系统稳定器(PSS)原理及其试验方法

系统稳定器(PSS)原理及其试验方法
系统稳定器(PSS)原理及其试验方法

系统稳定器(PSS)原理及其试验方法

[摘要]本文通过电力系统稳定器(PSS)在珠江电厂的应用详细介绍了PSS 的原理和试验方法。

【关键词】励磁;电力系统稳定器;PSS

一、PSS的基本原理

电力系统稳定器(PSS)是励磁系统的一种附加功能,它抽取与低频振荡有关的信号并对其加以处理,产生的附加信号叠加到励磁调节器中,使发电机产生阻尼低频振荡的附加转矩,用于提高电力系统的阻尼。PSS一般是以励磁调节器电压控制环的附加控制的形式出现。PSS借助于励磁调节器控制励磁的输出,来阻尼同步电机的功率振荡,输入变量可以是转速、频率或功率(或多个变量的综合)。

PSS输出的附加控制信号加到励磁系统上,经过励磁调节器滞后产生附加力矩。该滞后特性称为励磁系统无补偿特性。附加力矩方向与发电机Eq’一致,但是无法实际测量Eq’,而用测量发电机电压Vt代替。试验时要求调整发电机无功在零附近,有功在满负荷附近。根据测得的励磁系统无补偿特性,按照预先设计的PSS环节相位补偿特性,初选PSS参数。目标是在低频振荡的频率范围内,PSS产生的附加力矩向量Te对应Δω(转速)轴在超前10°~滞后45°以内,并使本机振荡频率力矩向量对应Δω(转速)轴在0°~滞后30°以内。PSS输入信号(转速ω,电气功率Pe或机械功率Pm)与Δω的相位关系如下:转速ω和频率f与Δω轴同相,电气功率Pe滞后Δω轴90°,机械功率Pm领先Δω轴90°。根据不同的输入信号,PSS环节相位补偿特性的相位Фpss加上励磁系统无补偿特性的相位,可以获得所需的PSS附加力矩与Δω轴的关系,如图1所示。

珠江电厂四台机组使用励磁系统都是南瑞电气有限公司生产的SA VR-2000自并励静止励磁系统,其传递函数如图2所示,其值由调节器厂家给出。其PSS 采用的模型如图3所示,PSS环节的各参数将在本次试验中整定。

PID模型中TR=0.02为发电机电压测量时间常数,参照厂家试验值给出;其余可整定参数见各调节器整定值。

PSS模型中TP=0.02,为发电机功率测量时间常数,参照厂家试验给出。

二、试验方法

1、试验前准备工作:

1.1运行方式调整

所有线路正常投入;试验机组在满载或60%额定有功且无功功率为0-5Mavr 左右工况下运行;各机组均投入自动励磁调节器,并且工作在自动电压控制方式;所有保护及自动装置均应该正常投入;试验机组的AGC、A VC、一次调频退出。

1.2试验接线及测量的准备

动态信号分析仪,WFLC-VI便携式电量记录分析仪,电压测量接口FLC-2C 等

2、试验方法及步骤

试验前检查工控机和励磁调节器工作通讯正常,通道间手动切换正常。试验时励磁调节器按主从方式运行,手动备用励磁设定好跟踪位置。

2.1珠江电厂机组无补偿频率响应特性测量(在300MW时做)

用动态信号分析仪测量励磁系统的无补偿频率响应特性。测量接线如图4所示,在这里输入量为加入到励磁调节器综放环节输入端的电压相加点的随机噪

电力系统稳定器(PSS)现场整定试验方案

电力系统稳定器(PSS)现场整定试验方案 1.试验目的: 随着电力系统规模的不断扩大和快速励磁系统的采用,电力系统低频振荡的问题越来越突出,将系统中有关发电机的电力系统稳定器(PSS)投入可以明显改善系统的阻尼情况。 2.试验条件: 2.1 试验机组和励磁系统处于完好状态,调节器除PSS外所有附加限制和保护功能投入运行。 2.2 与试验2与试验有关的继电保护投入运行。 2.3调节器厂家技术人员确认设备符合试验要求。 2.4试验人员熟悉相关试验方法和仪器,检查试验仪器工作正常。 2.5试验时,发电机保持有功0.8pu以上,无功在0---0.2pu以下。 2.6同厂同母线其他机组PSS退出运行,机组AGC退出运行。 3.试验接线: 3.1 将发电机PI三相电压信号,A、C两相1将发电机PI三相电压信号,A、C两相电流信号以及发电机转子电压信号接入WFLC录波仪,试验时记录发电机的电压,有功功率和转子电压信号,对于交流励磁系统,还应将励磁机电压信号接入WFLC录波仪。 3.2 将动态信号分析仪的白噪声信号接入调节器的TEST输2将动态信号分析仪的白噪声信号接入调节器的TEST输入端子。 4.试验目的: 4.1 系统滞后特性测量 PSS退出运行,在PSS输出信号迭加点(TEST端子)输入白噪声信号,从零逐步增加白噪声信号的电平至发电机无功功率及发电机机端电压有明显变化,用动态信号分析仪测量发电机电压对于PSS输出信号迭加点的相频特性既励磁系统滞后特性。 注意:试验端子开路有可能造成发电机强励或失磁,要保证在迭加的信号被屏蔽的情况下进行接线或拆线。 4.2 PSS超前滞后参数整定 根据励磁系统滞后特性和PSS的传递函数计算PSS相位补偿特性和PSS 的参数。 4.3 有补偿特性试验 在PSS投入运行的情况下,在PSS的信号输入端输入白噪声信号,用动态信号分析仪测量发电机电压对于PSS信号输入点的相频特性,校验PSS补偿特性的正确性。 4.4 PSS临界增益测量 逐步增加PSS的增益,观察发电机转子电压和无功功率的波动情况,确定PSS的临界增益。 4.5 PSS增益整定 PSS的实际增益取临界增益的20%——30%。

电力系统稳定器装置说明

PSS-1型 数字式电力系统稳定控制装置使用说明书 中国电力科学研究院 2004年4月

前言 研究表明,在发电机励磁控制系统中,引入除发电机机端电压以外的附加控制信号,如同步发电机的电功率,轴速度和频率等信号或上述信号的组合,经过一定的相位处理后,再通过励磁调节器去控制发电机的励磁,可以增加机组的阻尼力矩,有效平息系统的低频振荡,提高电力系统的稳定性.电力系统稳定器(PSS-PowerSystemStabilizer)就是提供增加系统阻尼力矩的附加励磁控制部件. PSS-1型电力系统稳定控制装置适用于无电力系统稳定器的模拟式励磁调节器中,以增加励磁控制对系统低频振荡的阻尼作用.对于新型的数字式励磁调节器,在设计中都已经装备有稳定控制软件或硬件,一般不需要外加的PSS部件.在特殊的情况下,如无整定计算资料,调试方法等,也可以使用本装置. 国内一些厂家仿进口装置开发了模拟式电力系统稳定器,但普遍存在着零漂影响大,元件易老化,参数不易确定等缺点,目前正在试图以数字式电力系统稳定器替代模拟式电力系统稳定器. 接入PSS-1型数字式电力系统稳定器,需要220V或110V直流电源,励磁调节器(AVR)中要有相加点,输入信号为发电机端PT三相线电压(额定为100V)和发电机CT两相(A,C)电流.对于水轮发电机励磁控制,还需要操作有功的闭锁接点,以便在人工增减发电机有功功率时闭锁PSS输出,防止反调. PSS-1电力系统稳定器应用精确简单的算法原理,软、硬件采用模块化体系结构和高抗干扰设计,操作简单、实用,运行可靠。 PSS-1装置具有如下特点: 1.采用高性能的高速DSP(TMS320F243)单片数字信号处理控制器作为主控单元。 2.采用高速14位AD,极大提高测量精度。保护通道误差小于0.5%,量测通道误差小 于0.2%。 3.用大容量串行EEPROM存放参数定值,保证数据安全可靠。 4.采用全交流采样,软件数字滤波,彻底消除了硬件电路零漂的影响。 5.全中文液晶显示,操作界面直观简便。 6.装置具有完善的自检功能;三级Watchdog及电源监视功能,保证装置可靠运行。 7.所有定值和参数均可在面板上直接操作。 8.直接安装在励磁调节器柜上。 9.拔插式结构,CT回路采用自短路端子,便于检修。 10.电磁兼容设计,抗干扰能力强。 欢迎广大用户垂询并提出宝贵意见,我们将竭诚为用户服务。可按照用户要求特殊设计和生产。 一、用途及特点 PSS-1数字式电力系统稳定装置是新开发的自动装置。通过励磁控制系统,用来抑制

电力系统自动装置原理知识点汇编

学习-----好资料 第二章同步发电机的自动并列 1】同步发电机并列操作应满足什么要求?为什么? 答:同步发电机并列操作应满足的要求:(1)并列断路器合闸时,冲击电流应尽可能小, 其瞬时最大值一般不超过1~2倍的额定电流。(2)发电机并网后,应能迅速进入同步运行状态,其暂态过程要短,以减少对电力系统的扰动。因为:(1)并列瞬间,如果发电机的冲击 电流大,甚至超过允许值,所产生的电动力可能损坏发电机,并且,冲击电流通过其他电气 设备,还合使其他电气设备受损;(2)并列后,当发电机在非同步的暂态过程时,发电机处 于振荡状态,遭受振荡冲击,如果发电机长时间不能进入同步运行,可能导致失步,并列不成功。 2】什么是同步发电机自动准同期并列?有什么特点?适用什么场合?为什么? 答:调节发电机的电压Ug,使Ug与母线电压Ux相等,满足条件后进行合闸的过程。特点:并列时冲击电流小,不会引起系统电压降低;但并列操作过程中需要对发电机电压、频率进行调整,并列时间较长且操作复杂。 适用场合:由于准同步并列冲击电流小,不会引起系统电压降低,所以适用于正常情况下发电机的并列,是发电机的主要并列方式,但因为并列时间较长且操作复杂,故不适用紧急情况的发电机并列。 3】什么是同步发电机自同期并列?有什么特点?适用什么场合?为什么? 答:是将一台未加励磁电流的发电机组升速到接近电网频率,滑差角频率不超过允许值, 且在机组的加速度小于某一给定值的条件下,首先合上断路器QF,接着合上励磁开关开关SE给转子加励磁电流,在发电机电动势逐渐增长的过程中,又电力系统将并列的发电机组拉入同步运行。 特点:并列过程中不存在调整发电机电压、频率问题,并列时间短且操作简单,在系统频率和电压降低的情况下,仍有可能实现发电机的并列;容易实现自动化;但并列发电机未 经励磁,并列时会从系统吸收无功,造成系统电压下降,同时产生很大的冲击电流。 适用场合:由于自同步并列的并列时间短且操作简单,在系统频率和电压降低的情况下, 仍有可能实现发电机的并列,并容易实现自动化,所以适用于在电力系统故障情况下,有些 发电机的紧急并列。 4】同步发电机自动准同期并列的理想条件是什么?实际条件是什么? 答:理想条件:频率相等,电压幅值相等,相角差为零。 实际条件:①电压差不应超过额定电压的5%?10 %;笑频率差不应超过额定频率的 0.2 %?0.5 %;③在断路器合闸瞬间,待并发电机电压与系统电压的相位差应接近零,误差不应大于5°。 5】在自动并列装置中,三个条件的检测? 答:频率差的检测:(1)数字并列装置:直接测得机端电压和电网频率求出.计、二兰 ct 进行判断。(2)模拟并列装置:比较恒定越前时间电平检测器和恒定越前相角电平检测器动 作次序来实现检测;恒定相角先于恒定时间动作时滑差小于允许值,符合并列条件。 电压差的检测:直接读入Ub和LR值,然后作计算比较:采用传感器把交流电压方均根值转换成低电平直流电压,然后计算两电压间的差值,判断其是否超过该定限值,并获得待 并发电机组电压高于或低于电网电压的信息; 直接比较U G和I X的幅值大小,然后读入比较结果。待并发电机电压U G和电网电压U X分别 经变压器和整流桥后,在两电阻上得到与U b U X幅值成比例的电压值U‘G和U X,取U AE=U X-U‘ G,用整流桥得检测电压差的绝对值U AB I ,电压差测量输出端的电位为U D= I △ U A E I -U set , 其中U Set为允许电压差的整定电压值,当U b为正时,表明电压差超过并列条件的允许值。 相角差的检测:把电压互感器二次侧U X、U G的交流电压信号转换成同频、同相的两个方波, 把这两个方波信号接到异或门,当两个方波输入电平不同时,异或门的输出为高电平,用于 控制可编程定时计数器的计数时间,其计数值N即与两波形间的相角差二相对应。CPU可 读取矩形波的宽度N值,求得两电压间相角差的变化轨迹。 学习-----好资料 8】同步发电机自动准同期并列时,不满足并列条件会产生什么后果?为什么?

浅论火焰稳定器的作用

浅论火焰稳定器的作用 ?作者:江旭昌单位:天津市博纳建材高科技研究所[2007-12-17] 关键字:火焰稳定器-不良流线体-回转窑-四风道-中心风 ?摘要:通过对各种火焰稳定器的理论分析和实践结果,阐明了它们的性能和重要作用。一个优良的火焰稳定器不仅可使火焰更加稳定、风煤混合更加充分均匀,提高燃烧效率和喷燃管以及火砖的使用寿命,而且通过调节还可以改变火焰形状和强度,满足回转窑工况变化的要求。指出对它设计得是否合理,是鉴别回旋窑旋流式四风道煤粉燃烧器真品和赝品的一个重要分水岭。 一、前言 火焰稳定器在燃烧器中具有重要作用,因而被当前世界上最先进的回转窑用四风道煤粉燃烧器广泛采用。如法国皮拉得公司的Rotaflam型、丹麦史密斯公司的Duoflex型、奥地利尤尼兹姆公司的M.A.S型、国内天津市博纳建材高科技研究所的TJB型、天津院的TC 型、南京院的NC型和JETFLMAM型、武汉理工大学的OCUS型等都采用了这一技术。 也有极少数现在还没有采用的,如德国洪堡公司的PYRO-JET型、河南几家的HJGX型和EF型等。 众所周知,只有火焰稳定,才能保证回转窑的热工制度稳定,进而使回转窑达到高产、优质、低耗的技术经济指标。因此凡是研究火焰的工作者都把火焰稳定列为关键课题来研究。 可是从目前来看,国内外对这一问题的重要性认识还没有统一,甚至还有人提出没有必要。针对这种情况,作者通过多年对燃烧器的研究、设计制造和对现场实践的分析总结,积累了一些经验,现提出与大家探讨,供参考。 二、火焰稳定器的作用 在回转窑的操作中总是希望火焰能够稳定,但是由于窑内气流的变化,喂煤喂料的波动过大,煤粉质量(细度、热值、水分、灰分、挥发分等)的变化、二次风的速度和温度的变化、窑皮形状的变化和燃烧器结构等,都会导致火焰的不稳定。表现在火焰时长时短、时粗时细、温度时高时低,前焰面有时规矩有时纷乱,火焰有时振动有时发声,严重时会产生回流和回火,甚至熄灭。这样的火焰不可能保证回转窑内的温度分布合理,当然更谈不上能够稳定运转,势必造成煤耗高,产量和质量低,火砖寿命减短,工艺事故增多等。由此可见,对回转窑煤粉燃烧器来说,能够形成稳定的火焰至关重要。为此,将火焰稳定器技术引进了回转窑燃烧器中,使其火焰更加稳定。 三、火焰稳定器的形式

电力系统智能稳定器PSS的毕业设计

电力系统智能稳定器PSS的毕业设计 目录 1 引言 (1) 1.1 电力系统稳定器 (1) 1.2 电力系统稳定器国外研究现状 (1) 1.3 电力系统稳定器发展趋势 (2) 1.4 本课题研究意义 (2) 2 电力系统低频振荡机理 (3) 2.1 电力系统低频振荡 (3) 2.2 电力系统数学模型分析方法 (4) 2.3 电力系统低频振荡分析模型 (5) 2.4 影响阻尼的因素及解决措施 (6) 3 电力系统稳定器的工作原理 (8) 3.1 电力系统稳定器抑制低频振荡的原理 (8) 3.2 电力系统稳定器的输入信号 (9) 3.3 PSS的传递函数 (9) 4 电力系统稳定器的结构 (10) 4.1 电力系统稳定器的结构图 (10) 4.1.1TMS320F2812芯片介绍 (11) 4.1.2TMS320F2812 引脚介绍 (11) 4.2 模拟量输入通道 (13)

4.2.1 交流信号采集调理电路 (13) 4.2.2 直流信号采集调理电路 (14) 4.2.3 ADC采样模块 (14) 4.3 开关量输入输出单元 (15) 4.3.1 开关量输入通道 (16) 4.3.2 开关量输出通道 (17) 4.4 同步检测及移相触发单元 (17) 4.4.1 同步信号的检测 (18) 4.4.2 移相脉冲的形.. (19) 4.4.3 脉冲功率放大电路 (19) 4.4.4脉冲故障检测单元 (20) 4.5 其它硬件模块 (22) 5电力系统稳定器的软件设计 (23) 5.1电力系统稳定器软件总体设计思想 (23) 5.2 主程序设计 (23) 5.2.1 系统初始化模快 (23) 5.2.2 电量计算模块 (24) 5.2.3 控制调节模块 (27) 5.2.4限制保护模块 (29) 5.3 中断程序设计 (31) 5.3.1 同步信号捕获中断 (31) 5.3.2 移相脉冲中断 (33)

电力系统稳定器

电力系统稳定器PSS模型学习资料 (徐伟华、陈小明) 电力系统稳定器(PSS)是一种自动控制装置,是为改善同步电机稳定性而设计的,其控制功能是与励磁绕组的励磁系统相配合而起作用的。 静态励磁系统具有高的增益和快速响应时间,这大大地帮助了瞬态稳定(同步力矩)。但与此同时,却趋向于降低对小信号的稳定(阻尼力矩)。PSS控制的目的是提供一个正阻尼系数,以阻尼发电机转子角度的摇摆。在电力系统中,其摇摆的频率是在一个很大的范围内变化。 PSS是用于提供一个正的阻尼力矩分量以弥补A VR所产生负阻尼,从而形成一个有补偿的系统,它增加了阻尼,并增强了小信号(静态)稳定。这是由于生成一个与转子转速同相的信号,并与A VR得出的参考值相加而得到的。再者,由于发电机励磁电流与A VR的功能之间有一种固有的相位滞后,为补偿这种效应,需要有一个相应的相位提前。 PSS的早期开发,曾广泛地以转速或频率输入信号作为设计和应用的基础。 另外一种选择是电气功率,它已经在某些市场中广泛地采用,如PSS1A。 最新一代的PSS是基于加速功率的原理,如PSS2A、PSS2B。 1、PSS1A型电力系统稳定器(简称PSS1A模型) 图15表示的单输入的电力系统稳定器的一般形式,通常电力系统稳定器的输入信号(Vsi)有:转速、频率、功率。 T6用于表示传感器时间常数,Ks表示电力系统稳定器的增益,信号的隔直由时间常数T5设置。在下一模块中,A1、A2是使高频扭转滤波器的一些低频效果起作用,如果不是为此目的,若有必要,该模块用于稳定器幅频、相频特性的整形。接下来的两个模块是两级超前、滞后补偿环节,由常数T1至T4设置。 稳定器的输出可以有多种方法限幅,它们并没有在图15中全部表示出来。该模型仅仅表示了简单的稳定器输出限制,V STMAX 和V STMIN。在有些系统中,如果机端电压偏离了一定的范围,稳定器的输出被闭锁,如图19所示的附加非连续励磁控制模块DEC3A。在其它的一些系统中,稳定器输出的限制是以机端电压函数的形式给出,如图17的DEC1A所示。稳定器的输出Vst,是附加非连续控制模块的输入,这里没有使用附加非连续控制模块,所以Vs=Vst。 2、PSS2A型电力系统稳定器(简称PSS2A模型) 图16所示的稳定器模型,用于代表多种双输入的稳定器,它综合了功率和转速或频率

电力系统稳定器(pss).doc

XXXX发电有限责任公司电力系统稳定器(PSS)动态投运试验方案 中国电力科学院 xxx电力试验研究所 xxxx年xx月xx日

批准: 审定: 审核: 编写: 1. 试验目的 XX电厂两台发电机使用东方电机厂生产的300MW发电机,励磁调节器为英国罗罗公司生产的TMR-A VR型微机励磁调节器,励磁系统采用自并励静止可控硅励磁方式,属快速励磁系统,由于联网运行时对系统动态稳定影响较大,应尽快将励磁系统中电力系统稳定器(PSS)投入运行,以抑制可能出现的电力系统低频振荡,提高电力系统稳定性。 2.编制依据 本方案按照中华人民共和国电力行业标准DL/T650-1998《大型汽轮机自并励静止励磁系统技术条件》有关要求编制。 3. 组织措施 为保证试验顺利进行,成立领导小组和试验小组。人员组成如下: 3.1 现场试验领导小组 组长:

副组长: 成员: 3.2 现场试验专业组 组长: 成员: 4.发电机励磁系统简介 XX电厂2台发电机的励磁系统为机端自并励方式,励磁调节器和整流装置由英国Rools- Royce 公司制造,是三模冗余静态励磁系统。自动调节方式为PID+PSS。PSS输入信号为△P有功信号。 4.1主要设备参数 4.1 .1发电机参数 制造厂:东方电机厂型号:QFSN-300-2-20 额定功率: 300MW 额定电压: 20kV 额定电流: 10190A 额定功率因数:0.85 额定励磁电压:463V 实测值 额定励磁电流:2203 A 实测值 空载励磁电压: 169V 实测值 空载励磁电流: 815A 实测值 最大励磁电压: 489V 实测值 励磁绕组电阻 ( 15°c): 0.1561Ω 纵轴同步电抗Xd(非饱和值)199.7% 纵轴瞬变(暂态)电抗Xd’(非饱和值/饱和值)26.61%/29.57% 纵轴超瞬变(次暂态)电抗Xd”(非饱和值/饱和值)16.18%/17.59% 横轴电抗Xq(非饱和值) 193%

电气系毕业设计题目大全

集成电路型方向阻抗继电器设计锅炉过热汽温模糊控制系统的设计基于小波分析和神经网络理论的电力系统短路故障研究 谐振接地电网调谐方式的性能分析与实验测试 电力系统继电保护故障信息采集及处理系统 消弧线圈接地补偿系统优化研究 面向对象的10kV配电网拓扑算法研究 蚁群算法在配电网故障定位中的应用 中性点接地系统三相负载综合补偿 电力有源滤波器控制设计 110kV电力线路故障测距 防窃电装置的分析与设计 基于单片机的数字电能表设计 跨导运算放大器在继电保护中的应用 基于微机的三段式距离保护实验系统开发 小干扰电压稳定性实用分析方法研究 基于灰色系统理论的电力系统短期负荷预测 冲击负载引起电压波动与闪变分析 基于等波纹切比雪夫逼近准则最优化方法设计FIR滤波 电力系统智能稳定器PSS的设计 基于模糊集理论的电力系统短期负荷预测 基于labview虚拟仪器的电力系统测量技术研究 基于重复控制的冷轧机轧辊偏心补偿系统 基于模糊聚类的变压器励磁涌流与短路电流的识别 基于蚁群算法的配电网报装路径优化 基于虚拟仪器的变压器保护系统设计 配网无功功率优化 复合控制型电力系统稳定器研究 电力系统鲁棒励磁控制器设计 基于标准系统方块图的OTA-C滤波器的实现 6-10KV电网线损理论计算潮流算法研究 基于DSP的逆变电源并联系统的功率检测技术研究 滤除衰减非周期分量的微机保护算法研究 分布式电力系统发电机动态模型仿真研究

基于MSP430单片机的温度测控装置的设计 电力系统谐波分量计算-最小二乘法 用户供电事故自动回馈系统 电力系统谐波抑制的仿真研究 电能质量的模糊定量评价方法 燕山大学西校区110KV供电方案设计 数据采集系统USB接口的实现 具有比率制动和二次谐波制动特性的差动继电器软件设计水轮发电机模糊调速系统研究 电流传输器在继电保护中的应用 双回电力线路故障测距 电力负荷管理系统主站控制系统的研究和设计 燕山大学供电电网改造的初步设计 基于PLC的机械手控制系统设计 500KV变电站设计 基于MATLAB的数字滤波器设计与仿真 电力系统继电保护原理课件设计 塑料注射成型机PLC控制系统设计 铁磁谐振消谐器软件设计 电力系统稳定器设计 基于模糊理论的变电站电压无功综合控制研究 基于小波理论的电力故障行波分析 基于DSP的逆变电源并联系统锁相环设计 220kV变电站设计 医疗设备检测数量的计算机联网监控系统 汽轮发电机故障诊断技术研究 电压无功控制系统模糊控制器的设计 电力系统电压-无功在线控制数据源仿真系统 电力系统故障录波数据分析与研究 火电厂除灰阀门PLC控制系统设计 电压无功控制系统智能控制器的设计 简单电力网络潮流计算系统的设计及开发 混沌电路及其在保密通信中的应用

两个技巧让你使用稳定器拍得又稳又省力

两个技巧让你使用稳定器拍得又稳又省力 作者:暂无 来源:《数码影像时代》 2018年第9期 同样是手持稳定器进行拍摄,为何他人的作品画面可以表现得如此平稳流畅,而你所拍摄的画面却离完美平稳的 效果差了那一丝丝距离?我们以YouTube 的美国职业摄影师、知名评测达人Josh Morgan 的实拍为例,利用智云品牌的云鹤稳定器带来3 个“通过正确握持稳定器和行走步伐的技巧,发挥稳定器潜能”的极致体验。 技巧一:更好施力的握持方式 即便身体强壮或拥有麒麟臂,长时间单手握举稳定器+ 相机+ 镜头这样的配置,也并不是一件轻松的活。摄影师 可以充分利用双手配合的作用,采用左右手“护法”方式手持智云稳定器,一只手作为握举的主要受力点,另一只手作托 扶的辅助作用,这样的搭配会让摄影师在实际拍摄过程中省力不少。 此外,可以将小三脚架通过智云云鹤稳定器底部的1/4 螺口相连,并收起脚管。目的是为了增加稳定器的握持长度,以便更好的借力施力。双手握持,一只手在手柄顶端,另一只手在手柄末端。这种握持方式,可让相机和稳定器 的重力平均分摊至两只手,避免受力不均使某一只手受负担过重,从而达到充分施力而保持稳定的状态。 双手握持后,通过“手电筒”握持的拍摄模式,能帮助摄影师借助智云稳定器拍出更流畅稳定的画面。原理很简单,在智云稳定器的航向跟随模式(PF)下,航向轴将会跟随运动进行转动,俯仰轴则锁定不动,此时只需放平稳定器, 如同手举手电筒般,即可自如地做出各种推移的动作,仿照滑轨动作进行推近、推远、摇移等。 技巧二:更平稳的行走方式 要想通过稳定器和相机获取平稳画面的效果,摄影师的移动和控制尤为重要。这时,保持重心稍低的姿势尤为重要,这并不是为了拍低视角,而是让手持稳定器的手臂能够自然弯曲,配合双膝略弯曲,使摄影师整体重心往腰腹以 下转移,达到减震臂的效果和行走过程中的缓冲作用,同时也减轻了上半身负担过重的问题,有助于拍摄稳定且精确 的镜头。 采取小步伐行走拍摄,正如京剧演员那般,小步伐、小碎步匀速且连贯地行走运动,结合全脚掌或脚后跟先着地 的姿势,能极有效地缓解因步伐颠簸产生的画面上下跳动的问题,达到平滑拍摄的效果。再者,将手肘肘部相对收紧,让身体包裹锁紧成球型,也可以避免手臂上下晃动造成的不必要振幅。 总结: 想借助智云稳定器这类电子三轴稳定器拍出平稳流畅的惊艳画面,并发挥其最大潜能,有如下方法: 1、双手握持稳定器,仿照杆杠原理借力省力并施力,有助于做出推拉摇移的运镜动作。 2、降低重心并微曲膝盖,让身体自然不僵硬的同时,通过膝盖模拟减震器地效果抵消步伐的振幅。 此外,还有45°角倾斜稳定器使用等诸多可以让稳定器拍摄更平稳的技巧。 工欲善其事,必先利其器,大家不妨多练习拍摄并从中找到更适合自身的讨巧方式。 责编/ 刘婧

电力系统稳定器(pps)

英文:power system stabilization 电力系统稳定器(pps)就是为抑制低频振荡而研究的一种附加励磁控制技术。它在励磁电压调节器中,引入领先于轴速度的附加信号,产生一个正阻尼转矩,去克服原励磁电压调节器中产生的负阻尼转矩作用。用于提高电力系统阻尼、解决低频振荡问题,是提高电力系统动态稳定性的重要措施之一。它抽取与此振荡有关的信号,如发电机有功功率、转速或频率,加以处理,产生的附加信号加到励磁调节器中,使发电机产生阻尼低频振荡的附加力矩。 由试验可见: (1)励磁控制系统滞后特性基本分为两种:自并励系统(约-40°~90°):励磁机励磁系统(约-40°~-150°)。 (2)同一频率角度范围,表示同一发电机励磁系统在不同的系统工况和发电机工况下有不同的滞后角度,从几度到十几度,其中也包含了测量误差。 (3)温州电厂与台州电厂虽采用同一励磁控制系统,因转子电压反馈和调节器放大倍数不同,励磁系统滞后特性发生明显变化。 (4)励磁调节器的PSS迭加点位置不同,励磁控制系统滞后特性也不同。 2.有补偿频率特性的测量 有补偿频率特性,由无补偿频率特性与PSS单元相频特性相加得到,用来反映经PSS相位补偿后的附加力矩相位。DL/T650-1998《大型汽轮发电机自并励静止励磁系统技术条件》提山,有补偿频率特性在该电力系统低频振荡区内要满足-80°~-135°的要求,此角度以机械功率方向为零度。根据试验的方便情况,可采用两种方法:(1)断开PSS信号输入端,在PSS输入端加噪声信号,测量机端电压相对PSS输入信号的相角:(2)PSS环节的相角加上励磁控制系统滞后相角。 由试验可见: (1)通过调整PSS参数,可以使有补偿频率特性在较宽的频率范围内满足要求。 (2)ALSTHOM机组PSS低频段相位补偿特性未能满足要求。 (3)北仑电厂1号机PSS在小于0.4Hz范围增大隔直环节时间常数,使之低频段有良好的相位补偿特性,而且提升放大倍数(0.2Hz处提高1.76倍)。 3.PSS放大倍数和输出限幅 PSS放大倍数都以标幺值表示。输入值按PSS信号是哪一种,取机组额定有功功率、额定转速或额定频率为基值。输出值以PSS迭加点额定机端电压为基值。当PSS迭加点与电压迭加点不一致时,要按低频振荡频率下的环节放大倍数折算额定机端电压值。因PSS中的超前滞后环节影响放大倍数,本文以1Hz下的放大倍数进行比较. 4.PSS开环频率特性 开环频率特性用于测量增益裕量及相角裕量,判断闭环控制系统的稳定性,判断PSS放大倍数是否适当。可在PSS输入端或PSS输出端解开闭环进行测量。 由表5可见,除台州电厂7、8号机和北仑电厂2号机以外,开环频率特性的增益裕量及相角裕量均符合DL/T650-1998标准的要求,增益裕量大于6dB、相角裕量大于40°。 5.负载电压给定阶跃响应 负载电压给定阶跃响应作为为验证试验项目,可以直接观察PSS投入引起地区内与本机有关振荡模式阻尼比的提高,从表6中可见振荡频率均在1.18Hz以上。阶跃响应不能检验区域间与本机有关振荡模式阻尼比的提高。试验结果表明,以上机组PSS的作用均有效。有的机组对负载电压阶跃反映迟钝,以至难以测量,这可能是调节器的一些环节滤去了阶跃信

pss电力系统稳定器)模型

按照标准技术语言:电力系统稳定器Power System Stabilizer简称PSS,是励磁调节器通过一种附加控制功能,借助于AVR控制励磁输出,阻尼同步电机的低频功率振荡,用以改善电力系统稳定性能的一个或一组单元。 按照陈小明理解的技术语言:PSS是励磁调节器自动通道(自动电压调节器AVR)的附加环节或者附加装置,以低频0.2~2.5Hz的有功功率摆动作为输入,经过放大和调整相位后叠加在AVR输出上,产生同发电机阻尼绕组一样效果的正阻尼,抵消单纯电压偏差调节的AVR所产生的负阻尼,防止电力系统出现低频振荡,提高电力系统动态稳定性。 显然,PSS只有一个叠加到AVR的输出量,至于输入量最少一个。按照PSS输入的不同可以划分出不同的PSS模型。按照其他方式划分,又有其他模型。无论什么理论,只要一说到分类,张三李四王麻子各有各的爱好,分类也就越来越多。幸好PSS源于美国,且数学模型研究不是中国人的特长,因此,PSS模型的划分还是比较简单的,美国电气和电子工程师协会(IEEE)1992年将PSS划分PSS1A型(单输入)和PSS2A型(双输入),2005年版的IEEE为将PSS划分PSS1A(单输入Single-input PSS)、PSS2B(双输入Dual-input PSS)、PSS3B(双输入Dual-input PSS)、PSS4B(多频段Multi-band PSS),这是目前PSS模型最权威的分类,也是学习和交流PSS技术的重要依据。 PSS1A,单输入PSS,两级超前滞后环节。最早的输入量是频率,现在普遍采用功率P,利用隔直环节得到ΔP,再对ΔP进行超前滞后处理,以达到抑制低频振荡之目的。PSS1A主要适用于火电厂,因为火电机组调负荷很慢,

电力系统稳定器的设计及控制策略仿真

电力系统稳定器的设计及控制策略仿真 Power system stabilizer design and control strategy simulation 党剑飞,李明明,高小芳,周淑辉 DANG Jian-fei, LI Ming-ming, GAO Xiao-fang, ZHOU Shu-hui (河南省电力公司驻马店供电公司,驻马店 463000) 摘 要:本论文首先建立了发电机、原动机、调速器及励磁系统的基本模型。然后针对电力系统的特点,对励磁控制影响进行了数学分析并介绍PSS的设计原理,最后通过动态仿真对几种PSS控制策略进行了分析比较。 关键词:电力系统;pps; 控制仿真 中图分类号:TH166 文献标识码:A 文章编号:1009-0134(2010)10(下)-0189-03 Doi: 10.3969/j.issn.1009-0134.2010.10(下).61 0 引言 电力系统稳定器(pps)是一种附加励磁控制技术,其作用是抑制低频振荡。pps在励磁电压调节器中,引入领先于轴的附加信号,产生一个正阻尼转矩,去克服原励磁电压调节器中产生的负阻尼转矩作用。它抽取与振荡有关的信号,如发电机有功功率、转速或频率,加以处理,产生的附加信号加到励磁调节器中,使发电机产生阻尼低频振荡的附加转矩。根据以上分析可以得到,电力系统稳定器的设计能够增强系统的稳定性,对电力系统稳定性的提高有重要作用。 随着我国电力系统容量和输电距离不断增长,大容量机组更多的采用,电力系统稳定问题不断出现。PSS技术的发展对于改善电压调节的动态品质,提高静态电压调节精度和电网运行的暂态稳定显示明显的优点。21世纪以来各种不同输入信号的电力系统稳定器已在我国几个大型发电厂运行,并经受各种运行的考验。 1 电力系统电气元件的数学模型 电力系统的每一个主要元件的特性都对电力系统稳定产生影响。有关这些特性的知识对于理解和研究电力系统稳定是至关重要的。电力系统稳定及其控制技术与电力系统各电气元件的暂态特性有着非常密切的关系。为了分析电力系统静态稳定,并且进行有效地控制,必须首先研究电力系统电气元件的数学模型。它们包括:同步发电机、水轮发电机、汽轮机、调速器以及励磁系统等模型。1.1 同步发电机基本模型 影响电力系统动态特性的最主要元件是同步电机。同步发电机在dq0坐标系下的标么瞬时功率和电磁转矩方程分别为: 不考虑轴系分段时,同步发电机组的转子运 动方程为: 其中,H—转子惯性常数;T m —原动机力矩; T e —电磁力矩;T D —阻尼力矩;D一阻尼系数。1.2 原动机及调速系统基本模型 1.2.1 汽轮机的数学模型 在汽轮机中,调节汽门和第一级喷嘴之间存在管道和空间,当汽门开启和关闭时,进入汽机的蒸汽量虽有改变,但有一定惯性,这就形成原动机出力机械功率的变化要滞后于汽门开度的变化,这一现象称为汽容效应。对于大容量中间再过热机组,由于再热器的存在,汽容效应更加显著。当以阀门开度为输入量,汽轮机总机械功率为输出量时候,中间再过热机组的传递函数可表 收稿日期:2010-07-14 作者简介:党剑飞(1978 -),男,河南驻马店人,工程师,硕士。

电力系统稳定器PSS模型介绍

电力系统稳定器PSS模型简介 长江电力溪洛渡电厂陈小明 按照标准技术语言,电力系统稳定器Power system stabilizer 简称PSS,是励磁调节器通过一种附加控制功能,借助于A VR控制励磁输出,阻尼同步电机的低频功率振荡,用以改善电力系统稳定性能的一个或一组单元。 按照我理解后的技术语言,PSS是励磁调节器自动通道(自动电压调节器AVR)的附加环节或者附加装置,以低频0.2~2.5Hz的有功功率摆动作为输入,经过放大和调整相位后叠加在AVR输出上,产生同发电机阻尼绕组一样效果的正阻尼,抵消单纯电压偏差调节的AVR 所产生的负阻尼,防止电力系统出现低频振荡,提高电力系统动态稳定性。 显然,PSS只有一个输出叠加到AVR调节量上,PSS的输入量至少有一个。按照PSS输入的不同可以划分出不同的PSS模型。按照其他方式划分,又有其他模型。无论什么理论,只要一说到分类,张三李四王麻子各有各的爱好,分类也就越来越多。幸好PSS源于美国,且数学模型研究不是中国人的特长,因此,PSS模型的划分还是比较简单的,美国电气和电子工程师协会(IEEE)1992年将PSS划分PSS1A型(单输入)和PSS2A型(双输入),2005年版的IEEE为将PSS划分PSS1A(单输入Single-input PSS)、PSS2B(双输入Dual-input PSS)、PSS3B (双输入Dual-input PSS)、PSS4B(多频段Multi-band PSS),这是目前PSS模型最权威的分类,也是学习和交流PSS技术的重要依据。 PSS1A,单输入PSS,两级超前滞后环节。最早的输入量是频率,

电力系统稳定器pss的设计与仿真论文

目录 摘要.......................................................... I ABSTRACT.................................................. I I 1 绪论.. (1) 1.1 课题的意义 (1) 1.2 电力系统稳定 (3) 1.2.1 电力系统稳定性的分类 (3) 1.2.2 提高电力系统稳定的措施 (4) 1.2.3 励磁系统对电力系统稳定的影响 (5) 1.3 MATLAB的简介 (6) 1.4 本论文的主要工作 (7) 2 同步发动机方程 (8) 2.1 同步发动机的电压方程 (8) 2.2 同步发电机的磁链方程 (9) 2.3 同步发电机的电磁功率方程 (13) 2.3.1 隐级式发电机的电磁功率方程 (13) 2.3.2 凸极式发电机的电磁功率方程 (16) 2.4 同步发电机的转子运动方程 (17) 2.4.1 同步发电机的转子运动方程 (17) 2.4.2 发电机转子运动方程的研究意义 (18) 2.5 本章小结 (18)

3 电力系统稳定器基本介绍 (19) 3.1 电力系统稳定器简介 (19) 3.2 电力系统弱阻尼产生原因 (20) 3.3 低频振荡简介 (20) 3.4 电力系统稳定器抑制低频振荡原理 (21) 3.5 本章小结 (22) 4 PSS的设计 (22) 4.1 电力系统稳定器的设计原理 (23) 4.1.1 PSS网络的设计 (23) 4.1.2 汽轮机及其调节系统超前补偿网络的设计 (24) 4.2 本章小结 (25) 5 电力系统稳定器MATLAB仿真分析 (26) 5.1 简单电力系统的建立 (26) 5.2 模型运行仿真分析 (29) 5.3 PSS作用分析 (32) 5.4 本章小结 (32) 6 主要结论和展望 (33) 6.1 主要结论 (33) 6.2 展望未来 (33) 致谢 (34) 参考文献 (35) 附录 (36)

电力系统稳定器PSS现场整定试验方案

电力系统稳定器P S S 现场整定试验方案公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

电力系统稳定器(PSS)现场整定试验方案 1.试验目的: 随着电力系统规模的不断扩大和快速励磁系统的采用,电力系统低频振荡的问题越来越突出,将系统中有关发电机的电力系统稳定器(PSS)投入可以明显改善系统的阻尼情况。 2.试验条件: 2.1 试验机组和励磁系统处于完好状态,调节器除PSS外所有附加限制和保护功能投入运行。 2.2 与试验2与试验有关的继电保护投入运行。 2.3调节器厂家技术人员确认设备符合试验要求。 2.4试验人员熟悉相关试验方法和仪器,检查试验仪器工作正常。 2.5试验时,发电机保持有功以上,无功在以下。 2.6同厂同母线其他机组PSS退出运行,机组AGC退出运行。 3.试验接线: 3.1 将发电机PI三相电压信号,A、C两相1将发电机PI三相电压信号,A、C两相电流信号以及发电机转子电压信号接入WFLC录波仪,试验时记录发电机的电压,有功功率和转子电压信号,对于交流励磁系统,还应将励磁机电压信号接入WFLC录波仪。 将动态信号分析仪的白噪声信号接入调节器的TEST输入端子。 4.试验目的: 4.1 系统滞后特性测量 PSS退出运行,在PSS输出信号迭加点(TEST端子)输入白噪声信号,从零逐步增加白噪声信号的电平至发电机无功功率及发电机机端电压有明显变化,用动态信号分析仪测量发电机电压对于PSS输出信号迭加点的相频特性既励磁系统滞后特性。 注意:试验端子开路有可能造成发电机强励或失磁,要保证在迭加的信号被屏蔽的情况下进行接线或拆线。 4.2 PSS超前滞后参数整定 根据励磁系统滞后特性和PSS的传递函数计算PSS相位补偿特性和PSS 的参数。 4.3 有补偿特性试验 在PSS投入运行的情况下,在PSS的信号输入端输入白噪声信号,用动态信号分析仪测量发电机电压对于PSS信号输入点的相频特性,校验PSS补偿特性的正确性。 4.4 PSS临界增益测量 逐步增加PSS的增益,观察发电机转子电压和无功功率的波动情况,确定PSS的临界增益。 4.5 PSS增益整定 PSS的实际增益取临界增益的20%——30%。

PSS(电力系统稳定器)模型

按照标准技术语言:电力系统稳定器Power System Stabilizer简称PSS,是励磁调节器通过一种附加控制功能,借助于AVR控制励磁输出,阻尼同步电机的低频功率振荡,用以改善电力系统稳定性能的一个或一组单元。 按照陈小明理解的技术语言:PSS是励磁调节器自动通道(自动电压调节器AVR)的附加环节或者附加装置,以低频0.2~2。5Hz的有功功率摆动作为输入,经过放大和调整相位后叠加在AVR输出上,产生同发电机阻尼绕组一样效果的正阻尼,抵消单纯电压偏差调节的AVR所产生的负阻尼,防止电力系统出现低频振荡,提高电力系统动态稳定性。 显然,PSS只有一个叠加到AVR的输出量,至于输入量最少一个.按照PSS输入的不同可以划分出不同的PSS模型。按照其他方式划分,又有其他模型。无论什么理论,只要一说到分类,张三李四王麻子各有各的爱好,分类也就越来越多.幸好PSS源于美国,且数学模型研究不是中国人的特长,因此,PSS模型的划分还是比较简单的,美国电气和电子工程师协会(IEEE)1992年将PSS划分PSS1A型(单输入)和PSS2A型(双输入),2005年版的IEEE为将PSS划分PSS1A(单输入Single-input PSS)、PSS2B(双输入Dual-input PSS)、PSS3B(双输入Dual-inputPSS)、PSS4B(多频段Multi—band PSS),这是目前PSS模型最权威的分类,也是学习和交流PSS技术的重要依据。 PSS1A,单输入PSS,两级超前滞后环节。最早的输入量是频率,现在普遍采用功率P,利用隔直环节得到ΔP,再对ΔP进行超前滞后处理,以达到抑制低频振荡之目的.PSS1A主要适用于火电厂,因为火电机组调负

电力系统自动控制原理必考题

1、何谓“并列操作”? 答:电力系统中的负荷随机变化,为保证电能质量,并满足安全和经济运行的要求,需经常将发电机投入和退出运行,把一台待投入系统的空载发电机经过必要的调节,在满足并列运行的条件下经开关操作与系统并列,这样的操作过程称为并列操作。 2、同步发电机组并列时遵循什么原则? 答:⑴ 并列断路器合闸时,冲击电流应尽可能小,其瞬时最大值一般不超过1~2倍的额定电流;⑵ 发电机组并入电网后,应能迅速进入同步运行状态,其暂态过程要短,以减小对电力系统的扰动。 3、同步发电机自动准同期并列的理想条件是什么?实际条件是什么? 答:理想条件:频率相等,电压幅值相等,相角差为零。 实际条件:① 频率差不应超过额定频率的±0.2%~±0.5%;② 电压差不应超过额定电压的±5%~±10%;③ 在断路器合闸瞬间,待并发电机电压与系统电压的相位差应接近零,误差不应大于10°。 4、什么是准同期并列?什么是自同期并列? 答:准同期并列:发电机在并列合闸前已加励磁,当发电机电压的幅值、频率、相位分别与并列点系统侧电压的幅值、频率、相位接近相等时,将发电机断路器合闸,完成并列操作。 自同期并列:将未加励磁、接近同步转速的发电机投入系统,随后给发电机加上励磁,在原动转矩、同步力矩作用下将发电机拉入同步,完成并列操作。 5、什么是滑差、滑差频率、滑差周期?它们之间有什么关系? 答:滑差:并列断路器两侧发电机电压角频率与系统电压角频率之差,用s ω表示;滑差频率:并列断路器两侧发电机电压频率与系统电压频率之差,用s f 表示; 滑差周期:并列断路器两侧发电机电压与系统电压之间相角差变化360°所用的时间,用s T 表示。关系:s s f ?=πω2 s s s f T π21== 6、在自动准同期并列过程中,⑴ 滑差角频率为常数,⑵ 滑差角频率等速变化,⑶ 滑差角频率的一阶导数等加速变化,分别代表并列过程中的什么现象? 答:⑴ 滑差角频率为常数,表示电网和待并机组的频率稳定;⑵ 滑差角频率等速变化,表示待并机组按恒定加速度升速,发电机频率与电网频率逐渐接近;⑶ 滑差角频率的一阶导数等加速变化,说明待并机组的转速尚未稳定,还在升速(或减速)之中。 7、什么是同步发电机自动准同期并列?有什么特点?适用什么场合? 答:同步发电机自动准同期并列是频率差、电压差和相角差都在允许的范围内时进行合闸的过程。其特点是并列时冲击电流小,不会引起系统电压降低;但并列操作过程中需要对发电机电压、频率进行调整,并列时间较长且操作复杂。 适用场合:由于准同步并列冲击电流小,不会引起系统电压降低,所以适用于正常情况下发电机的并列,是发电机的主要并列方式。但因为并列时间较长且操作复杂,故不适用紧急情况的发电机并列。 8、同步发电机自动准同期并列时,不满足并列条件会产生什么后果?为什么? 答:发电机准同期并列时,如果不满足并列条件,将产生冲击电流,并引起发电机振荡,严重时,冲击电流产生的电动力会损坏发电机,振荡使发电机失步,甚

螺杆钻具结构原理

1、螺杆钻具结构 螺杆钻具是一种把液体的压力能转换为机械能的能量转换装置,由旁通阀、马达、TC轴承、推力轴承、万向轴、传动轴和防掉装置等组成(如图1所示)。 当高压液体进入钻具时,迫使转子在定子中转动(定子和转子组成了马达),马达产生的扭矩和转速通过万向轴传递到传动轴和钻头上,达到钻井的目的。螺杆钻具作为井底动力装置,具有低转速、大扭矩、大排量等许多优点: 1.增加了钻头扭矩和功率,提高了进尺率。 2.减少了钻杆和套管的磨损和损坏。 3.可准确地进行定向、造斜、纠偏。

4.广泛应用于直井、水平井、丛式井和修井作业。 1.1旁通阀总成 旁通阀由阀体、阀套、阀芯及弹簧等部件组成(如图2所示)。 在压力作用下阀芯在阀套中滑动,阀芯的运动改变了液体的流向,使得旁通阀有旁通和关闭两个状态:在起、下钻作业过程中,阀套与阀体通孔未闭和,旁通阀处于旁通状态,使钻柱中泥浆绕过马达进入环空;当泥浆流量和压力达到标准设定值时,阀芯下移,关闭旁通阀孔,此时泥浆流经马达,把压力能转变成机械能。当泥浆流量值过小或停泵时,弹簧把阀芯顶起,旁通阀孔处于开启位置--处于旁通状态。 1.2马达总成

马达由定子、转子组成。定子是在钢管内壁上压注橡胶衬套而成,其内孔是具有一定几何参数的螺旋;转子是一根有硬层的螺杆 (如图3所示) 。 转子与定子相互啮合,用两者的导程差而形成螺旋密封腔,以完成能量转换。 马达转子的螺旋线有单头和多头之分。转子的头数越少,转速越高,扭矩越小;头数越多,转速越低,扭矩越大。仅以转子与定子啮合头数为5:6和9:10的截面参考。(如图4、图5所示)。

马达中一个定子导程组成一个密封腔(一级)。每级额定工作压降约0.8MPa ~1.1MPa 。压降超过最大压降值,马达就会产生泄漏,转速很快下降,对马达也会造成损坏。 为了确保密封效果,转子与定子之间的配合尺寸与不同井深、井温有关。 在选择钻具时应按不同井况选用不同型号马达。 现场使用的泥浆流量应在推荐的范围之内,否则将影响马达效率,甚至加快马达磨损。 马达的输出扭矩与马达的压降成正比,输出转速与输入泥浆量成正比,负载的增加,钻具的转速有所降低。 1.2.1中空转子马达 中空转子可增加钻头液压动力和泥浆上返速度,马达的总流量等于流经马达及转子喷嘴的总和,流经该马达的液体流量过大,马达将停止转动。因此选择中空转子马达时,应确保马达密封腔流量在正常工况。 1.2.2喷嘴直径选取 在泥浆密度、喷嘴尺寸和马达流量一定时,起钻时马达负载近似为零,流经转子喷嘴流量最小,而流经马达密封腔的流量最大。相反,钻头钻进,马达压差不断增加,流经转子喷嘴流量增加,同时,流经马达密封腔流量减少。流经马达密封腔的流量为Q 1,通过马达喷嘴的流量Q 2,Q 总=Q 1+Q 2。用户可依据使用需要随时更换不同直径喷嘴,从而达到理想的效果。 表1:

相关文档
最新文档