晶体学基础与X射线衍射分析

晶体学基础与X射线衍射分析
晶体学基础与X射线衍射分析

晶体学基础与X射线单晶衍射分析

一、晶体及其对称性

晶体是由原子(离子,分子)在空间周期地排列构成地固体物质,为了更好的描述晶体这种周期排列的性质,可以把晶体中按周期重复的区域里的结构抽象成一个点,这样周期排列的点就构成了一个点阵,晶体的结构就可以表示成:晶体结构=点阵+结构基元

的形式。用三个不相平行的单位矢量a,b,c可以点阵在空间排列的坐标,这三个矢量的长度a,b,c及其相互之间的夹角γ,β,α称为点阵参数或晶胞参数。

点阵在空间的排列是高度有序的,这决定了其可以做某些对称操作。固定一个点不动的对称操作(包括旋转,镜像,中心反映)可以有32种,对应32个点群。实际晶体中除了点操作外,还可以存在螺旋轴,滑移面,若把这些操作和点操作进行组合,可以产生230种对称操作,对应230个空间群,所有晶体的对称操作只可能是这230个空间群中的一个。了解晶体所属的空间群对测定晶体结构,判断晶体性质是极为重要的。

二、倒易点阵和衍射方向

由于晶体具有周期性的排列结构,X射线照射到晶体上会产生衍射,为了更方便的解释晶体的衍射现象,引入了倒易点阵的概念。倒易点阵是从是从晶体点阵中抽象出来的一套点阵。它与晶体点阵的关系可以用下面的公式描述:

其中a*,b*,c*是倒易点阵的单位矢量,倒易点阵上的点h,k,l的向量H可以表示为:

H=ha?+kb?+lc?

向量H的与晶体点阵中的平面(h,k,l)垂直,其长度与点阵中d hkl成反比,即:

H=1/d?kl.

晶体产生衍射的基本条件满足布拉格方程:

也即:

sinθhkl =

1d ?kl 2λ=H ?kl 2λ 从这里可以看出,只有倒易点阵H hkl 对应的方向才是晶体衍射极大值出射的方向。

三、晶体基本信息的测定

晶体的基本信息也就是晶体的晶胞参数和所属的空间群,其中晶胞参数可以在数据处理时利用布拉格方程来计算,为减小误差可以选用高角度的衍射点来求算。

由于在没有反常散射的情况下,晶体的衍射强度满足Friedel 定律,衍射点在H hkl 和H hkl

?????的强度是相等的,也就是衍射点的分布都是中心对称的。这样衍射点所满足的点群只能是那些有中心对称的点群,这样的点群有11个,称为劳埃群。当晶体中存在对称中心,螺旋轴,滑移面的时候,衍射图样中的许多衍射点会有规律地,系统地不出现,这种现象称为系统消光。通过对衍射图像上衍射点强度的对称规律分析,可以判断出晶体属于那种点阵类型,以及晶体中是否存在螺旋轴和滑移面。结合系统消光规律可以把劳埃群区分成120个衍射群,其中有58个衍射群对映唯一的空间群,而剩下的62个衍射群每个可以对应多个空间群。

对于非中心对称的晶体来说,反常散射效应破坏Friedel 中心对称定律,可以根据这个判断晶体中是否存在对称中心。另外根据衍射强度的统计分布规律也可以判断晶体中是否存在对称中心。

若上述这些方法还无法唯一确定晶体属于那种空间群,那么就只能假设那些可能的空间群都是对的,在各种可能的空间群下都去解析晶体的结构,与衍射数据最相符的那个结构所对应的空间群就是正确的空间群。

四、X 射线衍射分析的理论依据和难点

利用X 射线衍射来分析晶体的最终目的是测定晶体中各个原子的位置,从而解释物质的性能。知道了晶胞参数和晶体所属空间群还远远不够。晶体中原子对X 射线的散射,主要体现在核外电子对X

射线的散射上。在实际应用时,可以对

核外电子做自由电子假设,这样一个原子对X射线的衍射能力可以用原子的散射因子f来表示。则一个晶胞对X射线的散射可以表示成:

N

F hkl=∑f j exp?[i2π(hx j+ky j+lz j]

j=1

式中F hkl称为衍射hkl的结构因子,其模量|F hkl|称为结构振幅,加和的范围是晶胞中所有的原子。表示的对象若是整个晶体,则需要在上式的右边乘上晶体的体积V,对若把晶体中的电子分布看成连续的电子密度函数,则结构因子可以写成下面的形式:

V

F hkl=∫ρ(xyz)exp?[i2π(hx+ky+lz)]dV

这样电子密度函数可以通过对上式做傅立叶反变换求得,计及晶体的周期性,晶胞内坐标为(x,y,z)点的电子密度可以表示为:

+∞

ρ(xyz)=V?1∑F hkl exp?[?i2π(hx+ky+lz)]

h,k,l=?∞

知道了晶胞内电子密度的分布,那么就可以从电子密度图上找到原子的位置,这就是利用X射线测定晶体结构的理论依据。

但实际上用X射线衍射法收集到的强度数据并不同与结构因子,需要从强度数据推算出结构因子才能最终算出电子密度图。衍射强度与结构振幅有下列关系:

I hkl∝|F hkl|2

也就是说对衍射强度进行必要的统一修正后可以求出结构振幅的值来,而结构振幅和结构因子之间并不是等同的,它们关系如下:

F hkl=|F hkl|e iφ

有了衍射的结构振幅的值,还需要知道衍射的相位,才能定出结构因子的值,而这个衍射相位在数据收集的过程中“丢失”了,需要用其他方法找回来。测定晶体结构的主要工作就是寻找衍射相位,

四、测定晶体结构的方法

X射线晶体学发展了将近100年时间,在此时间里测定晶体结构的方法主要有以下几种:模型法,Patterson函数法,电子密度函数法,同晶置换法,反常

散射法,直接法等,下面分别简述之。

(1) 模型法

模型法又称为试差法或尝试法。它是利用晶体的对称性,晶体的性质,和已知的结构规则和原理,为待测结构提出合理的模型或提供测定结构的辅助信息,以解决初始相位问题,然后再利用衍射数据的强度信息对模型的结构进行验证和修正。模型法是衍射分析中最早发展和应用的一种方法,在晶体结构测定早期,简单小分子结构的测定中曾经起了很大的作用。现在它依然是测定结构的重要辅助手段,也是检验结构是否合理,正确的重要手段。当初DNA双螺旋结构就是

通过模型法结合衍射数据推测得出的。

(2) Patterson法

用衍射强度数据推得的结构振幅|F hkl|的平方的数值做为傅立叶级数的系数,计算所得的级数称为Patterson函数,用P(U,V,W)表示,其形式如下:

P(U,V,W)=V?1∑|F hkl|2exp?[?i2π(hU+kV+lW)]

h,k,l=?∞

Patterson函数在正空间的意义在于P(U,V,W)表示的是晶胞中(X,Y,Z)处的电

子密度ρ(XYZ)和(X+U,Y+V,Z+W)处的电子密度ρ(X+U,Y+V,Z+W)的乘积的加和值,即:

V

P(U,V,W)=∫ρ(X,Y,Z)?ρ(X+U,Y+V,Z+W)?VdV

由这个公式可以知道晶胞中任意两个原子在Patterson图上都会形成一个峰,峰的位置是两个原子坐标间的矢量差,峰的高度与两个原子的电子密度值有关。当晶胞中原子较少时,可以通过列出联立方程求出其坐标,当晶胞中的原子数较多时,求解联立方程较困难,但若此时晶胞中有少量重原子,由于重原子之间的Patterson峰比较强,可以从Patterson图中区分出来,这样可以先求解重原子坐标,然后在根据重原子的位置来求解其他较轻原子的位置。Patterson函数在上

世纪60年代以前是单晶结构分析的主流方法,对小分子结构解析中曾经起到过十分重要的作用。现在,Patterson函数在生物大分子结构解析一些阶段,如重

原子结构解析和分子置换法中的还有广泛用途。

(3) 电子密度函数法

由一般结构分析的方法测定晶体结构往往只能得到部分原子的位置,如重原

子的位置。电子密度函数法可以在此基础上进一步完成整个结构的测定工作,并能直接给出结构的图像。

用|F o|做模,用已知位置那部分原子计算的相角做为整体结构的相角通过傅立叶级数计算的电子密度图不仅可以显示已知部分原子的位置,还可以显现出结构中一些未知原子的电子密度的分布情况,但密度峰的高度往往比实际的偏低,结合其他方法辨认出这些峰并在其位置上添加新的原子,从而得到新的结构模型,再用新的结构模型来计算相角,按此方法逐步逼进,可以最终得到整个晶胞中原子的位置。

利用(|F o|?|F c|)做模量,已知原子的坐标计算的相角做相角,计算的电子

密度图称为差分傅里叶级数,它将只显示未知部分的结构的电子密度图,便于从中分辨出未知部分原子的峰的位置。另外当对完成部分中的一些原子坐标的对错没有把握时,可以在计算相角时扣除这些原子,这些原子若在新电子密度图中出现就表示它们是正确的,用这种方法可以改正部分原子的错误位置。

(4) 同晶置换法

同晶置换是指两种或两种以上的晶体,它们具有相同的对称性,相同的空间群,相似的晶胞大小和形状,晶胞中对应的原子位置相同,只有某些位置上的原子可以用不同的原子置换。将不含重原子的晶体称为母体,含重原子的晶体称为衍生物,则可以利用衍生物衍射振幅和母体衍射数据振幅的差值求出重原子的坐标,利用重原子计算的结构因子,结合母体衍射振幅和衍生物的衍射振幅可以得到晶体的相位信息,其关系如下图:

图1 单对同晶置换的相位关系图

其中|F P|是母体的衍射振幅,|F PH|是衍生物的衍射振幅,F H是重原子的结构因子,从图中可以看出衍生物的相位只可能在A或B两个点上。只有一个衍生物时称为单对同晶置换(SIR),它只能得到相位的两个可能值,而不能唯一确定A,B那个才是正确的相位,若要唯一确定相位,至少需要两个衍生物数据。超过一个衍生物的称为多对同晶置换(MIR)。利用同晶置换法可以测定大分子的结构,尤其是生物大分子的结构。

(5) 反常散射法

当入射X射线的频率与晶体中原子的核外电子的吸收频率相当时,核外电子的散射能力将比自由电子散射能力大些或小些,相角也会有些变化,这将造成非中心对称晶体的衍射强度分布偏离Friedel中心对称定律,这被称为反常散射。利用反常散射效应可以判断晶体中是否有中心对称,也可以用来测定无机物和有机物的绝对构型。

与同晶置换法测定晶体结构的方法相似,反常散射法也可以用来测定晶体结构,而且单波长反常散射(SAD)也会导致相位双解问题,多波长反常散射(MAD)

则可以唯一确定相位。同晶置换法和反常散射法是现阶段生物大分子单晶衍射中测定无同源结构的蛋白质晶体结构的主要方法。

(6) 直接法

直接法认为在收集衍射数据时,衍射的相位并没有丢失,而是隐藏在衍射振幅和衍射点的关系中了,利用数据统计学的方法和对比的方法可以推出结构因子的相位,从而测定晶体的结构。从上世纪40年代末开始,经过很多晶体学家不断的研究,逐渐形成一套基于符号加和法和正切公式等测定相角,计算E图的方法。

直接法最早用来测定中心对称晶体的结构,到60年代后期,随着计算技术和方法的发展,逐渐扩展到测定非中心对称晶体的结构,并在小分子结构解析中取得巨大成功,进入70年代,直接法已经成为测定等重原子的晶体结构的主要方法,大大降低了结构测定的难度。到80年代后,直接法进一步扩展到测定大分子结构,粉晶结构分析,非公度调制结构分析和高分辨率电镜成像等领域,并取得了可喜的成果。现在直接法仍然在不断发展中。

五、结构的修正和后处理

用晶体学方法测定晶体中全部原子坐标参数后,还需要进一步提高其准确度,其内容包括:准确地测量晶胞参数,原子坐标参数,提高电子密度函数和晶胞中原子分布的符合程度,提高结构振幅的计算值和测量值的符合程度等。可以用电子密度函数法或最小二乘法修正来优化结构。

有了准确的原子三维分布坐标,就可以计算分子结构中原子的键长键角信息,并结合结构的特点分析其物理,化学和生物学性质。

从劳厄发现晶体X射线衍射谈

从劳厄发现晶体X射线衍射谈起 摘要:文章从劳厄发现晶体X射线衍射的前因后果谈起。劳厄的这个发现产生了两个新学科,即X射线谱学和X射线晶体学。文中还回顾了布拉格父子对这两个新学科所作的重大贡献,并阐述了X射线晶体学的深远影响。 今年是劳厄(von Lane M)发现晶体X射线衍射九秩之年。 从1895年伦琴(R0ntgen W C)发现X射线到1926年薛定愕(Schrodinger)奠定量子力学基础的30多年是现代物理学诞生和成长的重要时期。在此期间的众多重大发现中,1912年劳厄的发现发挥了极为及时而又十分深远的影响,是很值得我们通过回顾和展望来纪念它的。 我们先来了解一下劳厄发现的前因后果。1912年劳厄发现晶体X射线衍射时是在德国慕尼黑大学理论物理学教授索未菲(Sommerfeld)手下执教。除理论物理教授索未菲外,在这个大学中还有发现X射线的物理学教授伦琴和著名的晶体学家格罗特(Groth)。当时,劳厄对光的干涉作用特别感兴趣,索末菲则在考虑X射线的本质和产生的机制问题,而格罗特是晶体学权威之一,并著书Chemische KristallograPhic (化学晶体学)数卷。身在这样的学府中,劳厄当时通过耳闻目睹也就对 晶体中原子是按三维点阵排布以及X射线可能是波长很短的电磁波这样的想法不会感到陌生或难于接受了。而且看来正当而立之年的他是很想在光的干涉作用上做点文章的。真可谓机遇不负有心人了。这时,索末菲的博士生埃瓦尔德(Ewald P P)来请教劳厄,谈到他正在研究关于光波通过晶体中按三维点阵排布的原子会产生什么效应。这对劳厄有所触发并想到:如果波长短得比晶体中原子间距离更短时又当怎样?而X射线可能正是这样的射线。他意识到,说不定晶体正是能衍射X射线的三维光栅呢。现在劳厄需要考虑的大事是做实验来证实这个想法。当时索末菲正好有个助教弗里德里希(Friedrich W) ,他曾从伦琴教授那里取得博士学位。 他主动要去进行这样的实验。经过几次失败后,他终于取得了晶体的第一个衍射图「(见图1)」。晶体是五水合硫酸铜(CuSO4·5H2O)。 劳厄的发现经过进一步的工作很快取得了一箭双雕的效果:既明确了X射线的本质,测定了波长,开创了X射线谱学,又使测定晶体结构的前景在望,从而将观察晶体外形所得结论经过三维点阵理论发展到230个空间群理论的晶体学,提升为X射线晶体学。这个发现产生的两个新学科,几乎立即给出了一系列在科学中有重大影响的结果。英国的布拉格父子(Bragg W H和Bragg W L)在奠定这两个新学科的基础中起了非常卓越的作用。他们使工作的重心从德国转到英国。将三个劳厄方程(衍射条件)压缩成一个布拉格方程(定律)的小布拉格曾把重心转移的原因归之于老布拉格设计的用起来得心应手的电离分光计”。既然晶体是X射线的衍射光栅,那么,为了测定X射线的波长,光栅的间距当如何得出?1897年巴洛(Barlow W)预测过最简单的晶体结构型式,其中有氯化钠所属的型式。根据当时已知的NaCI的化学式量(58.46)和阿伏伽德罗常数(6.064×1023)以及晶体密度(2.163g/cm2),可以推算出氯化钠晶体(10)原子面的间距d=2.814×10-8cm。 布拉格父子的工作是有些分工的:老布拉格用他的电离分光计侧重搞谱学,很快发现X射线谱中含有连续谱和波长取决于对阴极材料的特征谱线。此后,测定晶体结构主要依靠特征射线。同时还观察到同一跃迁系特征射线的频率是随对阴极材料在元素周期系中的排序递增的,这种频率的排序给出了原子序数。这是对化学中总结出来的元素周期律作出的呼应。小布拉格的工作是沿着X射线晶体学的方向发展的。他一生中从氯化钠和金刚石一直测到蛋白质的晶体结构。从1913年起,他在两年中一连测定了氯化钠、金刚石、硫化锌、黄铁矿、荧石和方解石等的晶体结构。这一批最早测定的晶体结构虽然极为简单,但很有代表性,而且都足以让化学和矿物学界观感一新。同时为测定参数较多和结构比较复杂的晶体结构也进行了理论和技术方面的准备。X射线晶体学能不断采用新技术和解决周相问题的新方法,使结构测定的对象

X射线衍射图谱的分析

X射线衍射图谱的分析 ---------------------------------------------------------------------------------------------------------------------------------------------- A 衍射峰的有无、位置 B 衍射峰的强度 C 衍射峰的峰形 E 衍射测试实验条件选择 F 其他相关知识 ----------------------------------------------------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------------------------------------------- A 衍射峰的有无、位置 1、衍射方向取决于晶体的周期或晶胞的大小。 2、X射线入射到结晶物质上,产生衍射的充分必要条件是 3、第一个公式确定了衍射方向。在一定的实验条件下衍射方向取决于晶面间距d。而d是晶胞参数的函数, ;第二个公式示出衍射强度与结构因子F(hkl)的关系,衍射强度正比于F(hkl)模的平方, 4、F(hkl)的数值取决于物质的结构,即晶胞中原子的种类、数目和排列方式,因此决定X射线衍射谱中衍射方向和衍射强度的 一套d和I的数值是与一个确定的结构相对应的。这就是说,任何一个物相都有一套d-I特征值,两种不同物相的结构稍有差异其衍射谱中的d和I将有区别。这就是应用X射线衍射分析和鉴定物相的依据。 5、若某一种物质包含有多种物相时,每个物相产生的衍射将独立存在,互不相干。该物质衍射实验的结果是各个单相衍射图 谱的简单叠加。因此应用X射线衍射可以对多种物相共存的体系进行全分析。 6、一种物相衍射谱中的(是衍射图谱中最强峰的强度值) 的数值取决于该物质的组成与结构,其中称为相 对强度。当两个样品的数值都对应相等时,这两个样品就是组成与结构相同的同一种物相。因此,当一未知物相的样品其衍射谱上的的数值与某一已知物相M的数据相合时,即可认为未知物即是M相。由此看来,物相分析就是将未知物的衍射实验所得的结果,考虑各种偶然因素的影响,经过去伪存真获得一套可靠的数据后与已知物相的相对照,再依照晶体和衍射的理论对所属物相进行肯定与否定。当今在科学家们的努力下,已储备了相当多的物相的数据,若未知物是在储备范围之内,物相分析工作即是实际可行的。 7、衍射图,图中的每一个峰就是一族晶面的衍射线,

晶体X射线衍射实验报告全解

晶体X射线衍射实验报告全解

中南大学 X射线衍射实验报告 材料科学与工程学院材料学专业1305班班级 姓名学号0603130500 同组者无 黄继武实验日期2015 年12 月05 日指导教 师 评分分评阅人评阅日 期 一、实验目的 1)掌握X射线衍射仪的工作原理、操作方法; 2)掌握X射线衍射实验的样品制备方法; 3)学会X射线衍射实验方法、实验参数设置,独立完成一个衍射实验测试; 4)学会MDI Jade 6的基本操作方法; 5)学会物相定性分析的原理和利用Jade进行物相鉴定的方法; 6)学会物相定量分析的原理和利用Jade进行物相定量的方法。 本实验由衍射仪操作、物相定性分析、物相定量分析三个独立的实验组成,实验报告包含以上三个实验内容。 二、实验原理

1 衍射仪的工作原理 特征X射线是一种波长很短(约为20~0.06nm)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。在用电子束轰击金属“靶”产生的X射线中,包含与靶中各种元素对应的具有特定波长的X射线,称为特征(或标识)X射线。考虑到X射线的波长和晶体内部原子间的距离相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光,即当一束X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析在照相底片上得到的衍射花样,便可确定晶体结构。这一预见随即为实验所验证。1913年英国物理学家布拉格父子(W. H. Bragg, W. L Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础的著名公式──布拉格定律: 2dsinθ=nλ 式中λ为X射线的波长,n为任何正整数。当X射线以掠角θ(入射角的余角,又称为布拉格角)入射到某一点阵晶格间距为d的晶面面上时,在符合上式的条件下,将在反射方向上得到因叠加而加强的衍射线。 2 物相定性分析原理 1) 每一物相具有其特有的特征衍射谱,没有任何两种物相的衍射谱是完全相同 的 2) 记录已知物相的衍射谱,并保存为PDF文件 3) 从PDF文件中检索出与样品衍射谱完全相同的物相 4) 多相样品的衍射谱是其中各相的衍射谱的简单叠加,互不干扰,检索程序能 从PDF文件中检索出全部物相 3 物相定量分析原理 X射线定量相分析的理论基础是物质参与衍射的体积活重量与其所产生的衍射强度成正比。 当不存在消光及微吸收时,均匀、无织构、无限厚、晶粒足够小的单相时,多晶物质所产生的均匀衍射环上单位长度的积分强度为: 式中R为衍射仪圆半径,V o为单胞体积,F为结构因子,P为多重性因子,M为温度因子,μ为线吸收系数。 三、仪器与材料 1)仪器:18KW转靶X射线衍射仪 2)数据处理软件:数据采集与处理终端与数据分析软件MDI Jade 6 3)实验材料:CaCO3+CaSO4、Fe2O3+Fe3O4

X射线衍射分析

X-射线衍射分析 化学系 0907401班贺绍飞 [摘要] 研究晶体材料,X-射线衍射分析非常理想也非常有效,而对于液体和非晶态固体,这种方法也能提供许多基本的重要数据。所以X-射线衍射分析被认为是研究固体最有效的工具。本文首先对X-射线衍射分析技术进行了简单介绍,然后分别举例说明X-射线衍射分析在晶体分析中的作用。 [关键词] X-射线衍射分析;晶体;晶体分析 1 引言 1912年劳埃等人根据理论预见,并用实验证实了X射线与晶体相遇时能发生衍射现象,证明了X射线具有电磁波的性质,成为X射线衍射学的第一个里程碑。当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X 射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。这就是X射线衍射的基本原理。衍射线空间方位与晶体结构的关系可用布拉格方程表示: λ θn 2 d= sin 式中:λ是X射线的波长;θ是衍射角;d是结晶面间隔;n是整数。波长λ可用已知的X射线衍射角测定,进而求得面间隔,即结晶内原子或离子的规则排列状态。将求出的衍射X射线强度和面间隔与已知的表对照,即可确定试样结晶的物质结构,此即定性分析。从衍射X射线强度的比较,可进行定量分析。 2 X-射线衍射分析 2.1 X-射线衍射分析的原理 X-射线衍射分析是利用晶体形成的X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。 将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。衍射X射线满足布拉格(W.L.Bragg)方程: θn λ 2 sin d= 式中:λ是X射线的波长;θ是衍射角;d是结晶面间隔;n是整数。波长λ可用已知的X射线衍射角测定,进而求得面间隔,即结晶内原子或离子的规则排列状态。将求出的衍射X射线强度和面间隔与已知的表对照,即可确定试样结晶的物质结构,此即定性分析。从衍射X射线强度的比较,可进行定量分析。本法的特点在于可以获得元素存在的化合物状态、原子间相互结合的方式,从而可进行价态分析,可用于对环境固体污染物的物相鉴定,如大气颗粒物中的风砂和土壤成分、工业排放的金属及其化合物(粉尘)、汽车排气中卤化铅的组成、水体沉积物或悬浮物中金属存在的状态等等。 2.2 X-射线衍射分析的方法 在各种X-射线衍射实验方法中,基本方法有单晶法、多晶法和双晶法。

X射线衍射结构分析实验报告

X 射线衍射结构分析实验 【摘要】在一定条件下,每一种物质在被电子流轰击时都会产生特定的X 射线。而X 射线的波长很小,可利用晶体这个天然的光栅使X 射线发生衍射。本实验通过轰击钼靶产生一定波长的X 射线,并将NaCl 晶体作为光栅使其发生衍射。通过一级衍射峰θ的值的测量,可测定NaCl 晶体的晶格结构。 【关键词】X 射线 衍射 布拉格方程 晶格常树 引言:X 射线是波长介于紫外线和γ射线之间的电磁辐射,是一种波长很短的电磁波,能 穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。X 射线最早是由德国科学家伦琴在1895年在研究阴极射线发现,它具有很强的穿透性,又因为X 射线是不带电的粒子流,所以在电磁场中不偏转。1912年劳厄等人发现了X 射线在晶体中的衍射现象,证实了X 射线本质上是一种波长很短的电磁辐射,其波长约为10nm 到10–2nm 之间,与晶体中原子间的距离为同一数量级,用已知的X 射线可测定各种晶体的晶格结构。 也可以用已知晶体结构的晶体来测定未知X 射线的波长,从而确定未知物质的成分。 正文: 1、实验目的: 1. 了解X 射线的产生、特点和应用; 2. 了解X 射线衍射仪的结构和工作原理 3. 掌握X 射线衍射物相定性分析的方法和步骤 2、实验原理: 1、由于X 光的波长与一般物质中原子的间距同数量级,因此X 光成为研究物质微观结构的有力工具。当X 光射入原子有序排列的晶体时,会发生类似于可见光入射到光栅时的衍射现象。1913年英国科学家布拉格父子(W.H.Bragg 和W.L.Bragg )证明了X 光在晶体上衍射的基本规律为(如图2所示): λθn d =sin 2 (1) 根据布拉格公式,既可以利用已知的晶体(d 已知)通过测量θ角来研究未知X 光的波长,也可以利用已知的X 光(λ已知)来测量未知晶体的晶面间距。本实验利用已知钼的X 光特征谱线来测量氯化钠(NaCl )晶体的晶面间距,从而得到其晶体结构。 立方晶体的晶面距(d )与密勒指数的关系: 2 2 2 0l h k a d ++=

X射线衍射分析原理及其应用

X射线衍射分析原理及其应用 X射线及XRD 1.1 X射线 是由高能电子的减速运动或原子内层轨道电子的跃迁产生的短波电磁辐射。X射线的波长在10-6 ~10nm,在X射线光谱法中常用波长在0.01~2.5nm范围内。 1.2 X射线的产生途径有四种 1)高能电子束轰击金属靶即在一个X射线管中,固体阴极被加热产生大量电子,这些电子在高达100KV的电压下被加速,向金属阳极轰击,在碰撞过程中,电子束的一部分能量转化为X射线; 2)将物质用初级X射线照射以产生二级射线—X射线荧光; 3)利用放射性同位素衰败过程产生的发射,人工放射性同位素为为某些分析应用提供了非常方便的单能量辐射源; 4)从同步加速器辐射源获得。 1.3 X射线的吸收 当一束X射线穿过有一定厚度的物质时,其光强和能量会因吸收和散射而显著减小。物质的原子序数越大,它对X射线的阻挡能力越大,X射线波长越长,即能量越低,越容易被吸收[1] 。 1.4 XRD X射线衍射分析(XRD)是利用晶体形成的X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在

某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。X射线衍射法是目前测定晶体结构的重要手段,应用极其广泛。在实际的应用中将该分析方法分3为多晶粉末法和单晶衍射法。多晶粉末法常用来测定立方晶系的晶体结构点阵形式、晶胞参数及简单结构的原子坐标,还可以对固体式样进行物相分析等。 衍射X射线满足布拉格(W.L.Bragg)方程:2dsinθ=nλ式中:λ是X射线的长;θ是衍射角;d是结晶面间隔;n是整数。X射线束入射到样品表面后产生衍射,检测器收集衍射X射线信息。当入射波长λ、样品与X射线束夹角θ及样品晶面间距d满足布拉格公式时,检测器可以检测到最强的信息。因此采集入射和衍射X射线的角度信息及强度分布,可以获得晶面点阵类型、点阵常数、晶体取向、缺陷和应力等一系列有关材料结构信息[2],确定点阵参数的主要方法是多晶X射线衍射法[3]。 二、X射线衍射仪的结构 分析物质X射线衍射的仪器,形式多种多样,用途各异,但仪器构成皆如下图所示,其硬件主要有X射线光源、衍射信号检测系统及数据处理和打印图谱系统等几部分构成。 图1.X射线衍射仪

X射线衍射分析jade

第一篇X射线衍射分析 实验一X射线衍射物相定性分析 一、实验目的与任务 1.熟悉常用X射线衍射分析软件的操作界面。 2.学会使用X射线衍射分析软件进行单物相的定性分析。 3.学会使用X射线衍射分析软件进行多物相的定性分析。 二、定性相分析的原理与步骤 .1 定性分析的基本原理 根据晶体对X射线的衍射特征——衍射线的方向及强度来鉴定结晶物质的物相的方法,就是X射线物相分析法。 每一种结晶物质都有各自独特的化学组成和晶体结构。没有任何两种物质,它们的晶胞大小、质点种类及其在晶胞中的排列方式是完全一致的。因此,当X射线被晶体衍射时,每一种结晶物质都有自己独特的衍射花样,它们的特征可以用各个反射面网的间距d和反射线的相对强度I/I0来表征。其中面网间距d与晶胞的形状和大小有关,相对强度则与质点的种类及其在晶胞中的位置有关。所以任何一种结晶物质的衍射数据d和I/I0是其晶体结构的必然反映,因而可以根据它们来鉴别结晶物质的物相。 2 Jade分析软件简介 Jade分析软件是Mdi(Materials Date,Inc)的产品,具有x射线衍射分析的一些基本功能如:平滑、Ka分离、去背底、寻峰、分峰拟合、物相检索、结晶度计算、晶粒大小和晶格畸变分析、RIR值快速定量分析、晶格常数计算、图谱指标化、角度校正、衍射谱计算等功能。从Jade6.0开始增加了全谱拟合Rietveld法定量分析,还可以对晶体结构进行精修。 Jade 5.0的常用工具栏和手动工具栏的基本功能见下图1和图2。 图1 Jade5.0常用工具栏 图2 Jade5.0手动工具栏

3 Jade定性分析的步骤 Jade物相定性分析,它的基本原理是基于以下三条原则:(1)任何一种物相都有其特征的衍射谱;(2)任何两种物相的衍射谱不可能完全相同;(3)多相样品的衍射峰是各物相的机械叠加。因此,通过实验测量或理论计算,建立一个“已知物相的卡片库”,将所测样品的图谱与PDF卡片库中的“标准卡片”一一对照,就能检索出样品中的全部物相。物相检索的步骤包括: (1)给出检索条件:包括检索子库(有机还是无机、矿物还是金属等等)、样品中可能存在的元素等; (2)计算机按照给定的检索条件进行检索,将最可能存在的前100种物相列出一个表;(3)从列表中检定出一定存在的物相。 一般来说,判断一个相是否存在有三个条件:(1)标准卡片中的峰位与测量峰的峰位是否匹配,换句话说,一般情况下标准卡片中出现的峰的位置,样品谱中必须有相应的峰与之对应,即使三条强线对应得非常好,但有另一条较强线位置明显没有出现衍射峰,也不能确定存在该相,但是,当样品存在明显的择优取向时除外,此时需要另外考虑择优取向问题;(2)标准卡片的峰强比与样品峰的峰强比要大致相同,但一般情况下,对于金属块状样品,由于择优取向存在,导致峰强比不一致,因此,峰强比仅可作参考;(3)检索出来的物相包含的元素在样品中必须存在,如果检索出一个FeO相,但样品中根本不可能存在Fe元素,则即使其它条件完全吻合,也不能确定样品中存在该相,此时可考虑样品中存在与FeO晶体结构大体相同的某相。当然,如果你自己也不能确定样品会不会受Fe污染,你就得去做做元素分析再来了。 对于无机材料和粘土矿物,一般参考“特征峰”来确定物相,而不要求全部峰的对应,因为一种粘土矿物中可能包含的元素也可能不同。 下面介绍Jade中物相检索的步骤。 第一轮检索:不做限定检索。打开一个图谱,不作任何处理,鼠标右键点击“S/M”按钮,打开检索条件设置对话框,去掉“Use chemistry filter”选项的对号,同时选择多种PDF子库,检索对象选择为主相(S/M Focus on Major Phases)再点击“OK”按钮,进入“Search/Match Display”窗口。 第二轮:限定条件的检索。限定条件主要是限定样品中存在的“元素”或化学成分,在“Use chemistry filter”选项前加上对号,进入到一个元素周期表对话框。将样品中可能存在的元素全部输入,点击“OK”,返回到前一对话框界面,此时可选择检索对象为次要相或微量相(S/M Focus on Minor Phases或S/M Focus on Trace Phases)。其它下面的操作就完全相同了。此步骤一般能将剩余相都检索出来。如果检索尚未全部完成,即还有多余的衍射线未检定出相应的相来,可逐步减少元素个数,重复上面的步骤,或按某些元素的组合,尝试一些化合物的存在。如某样品中可能存在Al,Sn,O,Ag等元素,可尝是否存在Sn-O化合物,此时元素限定为Sn和O,暂时去掉其它元素。在化学元素选定时,有三种选择,即“不可能”、“可能”和“一定存在”。见图3。

X射线衍射分析原理及其应用

X射线衍射分析 摘要: X射线衍射分析是一种重要的晶体结构和物相分析技术,广泛应用于冶金、石油、化工、科研、航空航天、教学、材料生产等领域。本文简要介绍X射线衍射原理,X射线衍射仪器的结构、原理,及其在地质学、医学等自然科学领域中的应用。 前言: 1895年伦琴发现X射线,又称伦琴射线。德国科学家劳厄于1912年发现

了X射线衍射现象,并推导出劳厄晶体衍射公式。随后,英国布拉格父子又将此衍射关系用简单的布拉格方程表示出来。到上世纪四、五十年代,X射线衍射的原理、方法及在其他各方面的应用逐渐建立。在各种测量方法中,X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。X射线衍射技术可以探究晶体存在的普遍性和特殊性能,使得其在冶金、石油、岩石矿物、科研、航空航天、材料生产等领域的被广泛应用。 关键词:方法,衍射,原理,应用 X射线衍射仪的原理 1.X射线衍射原理 当X射线沿某方向入射某一晶体的时候,晶体中每个原子的核外电子产生的相干波彼此发生干涉。当每两个相邻波源在某一方向的光程差等于波长λ的整数倍时,它们的波峰与波峰将互相叠加而得到最大限度的加强,这种波的加强叫做衍射,相应的方向叫做衍射方向,在衍射方向前进的波叫做衍射波。光程差为0的衍射叫零级衍射,光程差为λ的衍射叫一级衍射,光程差为nλ的衍射叫n级衍射。n不同,衍射方向的也不同。 由于常用的X射线波长约在2.5A~0.5A之间,与晶体中的原子间距(1A)数量级相同,因此可以用晶体作为X射线的衍射光栅,这就使得用X射线衍射进行晶体结构分析成为可能。 在晶体的点阵结构中,具有周期性排列的原子或电子散射的次生X射线间相互干涉的结果,决定了X射线在晶体中衍射的方向,所以通过对衍射方向的测定,可以得到晶体的点阵结构、晶胞大小和形状等信息。 晶体结构=点阵+结构基元,点阵又包括直线点阵,平面点阵和空间点阵。在x 射线作用下晶体的散射线来自若干层原子面,除同一层原子面的散射线互相干涉外,各原子面的散射线之间还要互相干涉。 光栅衍射 当光程差(BD+BF)=2dsinθ等于波长的整数倍nλ时,相邻原子面散射波干涉加强,即干涉加强条件为: 2dsinθ=nλ 一、X射线衍射法

X射线衍射技术在材料分析中的应用

X射线衍射技术在材料分析中的应用 沈钦伟126406324 应用化学 1引言 X射线衍射分析法是研究物质的物相和晶体结构的主要方法。当某物质( 晶体或非晶体)进行衍射分析时,该物质被X射线照射产生不同程度的衍射现象, 物质组成、晶型、分子内成键方式、分子的构型、构象等决定该物质产生特有的衍射图谱。X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。因此,X射线衍射分析法作为材料结构和成分分析的一种现代科学方法, 已逐步在各学科研究和生产中广泛应用。 2X射线衍射基本原理 X射线同无线电波、可见光、紫外线等一样,本质上都属于电磁波,只是彼此之间占据不同的波长范围而已。X射线的波长较短, 大约在10-8~10-10cm之间。X 射线分析仪器上通常使用的X射线源是X射线管,这是一种装有阴阳极的真空封闭管, 在管子两极间加上高电压, 阴极就会发射出高速电子流撞击金属阳极靶,从而产生X射线。当X射线照射到晶体物质上,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射, 衍射线在空间分布的方位和强度,与晶体结构密切相关,不同的晶体物质具有自己独特的衍射花样, 这就是X射线衍射的基本原理。 3 X射线衍射技术在材料分析中的应用 由X射线衍射原理可知,物质的X射线衍射花样与物质内部的晶体结构有关。每种结晶物质都有其特定的结构参数(包括晶体结构类型, 晶胞大小,晶胞中原子、离子或分子的位置和数目等)。因此,没有两种不同的结晶物质会给出完全相同的衍射花样。通过分析待测试样的X射线衍射花样,不仅可以知道物质的化学成分,还能知道它们的存在状态,即能知道某元素是以单质存在或者以化合物、混合物及同素异构体存在。同时,根据X射线衍射试验还可以进行结晶物质的定量分析、晶粒大小的测量和晶粒的取向分析。目前, X射线衍射技术已经广泛应用于各个领域的材料分析与研究工作中。 3. 1物相鉴定 物相鉴定是指确定材料由哪些相组成和确定各组成相的含量,主要包括定性相分析和定量相分析。每种晶体由于其独特的结构都具有与之相对应的X射线衍射特征谱, 这是X射线衍射物相分析的依据。将待测样品的衍射图谱和各种已知单相标准物质的衍射图谱对比, 从而确定物质的相组成。确定相组成后, 根据各相衍射峰的强度正比于该组分含量(需要做吸收校正者除外) ,就可对各种组分进行定量分析。 X射线衍射物相定量分析有内标法外标法、增量法、无标样法和全谱拟合法等常规分析方法。内标法和增量法等都需要在待测样品中加入参考标相并绘制工作曲线,如果样品含有的物相较多, 谱线复杂,再加入参考标相时会进一步增加谱线的重叠机会,给定量分析带来困难。无标样法和全谱拟合法虽然不需要配制一

X射线衍射晶体结构分析实验报告

X射线衍射晶体结构分析实验报告

X射线衍射晶体结构分析实验预习报告 摘要:本实验通过采用与X射线波长数量级接近的物质即晶体这个天然的光栅来作狭缝,从而研究X射线衍射。本实验将了解到X射线的产生、特点和应用;理解X射线管产生连续X射线谱和特征X射线谱的基本原理;用三种个方法研究X 射线在NaCl单晶上的衍射,并通过测量X射线特征谱线的衍射角测定X射线的波长和晶体的晶格常数。 关键词:布拉格公式晶体结构波长衍射 X射线 引言:1895年德国科学家伦琴(W.C.R?ntgen)在用克鲁克斯管研究阴极射线时,发现了一种人眼不能看到,但可以使铂氰化钡屏发出荧光的射线,称为X射线。X射线是一种波长很短(约为20~0.06埃)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。在用高能电子束轰击金属“靶”材产生X射线,它具有与靶中元素相对应的特定波长,称为特征(或标识)X射线。如通常使用的靶材对应的X射线的波长大约为1.5406埃。考虑到X射线的波长和晶体内部原子面间的距

离相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光栅,即当一束 X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析在照相底片上得到的衍射花样,便可确定晶体结构。这一预见随即为实验所验证。X射线衍射在金属学中的应用X射线衍射现象发现后,很快被用于研究金属和合金的晶体结构,出现了许多具有重大意义的结果。如韦斯特格伦(A.Westgren)(1922年)证明α、β和δ铁都是立方结构,β-Fe并不是一种新相;而铁中的α─→γ转变实质上是由体心立方晶体转变为面心立方晶体,从而最终否定了β-Fe硬化理论。随后,在用X射线测定众多金属和合金的晶体结构的同时,在相图测定以及在固态相变和范性形变研究等领域中均取得了丰硕的成果。如对超点阵结构的发现,推动了对合金中有序无序转变的研究,对马氏体相变晶体学的测定,确定了马氏体和奥氏体的取向关系;对铝铜合金脱溶的研究等等。目前 X 射线衍射(包括散射)已经成为研究晶体物质

X射线衍射分析

X 射线衍射分析 1实验目的 1、 了解X 衍射的基本原理以及粉末X 衍射测试的基本目的; 2、 掌握晶体和非晶体、单晶和多晶的区别; 3、 了解使用相关软件处理XRD 测试结果的基本方法。 2实验原理 1、 晶体化学基本概念 晶体的基本特点与概念:①质点(结构单元)沿三维空间周期性排列(晶 体 定义),并有对称性。②空间点阵:实际晶体中的几何点,其所处几何环境和 物质环境均同,这些“点集”称空间点阵。③晶体结构 =空间点阵+结构单元。非 晶部分主要为无定形态区域,其内部原子不形成排列整齐有规律的晶格。 对于大多数晶体化合物来说,其晶体在冷却结晶过程中受环境应力或晶核数目、 成核方式等条件的影响,晶格易发生畸变。分子链段的排列与缠绕受结晶条件的 影响易发生改变。晶体的形成过程可分为以下几步:初级成核、分子链段的 图1 14 种Bravais 点阵 表面延伸、链松弛、链的重吸收结晶、表面成核、分子间成核、晶体生长、晶体 生长完善。Bravais 提出了点阵空间这一概念,将其解释为点阵中选取能反映空 间点阵周期性与对称性的单胞,并要求单胞相等棱与角数最多。满足上述条件棱 间直角最多,同时体积最小。1848年Bravais 证明只有14种点阵。 Bravais lattice Cryslal DerBCfliptlcn CSlnwle) cubic Cubic a - b=? E , a = = 90B BaO/-rentered F*韓?“nl ?喇 (Simple) T etr-Aa^n^ i = b*C i .a=g = 7=SCi , Boa^-tentered ler^go>nal CGlnwle) DfthDmunbic Orlharhanbir 目日即亡时恒创 Orlhorhcmbic Oase-ceMered Offliorhombic Fac$-LBnter$d OnhorhChibie (Simple) Rhombol*edrai Rhombohedr^i (Trigonal) R = b = (;&= p= 7^ 90' 闭卿闾扫D 城帕1 H 曲g 肿对 a = b?iC fc tt=ft=0I]-a 7=12D - ⑻側 1.) MOnlQClHiC Monoclinic a c s a = y= go ■,&4 ger Monodlnlc : (Slrrwle)AnDithl£: Anotlhic (Triclinic) a * : UH p 9D" PDFhAAiNT uaes Ehe 他 dfescnbing lhe pallerrt I Ellice cubic tatnigond orthortiombic rhonibdhedral hdxa.goinal (trigcnal) anortluc (tricl i me) iriufiOchrr ic

x射线衍射结构分析实验报告

实验报告 ——X射线衍射结构分析 【摘要】本实验通过了解实验仪器的构造,X射线衍射结构的基本机理进而对晶体的X射线衍射图样的分析,求得了该晶体的密勒指数。 【关键字】密勒指数能量转移 晶体结构分析是晶体学中的一个重要领域,他研究静态物质内部在原子尺度下的微观结构,为固体物理学、材料化学、结构化学、分子生物学、矿物学、医药学等诸多学科的基础研究和应用研究提供了必不可少的实验资料,使人们能够从分子、原子以及电子分布的水平上去理解有关物质的行为规律。其中X射线衍射分析是晶体结构分析中比较成熟的一种,X 射线是一种介于紫外线和γ射线之间的波长约为10nm—0.001nm的电磁波,其具有特别强的穿透力,上述的两种特性为其对微观微粒的研究提供了可能 一.实验目的 1.了解X射线的产生、特点和应用; 2.了解X射线衍射仪的结构和工作原理; 3.掌握X射线衍射物相定性分析的方法和步骤 二.实验仪器 X射线实验仪 该装置分为监控区、X光管和实验区三个区域(如下图所示); 1.监控区 监控区包括电源和各种控制装置: B1:液晶显示区,上行显示G-M计数管的计数率N,下行显示工作参数; B2:大转盘,调节工作参数; B3:设置按键,确定B2所调节和设置的对象,分别为: U:设置X光管上所加的高压值(通常取35KV); I:设置X光管内的电流值(通常取1.00mA); Δt:设置每次测量的持续时间(通常取5——10s); ΔB:设置自动测量时测角器每次转动的角度,角步幅(通常取0.1°);

β-LIMIT :在选定扫描模式后,设置自动测量时测角器的扫描范围; B4:三个扫描模式选择按钮和一个归零按键,分别为胡: SENSOR :传感器扫描模式,传感器动,靶台不动; TARGET :靶台扫描模式,靶台动,传感器不动; COUPLED :耦合扫描模式,传感器和靶台抖动,传感器的转角自动保持为靶台转角的两倍; ZERO :靶台和传感器都回到0位; B5:五个操作键,分别为: RESET :所有参数都回到最初值,靶台和传感器都回到测量系统的0位置,X 光管 的高压断开; REPLAY :一起将最后测量数据再次输出至计算机或记录仪; SCAN :整个测量系统的开关键; 声脉冲开关:本次试验中无用; HV :开关X 光管上的高压。 2.X 光管 其为一个抽成高真空的石英管,在上面加上高压时,接地的电子在高压作用下会轰击钼原子产生X 光,并将X 光由水平方向射出。 3.实验区 A2为安装晶体样品的靶台,安装方法将在实验过程中加以叙述。实验区是用于安 排各种实验的区域,需要注意的是,在做实验的时候,不可将活物放入实验区,并需检查铅玻璃板是否关闭严密。 三.实验原理 1.X 射线的产生: 高速运动的电子撞击物质后,与物质中的原子相互作用发生能量转移,损失的能量分别通过轫致辐射(连续光谱)和特征辐射(线状光谱)这两种形式释放出X 射线。 在X 光管区中,印记射线的电子流轰击到钼靶靶面,在能量足够高的条件下,靶内一些原子的内层电子被轰出,原子处于能级较高的激发态,由于激发态不稳定,原子外层轨道上面的电子自动填补内层轨道上面的空位,从而辐射处特定波长的X 光。 2.X 射线与物质的交互作用 X 光穿过物质时,由于被散射和吸收,强度将会衰减,衰减规律为x x e I I μ-=0,其中: x I :穿过厚度为x 的物质之后的X 光的强度; 0I :入射束的强度; μ:吸收系数; 若靶的原子序数大于40,我们选择原子序数比其小2的元素作为滤波片材料;若靶的原子序数小于40,则我们选择原子序数比其小1的元素作为滤波片材料。在本次试验中,我们的选择了Zr 作为Mo 靶的滤波片材料。 3.布拉格公式 X 光射线衍射结构分析实验是通过比对X 光经过物质之后发生的衍射现象从而确定物质的结构的。当X 射线打在与其波长数量级差不多的晶格上时,若该晶面为布拉格面,则有:L n n d ...2,1,sin 2==λθ,成立。该式即为X 射线在晶体中的衍射公式,也称为布拉

1914年诺贝尔物理学奖——晶体的X射线衍射

1914年诺贝尔物理学奖——晶体的X射线衍射 1914年诺贝尔物理学奖授予德国法兰克福大学的劳厄(Max vonLaue,1879—1960),以表彰他发现了晶体的X射线衍射。 劳厄发现X射线衍射是20世纪物理学中的一件有深远意义的大事,因为这一发现不仅说明了X射线是一种比可见光波长短1000倍的电磁波,使人们对X 射线的认识迈出了关键的一步,而且还第一次对晶体的空间点阵假说作出了实验验证,使晶体物理学发生了质的飞跃。这一发现继佩兰(Perrin)的布朗运动实验之后,又一次向科学界提供证据,证明原子的真实性。从此以后,X射线学在理论和实验方法上飞速发展,形成了一门内容极其丰富、应用极其广泛的综合学科。 劳厄当时正在德国慕尼黑大学任教。他是1909年来到慕尼黑大学的,因为那时索末菲正在那里。索末菲的讲课和讨论班吸引了许多年轻的物理学家来到慕尼黑,讨论的主题都与当时物理学在理论和实验方面的新的概念和发现有关。其中有关X射线的本性的各种看法也是主题之一。劳厄在理论物理学方面有很深的造诣,同时也密切关注实际物理现象,特别是在光学和辐射方面。他很早就对狭义相对论发生了兴趣,曾从光学的光行差现象为相对论提供了独特的证明,并写了一本小册子介绍相对论。劳厄自从1909年来到慕尼黑大学后,由于受到伦琴的影响,注意力始终放在X射线的本性上。他完全了解有关这方面的研究现状和面临的困境,他倾向于波动说,知道问题的关键在于实现X射线的干涉或衍射。正好这时索末菲把编纂《数学科学百科全书》中“波动光学”条目的任务交给劳厄。为此劳厄研究了晶格理论。晶体的点阵结构在当时虽然还是一种假设,但是在劳厄看来却是合情合理的。他坚决站在原子论这一边,反对某些哲学家怀疑原子存在的观点。他认为:没有什么无懈可击的认识论论据能够驳斥这一事实,实际经验却不断地提供新鲜证据支持这一事实。由于他对晶体空间点阵有如此深刻的认识,所以当索末菲的博士研究生厄瓦尔德(P.Ewald)和他讨论晶体光学问题时,他敏锐地抓住了晶格间距的数量级,判定晶体可以作为X射线的天然光栅。他的灵感来自他日夜的苦思,同时也是由于他对这两个互不相干的假设都有明确具体的概念。劳厄不止一次地提到:如果不确信原子的存在,他永远也不会想到利用X射线透射的方法来进行实验。据劳厄和厄瓦尔德回忆,具体过程是这样的: 1912年2月的一天,厄瓦尔德来到劳厄的房间,求劳厄帮助解决如何用数学研究光对偏振原子点阵的作用。尽管劳厄帮不了他的忙,仍热心地建议他们第二天在研究所碰头,并去他家里在晚饭前后讨论。他们按约会面,步行穿过鲁德维希(Ludwig)大街后,厄瓦尔德开始向劳厄一般性地介绍他正在从事的课题,出乎他的意料,劳厄对这方面并不了解。他向劳厄解释,他是怎样依照色散的一般理论假设在点阵排列中振子的位置。劳厄反问他为什么要这样假设。厄瓦尔德回答说,人们认为晶体具有这种内部的规律性。看起来劳厄对此感到新奇。这时他们已经进入花园。劳厄问道:振子之间的距离多大?对此,厄瓦尔德回答说,

晶体X射线衍射实验报告

X 射线衍射实验报告 材料科学与工程 学院 材料科学与工程 专业 班级 姓 名 学号 同组者 实验日期 年 月 日 指导教师 评分 分 评阅人 评阅日期 一 实验设计背景与实验目的 1 实验设计背景 Al-Zn-Mg 合金是中强可焊铝合金,σb 达到500MPa ,延伸率为15%,电导率为30IACS%,具有较好的强度和延伸率,抗腐蚀性能较好。用作航空航天和地面设备的结构材料。是目前材料研究的一个重要课题。 该合金是可热处理强化合金,合金通过固溶-淬火-时效,时效温度不同,析出GP 区、η'相或η相。后两者具有六方结构,基本化学组成为MgZn2。而GP 区为5-10nm 的球状粒子。析出相不同,其合金性能也不相同。 图1 Al-Zn-Mg 合金的不同处理态TEM 观察 a)Al 固溶态(基体) b) 120℃/24h 时效态 c)180℃/24h 时效态 同一合金,固溶态的物相应为单相,而时态效为双相(基体和析出相),因 0.5μ 100nm b) a) 100nm c) 100nm

此,首先应通过实验鉴定物相组成(物相定性分析);对于双相态,应当了解析出相的百分含量;另外,由于合金元素在基体中不同程度的固溶,导致基体的点阵常数变化,通过这种变化可检测固溶程度。 2 实验目的 了解X射线衍射仪的结构,操作规程,掌握MDI JADE的使用方法; 掌握X射线在新材料开发中的实际应用方法(物相定性分析、物相定量分析和点阵常数精确测定)。 掌握新材料开发的最新进展和新实验方法和技巧。 二实验原理 1、X射线衍射仪 (1)X射线管 X射线管工作时阴极接负高压,阳极接地。灯丝附近装有控制栅,使灯丝发出的热电子在电场的作用下聚焦轰击到靶面上。阳极靶面上受电子束轰击的焦点便成为X射线源,向四周发射X射线。在阳极一端的金属管壁上一般开有四个射线出射窗口。转靶X射线管采用机械泵+分子泵二级真空泵系统保持管内真空度,阳极以极快的速度转动,使电子轰击面不断改变,即不断改变发热点,从而达到提高功率的目的

X射线衍射分析技术综述

J I A N G S U U N I V E R S I T Y 冶金工程专业硕士研究生结课论文论文题目:X射线衍射分析技术综述 课程名称:Modern Material Analytic Technology 专业班级: 201 级硕士研究生 学生姓名: 学号: 学院名称:材料科学与工程学院 学期:第一学期 完成时间: 2015年12月 10 日

目录 摘要 (2) 第一章X射线衍射技术的发展历史 (4) 1.1 X射线的发展历程 (4) 1.2 X衍射仪的发展历史 (6) 1.2.1早期的照相机阶段 (6) 1.2.2衍射仪中期的阶段 (6) 1.2.3近代的电子计算机衍射仪阶段 (7) 第二章X射线衍射的工作原理 (7) 2.1 X射线衍射工作原理 (8) 2.1.1运动学衍射理论 (8) 2.1.2动力学衍射理论 (9) 第三章X衍射仪的构造及功能 (10) 3.1 X射线衍射仪的工作原理 (10) 3.1.1测角仪 (11) 3.1.2 X射线发生器 (12) 3.1.3 X射线衍射信号检测系统 (13) 3.1.4数据处理和打印图谱系统 (15) 第四章X射线衍射技术在材料以及冶金方面的应用 (16) 4.1物相鉴定(物相定性分析) (16) 4.2物相定量分析 (16) 4.3残余奥氏体定量分析 (17) 4.4晶体点阵参数的测定 (17) 4.5微观应力和宏观应力的测定 (17) 4.6结晶度的测定 (19) 4.7晶体取向及织构的测定 (19) 第五章X射线衍射技术未来发展方向 (21) 结束语 (22) 参考文献 (23)

摘要X射线衍射分析技术是一种十分有效的材料分析方法,X射线衍射在材料分析中具有广泛的应用。它不仅可以用来进行材料的物相分析和残余应力的分析,还可以对材料的结晶度、微晶大小以及晶体取向进行测定。可以说是对晶态物质进行物相分析的比较权威的方法。在工程和实验教学上具有广泛的应用。随着技术手段的不断创新和完善,X射线衍射实验在材料成分分析方面有着非常重要的作用,因此X射线衍射在材料分析领域必将有更广阔的发展前景。本文将着重通过对X射线衍射分析技术和X射线衍射仪的介绍,来全面了解其发展历程、工作原理、构造及作用、在冶金及金属材料领域的应用和未来发展方向。 关键词:X射线衍射分析技术、X射线衍射仪、工作原理、结构、应用

相关文档
最新文档