材料结构表征及应用思考题

材料结构表征及应用思考题
材料结构表征及应用思考题

材料结构表征及应用思

考题

集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

第二章

1、什么是贝克线其移动规律如何有什么作用

在两个折射率不同的物质接触处,可以看到比较黑暗的边缘,在这轮廓附近可以看到一条比较明亮的线细线,当升降镜筒时,亮线发生移动,这条明亮的细线称为贝克线。

贝克线的移动规律:提升镜筒,贝克线向折射率大的介质移动。

根据贝克线的移动,可以比较相邻两晶体折射率的相对大小。

2、单偏光镜和正交偏光镜有什么区别单偏光下和正交偏光下分别可以观察哪些现象

单偏光(仅使用下偏光)下可以观察晶体的形态、结晶习性、解理、颜色以及突起、糙面、多色性和吸收性,比较晶体的折光率(贝克线移动),用油浸法测定折光率等,对矿物鉴定十分重要。

正交偏光镜:联合使用上、下偏光镜,且两偏光镜的振动面处于互相垂直位置。可看到消光现象、球晶。

第三章

1. 电子透镜的分辨率受哪些条件的限制

透镜的分辨率主要取决于照明束波长λ。其次还有透镜孔径半角和物方介质折射率。

2. 透射电镜主要分为哪几部分

电子光线系统(镜筒)、电源系统、真空系统和操作控制系统。

3. 透射电镜的成像原理是什么

透射电镜,通常采用热阴极电子枪来获得电子束作为照明源。热阴极发射的电子,在阳极加速电压的作用下,高速穿过阳极孔,然后被聚光镜会聚成具有一定直径的束斑照到样品上。具有一定能量的电子束与样品发生作用,产生反映样品微区厚度、平均原子序数、晶体结构或位

向差别的多种信息。透过样品的电子束强度,其取决于这些信息,经过物镜聚焦放大在其平面上形成一幅反映这些信息的透射电子像,经过中间镜和投影镜进一步放大,在荧光屏上得到三级放大的最终电子图像,

还可将其记录在电子感光板或胶卷上。

4. 请概述透射电镜的制样方法。

支持膜法,复型法、晶体薄膜法和超薄切片法。

高分子材料必要时还需染色、刻蚀。

5. 扫描电镜的工作原理是什么

由三极电子枪发射出来的电子束,在加速电压作用下,经过2~3个电子透镜聚焦后,在样品表面按顺序逐行进行扫描,激发样品产生各种物理信号,如二次电子、背散射电子、吸收电子、X射线、俄歇电子等。这些物理信号分别被相应的收集器接受,经放大器放大后,送到显像管的栅极上,用来同步地调制显像管的电子束强度,即显像管荧光屏上的亮度。由于供给电子光学系统使电子束偏向的扫描线圈的电源也就是供给阴极射线显像管的扫描线圈的电源,此电源发出的锯齿波信号同时控制两束电子束作同步扫描。因此,样品上电子束的位置与显像管荧光屏上电子束的位置是一一对应的。这样,在长余辉荧光屏上就形成一幅与样品表面特征相对应的画面——某种信息图,如二次电子像、背散射电子像等。画面上亮度的疏密程度表示该信息的强弱分布。

6. 扫描电镜成像的物理信号包括哪几种

二次电子、背散射电子、吸收电子、X 射线、俄歇电子等

7. 相对于光学显微镜和透射电镜,扫描电镜各有哪些优点

SEM的景深大、放大倍数连续调节范围大,分辨本领比较高、能配置各种附件,做表面成分分析及表层晶体学位向分析等

8. 为什么透射电镜的样品要求非常薄,而扫描电镜无此要求

在透射电镜中,电子束是透过样品成像的,而电子束的穿透能力不大,这就要求试样制成很薄的薄膜样品。而扫描电镜是通过逐点扫描进行成像。

9. 能谱仪的工作方式包括哪些

1)定点元素全分析(定性或定量)

2)线扫描分析

3)面扫描分析

第四章

1.连续X射线和特征X射线的产生、特点。

连续X射线:强度随着X射线管的管电压增加而增大,而最大强度所对应的波长λmax变小,最短波长界限λ0减小。

特征X射线:强度大大超过连续谱线的强度并可叠加于连续谱线之上,这些谱线不随X射线管的工作条件而变,只取决于阳极靶物质。

2. X射线衍射原理。

X射线作为一电磁波投射到晶体中时,会受到晶体中原子的散射。由于原子在晶体中是周期排列,这些散射球面波间存在固定的位相关系,它们之间会

产生干涉,结果导致在某些散射方向的球面波相互加强,而在某些方向上相互抵消,从而出现衍射现象。

3.布拉格方程的物理意义。

(1)结构分析:利用已知波长的特征X射线,通过测量角,

可以计算出晶面间距d;

(2)X射线光谱学:利用已知晶面间距d的晶体,通过测量角,

从而计算出未知X射线的波长。

4. X射线衍射实验方法。

粉末衍射法、劳厄法、转晶法

5.粉末衍射仪的工作方式、工作原理。

工作方式:(1)连续扫描—试样和探测器以1:2的角速度作匀速圆周运动,在转动过程中将探测器依次接收到的各晶面衍射信号输入到记录系

统或数据处理系统,获得的衍射图谱。

(2)步进扫描—试样每转动一定的角度Δθ即停止,在这期间,探测器等后续设备开始工作,并以定标器记录测定在此期间内衍射线的总

计数,然后试样转动一定角度,重复测量,输出结果。

工作原理:测试时试样和探测器分别以ωs和ωc的角速度转动,试样表面始终平分入射线和衍射线的夹角2θ,当2θ符合某晶面对应的布拉格条

件时,探测器计数管接收的衍射信号就是由晶面平行于试样表面的

晶粒所贡献。计数管在扫描中接收不同角度下的衍射线,得到衍射

图。

6. X射线粉末衍射法物相定性分析过程及注意的问题。

(1)对试样分析前,尽可能了解样品的来源、化学成分、工艺状况,仔细观察其外形、颜色等性质。

(2)尽可能将试样分离成单一物相后进行衍射分析。

(3)如试样为多物相化合物,为尽可能地避免衍射线的重叠,应提高粉末照相或衍射仪的分辨率。

(4)对于d值数据,在检索时只允许小数点后第二位才能出现偏差。

(5)特别要重视低角度区域的衍射实验数据:在低角度区域,衍射所对应d 值较大的晶面,不同晶体差别较大,衍射线相互重叠机会较小。

(6)进行多物相混合试样检验时,力求全部数据能合理解释,但有时也会出现少数衍射线不能解释的情况,这可能由于混合物相中,某物相含量太少,只出现一、两条较强线,以致无法鉴定。

(7)在物相定性分析过程中,尽可能地与其它的相分析结合起来,互相配合,互相印证。

射线粉末衍射仪法物相定量分析方法及其过程。

分析方法:内标法、外标法、K值法

分析过程:

(1)物相鉴定:对样品进行待测物相的定性分析。

(2)选择标样物相:标准物相必须理化性能稳定;与待测物相衍射线无干扰;在混合及制样时,不易引起晶体的择优取向。

(3)进行定标曲线的测定或K j s测定:选择的标准物相与纯的待测物相按要求制成混合试样,选定标准物相及待测物相的衍射线,分别测定其强度I s 和I j,用I j/I s和纯相配比X j s获取定标曲线或K j s。

(4)测定试样中标准物相S的强度或测定按要求制备试样中的待检物相j 及标样S物相指定衍射线强度。

(5)用所测定的数据,按各自的方法计算出待检物相的质量分数X j。

8.简述X射线实验方法在材料研究中有哪些主要应用。

(1)通过X射线衍射实验数据,根据衍射线的位置(θ角),对每一条衍射线或衍射花样进行指标化,以确定晶体所属晶系,推算出单位晶胞的形状和大小;

(2)根据单位晶胞的形状和大小,晶体材料的化学成分及体积密度,计算每个单位晶胞的原子数;

(3)根据衍射线或衍射花样的强度,推断出各原子在单位晶胞中的位置。方程及其应用。

βhkl为衍射线半高宽(弧度),D hkl为垂直于反射面(hkl)晶粒平均尺度。第五章

1. 简述差热分析的原理。

将差热电偶的的一个热端插在被测试样中,另一个热端插在待测温度区间内不发生热效应的参比物中,试样和参比物同时升温,测定升温过程中两者温度差,就构成了差热分析的基本原理。

2. 影响差热分析的试样和实验条件因素包括哪些

仪器方面因素:包括加热炉的形状和尺寸、坩埚材料及大小形状、热电偶性能及其位置、显示、记录系统精度等。

试样因素:包括试样的热容量、热导率和试样的纯度、结晶度以及试样的颗粒度、用量及装填密度、参比物的影响等。

实验条件:包括加热速度、气氛和压力等。

3. 为何DTA主要进行定性和半定量分析DSC如何实现定量分析的

在差热分析中,当试样发生热效应时,试样本身的升温速度是非线性的;升温速度始终处于变化中。在发生热效应时,试样与参比物及试样周围的环境有较大的温差,它们之间会进行热传递,降低了热效应测量的灵敏度和精确度。因此目前差热分析技术在大多数情况下只作定性分析(但在分析微量样品时,可进行半定量或定量分析)。

DSC通过对试样因热效应而发生的能量变化进行及时补偿,使得试样与参比物之间温度始终保持相同,无温差、无热传递,灵敏度和精度大有提高,可进行定量分析。

4. 请阐述DSC技术的原理和特点。

DSC通过对试样因热效应而发生的能量变化进行及时补偿,使得试样与参比物之间温度始终保持相同,无温差、无热传递,灵敏度和精度大有提高,可进行定量分析

5. 掌握DTA、DSC分析样品要求和结果分析方法。

6. 简述热重分析的原理和影响因素。

原理:许多物质在加热或冷却过程中往往有质量变化,其变化的大小及出现的温度与物质的化学组成和结构密切相关。因此利用在加热和冷却过程中物质质量变化的特点,可以区别和鉴定不同的物质。

影响因素:仪器因素:测温热电偶、基线、试样支持器

试样因素:质量、粒度、物化性质、装填方式

实验条件:升温速率、气氛

7. 了解热分析技术在材料研究中的应用。

第六章

1. 了解各种波长的电磁波对原子(基团)作用及其相应的光谱分析手段。

紫外光的波长较短(一般指100~400 nm ),当它照射到分子上时,会引起分子中价电子能级的跃迁;

红外光的波长较长( 一般指~25μm ),能量稍低,只能引起分子中成键原子的振动和转动能级的跃迁;

核磁共振波的能量更低(一般指60~250MHz,波长约10cm), 产生原子核自旋能级的跃迁。

2. 何谓发色基团和助色基团

发色基团-能导致化合物在紫外及可见光区产生吸收的基团,不论是否显出颜色都称为发色基团。

助色基团-是指那些本身不会使化合物分子产生颜色或者在紫外及可见光区不产生吸收的基团,但这些基团与发色基团相连时却能使发色基团的吸收带波长移向长波,同时吸收强度增强。(p-π共轭)

3. 简述有机物在紫外光谱中吸收带的类型。

R吸收带,是n →π * 跃迁形成的吸收带

K吸收带,

B吸收带,芳香化合物及杂芳香化合物的特征谱带

E吸收带,芳香族化合物的特征谱带

4. 如何利用紫外光谱进行定量分析

朗伯比尔定律、吸光度加和性

5. 红外吸收产生的条件。

(1)辐射应具有刚好能满足物质跃迁时所需的能量:当一定频率(一定能量)的红外光照射分子时,分子中某个基团的振动频率和红外辐射的频率一致;

(2)辐射与物质之间有相互作用:分子必须有偶极矩的改变,即这种能量的转移是通过偶极距的变化来实现的。

6. 阐述分子振动的形式。

(1)伸缩振动

i 对称伸缩振动

ii 反对称伸缩振动

(2)变形或弯曲振动

i.面内变形振动

剪式振动

面内摇摆振动

ii.面外变形振动

面外摇摆振动

扭曲变形掘动

6. 阐述红外光谱吸收带强度的影响因素。

(1)外部因素

试样状态、测定条件和溶剂极性等外部因素都会引起频率位移。。

固体粉末样品折射率和粒度的影响:散射往往使谱图失真

(同一化合物的气态和液态光谱或液态和固态光谱有较大差异,气态水两个峰液态水三个峰)

(2)内部因素

诱导效应、共轭效应、氢键(力常数增大,频率增大)

7. 简述红外光谱样品的制备方法。

(1)固体试样:KBr压片法、薄膜法、石蜡糊法、溶液法

(2)气态试样:使用气体吸收池,先将吸收池内空气抽去;然后吸入被测试样

(3)液体和溶液试样:液膜法

9. 影响基团频率位移的因素包括哪些

氢键:

伸缩振动:氢键越强,谱带越宽,吸收强度越大,

向低频方向位移也越大

弯曲振动:氢键引起谱带变窄,向高频方向位移。

10. 红外光谱中的特征频率区和指纹区。

特征频率区-基团的特征吸收大多集中在4000 ~1350cm-1 区域内;特征频率区可用于鉴定官能团,但很多情况下,一个官能团有好几种振动形式,而每一种红外活性振动般相应产生个收峰有时还能观测到泛频峰。用一组相关峰可更确定地鉴别官能团,这是红外光谱进行定性鉴定的重要原则。

指纹区-指1350~650cm-1 的低频区。指纹区的主要价值在于表示分子的特征,宜于用来与标准谱图(或已知物谱图)进行比较,以得出未知物与已知物结构是否相同的确切结论。

第七章

1. 根据ν0 = γH0 / 2π,可以说明什么问题

(1)对于不同的原子核,由于磁旋比不同,发生共振的条件不同即在相同的磁场中不同原子核发生共振时的频率各不相同,根据这一点可以鉴别各种元素及同位素。

(2)对于同一种核,γ值一定。当外加磁场一定时,共振频率也一定;当磁场强度改变时,共振频率也随着改变。

2. 什么是驰豫为什么NMR分析中固体试样一般先配成溶液

核磁共振中氢核由高能态回复到低能态而不发射原来所吸收的能量的过程称为弛豫。

固体样品的t2很小,所以共振吸收峰的宽度很大,分辨率降低,有时甚至检测不到NMR的信号,所以在通常进行的NMR分析中固体试样应先配成溶液(也可做固体高分辨核磁)。

3. 何谓化学位移它有什么重要性影响化学位移的因素有哪些

如果选定一种磁核的共振位置为参比,其他磁核的共振位置与此参比磁核的差值称为该磁核的化学位移。

在各种化合物分子中,与同一类基团相连的质子,它们都有大致相同的化学位移。

4. 何谓自旋偶合自旋分裂它们在NMR分析中有何重要作用

在同一分子中,核自旋与核自旋间相互作用的现象叫做自旋偶合。

由自旋-自旋偶合产生谱线分裂的现象叫自旋分裂。

自旋-自旋裂分现象对结构分析非常有用,可鉴定分子中的基团及其排列次序。

5. NMR在材料分析研究中有哪些应用

区分聚丙酸乙烯酯和聚丙烯酸乙酯、共聚物组成的测定

材料力学性能

第一章 1.退火低碳钢在拉伸作用下的变形过程可分为弹性变形,不均匀屈服塑性变形,均匀塑性变形,不均匀集中塑性变形和断裂 2.弹性表征材料发生弹性变形的能力 3.应力应变硬化指数表征金属材料应变硬化行为的性能指标,反应金属抵抗均匀苏醒变形的能力 4.金属材料在拉伸试验时产生的屈服现象是其开始产生宏观塑性变形的一种标志 5. σs 呈现屈服现象的金属材料拉伸时试样在外力不断增加(保持恒定)仍能继续伸长时的应力称为屈服点,记作σs 6. σ0.2 屈服强度 7.断裂类型:韧性断裂和脆性断裂;穿晶断裂和沿晶断裂;解理断裂、纯剪切断裂和微孔聚集型断裂 8.塑性是指金属材料断裂前发生塑性变形的能力 9.韧性断裂和脆性断裂的断口形貌:①韧性断裂断口呈纤维状,灰暗色;中低碳钢断口形貌呈杯锥状,有纤维区,放射区和剪切唇三个区域②脆性断裂断口平齐而光亮,呈放射状或结晶状,有人字纹花样 10.沿晶断裂断口形貌:沿晶断裂冰糖状 11.常见力学行为:弹性变形,塑性变形和断裂 第二章 1.应力状态软性系数Tmax与σmax的比值 2.相对关系压缩试验α=2,扭转试验α=0.8 3(1)渗碳层的硬度分布---- HK或-显微HV (2)淬火钢-----HRC (3)灰铸铁-----HB (4)鉴别钢中的隐晶马氏体和残余奥氏体-----显微HV或者HK (5)仪表小黄铜齿轮-----HV (6)龙门刨床导轨-----HS(肖氏硬度)或HL(里氏硬度) (7)渗氮层-----HV (8)高速钢刀具-----HRC (9)退火态低碳钢-----HB (10)硬质合金----- HRA 第三章 1.冲击韧性指材料在冲击载荷作用下吸收塑性变形功和断裂功的能力,用Ak表示 2.冲击吸收功摆锤冲击试样前后的势能差 3.低温脆性实验温度低于某一温度tk时,会由韧性状态转变为脆性状态,冲击吸收功明显下降。原因:材料屈服强度随温度降低急剧增加的结果 4. 韧脆转变温度转变温度tk称为韧脆转变温度 第四章 1.断裂韧度(K IC )在平面应变条件下材料抵抗裂纹失稳扩展的能力(与组织有关) 2.应力场强度因子(K I)受外界条件影响的反映裂纹尖端应力场强弱程度的力学度量(与本身有关) 3.断裂韧度(G IC)表示材料阻止裂纹失稳扩展是单位面积所消耗的能量 4.K IC的测量标准三点弯曲试样,紧凑拉伸试样,F形拉伸试样和圆形紧凑拉伸试样

《材料结构与性能》习题

《材料结构与性能》习题 第一章 1、一 25cm长的圆杆,直径 2.5mm,承受的轴向拉力4500N。如直径拉细成 2.4mm,问: 1)设拉伸变形后,圆杆的体积维持不变,求拉伸后的长度; 2)在此拉力下的真应力和真应变; 3)在此拉力下的名义应力和名义应变。 比较以上计算结果并讨论之。 2、举一晶系,存在S14。 3、求图 1.27 所示一均一材料试样上的 A 点处的应力场和应变场。 4、一陶瓷含体积百分比为95%的 Al 2O(3 E=380GPa)和 5%的玻璃相( E=84GPa),计算上限及下限弹性模量。如该陶瓷含有5%的气孔,估算其上限及下限弹性模量。 5、画两个曲线图,分别表示出应力弛豫与时间的关系和应变弛豫和时间的 关系。并注出: t=0,t= ∞以及 t= τε(或τσ)时的纵坐标。 6、一 Al 2O3晶体圆柱(图1.28 ),直径 3mm,受轴向拉力 F ,如临界抗剪强度τ c=130MPa,求沿图中所示之一固定滑移系统时,所需之必要的拉力值。同时 计算在滑移面上的法向应力。

第二章 1、求融熔石英的结合强度,设估计的表面能为 1.75J/m 2;Si-O 的平衡原子间距为 1.6 ×10-8 cm;弹性模量值从60 到 75GPa。 2、融熔石英玻璃的性能参数为:E=73GPa;γ =1.56J/m 2;理论强度。如材料中存在最大长度为的内裂,且此内裂垂直于作用力的方向,计算由此而导致的强度折减系数。 3、证明材料断裂韧性的单边切口、三点弯曲梁法的计算公式: 与 是一回事。

4、一陶瓷三点弯曲试件,在受拉面上于跨度中间有一竖向切口如图 2.41所示。如果 E=380GPa,μ =0.24 ,求 KⅠc值,设极限载荷达50 ㎏。计算此材料的断裂表面能。 5、一钢板受有长向拉应力350 MPa,如在材料中有一垂直于拉应力方向的 中心穿透缺陷,长 8mm(=2c)。此钢材的屈服强度为 1400MPa,计算塑性区尺 寸 r 0及其与裂缝半长 c 的比值。讨论用此试件来求 KⅠc值的可能性。 6、一陶瓷零件上有以垂直于拉应力的边裂,如边裂长度为:①2mm;②0.049mm;③ 2μ m,分别求上述三种情况下的临界应力。设此材料的断裂韧性为 2 1.62 MPa〃m。讨论诸结果。 7、画出作用力与预期寿命之间的关系曲线。材料系ZTA陶瓷零件,温度在 2 ,慢裂纹扩展指数-40 ,Y 取π 。设保 900℃, KⅠc为 10MPa〃m N=40,常数 A=10 证实验应力取作用力的两倍。 8、按照本章图 2.28 所示透明氧化铝陶瓷的强度与气孔率的关系图,求出经验公式。 9、弯曲强度数据为: 782,784,866,884,884,890,915,922,922,927,942, 944,1012 以及 1023MPa。求两参数韦伯模量数和求三参数韦伯模量数。 第三章 1、计算室温( 298K)及高温( 1273K)时莫来石瓷的摩尔热容值,并请和安杜龙—伯蒂规律计算的结果比较。 2、请证明固体材料的热膨胀系数不因内含均匀分散的气孔而改变。

材料结构与性能历年真题

材料结构与性能历年真 题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2009年试题 1.一外受张应力载荷力500MPa的无机材料薄板(长15cm,宽10cm,厚,其 中心部位有一裂纹(C=20μm)。该材料的弹性模量为300GPa,(1Pa=1N/m2)断裂能为15J/m2(1J=1Nm)。 a)计算该裂纹尖端应力强度因子K I (Y=) b)判断该材料是否安全 ,可知,即材料的裂纹尖端应力强度应子超过了材料的临界断裂应子,则材料不安全。 2.测定陶瓷材料的断裂韧性常用的方法有几种并说明它们的优缺点。 答: 方法优点缺点 单边切口梁法(SENB)简单、快捷①测试精度受切口宽度的影响,且过分要求窄的切口;②切口容易钝化而变宽,比较适合粗晶陶瓷,而对细晶体陶瓷测试值会偏大。 Vickers压痕弯曲梁法 (SEPB)测试精度高,结果较准 确,即比较接近真实值 预制裂纹的成功率低;控制裂纹的深度尺 寸较困难。 直接压痕法(IM)①无需特别制样;②可 利用很小的样品;③测 定H V的同时获得K IC, 简单易行。 ①试样表面要求高,无划痕和缺陷;②由 于压痕周围应力应变场较复杂,没有获得 断裂力学的精确解;③随材料性质不同会 产生较大误差;④四角裂纹长度由于压痕 周围残余应力的作用会发生变化;产生压 痕裂纹后若放置不同时间,裂纹长度也会 发生变化,影响测试精度。

3.写出断裂强度和断裂韧性的定义,二者的区别和联系。 答: 断裂强度δr断裂韧性K IC 定义材料单位截面承受应力而不发生断裂的能力材料抵抗裂纹失稳扩展或断裂能力 联系①都表征材料抵抗外力作用的能力;②都受到E、的影响,提高E、既可提高断裂强度,也可提高断裂韧性;③在一定的裂纹尺寸下,提高K IC也会提高δr,即增韧的同时也会增强。 区别除了与材料本身的性质有关外,还与 裂纹尺寸、形状、分布及缺陷等有关 是材料的固有属性,是材料的结构和显微 结构的函数,与外力、裂纹尺寸等无关 4.写出无机材料的增韧原理。 答:增韧原理:一是在裂纹扩展过程中使之产生有其他能量消耗机构,从而使外加负载的一部分或大部分能量消耗掉,而不致集中于裂纹扩展上;二是在陶瓷体中设置能阻碍裂纹扩展的物质场合,使裂纹不能再进一步扩展。 根据断裂力学,抗弯强度,断裂韧性,可以看出要提高陶瓷材料强度,必须提高断裂表面能和弹性模量以及减小裂纹尺寸;要提高断裂韧性,必须提高断裂表面能和弹性模量。 5.试比较以下材料的热导率,并按大小顺序排列,说明理由。氮化硅(Si3N4)陶 瓷、氧化镁(MgO)陶瓷、镁橄榄石(2MgO·SiO2)、纯银(Ag)、镍铬合金 (NiCr)。 答:热导率大小顺序:纯银>镍铬合金>氮化硅>氧化镁>镁橄榄石 理由:1)一般金属的热导率比非金属的热导率高,这是由于金属中存在大量的自由电子,电子质量轻,平均自由程很大,故可以快速的实现热传导;而非金属主要是通过声子来进行热传导的,声子的平均自由程要比自由电子的小很多,自由电子的热传导速率是声子的20倍,故纯银和镍铬合金的热导率高。2)单质的热导率要比混合物质的热导率高,故纯银大于镍铬合金。3)固溶体的热导率要比纯物质的小,故镁橄榄石的热导率小于氮化硅和氧化镁。4)共价键强的晶体热导率高,故氮化硅的热导率强于氧化镁。 6.对于组成范围为0-50%K2O,100-50%SiO2的玻璃,推断其膨胀系数的变 化,试通过玻璃的结构来解释所得的结果。

材料力学性能-第2版课后习题答案

第一章单向静拉伸力学性能 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。

沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等 2、 说明下列力学性能指标的意义。 答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。【P4】 4、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 5、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 6、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 7、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 8、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 9、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。【P32】 答: 2 12?? ? ??=a E s c πγσ,只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1)应力状态软性系数—— 材料或工件所承受的最大切应力τmax 和最大正应力σmax 比值,即: () 32131max max 5.02σσσσσστα+--== 【新书P39 旧书P46】 (2)缺口效应—— 绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。【P44 P53】 (3)缺口敏感度——缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σb 的比值,称为缺口敏感度,即: 【P47 P55 】 (4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。【P49 P58】 (5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度【P51 P60】。

材料工程基础思考题

主要的高分子材料的合成类型和方法;高分子单体、单元结构的概念以及与高分子组成和结构性质的关系;聚合物的反应掌握高分子链结构的长、柔和复杂的特点;掌握高分子分子量与分子量分布的表征,理解高分子聚集态结构的多样性、复杂性与多缺陷特点,掌握相变与转变温度的物理意义以及对加工性质和力学性质的影响;理解高聚物高弹性的特点 1.为什么说柔顺性是高分子独有的性质? 答:因为柔顺性是高分子链通过内旋转作用改变其构象的性能,分子内旋转是导致分子链柔顺性的根本原因,因此只有在高分子内部,具有一定的内旋转自由度,出现分子链的内部旋转,才会表现出柔顺性。 2.高分子的分子量相对于小分子和无机物有何特点,主要的表示和描述方法有 哪些? 高聚物分子量有两个特点:一是分子量大,二是分子量的多散性。 首先,从相对分子质量来看——小分子和无机化合物的相对分子质量只有几十到几百; 高聚物的相对分子质量相对高得多 其次,高聚物的晶态结构比小分子物质的晶态有序程度差得多,高聚物的非晶态结构比小分子物质液态的有序程度高。 综上,高分子的分子量可以用聚合物的多分散性、平均分子量、多分散系数来表示。 3.高分子的聚集体包括哪些内容,为什么聚合物不易形成100%的结晶以及宏观 单晶?另外试述高分子的聚集体有哪些特点,以及成型加工条件、性能的关系? 4.如何理解高分子材料拉伸的应力-应变的时温等效性和蠕变特性? 时温等效原理;时间温度等效原理;时间温度对应原理;time temperature correspondence 分子式:CAS号:性质:又称时间温度对应原理。观察高分子材料的某种力学响应(如力学松弛),既可在较低温度下通过足够长的观察时间来实现,也可在较高温度下短时间内观察来实现,简单地说,升高温度与延长观察时间具有相同的效果。 高分子材料蠕变指的是高分子材料在外界恒定应力作用下,由于材料内部分子的位移产生的应变(即外观形变)随着时间而变大。当应力去掉后,由于高分子材料有弹性记忆回复能力,形变可以部分回复。 5.高分子材料组成和结构的基本特征、高分子链的组成和结构、高分子链的聚 集态结构。 ①高分子材料组成和结构的基本特征是: 1、平均分子量大和存在分子量分布 2、具有多种形态 3、组成与结构的多层次性 ②高分子链的组成和结构主要指组成高分子链的结构单元的化学组成、键接方式、空间构 型和高分子链的形态等。 A、高分子链中的原子类型 根据主链上原子类型,高分子链可分为:碳链高分子、杂链高分子、元素有机高分子、无机高分子、梯形和螺旋形高分子。 B、结构单元的键接方式 共有三种可能的键接方式:头头接、尾尾接、头尾接。其造成的原子排列方式为:无规共聚、交替共聚、嵌段共聚和接枝共聚。

材料结构与表征 高分子复习题 答案

高分子部分 一、简答题 1、什么是高分子缩聚反应? 缩合聚合反应(简称缩聚): 由含有两种或两种以上单体相互缩合聚合而形成聚合物的反应称为缩聚反应,同时会析出水、氨、醇、氯化氢等小分子物质。 若缩聚反应的单体为一种,反应称为均缩聚反应,产品为均缩聚物;若缩聚反应的单体为多种,反应称为共缩聚反应,产品为共缩聚物。 2、什么是复合材料?复合材料区别于传统材料有什么特点? 简单地说,复合材料是用两种或两种以上不同性能、不同形态的组分材料通过复合手段组合而成的一种多相材料。 复合材料区别于传统材料的一个重要特点是依靠不同的组分材料分散和承载负荷。 (1)特点 ①可设计性 ②材料与结构的同一性 ③发挥复合效应的优越性 ④材料性能对复合工艺的依赖性 (2)优点 ①比强度、比模量大 ②耐疲劳性能好 ③阻尼减震性好 ④破损安全性高 3、举例说明什么是超分子聚合物及其与传统聚合物的区别。 超分子聚合物和化学键联聚合物的最大区别:成键弱,可逆过程。 把单体结构组元之间由非共价键这种弱分子间相互作用组装而成的分子聚集体称为超分子聚合物。 之所以将其称为超分子聚合物, 一方面是因为这种聚集体中的长链或网络结构类似聚合物结构,另一方面是因为弱分子间作用力赋予这种材料各种软性的类聚合物性能。 如:氢键超分子聚合物(氢键型超分子聚合物是指重复单元通过与氢键相关的自组装生成的稳定超分子聚合物),配合物型超分子聚合物(金属- 超分子聚合物是由金属离子与配体之间的相互作用形成的, 是一类具有多样化几何构造和拓扑结构的新型功能高分子),∏-∏堆积超分子聚合物(∏-∏堆积又称∏-∏共轭、芳环堆积。当2个芳环平行或近似平行排列时,由于∏电子云相互排斥,相邻芳环平面间距小于芳香环的范德华厚度,这种想象就是∏-∏堆积),离子效应超分子聚合物。 4、简述有机发光二极管的工作过程。 OLED由以下各部分组成(自下而上): 基层(透明塑料,玻璃,金属箔)——基层用来支撑整个OLED。 阳极(透明)——阳极在电流流过设备时消除电子(增加电子“空穴”)。 导电层——该层由有机塑料分子构成,这些分子传输由阳极而来的“空穴”。可采用聚苯胺作为OLED的导电聚合物。 发射层——该层由有机塑料分子(不同于导电层)构成,这些分子传输从阴极而来的电子;

材料力学性能

《材料力学性能[焊]》课程简介 课程编号:02044014 课程名称:材料力学性能[焊] / The mechanical property of materials 学分: 2.5 学时:40(实验: 8 上机: ) 适用专业:焊接技术与工程 建议修读学期:5 开课单位:材料科学与工程学院,材料加工工程系 课程负责人:陈汪林 先修课程:工程力学、材料科学基础、材料热处理 考核方式与成绩评定标准:闭卷考试,期末考试成绩70%,平时(包括实验)成绩30%。 教材与主要参考书目: 主要教材: 1.工程材料力学性能. 束德林. 机械工业出版社, 2007 参考书目: 1.材料力学性能. 郑修麟. 西北工业大学出版社, 1991 2.金属力学性能. 黄明志. 西安交通大学出版社, 1986 3. 材料力学性能. 刘春廷. 化学工业出版社, 2009 内容概述: 《材料力学性能》是焊接技术与工程专业学生必修的专业学位课程。通过学习本课程,使学生掌握金属变形和断裂的规律,掌握各种力学性能指标的本质、意义、相互关系及变化规律,以及测试技术。了解提高力学性能的方向和途径,并为时效分析提供一定基础。强调课堂讲授与实践教学紧密结合,将最新科研成果用于课程教学和人才培养的各个环节,最终使学生能够独立地进行材料的分析和研究工作。 The mechanical property of materials is a core and basic course for the students of specialty of welding. By the study on this course, the studies should be master the deformation and fracture mechanisms of metals, and understand the essence and significance of each mechanical property of metal materials, as well as their correlations, the laws of variation and corresponding test methods of each mechanical property of materials. In addition, the studies should understand how to improve the mechanical properties of materials, and provide relevant basis for the failure analysis of materials. This course emphasizes the close combination of classroom teaching and practice teaching, and the latest research results will be applied in the course of teaching and personnel training in all aspects. Finally, this course will make the students acquired the capability on conducting research by adopting reasonable technologies by oneself.

材料表征方法思考题答案

第一章XRD 1.X射线的定义、性质、连续X射线和特征X射线的产生、特点。 答:X射线定义:高速运动的粒子与某种物质相撞击后猝然减速,且与该物质中的内层电子相互作用而产生的。性质:看不见;能使气体电离,使照相底片感光,具有很强的穿透能力,还能使物质发出荧光;在磁场和电场中都不发生偏转;当穿过物体时只有部分被散射;能杀伤生物细胞。 连续X射线产生:经典物理学解释——由于极大数量的电子射到阳极上的时间和条件不相同,因而得到的电磁波将具有连续的各种波长,形成连续X射线谱。量子力学解释——大量的电子在到达靶面的时间、条件均不同,而且还有多次碰撞,因而产生不同能量不同强度的光子序列,即形成连续谱。特点:强度随波长连续变化 特征X射线产生:当管电压达到或高于某一临界值时,阴极发出的电子在电场的加速下,可以将物质原子深层的电子击到能量较高的外部壳层或击出原子外,使原子电离。此时的原子处于激发态。处于激发态的原子有自发回到激发态的倾向,此时外层电子将填充内层空位,相应伴随着原子能量降低。原子从高能态变为低能态时,多出的能量以X射线的形式释放出来。因物质一定,原子结构一定,两特定能级间的能级差一定,故辐射出波长一定的特征X射线。特点:仅在特定的波长处有特别强的强度峰。 2.X射线与物质的相互作用 答:X射线与物质的相互作用,如图所示 一束X射线通过物体后,其强度因散射和吸收而被衰减,并且吸收是造成强度衰减的主要原因。 散射分为两部分,即相干散射和不相干散射。当X射线照射到物质的某个晶面时可以产生反射线,当反射线与X射线的频率、位相一致时,在相同反射方向上的各个反射波相互干涉,产生相干散射;当X射线经束缚力不大的电子或自由电子散射后,产生波长比入射X射线波长长的X射线,且波长随着散射方向的不同而改变,这种现象称为不相干散射。其中相干散射是X射线在晶体中产生衍射现象的基础。 物质对X射线的吸收是指X射线通过物质时,光子的能量变成了其它形式的能量,即产生了光电子、俄歇电子和荧光X射线。当X射线入射到物质的内层时,使内层的电子受激发而离开物质的壳层,则该电子就是光电子,与此同时产生内层空位。此时,外层电子将填充到内层空位,相应伴随着原子能量降低,放出的能量就是荧光X射线。当放出的荧光X射线回到外层时,将使外层电子受激发,从而产生俄歇电子而出去。产生光电子和荧光X射线的过程称为光电子效应,产生俄歇电子的过程称为俄歇效应。示意图见下:

工程材料力学性能-第 版答案 束德林

《工程材料力学性能》束德林课后答案 机械工业出版社 2008第2版 第一章单向静拉伸力学性能 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。

9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等 2、 说明下列力学性能指标的意义。 答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指 数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对 组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格

2010材料结构与性能表征考试B卷参考答案

选课课号:04000150 北京理工大学2009-2010学年第二学期 2006 级《材料结构与性能表征》学期末试题B 卷参考答案 班级 学号 姓名 成绩 1、下图是在DMSO-d 6中测定得到的、用于自由基活性/可控聚合的大分子引发剂 的1H NMR 谱图。 ① 试在分子式中标出各NMR 谱峰所对应的质子。(10分) 答案如下图所示: ② 利用谱图中所给出相应峰的积分面积求出数均分子量的数值,同时写出根据1H NMR 分析计算该大分子引发剂数均分子量的公式。(10分) 答案: (1)根据以上谱图指认,考虑到两侧的b 共振谱峰共对应有四个氢质子,而聚乙二醇链段中d 共振谱峰对应氢质子的数量为4n ,由两者积分面积之比,即可确定出以上大分子单体的聚合度m : 4/)3(4-=n b d 的积分面积 峰的积分面积峰 8703.1/01.983≈=-n 903=+=n m ② 根据每个结构单元的分子量,聚合度n ,以及两端基的分子量,即可求出

预聚物的分子量。 + 90= 44 ? . = ? Mn + . 00 4278 03 16 2 151 0. 其中44.03为乙二醇结构单元的分子量,151.0为2-溴异丁酰基的分子量, 16.00为氧原子的原子量。 ③也可以利用其它相应峰的积分面积之比求出聚合度,进而得到分子量。因 误差的原因,结果略有差别。 2、以下分别是采用原子转移自由基活性聚合方法制备得到的聚丙烯酸乙酯的分子式和以2,5-二羟基苯甲酸为基质、三氟乙酸钠为离子化试剂测定得到的大分子质谱图: 根据谱图中各峰的位置,试判断该聚合物结构是否正确?(计算时每一谱峰所对应的分子量可保留一位小数)(20分)

材料结构表征及应用课程教学大纲

《材料结构表征及应用》课程教学大纲 一、《材料结构表征及应用》课程说明 (一)课程代码:08131016 (二)课程英文名称:Characterization and Application of Material structure (三)开课对象:物理系材料物理专业 (四)课程性质: 本课程是材料物理专业的一门专业必修课。 (五)教学目的 全面理解材料的结构与性能之间的关系,掌握材料结构表征的基本方法,从材料的成分分析、结构测定和形貌观察等方面出发探寻结构与性能之间的内在关系,从而实现材料设计的功能。 (六)教学内容: 介绍一些目前比较流行的基本的材料研究方法,从材料的成分分析、结构测定和形貌观察等方面出发探寻结构与性能之间的内在关系。 (七)学时数、学分数及学时数具体分配 学时数:72 学分数:4 (八)教学方式: 课堂教学 (九)考核方式和成绩记载说明: 考核方式为考试。严格考核学生出勤情况,达到学籍管理规定的旷课量取消考试资格,综合成绩根据出勤情况、平时成绩和期末成绩评定,出勤情况占20%,平时成绩占20%,期末成绩占60%。 二、讲授大纲与各章的基本要求 第一章绪论 教学要点: 通过本章的教学使学生初步了解表征材料结构的几种方法及其基本特点,概略的介绍本书将要介绍的内容。

1.了解材料的内在结构决定了材料的外在性能。 2.了解材料表征的基本方法 教学时数:2 教学内容: 第一节材料结构与材料性能的关系 第二节材料结构表征的基本方法 一、化学成分分析 二、结构测定 三、形貌观察 考核要求: 1.材料的结构决定材料的性能(领会) 2.材料结构表征的基本方法(识记) 第二章红外光谱及激光拉曼光谱 教学要点: 了解红外光谱的基本原理,掌握红外光谱实验的制样技术和结果分析方法,了解红外光谱实验的应用范围和前景,了解激光拉曼光谱的基本概念、实验原理和应用范围。 教学时数:16 教学内容: 第一节:红外光谱的基本原理 一、双原子分子的振动——谐报子和非谐振 二、多原子分子的简正振动 三、红外光谱的吸收和强度 第二节:红外光谱与分子结构 一、基团振动与红外光谱区域的关系 二、影响基团频率的因素 第三节:红外光谱图的解析方法 一、谱带的三个重要特征 二、解析技术 三、影响谱图质量的因素 第四节:红外光谱仪及制样技术 一、红外光谱仪的进展 二、傅里叶变换红外光谱仪原理 三、傅里叶变换红外光谱法的主要优点 四、红外光谱的表示方法 五、样品的制备技术 第五节:红外光谱在材料研究领域中的应用 一、高分子材料的研究 二、材料表面的研究 三、无机材料的研究 四、有机金属化合物的研究 第六节:红外光谱新技术及其应用 一、时间分辨光谱 二、红外光热光声光谱技术

(完整版)材料力学性能-机械工业出版社2008第2版习题答案

《工程材料力学性能》课后答案 机械工业出版社 2008第2版 第一章单向静拉伸力学性能 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理

台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数 值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理 石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也 可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时, 冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断 裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹 性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变 化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格 效应、弹性后效、弹性滞后和循环韧性等 2、说明下列力学性能指标的意义。 答:E弹性模量 G切变模量 σ规定残余伸长应力2.0σ屈服 r 强度 δ金属材料拉伸时最大应力下的总伸长率 n 应变硬gt 化指数【P15】 3、金属的弹性模量主要取决于什么因素?为什么说它是一 个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷 塑性变形等能够改变金属材料的组织形态和晶粒大小,但是

材料结构与表征复习整理(周玉第三版)

材料结构与表征 2017-2018复习整理 2018-1-4 暨南大学 ——D.S

2017-2018材料结构与表征重点整理 目录 绪论 (1) 第一章 X射线物理学基础 (2) 第二章 X射线衍射方向 (3) 第三章 X射线衍射强度 (3) 第四章多晶体分析方法 (4) 第五章物相分析及点阵参数精确测定 (5) 第六章(不考) (5) 第七章(不考) (5) 第八章电子光学基础 (5) 第九章透射电子显微镜 (6) 第十章电子衍射 (7) 第十一章晶体薄膜衍衬成像分析 (7) 第十二章(不考) (8) 第十三章扫描电子显微镜 (8) 第十四章(不考) (8) 第十五章电子探针显微镜分析 (8) 第十六章 (9) 参考文献 (10)

2017-2018材料结构与表征重点整理 绪论 1.组织结构与性能 本书主要介绍X射线衍射和电子显微镜分析材料的微观结构。 材料的组织结构与性能:a.结构决定性能;b.通过一定方法控制其显微组织形成条件。 加工齿轮实例: a.预先将钢材进行退火处理,使其硬度降低,以满足容易铣等加工工艺性能要求; b.加工好后再进行渗碳处理,使其强度、硬度提高,以满足耐磨损等使用性能的要求。 2. 显微组织结构分析表征: a.表面形貌观察(形态、大小、分布和界面状态等——光学显微镜、电子显微镜、原子力显微镜等; b.晶体结构分析(物相,晶体缺陷,组织结构等)——X射线衍射、电子衍射、热谱分析; c.化学成分分析(元素与含量、化学价态、分子量、分子式等)——光谱分析,能谱分析等。 3.传统测试方式 a.光学显微镜——分辨率200nm——只能观察表面形态而不能观察材料内部的组织结构,更不能进行对所观察的显微组织进行同位微区分析; b.化学分析——能给出试样的平均成分,不能给出元素分布,和光谱分析相同。 4.X射线衍射与电子显微镜 1.XRD——分辨率mm级——是利用X射线在晶体中的衍射现象来分析材料的晶体结构、晶格参数、晶体缺陷(位错等)、不同结构相的含量及内应力的方法,可以计算样品晶体晶体结构与晶格参数。 2.电子显微镜 透射电子显微镜——分辨率0.1nm——通过透过样品的电子束成像,可以观察微观组织形态并对观察区域进行晶体结构鉴定; 扫描电子显微镜——分辨率1nm——利用电子束在样品表面扫描激发出的代表样品表面特征的信号成像,观察表面形貌(断口)和成分分布; 电子探针显微分析——利用聚焦很细的电子束打在样品微观区域,激发出特征X射线,可以确定样品微观区域的化学成分,可与扫描电镜同时使用进行化学成分同位分析。

材料力学性能-第2版课后习题答案

第一章单向静拉伸力学性能 1、 解释下列名词。 2. 滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落 后于应力的现象。 3?循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4?包申格效应: 金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规 定残余伸长应力降低的 现象。 11. 韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆 性断裂,这种现象称 为韧脆转变 2、 说明下列力学性能指标的意义。 答:E 弹性模量G 切变模量 r 规定残余伸长应力 0.2屈服强度 gt 金属材料拉伸时最大应力下的总伸长率 n 应 变硬化指数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但 是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏 感。【P4】 4、 现有4 5、40Cr 、35 CrMo 钢和灰铸铁几种材料,你选择哪种材料作为机床起身,为什么? 选灰铸铁,因为其含碳量搞,有良好的吸震减震作用,并且机床床身一般结构简单,对精度要求不高,使用灰铸铁可 降低成本,提高生产效率。 5、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险? 【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程 中不断地消耗能量;而脆性断裂是突然发生的断裂, 断裂前基本上不发生塑性变形, 没有明显征兆,因而危害性很大。 6、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形 态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 7、 板材宏观脆性断口的主要特征是什么?如何寻找断裂源? 断口平齐而光亮,常呈放射状或结晶状,板状矩形拉伸试样断口中的人字纹花样的放射方向也 与裂纹扩展方向平行,其尖端指向裂纹源。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1 )应力状态软性系数—— 材料或工件所承受的最大切应力T max 和最大正应力(T max 比值,即: (3)缺口敏感度一一缺口试样的抗拉强度 T bn 的与等截面尺寸光滑试样的抗拉强度 T b 的比值,称为缺口敏感度,即:【P47 P55】 max 1 3 max 2 1 0.5 2 3 【新书P39旧书P46】

材料结构表征及应用知识点总结

第一章绪论 材料研究的四大要素:材料的固有性质、材料的结构、材料的使用性能、材料的合成与加工。 材料的固有性质大都取决于物质的电子结构、原子结构和化学键结构。 材料结构表征的三大任务及主要测试技术: 1、化学成分分析:除了传统的化学分析技术外,还包括质谱(MC)、紫外(UV)、可见光、红外(IR)光谱分析、气、液相色谱、核磁共振、电子自旋共振、二次离子色谱、X射线荧光光谱、俄歇与X射线光电子谱、电子探针等。如质谱已经是鉴定未知有机化合物的基本手段;IR在高分子材料的表征上有着特殊重要地位;X射线光电子能谱(XPS)是用单色的X射线轰击样品导致电子的逸出,通过测定逸出的光电子可以无标样直接确定元素及元素含量。 2、结构测定:主要以衍射方法为主。衍射方法主要有X射线衍射、电子衍射、中子衍射、穆斯堡谱等,应用最多最普遍的是X射线衍射。在材料结构测定方法中,值得一提的是热分析技术。 3、形貌观察:光学显微镜、扫描电子显微镜、透射电子显微镜、扫描隧道显微镜、原子力显微镜。 第二章X射线衍射分析 1、X射线的本质是电磁辐射,具有波粒二像性。 X射线的波长范围:0.01~100 ? 或者10-8-10-12 m 1 ?=10-10m (1)波动性(在晶体作衍射光栅观察到的X射线的衍射现象,即证明了X射线的波动性); (2)粒子性(特征表现为以光子(光量子)形式辐射和吸收时具有的一定的质量、能量和动量)。 2、X射线的特征: ①X射线对物质有很强的穿透能力,可用于无损检测等。 ②X射线的波长正好与物质微观结构中的原子、离子间的距离相当,使它能被晶体衍射。晶体衍射波的方向与强度与晶体结构有关,这是X射线衍射分析的基础。 ③X射线光子的能量与原子内层电子的激发能量相当,这使物质的X射线发射谱与吸收谱在物质的成分分析中有重要的应用。 一、X射线的产生 1.产生原理 高速运动的电子与物体碰撞时,发生能量转换,电子的运动受阻失去动能,其中一小部分(1%左右)能量转变为X射线,而绝大部分(99%左右)能量转变成热能使物体温度升高。 2.产生条件 (1)产生自由电子;(2)使电子作定向的高速运动;(3)在其运动的路径上设置一个障碍物使电子突然减速或停止。 3.X射线管的结构 封闭式X射线管实质上就是一个大的真空二极管。基本组成包括: ①阴极:阴极是发射电子的地方。 ②阳极:亦称靶,是使电子突然减速和发射X射线的地方。 ③窗口:窗口是X射线从阳极靶向外射出的地方。 ④焦点:焦点是指阳极靶面被电子束轰击的地方,正是从这块面积上发射出X射线。 二、X射线谱 由X射线管发射出来的X射线可以分为两种类型:(1)连续X射线;(2)标识X射线。 1、连续X射线 具有连续波长的X射线,构成连续X射线谱,它和可见光相似,亦称多色X射线。 (1)产生机理

材料力学性能

试说明高温下金属蠕变变形的机理与常温下金属塑性变形的机理有何不同?答:常温下金属塑性变形主要是通过位错滑移和孪晶进行的,以位错滑移为主要机制。当滑移面上的位错运动受阻产生塞积时,必须在更大的切应力作用下才能使位错重新运动和增值,宏观变现为加工硬化现象,或对于螺型位错,采用交滑移改变滑移面来实现位错继续运动。而当高温下金属蠕变变形主要通过位错滑移,原子扩散等机理进行。1,当滑移面上的位错运动受阻产生塞积时,位错可借助于外界提供的热激活能和空位扩散来克服短程阻碍。主要是通过刃型位错的攀移来实现。2,此外,在高温下大量原子和空位定向移动,即在两端拉应力作用下,晶体内空位将从受拉晶界向受压晶界迁移,原子则朝相反方向流动致使晶体伸长产生蠕变,即扩散蠕变。总之,在高温条件下,金属塑性变形仍得以继续进行,即高温蠕动变形。 试述低应力脆断的原因及防止方法?答:低应力脆断是由宏观裂纹(工艺裂纹或使用裂纹)扩散引起的。由于裂纹破坏了材料的均匀切入连续性,改变了材料内部应力状态和应力分布,所以机件的结构性能就不在相似于无裂纹的式样性能。有断裂判据K>K c时发生断裂,而切应力场强度因子取决于应力与裂纹的尺寸,要使材料不发生低应力脆断,应从下面两个方面着手1,控制构件的使用应力状态,使其δ<δc(δc为断裂应力);2,避免或尽量减小裂纹尺寸即α<αc(αc为临界断裂尺寸)。 试述聚合物与金属材料在弹性变形,塑性变形和断裂方面的区别?答:聚合物链非常长,在受外力作用时,长链通过连段调整构象,使原卷曲的链沿拉力方向伸长,宏观上表现很大的弹性变形,无明显屈服的均匀塑性变形。在外力作用下,银纹质因其内部存在非均匀性而产生开裂,并形成孔洞。随后形成的孔洞与已有的孔洞连接起来,在垂直应力方向上形成微裂纹,微裂纹尖端区连续出现银纹,使微裂纹相连扩展,引起宏观断裂。金属弹性变形是一种可逆变形,它是金属晶格中原子自平衡位置产生可逆位移的反应。金属塑性变形方式主要为滑移和孪晶,有屈服阶段。各晶粒变形的不同时性和不均匀性及各晶粒变形的相互协调性的特点,其断裂过程为裂纹产生扩展及断裂。 试述退火低碳钢,中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么?答:对于退货低碳钢,中碳钢而言,其从弹性变形阶段向塑性变形阶段过渡是明显的,表现在实验过程中,外力不增加试样仍然继续伸长;或外力增加到一定数值时突然下降,随后,在外力不增加或上下波动情况下,试样继续变形伸长,即存在上下屈服点和屈服平台。而高碳钢具有连续屈服特征,在拉伸试验时看不到屈服现象,没有显著的上下屈服点和屈服平台。如图(略)。 试述脆性材料弯曲试验的特点及其应用?答:1弯曲式样形状简单,操作方便。同时,弯曲试验不存在拉伸试验时的试样偏斜对实验结果的影响,并可用试样弯曲的挠度显示材料的塑性。2弯曲试样表面应力最大,可较灵敏地反映材料表面缺陷。应用:1常用于测定铸铁,铸造合金,工具钢及硬质合金等脆性与低塑性材料的强度和显示塑性的差别;2比较和鉴别渗碳和表面淬火等化学热处理及表面热处理机件的质量和性能。3测定弯曲弹性模量,断裂挠度和断裂能量。 疲劳断口有什么特点?答案:有疲劳源。在形成疲劳裂纹之后,裂纹慢速扩展,形成贝壳状或海滩状条纹。这种条纹开始时比较密集,以后间距逐渐增大。由于载荷的间断或载荷大小的改变,裂纹经过多次张开闭合并由于裂纹表面的相互摩擦,形成一条条光亮的弧线,叫做疲劳裂纹前沿线,这个区域通常称为疲劳裂纹扩展区,而最后断裂区则和静载下带尖锐缺口试样的断口相似。对于塑性材料,断口为纤维状,对于脆性材料,则为结晶状断口。总之,一个典型的疲劳断口总是由疲劳源,疲劳裂纹扩展区和最终断裂区三部份构成。 粘着磨损产生的条件、机理及其防止措施 ----- 又称为咬合磨损,在滑动摩擦条件下,摩擦副相对滑动速度较小,因缺乏润滑油,摩擦副表面无氧化膜,且单位法向载荷很大,以致接触应力超过实际接触点处屈服强度而产

相关文档
最新文档