运行STP的交换机,可以通过该命令配置当前的RSTP运

多生成树协议

多生成树协议 MSTP(Multiple Spanning Tree Protocol) MST(Multiple Spanning Tree,多生成树) 多生成树(MST)是把IEEE802.1w 的快速生成树(RST)算法扩展而得到的。 采用多生成树(MST),能够通过干道(trunks)建立多个生成树,关联VLANs 到相关的生成树进程,每个生成树进程具备单独于其他进程的拓扑结构;MST提供了多个数据转发路径和负载均衡,提高了网络容错能力,因为一个进程(转发路径)的故障不会影响其他进程(转发路径)。 一个生成树进程只能存在于具备一致的VLAN进程分配的桥中,必须用同样的MST配置信息来配置一组桥,这使得这些桥能参和到一组生成树进程中,具备同样的MST配置信息的互连的桥构成多生成树区(MST Region ) 多生成树(MST)使用修正的快速生成树(RSTP)协议,叫做多生成树协议(MSTP) MSTP(Multiple Spanning Tree Protocol,多生成树协议) 将环路网络修剪成为一个无环的树型网络,避免报文在环路网络中的增生和无限循环,同时还提供了数据转发的多个冗余路径,在数据转发过程中实现VLAN 数据的负载均衡。MSTP 兼容STP 和RSTP,并且可以弥补STP 和RSTP 的缺陷。它既可以快速收敛,也能使不同VLAN 的流量沿各自的路径分发,从而为冗余链路提供了更好的负载分担机制。 MSTP的特点如下: MSTP设置VLAN映射表(即VLAN和生成树的对应关系表),把VLAN和生成树联系起来;通过增加“实例”(将多个VLAN整合到一个集合中)这个概念,将多个VLAN捆绑到一个实例中,以节省通信开销和资源占用率。 MSTP把一个交换网络划分成多个域,每个域内形成多棵生成树,生成树之间彼此独立。 MSTP将环路网络修剪成为一个无环的树型网络,避免报文在环路网络中的增生和无限循环,同时还提供了数据转发的多个冗余路径,在数据转发过程中实现VLAN 数据的负载分担。 MSTP兼容STP和RSTP

试验二快速生成树协议配置

实验二快速生成树协议配置 一、实验目的 理解快速生成树协议RSTP的原理及配置。 二、实验设备 二层交换机(2台)、主机(2台)、直连线(4条) 三、实验原理 生成树协议(spanning-tree),作用是在交换网络中提供冗余备份链路,并且解决交换网络中的环路问题。生成树协议是利用SPA算法(生成树算法),在存在交换环路的网络中生成一个没有环路的树形网络。运用该算法将交换网络冗余的备份链路逻辑上断开,当主要链路出现故障时,能够自动的切换到备份链路,保证数据的正常转发。生成树协议目前常见的版本有STP(生成树协议IEEE802.1d)、RSTP(快速生成树协议IEEE802.1w)、MSTP(多生成树协议IEEE802.1s)。 生成树协议的特点是收敛时间长。当主要链路出现故障以后,到切换到备份链路需要50秒的时间。快速生成树协议(RSTP)在生成树协议的基础上增加了两种端口角色:替换端口(alternate Port)和备份端口(backup Port),分别做为根端口(root Port)和指定端口(designated Port)的冗余端口。当根端口出现故障时,冗余端口不需要经过50秒的收敛时间,可以直接切换到替换端口或备份端口。从而实现RSTP协议小于1秒的快速收敛。四、实验内容 为了提高网络的可靠性,用2条链路将交换机互连,同时要求在交换机上做快速生成树协议配置,使网络避免环路。本实验以两台S2126交换机为例,两台交换机分别命名为SwitchA,SwitchB。PC1和PC2在同一网段,假设IP地址分别为192.168.0.137,192.168.0.136,网络掩码为255.255.255.0。实验拓扑如图2所示。 五、实验步骤 步骤1:对交换机进行基本配置。 Switch#configure terminal

生成树协议STP和快速生成树协议RSTP的配置及原理

生成树协议STP和快速生成树协议RSTP的配置及原理 生成树协议STP和快速生成树协议RSTP: 生成树协议的由来:由于网络中会存在单点故障而导致网络无法访问,系统瘫痪,因此在网络中提供冗余链路即引入备份链路来解决单点故障问题,但是------这样做的好处是:减少单点故障,增加网络可靠性;缺点是:产生交换环路,会导致广播风暴、多帧复制、MAC地址表抖动。因此生成树协议是为了提供冗余链路,解决环路问题(作用)。 生成树协议的原理:使冗余端口置于“阻塞状态”;网络中的计算机在通信时,只有一条链路生效;当原本的链路出现故障时,将处于“阻塞状态”的端口重新打开,从而确保网络连接稳定可靠。 实验目的:使网络在有冗余链路的情况下避免环路的产生,避免广播风暴等 实验拓扑:

配置过程:(此实验需要先配置再连线,只能在真实机上做) 生成树协议STP: 1.开启生成树协议:(A和B同) switchA#configure terminal 进入全局配置模式 switchA(config)#spanning-tree 开启生成树协议 2.设置生成树模式:(A和B同) switchA(config)#spanning-treemode stp !设置生成树模式为STP(802.1D)验证测试:验证生成树协议模式为802.1D 3.验证生成树协议已经开启:(A和B同) switchA#showspanning-tree !显示交换机生成树的状态 switchA#showspanning-tree interface fastEthernet 0/1 !显示交换机接口fastethernet0/1的状态 switchA#showspanning-tree interface fastEthernet 0/2 !显示交换机接口fastethernet0/2的状态 4.测试结果: C:\Users\pdsu>ping -t192.168.10.1 正在Ping192.168.10.1 具有32 字节的数据: 请求超时。 来自192.168.10.1 的回复: 字节=32 时间=1ms TTL=64

多生成树协议详解

多生成树协议详解 文章介绍的多生成树协议的历史,以及它的特点。并对相关的一些容易让人误解的术语做了澄清。最后以一个配置实例讲解如何通过多生成树协议实现基于VLAN的负载均衡。 标签:多生成树协议;STP;VLAN;區域;实例;负载均衡 网上配置多生成树协议的例子是非常多的,但它们有个共同特点:只讲配置步骤,不讲原理。这好比教人武术只讲招式不讲心法一样,搞不好将人引入歧途。厂家为何这么做,肯定有其目的,我们就不揣测了。还是自己动手,丰衣足食吧。引入生成树协议的目的是为了防止交换式以太网因为网络中存在环路,诱发广播风暴。最初的标准是STP(Spanning Tree Protocol),因为它的收敛速度太慢,于是又引入了RSTP(Rapid STP)。RSTP大大提高了生成树协议的收敛速度,并废除了和取代了STP。交换式网络的核心设备是交换机,和路由器不同,它会转发广播。因此,交换机无法隔离广播,多个交换机连接起来将构成一个大的广播域。但是VLAN的出现改变了这种状况。通过VLAN技术我们可以把一个大的LAN划分为若干个逻辑上的VLAN,VLAN之间的数据是相互隔离的,除非通过路由器,它们之间无法通信。这也意味着支持VLAN的交换机可以像路由器一样隔离广播。VLAN技术可以将广播风暴限制于VLAN的范围内。基于此,STP协议应该做个重大修改。不是在整个LAN的范围内计算生成树,而是每个VLAN独立计算一颗生成树。多生成树协议(Multiple STP,MST)就是VLAN 版的RSTP,为每个VLAN计算一颗RSTP生成树。了解到这一点,而且你熟悉RSTP的配置,配置MSTP就不是什么大的问题了。 一般而言,一个VLAN只是LAN的一部分,不会覆盖整个LAN。因此基于VLAN计算生成树可以减少工作量。MSTP最好和VTP(VLAN Trun Protocol)协议结合起来,因为VTP可以收集VLAN在LAN中的分布信息。如果某个交换机的所有端口都不是某个VLAN的成员,那么这个交换机可以排除于这个VLAN的RSTP生成树之外。不过要注意的是用于交换机级联的端口一般设置为trunk模式,默认情况下,任何VLAN的流量都可以通过trunk端口,因此我们可以将trunk端口看作任何VLAN的成员。但在实际当中,经过trunk端口的VLAN数量一般是有限的,我们最好将trunk端口允许通过哪些VLAN流量做个明确的限定。容易让初学者迷惑的是几个术语。 一个术语是区域(Region)。如果LAN比较大的话,可以考虑将LAN划分为若干区域,分开来管理。这就和OSPF将Internet划分为若干自治系统来管理一个道理。但实际上很少有LAN会大到非要划分为若干区域来管理。一般来说,整个LAN就是一个区域。我们只需在这个默认的区域内配置即可,不必考虑区域划分的问题。 另一个术语是实例(Instance)。这名字取得可不怎么样,一些文章将其解释得神神秘秘,其实它就是一种“组”。打个比方,默认情况下,交换机的端口都是

快速生成树协议配置

0分计。 4.实验报告文件以PDF格式提交。 【实验题目】生成树协议 【实验目的】理解快速生成树协议的配置及原理。使网络在有冗余链路的情况下避免环路的产生,避免广播风暴等。 【实验内容】 (1)完成实验教程实例5的实验,回答实验提出的问题及实验思考。(P105) (2)抓取生成树协议数据包,分析桥协议数据单元(BPDU)。 (3)在实验设备上查看VLAN生成树,并学会查看其它相关重要信息。 【实验要求】 一些重要信息信息需给出截图。 注意实验步骤的前后对比! 【实验记录】(如有实验拓扑请自行画出,要求自行画出拓扑图) (1)为PC1和PC2配置IP地址和掩码,将设备连接起来,启动wireshark抓包软件。 查看两台交换机生成树的配置信息,如下图 分别PC1 ping PC2 和PC1 ping PC2以外的IP,观察这两种情况,第一种情况包增长更快。由下图可知,交换机发生了“广播风暴”;PC也产生了死锁。

ping PC2如上图1,可知包增长飞快,而ping 以外的IP如上图2,增长非常慢。所以,可知交换机产生了“广播风暴”。 (2)拔下端口2跳线,然后分别对交换机A和交换机B进行基本配置和快速生成树 协议配置。如下: 如上图所示,配置了快速生成树协议,交换机之间就不会产生“广播风暴“了,而且包增长也十分平稳。生成树协议,起到了一个导向的作用。 (3)验证测试,如下图所示:

由以上信息可知,跟交换机是Switch B,根端口是0。 (4)设置交换机的优先级,设置Switch A的优先级为4096,然后验证Switch A的优先

级: 实验结果,当有两个端口都连在一个共享介质上,交换机会选择一个高优先级的端口进入forwarding状态,低优先级的端口进入discarding状态。如果两个端口的优先级一样就选端口小的那个进入forwarding状态。 (5)验证交换机Switch B的端口1和端口2的状态。

理解快速生成树协议(802.1w)

理解快速生成树协议(802.1w) 注:本文译自思科的白皮书Understanding Rapid Spanning Tree Protocol(802.1w). ---------------------------------------------------------------------------------------------------------------------- 介绍 Catalyst 交换机对RSTP的支持 新的端口状态和端口角色 端口状态(Port State) 端口角色(Port Roles) 新的BPDU格式 新的BPDU处理机制 BPDU在每个Hello-time发送 信息的快速老化 接收次优BPDU 快速转变为Forwarding状态 边缘端口 链路类型 802.1D的收敛 802.1w的收敛 Proposal/Agreement 过程 UplinkFast 新的拓扑改变机制 拓扑改变的探测 拓扑改变的传播 与802.1D兼容 结论 ---------------------------------------------------------------------------------------------------------------------- 介绍 在802.1d 生成树(STP)标准设计时,认为网络失效后能够在1分钟左右恢复,这样的性能是足够的。随着三层交换引入局域网环境,桥接开始与路由解决方案竞争,后者的开放最短路由协议(OSPF)和增强的内部网关路由协议(EIGRP)能在更短的时间提供备选的路径。 思科引入了Uplink Fast、Backbone Fast和Port Fast等功能来增强原始的802.1D标准以缩短桥接网络的收敛时间,但这些机制的不足之处在于它们是私有的,并且需要额外的配置。快速生成树协议(RSTP;IEEE802.1w)可以看作是802.1D标准的发展而不是革命。802.1D 的术语基本上保持相同,大部分参数也没有改变,这样熟悉802.1D的用户就能够快速的配置新协议。在大多数情况下,不经任何配置RSTP的性能优于思科的私有扩展。802.1w能够基于端口退回802.1D以便与早期的桥设备互通,但这会失去它所引入的好处。

相关文档
最新文档