南京大学2007年数学分析考研试题

南京大学2007年数学分析考研试题
南京大学2007年数学分析考研试题

数学分析期末考试题

数学分析期末考试题 一、单项选择题(从给出的四个答案中,选出一个最恰当的答案填入括号内,每小题2分, 共20分) 1、 函数)(x f 在[a,b ]上可积的必要条件是( ) A 连续 B 有界 C 无间断点 D 有原函数 2、函数)(x f 是奇函数,且在[-a,a ]上可积,则( ) A ?? =-a a a dx x f dx x f 0 )(2)( B 0)(=?-a a dx x f C ?? -=-a a a dx x f dx x f 0 )(2)( D )(2)(a f dx x f a a =?- 3、 下列广义积分中,收敛的积分是( ) A ? 1 1dx x B ? ∞ +1 1dx x C ? +∞ sin xdx D ?-1 131dx x 4、级数 ∑∞ =1 n n a 收敛是 ∑∞ =1 n n a 部分和有界且0lim =∞ →n n a 的( ) A 充分条件 B 必要条件 C 充分必要条件 D 无关条件 5、下列说法正确的是( ) A ∑∞ =1n n a 和 ∑∞ =1 n n b 收敛, ∑∞ =1 n n n b a 也收敛 B ∑∞ =1 n n a 和 ∑∞ =1 n n b 发散, ∑∞ =+1 )(n n n b a 发散 C ∑∞ =1n n a 收敛和 ∑∞ =1 n n b 发散, ∑∞ =+1 )(n n n b a 发散 D ∑∞=1 n n a 收敛和∑∞ =1 n n b 发散, ∑∞ =1 n n n b a 发散 6、 )(1 x a n n ∑∞ =在[a ,b ]收敛于a (x ),且a n (x )可导,则( ) A )()('1'x a x a n n =∑∞ = B a (x )可导 C ?∑? =∞ =b a n b a n dx x a dx x a )()(1 D ∑∞ =1 )(n n x a 一致收敛,则a (x )必连续 7、下列命题正确的是( )

数学分析试题

(六)一年级《数学分析》考试题 一 判断题:(满分10分,每小题2分) 1、设数列{}n a 递增且a a n n =∞ →lim (有限),则有{}n a a sup =; ( ) 2、设数列)(x f 在点0x 的某领域)(0x U 内有定义,若对)(00x U x n ∈?,当0x x n →时, 数列{})(n x f 都收敛于同一极限,则函数)(x f 在带点0x 连续;( ) 3、设数列)(x f y =在点0x 的某领域内有定义,若存在实数A ,使0→?x 时,)()()(00x o x A x f x x f ?=?--?+,则)(0'x f 存在且A x f =)(0';( ) 4、若0)()(2'1'==x f x f ,)(0)(2''1''x f x f ,则有)()(21x f x f ;( ) 5、设?+=c x F dx x f )()(,?+=c x G dx x g )()(,则当)()(x G x F ≠时,有)()(x g x f ≠; ( ) 二 填空题:(满分15分,每小题3分) 1、∑+=+=1 61291n k n k n a , =∞ →n n a lim ; 2、函数3 ln 3)(--=x x x f 全部间断点是 ; 3、)1ln()(2x x f +=,已知56)2()(lim 000=--→h h x f x f h ,=0x ; 4、函数193)(23+--=x x x x f 的既递减又下凸的区间是 ; 5、?+=c x dx x f 2sin )(,?=dx x xf )(' ; 三 计算题:(满分36分,每小题6分) 1、111 1lim 30-+-+→x x x ; 2、求函数54 )15(4)(+-=x x x f 的极值; 3、?+12x x dx ; 4、?++dx x x )1ln(2 ;

数据分析期末试题及答案

数据分析期末试题及答案 一、人口现状.sav数据中是1992年亚洲各国家和地区平均寿命(y)、按购买力计算的人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)的数据,试用多元回归分析的方法分析各国家和地区平均寿命与人均GDP、成人识字率、一岁儿童疫苗接种率的关系。(25分) 解: 1.通过分别绘制地区平均寿命(y)、按购买力计算的人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)之间散点图初步分析他们之间的关系 上图是以人均GDP(x1)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间没有呈线性关系。尝试多种模型后采用曲线估计,得出 表示地区平均寿命(y)与人均GDP(x1)的对数有线性关系

上图是以成人识字率(x2)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间基本呈正线性关系。 上图是以疫苗接种率(x3)为横轴,地区平均寿命(y)为纵轴的散点图,由图可知,他们之间没有呈线性关系 。 x)为横轴,地区平均寿命(y)为纵轴的散点图,上图是以疫苗接种率(x3)的三次方(3 3 由图可知,他们之间呈正线性关系 所以可以采用如下的线性回归方法分析。

2.线性回归 先用强行进入的方式建立如下线性方程 设Y=β0+β1*(Xi1)+β2*Xi2+β3* X+εi i=1.2 (24) 3i 其中εi(i=1.2……22)相互独立,都服从正态分布N(0,σ^2)且假设其等于方差 R值为0.952,大于0.8,表示两变量间有较强的线性关系。且表示平均寿命(y)的95.2%的信息能由人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)一起表示出来。 建立总体性的假设检验 提出假设检验H0:β1=β2=β3=0,H1,:其中至少有一个非零 得如下方差分析表 上表是方差分析SAS输出结果。由表知,采用的是F分布,F=58.190,对应的检验概率P值是0.000.,小于显著性水平0.05,拒绝原假设,表示总体性假设检验通过了,平均寿命(y)与人均GDP(x1)、成人识字率(x2),一岁儿童疫苗接种率(x3)之间有高度显著的的线性回归关系。

【参考借鉴】南京大学数学分析考研试题及解答.doc

南京大学20KK 年数学分析考研试题 一设()f x 为1R 上的周期函数,且lim ()0x f x →+∞ =,证明f 恒为0。 二设定义在2R 上的二元函数(,)f x y 关于x ,y 的偏导数均恒为零,证明f 为常值函数。 三设()n f x (1,2,...)n =为n R 上的一致连续函数,且lim ()()n n f x f x →∞ =,1x R ?∈, 问:()f x 是否为连续函数?若答案为“是”,请给出证明;若答案为“否”,请给出反例。 四是否存在[0,1]区间上的数列{}n x ,使得该数列的极限点(即聚点)集为[0,1],把极限点集换成(0,1),结论如何?请证明你的所有结论。 五设()f x 为[0,)+∞上的非负连续函数,且0()f x dx +∞ <+∞?,问()f x 是否在[0,)+∞上有 界?若答案为“是”,请给出证明;若答案为“否”,请给出反例。 六计算由函数211()2f x x = 和22()1f x x =-+的图像在平面2R 上所围成区域的面积。 七计算积分 222(22)x xy y R e dxdy -++??。 八计算积分xyzdxdydz Ω ???,其中Ω为如下区域: 3{(,,):0,0,0,}x y z R x y z x y z a Ω=∈≥≥≥++≤, a 为正常数。 九设0n a >(1,2,...)n =,1n n k k S a == ∑,证明:级数21n n n a S ∞=∑是收敛的。 十方程2232327x y z x y z +++-=在(1,2,1)-附近决定了隐函数(,)z z x y =,求2(1,2)z x y ?-??的值。 十一求函数333(,,)f x y z x y z =++在约束条件2x y z ++=,22212x y z ++=下的极值, 并判断极值的类型。 十二设1[0,1]f C ∈,且(0)(1)0f f ==,证明:112 200 1[()][()]4f x dx f x dx '≤??。 十三设()f x 为[0,]π上的连续函数,且对任意正整数1n ≥,均有 0()cos 0f x nxdx π =?,证明:f 为常值函数。 南京大学20KK 年数学分析考研试题解答 一证明设()f x 的周期为T ,0T >,则有()()f x nT f x +=,由条件知, ()lim ()0n f x f x nT →∞ =+=, 结论得证。 二证明因为0f x ?=?,0f y ?=?, f x ??,f y ??在2R 上连续,对任意2(,)x y R ∈,有 (,)(0,0)f x y f -(,)(,)f f x y x x y y x y θθθθ??=?+???0=, 所以(,)(0,0)f x y f =,即(,)f x y 为常值函数。 三解()f x 未必为连续函数。

数学分析试卷及答案6套

数学分析-1样题(一) 一. (8分)用数列极限的N ε-定义证明1n n n =. 二. (8分)设有复合函数[()]f g x , 满足: (1) lim ()x a g x b →=; (2) 0()x U a ?∈,有0 ()()g x U b ∈ (3) lim ()u b f u A →= 用εδ-定义证明, lim [()]x a f g x A →=. 三. (10分)证明数列{}n x : cos1cos 2 cos 1223 (1) n n x n n = +++ ???+收敛. 四. (12分)证明函数1 ()f x x = 在[,1]a (01)a <<一致连续,在(0,1]不一致连续. 五. (12分)叙述闭区间套定理并以此证明闭区间上连续函数必有界. 六. (10分)证明任一齐次多项式至少存在一个实数零点. 七. (12分)确定,a b 使2 lim (1)0x x x ax b →+∞ -+-=. 八. (14分)求函数32()2912f x x x x =-+在15[,]42 -的最大值与最小值. 九. (14分)设函数()f x 在[,]a b 二阶可导, ()()0f a f b ''==.证明存在(,)a b ξ∈,使 2 4 ()()()() f f b f a b a ζ''≥ --. 数学分析-1样题(二) 一. (10分)设数列{}n a 满足: 1a a =, 1()n n a a a n N +=+ ∈, 其中a 是一给定的正常 数, 证明{}n a 收敛,并求其极限. 二. (10分)设0 lim ()0x x f x b →=≠, 用εδ-定义证明0 11 lim ()x x f x b →=.

数学分析(2)期末试题

数学分析(2)期末试题 课程名称 数学分析(Ⅱ) 适 用 时 间 试卷类别 1 适用专业、年级、班 应用、信息专业 一、单项选择题(每小题3分,3×6=18分) 1、 下列级数中条件收敛的是( ). A .1(1)n n ∞ =-∑ B . 1n n ∞ = C . 21(1)n n n ∞=-∑ D . 11(1)n n n ∞ =+∑ 2、 若f 是(,)-∞+∞内以2π为周期的按段光滑的函数, 则f 的傅里叶(Fourier )级数 在 它的间断点x 处 ( ). A .收敛于()f x B .收敛于1 ((0)(0))2f x f x -++ C . 发散 D .可能收敛也可能发散 3、函数)(x f 在],[b a 上可积的必要条件是( ). A .有界 B .连续 C .单调 D .存在原函 数 4、设()f x 的一个原函数为ln x ,则()f x '=( ) A . 1x B .ln x x C . 21 x - D . x e 5、已知反常积分2 (0)1dx k kx +∞ >+? 收敛于1,则k =( ) A . 2π B .22π C . 2 D . 24π 6、231ln (ln )(ln )(1)(ln )n n x x x x --+-+-+L L 收敛,则( ) A . x e < B .x e > C . x 为任意实数 D . 1e x e -<<

二、填空题(每小题3分,3×6=18分) 1、已知幂级数1n n n a x ∞ =∑在2x =处条件收敛,则它的收敛半径为 . 2、若数项级数1 n n u ∞ =∑的第n 个部分和21 n n S n = +,则其通项n u = ,和S = . 3、曲线1 y x = 与直线1x =,2x =及x 轴所围成的曲边梯形面积为 . 4、已知由定积分的换元积分法可得,1 ()()b x x a e f e dx f x dx =??,则a = ,b = . 5、数集(1) 1, 2 , 3, 1n n n n ?? -=??+?? L 的聚点为 . 6、函数2 ()x f x e =的麦克劳林(Maclaurin )展开式为 . 65

1992-2016年南京大学627数学分析考研真题及答案解析-汇编

2017版南京大学《627数学分析》全套考研资料我们是布丁考研网南大考研团队,是在读学长。我们亲身经历过南大考研, 录取后把自己当年考研时用过的资料重新整理,从本校的研招办拿到了最新的真题,同时新添加很多高参考价值的内部复习资料,保证资料的真实性,希望能帮助大家成功考入南大。此外,我们还提供学长一对一个性化辅导服务,适合二战、在职、基础或本科不好的同学,可在短时间内快速把握重点和考点。有任何考南大相关的疑问,也可以咨询我们,学长会提供免费的解答。更多信息,请关注布丁考研网。 以下为本科目的资料清单(有实物图及预览,货真价实): 南京大学《数学分析》全套考研资料 一、南京大学《数学分析》历年考研真题及答案解析 2016年南京大学《数学分析》考研真题(含答案解析) 2015年南京大学《数学分析》考研真题(含答案解析) 2014年南京大学《数学分析》考研真题(含答案解析) 2013年南京大学《数学分析》考研真题(含答案解析) 2012年南京大学《数学分析》考研真题(含答案解析) 2011年南京大学《数学分析》考研真题(含答案解析) 2010年南京大学《数学分析》考研真题(含答案解析) 2009年南京大学《数学分析》考研真题(含答案解析) 2008年南京大学《数学分析》考研真题(含答案解析) 2007年南京大学《数学分析》考研真题(含答案解析) 2006年南京大学《数学分析》考研真题(含答案解析) 2005年南京大学《数学分析》考研真题(含答案解析) 2004年南京大学《数学分析》考研真题(含答案解析) 2003年南京大学《数学分析》考研真题(含答案解析) 2002年南京大学《数学分析》考研真题(含答案解析) 2001年南京大学《数学分析》考研真题(含答案解析) 2000年南京大学《数学分析》考研真题(含答案解析) 1999年南京大学《数学分析》考研真题(含答案解析) 1998年南京大学《数学分析》考研真题(含答案解析) 1997年南京大学《数学分析》考研真题(含答案解析) 1996年南京大学《数学分析》考研真题(含答案解析) 1992年南京大学《数学分析》考研真题(含答案解析) 本试题均配有详细的答案解析过程,并且均为WORD打印版。考研必备! 二、南京大学《数学分析》考研复习笔记 本笔记由学长提供,字迹清晰,知识点总结梳理到位,是一份非常好的辅助复习参考资料,学长推荐! 三、南京大学《数学分析》赠送资料(电子档,邮箱发送) 1、南京大学梅加强《数学分析》经典复习讲义 2、南京大学《数学分析》本科生期中期末试卷 3、南京大学《数学分析》本科生每周作业题汇总

数学分析试题集锦

June21,2006 2002 1.(10) lim x→0( sin x1?cos x . 2.(10)a≥0x1=√2+x n n=1,2,... lim n→∞ x n 3.(10)f(x)[a,a+α]x∈[a,a+α]f(x+α)?f(x)= 1 1?x2+arcsin x f′(x). 5.(10)u(x,y)u ?2u ?x?y + ?2u x2+y2dx dy dz,?z=

x2+y2+z2=az(a>0) 8.(10) ∞ n=1ln cos1 ln(1+x2) 2 √ (2).{n . ?x (4). L(e y+x)dx+(xe y?2y)dy.L O(0,0),A(0,1),B(1,2) O B OAB. √ 2.(15)f(x)=3

4. 15 f (x )[0,1] sup 01 | n ?1 i =0 f (i n ? 1 f (x )dx |≤ M a n 6.(15 ) θ θ(x )= +∞ n =?∞ e n 2 x x >0 7.(15 ) F (α)= +∞ 1 arctan αx x 2?1 dx ?∞<α>+∞ 8.(21 ) R r r 2004 1.( 6 30 ) (1).lim n →?∞ ( 1 n +2 +...+ 1 f (x ) ) 1 3 sin(y 1+n

(5).e x=1+x+x2 n1 4≤e x+y?2. 5.(12)F(x)= Γf(xyz)dxdydy,f V={(x,y,z)|0≤x≤t,0≤y≤t,0≤z≤t}(t>0), F′(t)=3 a+n √ 2 n(a>0,b>0) (2).lim n→∞ 10x n√ 2 0dx 3 . (5).F(t)= x2+y2+z2=t2f(x,y,z)dS, f(x,y,z)= x2+y2,z≥ x2+y2

数学系第三学期数学分析期末考试题及答案

第三学期《数学分析》期末试题 一、 选择题:(15分,每小题3分) 1、累次极限存在是重极限存在的( ) A 充分条件 B 必要条件 C 充分必要条件 D 无关条件 2、 =??),(00|) ,(y x x y x f ( ) A x y x f y y x x f x ?-?+?+→?),(),(lim 00000 ; B x y x x f x ??+→?) ,(lim 000; C x y x x f y y x x f x ??+-?+?+→?),(),(lim 00000 ; D x y x f y x x f x ?-?+→?) ,(),(lim 00000。 3、函数f (x,y )在(x 0,,y 0)可偏导,则( D ) A f (x,y )在(x 0,,y 0)可微 ; B f (x,y )在(x 0,,y 0)连续; C f (x,y )在(x 0,,y 0)在任何方向的方向导数均存在 ; D 以上全不对。 4、2 222 2) (),(y x y x y x y x f -+=的二重极限和二次极限各为( B ) A 、0,0,0; B 、不存在,0,0,; C 、0,不存在,0; D 、0,0,不存在。 5、设y x e z =,则=??+??y z y x z x ( A ) A 、0; B 、1; C 、-1; D 、2。 二、计算题(50分,每小题10分) 1、 证明函数?? ? ??=+≠++=0 00),(22222 2y x y x y x xy y x f 在(0,0)点连续且可偏导, 但它在该点不可微; 2、 设 ??'=-x x t x f x f dt d e x f 0) (),(,)(2 求ττ; 3、 设有隐函数,0 x y F z z ??= ???,其中F 的偏导数连续,求z x ??、z y ??; 4、 计算 (cos sin ) x C e ydx ydy -? ,其中C 是任一条以为(0,0)A 起点、(,)B a b 为终点 的光滑曲线; 5、 计算 zdS ∑ ??,其中∑为22 z x y =+在 1 4z ≤ 的部分; 三、验证或解答(满分24分,每小题8分)

南京大学数学分析高等代数考研真题和解析

南京大学数学分析,高等代数考研真题 南京大学2002年数学分析考研试题 一 求下列极限。 (1)(1)cos 2 lim (sin sin )ln(1) 2 x x x x x x x →∞ +--+; (2)设()ln()f x x a x =+-,(,)x a ∈-∞, (i )()f x 在(,)a -∞上的最大值; (ii )设1ln x a =,21ln()x a x =-,1()n n x f x +=,(2,3,)n =,求lim n n x →∞ 。 二 设1 ()sin ln f x x x =- ,试证明()f x 在[2,)+∞内有无穷多个零点。 三 设()f x 在0x =的某个邻域内连续,且(0)0f =,0() lim 21cos x f x x →=-, (1)求(0)f '; (2)求2 () lim x f x x →; (3)证明()f x 在点0x =处取得最小值。 四 设()f x 在0x =的某个邻域内具有二阶连续导数,且0 () lim 0x f x x →=,试证明: (1)(0)(0)0f f '==; (2)级数 1 1 ()n f n ∞ =∑ 绝对收敛。 五 计算下列积分 (1 )求 x ; (2)S I zxdydz xydzdx yzdxdy = ++??,其中S 是圆柱面2 21x y +=,三个坐标平面及 旋转抛物面2 2 2z x y =--所围立体的第一象限部分的外侧曲面。 六 设()[,]f x C a b ∈,()f x 在(,)a b 内可导,()f x 不恒等于常数,且()()f a f b =, 试证明:在(,)a b 内至少存在一点ξ,使()0f ξ'>。 七 在变力F yzi zxj xyk =++的作用下,质点由原点沿直线运动到椭球面

专升本数学分析精选三试卷及答案

《数学分析》――参考答案及评分标准 一. 计算题(共8题,每题9分,共72分)。 1. 求函数11 (,)f x y y x =在点(0,0)处的二次极限与二重极限. 解: 11 (,)f x y y x = =, 因此二重极限为0.……(4分) 因为011x y x →+ 与011 y y x →+均不存在, 故二次极限均不存在。 ……(9分) 2. 设(),()y y x z z x =??=? 是由方程组(),(,,)0z xf x y F x y z =+??=? 所确定的隐函数,其中f 和F 分别 具有连续的导数和偏导数,求dz dx . 解: 对两方程分别关于x 求偏导: , ……(4分) 。 解此方程组并整理得()()() ()y y x y z F f x y xf x y F F dz dx F xf x y F '?+++-='++. ……(9分) 3. 取,μν为新自变量及(,)w w v μ=为新函数,变换方程 222z z z z x x y x ???++=????。 设,,22 y x y x y w ze μν+-=== (假设出现的导数皆连续). 解:z 看成是,x y 的复合函数如下: ,(,),,22 y w x y x y z w w e μνμν+-==== 。 ……(4分) 代人原方程,并将,,x y z 变换为,,w μν。整理得: 2222w w w μμν ??+ =???。 ……(9分) 4. 要做一个容积为31m 的有盖圆桶,什么样的尺寸才能使用料最省? 解: 设圆桶底面半径为r ,高为h ,则原问题即为:求目标函数在约束条件下的最小值,其中 目标函数: 222S rh r ππ=+表, ()()(1)0x y z dz dy f x y xf x y dx dx dy dz F F F dx dx ?'=++++????++=??

数学分析1-期末考试试卷(A卷)

数学分析1 期末考试试卷(A 卷) 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。 (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。

(C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+=在3 π =x 处取得极值,则( )。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 30x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

南京大学数学分析

南京大学1992年数学分析试题 一、定0a ,0a ≠k π(k ∈Z ),设1+n a =sin n a (n=0,1,2,…). 1) 求∞→n lim n a ;2)求lim ∞→n 21n na . 二、设f(x) ∈]1,0[C ,在}0{\)1,1(- 内可微,且)0(+'f 及)0(-'f 存在有限,而数列}{},{n n b a 满足条件,101<<<<-n n b a 且∞→n lim n a =∞ →n lim n b =0,求证存在子序列}{},{k k n n b a 及正数p,q,p+q=1,使 ∞→n lim )0()0() ()(-+'+'=--f q f p a b a f b f k k k k n n n n 三、设)(x f 在]1,1[-上(R )可积,令 ?????≤≤-≤≤-=0 1,10,)1()(x e x x x nx n n 当当? 1) 证明函数)()(x x f n ?在]1,1[-上(R )可积; 2) 又若)(x f 在x=0还是连续的,求证 ∞→n lim ?-=11)0()()(2f dx x x f n n ? 四、证明?∑∞=+-=101 1 )1(n n n x n dx x . 五、试以u 为因变量,ηξ,为自变量,对方程 y z x z ??=??22 进行变量代换z y x y u y y x ???? ??=-==4exp ,1,2ηξ. 六、已知?∞+-=02 12 πdx e x ,求()?+∞->00cos 2a bxdx e ax 之值. 七、计算()()()??++++++++=S dxdy b a z dzdx a c y dydz c b x I 222,其中S 为半球面 ()()()c z R c z b y a x ≥=-+-+-,2222的上侧. 八、设)(),(),(t t t p ψ?是区间],[b a 上的连续函数,)(),(t t ψ?单调增加,0)(>t p ,试证

07数学分析(一)试题A及答案

2007 ~2008 学年第一学期 《数学分析(一)》课程考试试卷(A 卷) (闭卷) 院(系) _经济学院___专业班级__________学号_________ 姓名__________ 考试日期: 2008-1-17 考试时间: 19:00—21:30 一. 填空题(每小题3分,共30分) 1. =?dx x x 2sin C x x x ++-|sin |ln cot . 2. 曲线233x x y +-=的拐点是 (1,2). 3. ) 11(tan )cos 1(lim 4 2 2 20 -+-→x x x e x x =___2__. 4. 设x x y 44cos sin +=,则)(n y )(+∈N n =)2 4cos(4 1 πn x n + -. 5. 设1)(2++=x x x f ,在[0,2]上用Lagrange 中值定理,则中值ξ=_1__. 6. Riemann 函数在每个有理点都间断,在每个无理点都连续. 7. 设,021k b b b <<<< 则n n k n n n b b b +++∞ → 21lim =k b . 8. 设2 211x x x y -+=, 则=dy dx x x x y )121( 4 -+. 9. 函数x x x u sin 1tan 1)(--+=当0→x 时的无穷小主部是x .

10. 设)(x f 在+ R 内可微且4)]()(2[lim ='++∞ →x f x f x ,则=+∞ →)(lim x f x 2 二. 举例说明下列命题是错误的(每小题3分,共15分. 需要简单说明) 1.非常值周期函数必有最小正周期. Direchlet 函数. 因为任意正有理数都是它的周期. 2.设函数)(x f 在区间I 上有间断点,则)(x f 在I 上不存在原函数. ????? =≠-=0,00 ,1cos 21sin 2)(22x x x x x x x f ,在x=0处间断,但在任何区间)0(I I ∈上有原函数?? ???=≠=0,00,1sin )(22 x x x x x F . 3. 设函数)(x f 在),0[+∞上有定义,且在),0(+∞内有0)(>'x f ,则对一切的0>x ,有)0()(f x f >. 只要在x=0处不右连续的函数即可说明. 4. 若()f x 在(,)a b 内可导,且()()f a f b =,则必存在(,)a b ξ∈,使得 ()0f ξ'=. 函数)10(,)(<≤=x x x f ,0)1(=f . 5. 若数列}{n x 满足:,,0N ?>?ε 当N n >时有ε<-+||1n n x x ,则} {n x 为基本数列. 发散数列n x n 1 21 1+ ++= ,},1][,1max{,01-=>?-εεN 取 :N n >?则 ε<+= -+1 1 ||1n x x n n .

数学分析习题

《数学分析Ⅱ》期中考试题 一、选择题(每小题3分,共30分) 1、曲线2x 2 +3y 2 + z 2 =9, z 2 =3x 2 + y 2 在点 ( 1, -1, 2 )的法平面方程是( 1 ) A 、8x+10y+7z-12=0; B 、8x+10y+7z+12=0; C 、8x -10y+7z-12=0; D 、8x+10y+7z+12=0 2、L 为单位圆周,则 L y ds =? ( 4 ) A 、1 B 、2 C 、3 D 、4 3、L 为从( 1, 1, 1 )到( 2, 3, 4 )的直线段,则 L zdx xdz +? = ( 3 ) A 、3 B 、5 C 、7 D 、9 4、 ()1 3x y x y dxdy +≤+?? =( 2 ) A 、2 B 、4 C 、6 D 、8 5、 02 11(,)y dy f x y dx --? ? ,改变积分顺序得( 1 ) A 、2 110 (,)x dx f x y dy -?? B 、2 111(,)x dx f x y dy --?? C 、 2 11 (,)x dx f x y dy +? ? D 、2 11 1 (,)x dx f x y dy +-?? 6、V=[-2, 5]?[-3, 3]?[0,1],则 2()V xy z dv +??? =( 3 ) A 、1 B 、7 C 、14 D 、21 7、密度为1的均匀单位圆盘对于它的直径的转动惯量为( 4 ) A 、π B 、 π/2 C 、π/3 D 、π/4 8、曲面S 为上半单位球面z =S yzdxdz ?? =( 2 ) A 、π/2 B 、 π/4 C 、π/6 D 、π/8 9、函数2 3 u x y xz =++的梯度场在(1,1,1)的旋度为( 2 ) A 、(1,1,1) B 、(0,0,0) C 、(1,0,1) D 、(0,1,1) 10、下面反常积分收敛的有( 3 )个。 0cos x e xdx -∞ ? ,10 ? ,3cos ln x dx x +∞?,20?,1+∞? A 、2 B 、3 C 、4 D 、5 二、填空题(28分,每空4分) 1、区域Ω由1z =与22 z x y =+围成的有界闭区域,则 (,,)f x y z dv Ω ??? 在直角坐标下的三 次积分为 柱坐标下三次积分

南京大学2005级数学系数学分析2期末(AB卷合一)

南京大学2005级数学系数学分析(二)期末测试 说明:前四道大题共100分,最后一题为附加题。考试时间共120分钟。未特别标明A 、B 卷的题目为公用题。 一、叙述题(20分) 1. 设:n m f → 为多元向量值函数,0n x ∈ .叙述f 在0x 可微的定义. (10分) 2. (A 卷)叙述正项级数Cauchy 判别法(也叫根值判别法)的条件及结论,并举一 个不能用Cauchy 判别法判别收敛性的例子. (10分) (B 卷)叙述正项级数d ’Alembert 判别法(也叫比值判别法)的条件及结论,并举一个不能用d ’Alembert 判别法判别收敛性的例子. (10分) 二、判断题(20分):判断下列级数的敛散性并说明理由. (A 卷)1.1cos n n ∞ =∑ (5分) 2.2 1 1sin n n ∞ =∑ (5分) 3.2 2 1(ln ) n n n ∞ =∑ (5分) 4.1(1)ln 12n n n ∞ =?? -+???? ∑ (5分) (B 卷)1.2 1sin n n ∞=∑ (5分) 2.1 n ∞ =-∑ (5分) 3.2 1ln n n n ∞ =∑ (5分) 4.1(1)ln 12n n n ∞ =?? -+???? ∑ (5分) 三、计算题(20分) 1. 方程2232327x y z xy z +++-=在(1,2,1)-附近决定了隐函数(,)z z x y =. 求 2 (1,2)z x y ?-??的值. (10分) 2. (A 卷)求函数333(,,)f x y z x y z =++在约束条件0x y z ++=,22212x y z ++=下 的极值. (10分)

北京大学数学分析考研试题及解答

判断无穷积分 1 sin sin( )x dx x +∞ ?的收敛性。 解 根据不等式31|sin |||,||62 u u u u π -≤≤, 得到 33 sin sin 1sin 11 |sin()|||66x x x x x x x -≤≤, [1,)x ∈+∞; 从而 1sin sin (sin())x x dx x x +∞-?绝对收敛,因而收敛, 再根据1sin x dx x +∞?是条件收敛的, 由sin sin sin sin sin()(sin())x x x x x x x x =-+ , 可知积分1sin sin()x dx x +∞?收敛,且易知是是条件收敛的。 例5.3.39 设2()1...2!! n n x x P x x n =++++,m x 是21()0m P x +=的实根, 求证:0m x <,且lim m m x →+∞ =-∞。 证明 (1)任意* m N ∈,当0x ≥时,有21()0m P x +>; 当0x <且x 充分大时,有21()0m P x +<,所以21()0m P x +=的根m x 存在, 又212()()0m m P x P x +'=>,21()m P x +严格递增,所以根唯一,0m x <。 (2) 任意(,0)x ∈-∞,lim ()0x n n P x e →+∞ =>,所以21()m P x +的根m x →-∞,(m →∞)。 因为若m →∞时,21()0m P x +=的根,m x 不趋向于-∞。 则存在0M >,使得(,0)M -中含有{}m x 的一个无穷子列,从而存在收敛子列0k m x x →,(0x 为某有限数0x M ≥-); 21210lim ()lim ()0k k k M m m m k k e P M P x -++→+∞ →+∞ <=-≤=,矛盾。 例、 设(1)ln(1)n n p a n -=+,讨论级数2 n n a ∞ =∑的收敛性。 解 显然当0p ≤时,级数 2 n n a ∞ =∑发散; 由 20 01 1ln(1) 1lim lim 2x x x x x x x →→- -++=011lim 21x x →=+ 12=, 得 2 21ln(1)4 x x x x ≤-+≤,(x 充分小),

南京大学2008年和2009年数学分析考研试题及解答

南京大学2008年数学分析考研试题 一 设()f x 为1R 上的周期函数,且lim ()0x f x →+∞ =,证明f 恒为0。 二 设定义在2R 上的二元函数(,)f x y 关于x ,y 的偏导数均恒为零,证明f 为常值函数。 三 设()n f x (1,2,...)n =为n R 上的一致连续函数,且lim ()()n n f x f x →∞ =,1 x R ?∈, 问:()f x 是否为连续函数?若答案为“是”,请给出证明;若答案为“否”,请给出反例。 四 是否存在[0,1]区间上的数列{}n x ,使得该数列的极限点(即聚点)集为[0,1],把极限点集换成(0,1),结论如何?请证明你的所有结论。 五 设()f x 为[0,)+∞上的非负连续函数,且 ()f x dx +∞ <+∞? ,问()f x 是否在[0,)+∞上有 界? 若答案为“是”,请给出证明;若答案为“否”,请给出反例。 六 计算由函数2 11()2 f x x =和22()1f x x =-+的图像在平面2R 上所围成区域的面积。 七 计算积分 222 (22) x xy y R e dxdy -++??。 八 计算积分 xyzdxdydz Ω ???,其中Ω为如下区域: 3{(,,):0,0,0,}x y z R x y z x y z a Ω=∈≥≥≥++≤, a 为正常数。 九 设0n a >(1,2,...)n =,1 n n k k S a == ∑,证明:级数2 1n n n a S ∞ =∑ 是收敛的。 十 方程2 2 3 2327x y z xy z +++-=在(1,2,1)-附近决定了隐函数(,)z z x y =,求 2(1,2)z x y ?-??的值。 十一 求函数3 3 3 (,,)f x y z x y z =++在约束条件2x y z ++=,2 2 2 12x y z ++=下的极值, 并判断极值的类型。 十二 设1 [0,1]f C ∈,且(0)(1)0f f ==,证明: 1 122 01[()][()]4 f x dx f x dx '≤ ? ?。 十三 设()f x 为[0,]π上的连续函数,且对任意正整数1n ≥,均有 0 ()cos 0f x nxdx π =? ,证明:f 为常值函数。

数学分析三试卷及答案

《数学分析》(三)――参考答案及评分标准 .计算题(共8题,每题9分,共72分)。 因为 lim 3 xsin — 3 ysin —与 lim 3 xsin — 3 ysin -均不存在, x 0 y x y 0 y x 故二次极限均不存在。 4.要做一个容积为1m 3的有盖圆桶,什么样的尺寸才能使用料最省? 解:设圆桶底面半径为r ,高为h,则原问题即为:求目标函数在约束条件下的 最小值,其中 目标函数:S 表2 rh 2 r 2, 1. 解: 1 1 求函数f (x, y) V^sin — 济sin-在点(0,0)处的二次极限与二重极限. y x f (x, y) Vxs in 丄 羽 si n 丄 y x |3X |3y|,因此二重极限为0.……(4分) (9分) 2. 解: 设y y(x),是由方程组z xf(x z z(x) F(x, y,z) 具有连续的导数和偏导数,求空. dx 对两方程分别关于x 求偏导: y 0'所确定的隐函数’其中f 和F 分别 dz 丁 f (x dx F F 矽 x y dx y) xf (x y)(dX 1 ), 解此方程组并整理得竺 dx F z dz 0 dx F y f(x y) xf (x y)(F y F x ) (4分) 3. 取,为新自变量及 2 z x y x y 2 解: 2 z 2 x x y J 2 z 看成是 w z y F y xf (x y)F z w( ,v)为新函数,变换方程 ze y (假设出现的导数皆连续) x, y 的复合函数如下: / 、 x y w w(,), , 2 代人原方程,并将x, y, z 变换为,,w 2 2 w W c 2 2w 。 x y 。 2 整理得: (9分) (4分) (9分)

数学分析 期末考试试卷

中央财经大学2014—2015学年 数学分析期末模拟考试试卷(A 卷) 姓名: 学号: 学院专业: 联系方式: 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。

(A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+ =在3 π =x 处取得极值,则( ) 。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 3 x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

相关文档
最新文档