煤加压气化工艺

煤加压气化工艺
煤加压气化工艺

目录

引言 (1)

1碎煤加压气化装置 (2)

1.1装置概况 (2)

1.2岗位任务 (2)

1.3原料 (2)

2工艺原理 (3)

2.1加压气化流程简述 (4)

2.2产品规格(粗煤气) (8)

3影响加压企划的因素 (9)

3.1煤质对气化的影响 (9)

3.2水分含量对气化的影响 (9)

3.3灰分含量对气化的影响 (i10)

3.4挥发份对气化的影响 (10)

3.5硫分对气化的影响 (11)

3.6粒度对气化的影响 (11)

3.7煤的灰熔点和结渣性对气化的影响 (12)

3.8煤的粘结性对气化的影响 (12)

3.9煤的化学反应性的影响 (12)

3.10煤的机械强度和热稳定性对气化的影响 (12)

3.11灰熔点对气化的影响 (13)

3.12灰样对气化操作的指导意义 (13)

3.13入炉矸石含量增多,对气化炉的生产会带来有害的影响 (13)

4碎煤加压气化技术特点 (14)

5碎煤加压气化的优缺点: (14)

6煤气化主要反应的反应机理 (15)

6. 1、碳的氧化机理 (15)

6.2、二氧化碳还原机理 (15)

7与气化工艺有关的指标 (15)

7.1:气化强度: (15)

7.2:气化能力 (16)

参考文献 (17)

致 (18)

引言

论是从煤的深加工过程还是环保控制等诸多方面都要求对原煤加工过程都要求提高煤的利用率。气化原理:在本质上是将煤由高煤的分子固态物质转变为低分子气态物质。煤是一种固体化石燃料,与一般燃料比较,其元素组成中C、H比较高,将煤由固态转变为气态过程,也就是改变燃料C、H比结构的过程。影响加压气化的因素很多如:水分含量对气化的影响;灰分含量对气化的影响;挥发份对气化的影;响硫分对气化的影响;粒度对气化的影响;煤的灰熔点和结渣性对气化的影响;煤的粘结性对气化的影响煤的化学反应性的影响煤的机械强度和热稳定性对气化的影响;灰熔点对气化的影响等。控制好各种对加压气化有影响的因素的指标能更好地利用煤的价值更有利于保护环境,降低污染和充分利用资源。

这篇文章就是针对影响碎煤加压气化的因素的进行控制使其更高效的生产。

1碎煤加压气化装置

1.1装置概况

天公司年产20亿立方米煤制天然气项目,加压气化装置是赛鼎工程有限责任公司负责设计。本装置由22台碎煤加压气化炉(包括煤溜槽、煤锁、气化炉、洗涤冷却器、灰锁、膨胀冷凝器、废热锅炉及粗煤气分离器等配套设备)组成,按三个框架布置,其中A、C框架各为7台气化炉,B框架为8台气化炉。总产气量946524Nm3/h(干基),单台炉生产能力43024Nm3/h,总耗煤量582t/h,总耗氧量126280Nm3/h,过热蒸汽总耗量733.7t/h。每个框架同时配置了辅助的润滑系统、液压系统、煤锁气回收系统、火炬系统、水力排渣系统等。

气化A框架的7台气化炉与B框架的1#~4#气化炉,共11台气化炉对应变换冷却装置的A系列;C框架的7台气化炉与B框架的5#~8#气化炉,共11台气化炉对应变换冷却装置的B系列。为实现A、B系列粗煤气总管气量平衡,将B框架1#~4#炉与5#~8#炉粗煤气总管进行了连通。

气化装置所用主要设备气化炉,分别由锅炉厂有限责任公司、重工股份、金州重型机器制造,气化炉唯一的传动设备旋转炉篦由机械研究所承制。

1.2岗位任务

加压气化装置的主要任务是以粒度为8~50mm的长焰煤为原料,蒸汽和氧气为气化剂,通过加压气化反应生产合格的粗煤气,经洗涤冷却后送入变换冷却装置。

1.3原料

从煤矿来的经除铁除杂质等,处理合格的煤按需要的输送量通过带式输送机将煤送至筛分楼进行筛分,弛筛筛上物(8~50mm)的煤计量后送至气化炉贮煤仓,供气化使用。

2工艺原理

煤的气化是一个复杂多相物理化学反应过程。主要是煤中的碳与气化剂、气化剂与生成物、生成物与生成物及碳与生成物之间的反应。煤气的成分决定于原料种类,气化剂种类及制气过程的条件。

制气过程的条件主要取决于气化炉的构造和原料煤的物理化学性质,其中煤的灰熔点和粘结性是气化用煤的重要指标。

本装置采用碎煤加压气化是一种自热式、移动床、逆流接触、连续气化、固态排渣工艺过程。气化炉外壁按4.6MPa(g)的压力设计,壁仅能承受0.15MPa 的压差,操作压力为4.0MPa(g)。煤在气化炉中的气化过程可分为五个层:灰层、燃烧层、气化层、干馏层、干燥和预热层,其各层反应简图与反应过程介绍如下:

鲁奇加压气化炉生产工况如图所示,在实际的加压气化过程中,原料煤从气化炉的上部加入,在炉从上至下依次经过干燥、干馏、气化、燃烧、灰层等物理化学过程

加压气化原理:

力下煤的气化在高温下受氧、水蒸汽、二氧化碳的作用,各种反应如下:碳与氧的反应:

⑴C+O2=CO2+408.8MJ

⑵2C+O2=2CO +246.4MJ

⑶CO2+C=2CO -162.4MJ

⑷2CO+O2=2CO2 +570.24MJ

碳与水蒸汽的反应:

⑸C+H2O=CO+H2 -118.8MJ

⑹C+2H2O=CO2+2H2 -75.2MJ

⑺CO+H2O=CO2+H2 +42.9MJ

甲烷生成反应:

⑻C+2H2=CH4 +87.38MJ

⑼CO+3H2=CH4+HOO +206.2MJ

2.1加压气化流程简述

在碎煤加压气化炉中,煤与气化剂在4.06MPa压力下,逆流接触进行气化反应。

碎煤加压气化装置包括带件(波斯曼套筒、炉篦)的加压气化炉和供煤的煤锁、排灰的灰锁,它们直接附置在炉体上。

经筛分后5~50mm的合格碎煤由输煤皮带供到气化炉煤仓中,煤仓的储用量约为正常负荷时的4小时的使用量。

煤通过煤溜槽经安装在气化炉顶部的煤锁定期加入气化炉,煤在炉下降过程中与气化剂接触反应。含碳量约为7%的灰由炉篦转动排入灰锁,定时排入输灰系统。

用作气化剂的水蒸汽不可能完全分解,仍有一定量蒸汽离开干馏层,离开气化炉粗煤气中含有煤中水份和气化剂中未分解的水蒸气。粗煤气在洗涤冷却器中被蒸汽饱和,油、焦油和其它一些物质在洗涤过程中冷凝,并离开洗涤冷却器,包括部分从气化炉来的煤灰,与煤气水、粗煤气一起进入废热锅炉集水槽中。在废锅管程,粗煤气进一步被冷却到181℃,液滴将进一步分离。

残留在粗煤气中的冷凝液,在粗煤气气液分离器中进行汽液分离,分离出的煤气水进入废热锅炉底部集水槽。

离开气化工段的粗煤气在压力3.99MPa(a),181℃送往粗煤气变换冷却工号。

碎煤加压气化属于自热式工艺,所需热量由煤的部分燃烧提供。

各设备的主要作用:

煤仓

筛分过的煤,由煤仓经给料溜槽进到煤锁,煤仓容积200 m3。其储量可满足气化炉在正常负荷下操作约4小时。

煤锁

煤锁是一个容积约18.7 m3的压力容器,可以定期将煤加入气化炉。煤锁上下阀及充泄压阀门均为液压控制。煤锁的操作可由就地、遥控、半自动、全自动四种操作方式来实现。

煤锁要从常压增至与气化炉压力相等,以使煤能周期性地加至气化炉中。正常情况下的全自动操作包括以下步骤:

1)煤锁显示空,依煤锁下部的温度计上升而显示,初时下阀附近温度大约为50℃;

2)关闭煤锁下阀,煤锁开始泄压,煤锁气将收集到煤锁气柜中。(在入气柜之前经过洗涤器和分离器);

3)当煤锁泄完压之后,打开上阀;

4)打开供煤溜槽圆筒阀煤靠自重流入煤锁。通过煤锁引射器抽取煤锁尾气,经煤尘旋风分离器排出;

5)煤锁满后,先关闭供煤溜槽圆筒阀,再关闭煤锁上阀;

6)煤锁首先用来自煤气变换冷却工段的粗煤气,充压到大约3600KPa,然后用来自气化炉顶部的粗煤气充压以达到与炉压平衡;

7)煤锁充压到与气化炉的压力平衡时,打开煤锁下阀,煤加到气化炉。每个加煤循环大约需要10分钟。

按设计,正常负荷时气化炉每小时加煤3.5锁。

当气化炉顶部法兰温度超过240℃时,气化炉将联锁停车,这种情况一般发生在加煤故障时。此时,气化炉应在煤锁法兰温度达到停车温度之前手动停车。

气化炉

气化炉是一个双层夹套容器,外壁按4.6MPa压力设计,壁最大仅能承受0.15MPa外压。

夹套中压锅炉给水保持一定液位,以冷却气化炉炉壁。气化炉运行期间,部分热量由燃料层传至夹套,产生一定量的夹套蒸汽,经夹套蒸汽分离器分离后蒸汽进入气化剂系统,与外供蒸汽混合进入气化炉。

炉的波斯曼套筒的作用是:储存煤锁加入炉的冷煤;限定炉的煤层移动方向;外部是煤气的聚集空间,防止粉煤被直接带出,将煤气引至出口。

气化剂(界区来的氧气经预热器加热至110℃)经由旋转炉篦进入气化炉灰层及燃烧层。

炉篦由两个同步的变频电机驱动。

炉篦有下列作用:

1)使汽化剂均匀分布到气化炉的横断面;

2)排灰并维持一定的灰层高度;

3)破碎灰渣块,使灰渣粒度减小,防止灰锁阀门堵塞;

4)保持煤层、灰层在移动中达到均衡。作为均匀灰层条件,目的是防止汽化剂在煤层中形成沟流。

炉篦的排灰能力取决于装在其下面的刮刀数和炉篦转速。

炉篦连续运行,仅在灰锁循环开始时才短暂停止。

进入气化炉的气化剂依次通过灰层、燃烧层、气化层、干馏层、干燥和预热

层。反应生成物煤气出气化炉温度约225℃左右,其主要组分CO、H

2、CO

2

、CH

4

和未分解的水蒸汽,并含有少量的CnHm、N

2、硫化物(大部分为H

2

S)、焦油、

石脑油、酚、脂肪酸和氨奈等杂物。

灰锁

灰锁是一个全容积约13.2 m3的压力容器(有效容积60~70%),用液压控制上、下阀及充泄压阀和充水阀。

灰锁与膨胀冷凝器相连为灰锁系统的一个整体。

灰锁连续不断接收气化炉旋转炉篦排出的灰,正常工况下与气化炉相通,压力相等,排灰时灰锁泄压至常压。其操作可以现场手动、遥控手动、半自动、全自动操作。灰锁的循环包括下列步骤:

1)灰锁、膨胀冷凝器,充压至与气化炉的压力相等时,打开灰锁上阀,接受炉篦排出的灰;

2)灰锁的料位检测,通过射线料位计,或炉篦圈数的方法控制,当灰量达设定时,灰锁上阀关闭;

3)灰锁上阀关闭后重新启动炉篦;灰渣暂时存入炉篦下面的下灰室;

4)打开灰锁膨胀冷凝器泄压一阀,灰锁开始泄压。灰蒸汽进入充满水的膨胀冷凝器并冷凝,灰锁压力降低;

5)灰锁泄至稍高于常压时,打开冷凝器底部泄压二阀,排空冷凝器;

6)打开灰锁下阀,灰经由灰溜槽排入水力排渣沟;

7)在灰锁排灰期间,关闭膨胀器泄压二阀,膨胀冷凝器重新注水;

8)关闭灰锁下阀,用过热中压蒸汽给灰锁充压,直到与气化炉压力平衡;

9)打开灰锁上阀,气化炉向灰锁排灰。

灰锁的循环次数,取决于气化炉的负荷和煤中灰含量。

洗涤冷却器

粗煤气在约225℃左右离开气化炉进入洗涤冷却器,粗煤气用高压喷射煤气水和循环煤气水洗涤冷却。

循环泵(121P-001,循环量200 m3/h),在废热锅炉集水槽和洗涤冷却器间循环。

高压喷射煤气水不断地补入洗涤冷却器中,以保持废热锅炉集水槽的液位。

废热锅炉

在废热锅炉中煤气由气化炉出口温度冷至181℃,粗煤气在废热锅炉集水槽上部进入并通过一束垂直列管。由此回收煤气中显热以生产0.6 MPa(a)的低压蒸汽。

煤气从顶部离开废热锅炉通过气液分离器分离出煤气水,分离出的煤气水返回废热锅炉底部集水槽。

离开分离器的煤气经粗煤气总管进入变换装置。

从废热锅炉排出的含尘煤气水送至煤气水分离装置。

冷火炬

在气化炉开车过程中,蒸汽升温期间的放空气、空气运行期间生成的含有

O

的煤气须通过冷火炬放空。冷火炬包括一个气液分离罐和超出气化厂房的烟

2

囱。冷火炬为八台气化炉共用。

开工火炬部分

八台气化炉共用一个开工火炬,其主要用途是接受以下状况下的粗煤气并燃烧:

①空气点火后氧含量合格的粗煤气;

②氧气运行未并网前的粗煤气;

③因下游装置原因,如后续工号不具备接受条件,气化炉正常运行中需切至火炬时的粗煤气;

④气化炉运行中故障,粗煤气中氧含量超过0.4%,但小于1.0%的粗煤气;

⑤气化炉开车期间放空的煤锁气及煤锁气压缩机系统故障时的放空煤锁气;

⑥煤气水分离工号不送往硫回收装置时的膨胀气。

2.2产品规格(粗煤气)

单炉粗煤气产量:43024Nm3/h(干基)

粗煤气总产量:946524Nm3/h(干基)

3影响加压企划的因素

3.1煤质对气化的影响

3.2水分含量对气化的影响

煤中水分存在形式有三种,包括外在水分、在水分和结晶水。煤中的水分随煤变质程度的加深而减少,水分较高的煤,往往挥发份也高。有水分的煤在干馏阶段,煤半焦形成时的气孔率大,进入气化层能使反应速度加快,生成的煤气质量较好。另外在气化一定煤种时,其焦油和水分存在着一定的关系,水分太低,会使焦油产率下降。由于气化炉的生产能力较高煤在炉干燥、干馏层的加热速度很快,容易使煤块破碎而引起出口煤气中含尘量增大,所以要求

煤中含有一定的水分,但水分过高又会给气化过程带来不良的影响。

①水分过高,增加了干燥所需的热量,从而增加了氧气消耗,降低了气化效率。

②水分过高,煤处于潮湿状态,易形成粉煤粘结和堵塞筛分,使入炉粉煤量增加。

③入炉煤水分过高,干燥不充分,这样将导致干馏过程不能正常运行,进而又会降低气化层温度,最终导致甲烷生成反应,二氧化碳及水蒸气的还原反应大大降低,煤气质量显著降低。

3.3灰分含量对气化的影响

将一定量的煤样在800℃的条件下完全燃烧,残余物即是灰分。可见,煤的灰分是一种废物,他在煤气化过程中也会带来有害的影响;

①煤中灰分高,不但降低了煤的热值,而且增大了运输费用。

②煤中灰分高,灰渣中的残碳量也增大。这样增加了碳损失,降低了气化效率。

③煤中灰分高,随灰带出的显热也增大,从而加大了热损失。

④随着煤中灰分的增大,加压气化得各项消耗指标如蒸汽、氧气煤耗等都有所上升,而净煤气的产率下降。根据经验,一般加压气化用煤的灰分在19%以下时较为经济。

3.4挥发份对气化的影响

挥发份是指煤在加热时,有机质部分裂解、聚合、缩聚,低分子部分呈气态逸出,水分也随着蒸发,

矿物质中的碳酸盐分解,逸出二氧化碳等。煤的挥发份产率与煤的变质程度有密切的关系。随着变质

程度的提高,煤的挥发份逐渐降低。煤的挥发份作为煤利用价值和煤分类的重要指标。一般地,年轻煤的挥发份产率高,年老的低。

其顺序为:

泥煤>褐煤>烟煤>无烟煤>焦炭

确定气化用煤中挥发份含量的大小要根据煤气的用途来确定。用作燃料时,要求甲烷含量高、热值大,则选择挥发份较高的煤做原料。在所得的煤气中甲烷的含量较大。但挥发分高的煤种,生产的煤气中焦油产率高,焦油容易堵塞管道和阀门,给焦油分离带来一定的困难,同时也增加了废水的处理量。用做工业的合成气时,一般要求挥发份、低硫的煤种,在这里甲烷就可能成为一种有害的气体,它就变成一种杂质,要求含量不能太大,挥发份要求小于10%最好。

3.5硫分对气化的影响

煤中的硫以有机硫和无机硫的形式存在,在国各地的煤中含量都比较低,大多在1%以下。煤在气化时,有80-85%的硫以硫化氢和二硫化碳的形式进入煤气当中。用作燃料煤气时,硫含量要达到国放标准,否则燃烧后大量的二氧化硫会排入大气,污染环境。用作工业合成气,硫化物会使合成催化剂中毒,并且硫化物含量越高,脱硫工段的负担就越重。所以,气化用燃料煤中的硫含量应是越低越好。

3.6粒度对气化的影响

煤的粒度在气化过程中占有非常重要的地位。由于粒度的不同,将直接影响到气化炉的运行负荷、煤气和焦油的产率以及气化时的各项消耗指标。

1、粒度大小与比表面积的关系煤的比表面积和煤的粒度有关,煤的粒度越小,其比表面积越大。在动力学控制区的吸附和扩散速度的加快,有利于气化反应的进行。

2、粒度大小与传热的关系粒度越大,传热速度越慢,煤粒部与外表面之间的温差也大,使颗粒焦油蒸汽扩散阻力和停留时间延长焦油的热分解增加

3、粒度与生产能力、各项气化指标的关系原料煤粒度愈小,越易被产生的煤气带出炉外,带出物增多,就会降低气化炉的生产效率。另外煤的粒度越小,水蒸气和氧气的消耗量增加,煤耗也会增加。综上所述,煤的粒度大小对气化的影响较大。粒度小,汽化剂和煤接触表面大,有利于气化反应,但粒度小,床层阻力大,气相带出物多,对后工序带来难题粒度围大,容易造成炉局部气流短路

或沟流,也可能出现偏析现象,即颗粒大的煤落向炉壁,,而较小的颗粒和粉末落在床层中间,这样气化炉横断面上阻力将不均匀,易造成燃烧层偏斜或烧穿,严重影响气化炉的运行安全。但粒度过大又易造成加煤系统堵塞和架桥,灰中残碳也会升高。所以,一般加压气化炉对粒度围有一定的要求。

3.7煤的灰熔点和结渣性对气化的影响

灰熔点:简单地说就是灰分加热至熔融时的温度。测灰熔点有三个特定温度: 变形温度----T1表示

软化温度---T2表示

流动温度---T3表示

而灰熔点一般指T2

对于固态排渣,要求T2>1250℃。为防止灰分结渣,常采用的措施是通入过量蒸汽。煤的结渣性能是指煤在气化时是否容易烧结成渣。结渣性能可根据灰熔点来判断,灰熔点高,结渣性能便低。

3.8煤的粘结性对气化的影响

煤的粘结性指煤在高温下干馏粘结的性能。粘结性煤在气化炉上部加热到300-400℃时会出现粘结和膨胀,使煤变成一种高黏度的液体,使得较小的煤块聚结成大块,从而导致气流分步不均匀和阻碍料层的下移,使气化过程恶化。因此煤的粘结性对煤气化是一个极不利的因素。一般加压气化用煤采用自由膨胀指数小于1的不黏煤,若气化弱粘煤,则需在炉上部增设破粘的搅拌装置,但破粘装置现仅能处理自由膨胀指数小于7的煤,对于一些强粘结性的煤,其破粘效果不佳。褐煤成为加压气化生产城市煤气的优质原料,一是因为其挥发分含量高,还由于它的粘结性很小。

3.9煤的化学反应性的影响

煤的化学反应是指煤同汽化剂反应时的活性,也就是至碳与氧气、二氧化碳或水蒸气相互作用时的反应速度。煤种不同,其反应活性是不同的。一般地,变质程度浅的煤,其反应性高,而随着煤的变质程度的加深,煤的化学反应活性降低。化学活性高,则反应能力强,有利于气化反应进行。化学活性高,制得的煤气质量好,气化能力便大;化学活性高,可在较低温度下进行蒸汽分解反应,使氧耗减小。

3.10煤的机械强度和热稳定性对气化的影响

煤的机械强度是指抗碎、抗磨和抗压等性能的综合体现。机械强度差的煤在运输过程中,会产生许多粉状颗粒,造成燃料损失,在进入气化炉后,粉状燃料的颗粒容易堵塞气道,造成布气不均,严重影响气化效率。在移动床气化炉中,煤的机械强度与灰带出量和气化强度有关。煤的热稳定性是指煤在加热时,是否容易碎裂的性质。热稳定差的煤在气化时,伴随气化温度的

升高,煤易碎裂成煤末和细粒,对移动床的气流均匀分布和正常流动造成严重的影响。

3.11灰熔点对气化的影响

气化温度主要决定于燃烧区温度,而燃烧区温度的确定,取决于煤的灰熔点,燃烧区的最高温度控制在灰熔点DT ~ ST之间。加入的水蒸汽,一部分参与气化反应,大部分作为热载体来调节温度。灰熔点高,可减少水蒸汽用量,从而减少煤气水的处理量。燃烧区温度主要通过分析粗煤气组成、观察灰的粒度和含碳量来调节汽氧比(H2O/O2)以达到最佳控制。

对于加压气化,汽氧比是一个重要的操作参数,产物煤气的组成,随着汽氧比的变化而变化,同一煤种,汽氧比有一个变动围。改变汽氧比即可调整控制气化过程的温度,在固态排渣炉中,首先保证燃烧过程灰不熔融成渣,同时保证气化反应在尽可能高的温度下进行。对四矿的长焰煤,汽氧比控制在7.5 kg H2O /m3 O2左右。

3.12灰样对气化操作的指导意义

(1)灰中残碳多,反应不完全应调节汽氧比控制炉温温度低(2)灰细说明蒸汽太多,灰层厚

(3)粒度大说明炉温高粒度小,色黑,说明炉温低,反应不完全

(4)颜色灰黑,说明燃烧不完全,火层下移,残碳量增加。(5)结渣数量可判断炉膨料及炉是否有结疤

(6)灰锁温度下降,灰潮湿,排灰困难。造成的原因可能是夹套漏水或膨胀冷凝器冲水过满,造成排灰困难。

(7)灰有刮刀切碎的痕迹,有大渣块,量少,颜色为红黄或灰黑,有残碳,说明炉有结渣现象,应及时增加汽氧比。

3.13入炉矸石含量增多,对气化炉的生产会带来有害的影响

(1)矸石多,不但降低了煤的热值,而且增加了运输费用。

(2)矸石多,灰渣中残碳量也增加,这样增加了碳的损失,降低了气化效率。

(3)煤中矸石多,随灰带出的显热也增大,从而加大了热损失。

(4)随着煤中矸石的增加,加压气化的各项消耗指标,如蒸汽、氧气消耗,煤耗等都有所上升,而净煤气的产率下降。

(5)煤中矸石多,炉篦转速亦高,排灰次数多,相对减少了灰锁上下阀的使用寿命。

4碎煤加压气化技术特点

鲁奇)加压气化是自热式、逆流移动床、固态排渣的生产工艺,气化过程所需要的热量靠煤的部分燃烧来供给。气化炉是双层壁压力容器,夹套由中压锅炉水保持液位,操作期间,热量传递到夹套,在此产生略高于气化炉操作压力下的饱和蒸汽,此蒸汽返回作气化剂,从而减少了外供的过热蒸汽供给量。

煤进入气化炉后首先受热干燥脱去水分,随着燃料层的移动进入干馏层,在此煤中挥发份受热后逸出,热解后的煤焦质在气化层与上升的气体发生气化反应,从而产生以CO2、CO、H2、CH4为主要成份的粗煤气。煤进入气化炉后首先受热干燥脱去水分,随着燃料层的移动进入干馏层,在此煤中挥发分受热后逸出热解后的煤焦质在气化层与上升的气体发生气化反应,从而产生了以CO2、CO、H2、CH4为主的粗煤气

5碎煤加压气化的优缺点:

优点:

(1)技术成熟,氧耗较低;

(2)气化节省动力,生产能力较大;

(3)可以气化劣质煤;

(4)生产自动化程度高。

缺点:

(1)蒸汽分解率低,气化过程的热效率有所降低;

(2)气化炉有复杂的传动机构,易损件多,设备检修频繁;

(3)废水量大,废水处理复杂;

(4)只能气化小块煤。

煤质要求:

(1)需块煤(一般入炉煤在5~50mm之间);

(2)灰熔融性软化温度大于1200℃;

(3)除强粘结性煤外都能气化。

6煤气化主要反应的反应机理

6. 1、碳的氧化机理

实验证明,随着温度、流体动力条件及鼓风气相个别组成的分压不同所制得

的煤气中碳的氧化物比例(CO:CO2)变化围是很大的。在过去大量的研究中碳

与氧的反应机理最初提出为二氧化碳说,这种学说认为CO2是碳与氧反应

(C+O2=CO2)生成的一次产物,而CO是CO2与碳二次反应的产物。而后又提出

一氧化碳说,其与二氧化碳说相反,认为碳和氧反应首先生成CO,即2C+O2=2CO, CO是反应的一次产物,即CO2是由反应2CO+O2=2CO2生成的。最后较多的实验

研究结果认为CO与CO2同为碳与氧相互作用的一次产物,生成机理如下:(1)氧吸附到碳的表面.

(2)在碳的表面形成一种碳氧络合物, CxOy.(3)随着反应进行的条件不同,碳与氧络合物热键同时生成不同比例的CO和CO2。 CxOy---mCO+nCO

6.2、二氧化碳还原机理

a、反应机理:在煤气化过程中二氧化碳还原生成一氧化碳是一个非常重要的二

次还应,其在很大程度上确定了所得煤气的质量。

大量的研究工作得出结论:二氧化碳还原反应是复杂的多相反应(非均相反应),

通过形成固体表面络合物CxOy和分解生成CO。(1)CO2在碳表面吸附并与碳形

成一种碳氧初次络合物。C+CO2——碳氧初次络合物。

(2)碳氧初次络合物分解形成放射性一氧化碳和非活性二次碳氧络合物。

(3)二次碳氧络合物分解形成非活性的一氧化碳和碳的游离原子。

二次碳氧络合物--CO+C(游离)

7与气化工艺有关的指标

7.1:气化强度:

气化强度是指单位时间,单位横截面积上气化的原料煤量,以㎏∕( M2.h )

表示。在实际生产中气化强度常以单位时间,单位横截面积上的粗煤气量来

表示〔M3(标)∕㎡.h ,影响气化强度的因素较多,原料煤的性质(煤种粒

度)和气化过程的操作条件(压力、温度、汽氧比等)均对气化强度有较大影响。

7.2:气化能力

气化能力即气化炉的生产能力,即单位时间入炉煤的气化量,用㎏∕h表示,在实际生产中,生产能力通常以生产量表示,即D=Fg

D-单位时间生产的粗煤气量m3∕h

g- 气化炉以产气量表示的气化强度m3∕㎡·h

F-气化炉横截面积

参考文献

[1]、《新疆伊犁新天煤化工气化装置操作规程》

[2]、贺根良;门长贵;;《气流床气化炉操作温度的探讨》[J];煤化工;2007年04期

[3]、宿凤明;江;米文真;;《煤质对固定床气化炉气化性能影响的工业试验研究》[J];节能技术;2010年01期

[4]、尚小广;任富强;志辉;宋军丽;梁学博;;《煤质对鲁奇气化炉经济运行的影响分析》[J];化工;2011年09期

大学三年学习时光已经接近尾声,在此我想对我的母校,我的父母、亲人们,我的老师和同学们表达我由衷的意。

感我的家人对我大学三年学习的默默支持,感我的母校克拉玛依职业技

术学院给了我在大学三年深造的机会,让我能继续学习和提高;感石油化学工程系的老师和同学们三年来的关心和鼓励。

老师们课堂上的激情洋溢,课堂下的谆谆教诲;同学们在学习中的认真热情,生活上的热心主动,所有这些都让我的三年充满了感动。这次毕业论文设计我得到了很多老师和同学的帮助,其中我的论文指导老师阿依加玛丽老师对我的关心和支持尤为重要。每次遇到难题,我最先做的一件事就是向田顺老师寻求帮助,而田顺老师每次不管忙或闲,总会先给我指出我的错误,然后一起商量解决的办法。田顺老师平日里工作繁多,但我做毕业设计的每个阶段,从选题到查阅资料,论文提纲的确定,中期论文的修改,后期论文格式调整等各个环节中都给予了我悉心的指导。这几个月以来,田顺老师不仅在学业上给我以精心指导,同时还在思想给我以无微不至的关怀,在此谨向田顺老师致以诚挚的意和崇高的敬意。

感在整个毕业设计期间和我密切合作的同学和曾经在各个方面给予过我帮助的同事们,在此,我再一次真诚地向帮助过我的老师和同事表示深深的感!

工程学院

毕业论文

题目:影响碎煤加压气化工艺的因素

班级:煤化

姓名: ***

指导老师: **

完成日期:2013年5月31日

二零一三年五月

煤气化工艺的优缺点及比较

13种煤气化工艺的优缺点及比较 我国是一个缺油、少气、煤炭资源相对而言比较丰富的国家,如何利用我国煤炭资源相对比较丰富的优势发展煤化工已成为大家关心的问题。近年来,我国掀起了煤制甲醇热、煤制油热、煤制烯烃热、煤制二甲醚热、煤制天然气热。有煤炭资源的地方都在规划以煤炭为原料的建设项目,这些项目都碰到亟待解决原料选择问题和煤气化制合成气工艺技术方案的选择问题。现就适合于大型煤化工的比较成熟的几种煤加压气化技术作评述,供大家参考。 1、常压固定层间歇式无烟煤(或焦炭)气化技术 这是目前我国生产氮肥的主力军之一,其特点是采用常压固定层空气、蒸汽间歇制气,要求原料为25-75mm的块状无烟煤或焦炭,进厂原料利用率低,单耗高、操作繁杂、单炉发气量低、吹风气放空对大气污染严重。从发展看,属于将逐步淘汰的工艺。 2、常压固定层间歇式无烟煤(或焦炭)富氧连续气化技术 这是从间歇式气化技术发展过来的,其特点是采用富氧为气化剂,原料可采用8-10mm 粒度的无烟煤或焦炭,提高了进厂原料利用率,对大气无污染、设备维修工作量小、维修费用低,适合于有无烟煤的地方,对已有常压固定层间歇式气化技术的改进。 3、鲁奇固定层煤加压气化技术 主要用于气化褐煤、不粘结性或弱粘结性的煤,要求原料煤热稳定性高、化学活性好、灰熔点高、机械强度高、不粘结性或弱粘结性,适用于生产城市煤气和燃料气,不推荐用以生产合成气。 4、灰熔聚流化床粉煤气化技术 中科院山西煤炭化学研究所的技术,2001年单炉配套20kt/a合成氨工业性示范装置成功运行,实现了工业化,其特点是煤种适应性宽,可以用6-8mm以下的碎煤,属流化床气化炉,床层温度达1100℃左右,中心局部高温区达到1200-1300℃,煤灰不发生熔融,而只是使灰渣熔聚成球状或块状排出。床层温度比恩德气化炉高100-200℃,所以可以气化褐煤、低化学活性的烟煤和无烟煤,以及石油焦,投资比较少,生产成本低。缺点是气化压力为常

煤制甲醇工艺设计

煤制甲醇工艺流程化设计 主反应为:C + O 2 → C O + C O 2 + H 2 → C H 3O 副反应为: 1 造气工段 (1)原料:由于甲醇生产工艺成熟,市场竞争激烈,选用合适的原料就成为项目的关键,以天然气和重油为原料合成工艺简单,投资相对较少,得到大多数国家的青睐,但从我国资源背景看,煤炭储量远大于石油、天然气储量,随着石油资源紧缺、油价上涨,在大力发展煤炭洁净利用技术的形势下,应该优先考虑以煤为原料,所以本设计选用煤作原料。 图1-1 甲醇生产工艺示意图 (2)工艺概述:反应器选择流化床,采用水煤浆气化激冷流程。原料煤通过粉碎制成65%的水煤浆与99.6%的高压氧通过烧嘴进入气化炉进行气化反应,产生的粗煤气主要成分为CO ,CO 2,H 2等。 2423CO H CH H O +?+2492483CO H C H OH H O +?+222CO H CO H O +?+

2 净化工段 由于水煤浆气化工序制得粗煤气的水汽比高达1.4可以直接进行CO变换不需加入其他水蒸气,故先进行部分耐硫变换,将CO转化为CO2,变换气与未变换气汇合进入低温甲醇洗工序,脱除H2S和过量的CO2,最终达到合适的碳氢比,得到合成甲醇的新鲜气。 CO反应式: CO+H O=CO+H 222 3 合成工段 合成工段工艺流程图如图1。 合成反应要点在于合成塔反应温度的控制,另外,一般甲醇合成反应10~15Mpa的高压需要高标准的设备,这一项增加了很大的设备投资,在设计时,选择目前先进的林达均温合成塔,操作压力仅5.2MPa,由于这种管壳式塔的催化剂床层温度平稳均匀,反应的转化率很高。在合成工段充分利用自动化控制方法,实行连锁机制,通过控制壳程的中压蒸汽的压力,能及时有效的掌控反应条件,从而确保合成产品的质量。 合成主反应: CO+2H=CH OH 23 主要副反应: CO+3H=CH OH+H O 2232 4 精馏工段 精馏工段工艺流程图见图2。 合成反应的副产主要为醚、酮和多元醇类,本设计要求产品达质量到国家一级标准,因此对精馏工艺的合理设计关系重大,是该设计的重点工作。设计中选用双塔流程,对各物料的进出量和回流比进行了优化,另外,为了进一步提高精甲醇质量,从主塔回流量中采出低沸点物继续进预塔精馏,这一循环流程能有效的提高甲醇的质量。

水煮煤技术

(一)基本概念 “水煮煤”是指以超临界水气化为核心的煤的新型高效气化制氢耦合发电技术的俗称。其核心是超临界压力和温度下煤与水的混溶热解技术。 (二)基本原理 利用超临界水(指当压力和温度达到临界点以上时,水的气液相界面消失,水的液体和气体完全交融,成为一种非常规状态的新物质)所具有的高溶解性、高扩散性、高反应性等物理、化学性质,实现煤等原料的高效、洁净转化。 (三)工艺路径 “水煮煤”技术的工业化途径大致有两条,如图1所示,煤浆与水进入温度约为600—1000℃,压力约为25MPa的临界水煤气化炉中进行反应,其中约10—20%的煤与氧化剂发生部分氧化自热反应放热,为其余80—90%煤的气化提供热量(总反应为煤中的化学能转化为H2的化学能与混合工质的热动能)。气化反应的主要产物是H2和CO2,由于反应是在超临界水环境中进行的,而超临界水对无机盐的溶解度小至可以忽略不计,因此氮、硫及重金属元素等均在煮锅底部沉积下来并定期排出。如果以制氢或者高附加值煤化工工艺为目的,则可以根据下游工艺参数的需要在适当参数条件下分离H2,或者H2可以继续进入下游工艺制高附加值产品,例如合成氨,制甲醇,合成天然气等,分离H2后的超临界水和CO2则进入新型混合工质透平,将自身的热动能做功转化为电能,发电后的CO2和水经过分离,CO2进行利用、封存,而水则可以循环使用。如以单纯发电为目的,则超临界水及其溶解的H2和CO2进入新型燃氢补热蒸汽轮机,将超临界水和CO2的热动能与H2的化学能转化为电能,同样,发电后的CO2和水经过分离,CO2进行利用、封存,水可以循环使用。 (四)发展前景 1、环境效益:“水煮煤”技术无硫氧化物、氮氧化物、粉尘、污水等排放,CO2可资源化利用,具有巨大的环境效益。2010年陕西发电量1090亿千瓦时,据估算,若严格按照脱硫、脱硝、脱碳标准进行,则需要“三脱”费用一次性投资301亿元,年运行费140亿元。若采用“水煮煤”技术则可以节约以上投资及运行费用。 2、经济效益:“水煮煤”技术高效、节煤、节水,无需专有的污染物减排设备,具有很好的经济效益。据估算,按照2012年火力发电37867亿千瓦时计算,采用“水煮煤”技术可节约燃煤2亿吨,或者多发电6681亿千瓦时,具有巨大的经济效益。使用本技术可以由煤炭获取廉价的氢气,并且副产高纯的CO2,这势必大大促进其下游工艺(例如合成氨、制甲醇、合成碳酸酯等)的发展。未来,当石油、煤和天然气等化石能源消耗殆尽或开采成本太高时,氢作为一种有望与电能并列的可再生清洁能源载体,拥有巨大的发展潜力。利用“水煮煤”技术实现煤的规模化低成本清洁制氢,必将加速我们向氢时代过渡的进程。 3、社会效益:该技术几乎可以拉动整个能源与化工领域的进步,涉及人民生活、社会生产的各行各业,可以促进产业结构的更快升级和换代,特别是形成高效环保技术,以及化工等相关产业的同步提升等具有变革性的推动或引领作用,成为新的经济增长点。 (五)需解决的问题和资金需求: 主要有以下关键技术问题进行实验研究与验证: 1.不同煤种在大型工业规模上不同操作参数条件下的气化规律和完全气化 实施方案,大型工业规模的超临界水煤气化炉的设计与运行准则;

煤气化工艺流程

精心整理 煤气化工艺流程 1、主要产品生产工艺 煤气化是以煤炭为主要原料的综合性大型化工企业,主要工艺围绕着煤的洁净气化、综合利用,形成了以城市煤气为主线联产甲醇的工艺主线。 主要产品城市煤气和甲醇。城市燃气是城市公用事业的一项重要基础设施,是城市现代化的重要标志之一,用煤气代替煤炭是提高燃料热能利用率,减少煤烟型大气污染,改善大气质量行之 化碳 15%提 作用。 2 。净化 装置。合成甲醇尾气及变换气混合后,与剩余部分出低温甲醇洗净煤气混合后,进入煤气冷却干燥装置,将露点降至-25℃后,作为合格城市煤气经长输管线送往各用气城市。生产过程中产生的煤气水进入煤气水分离装置,分离出其中的焦油、中油。分离后煤气水去酚回收和氨回收,回收酚氨后的煤气水经污水生化处理装置处理,达标后排放。低温甲醇洗净化装置排出的H2S到硫回收装置回收硫。空分装置提供气化用氧气和全厂公用氮气。仪表空压站为全厂仪表提供合格的仪表空气。 小于5mm粉煤,作为锅炉燃料,送至锅炉装置生产蒸汽,产出的蒸汽一部分供工艺装置用汽

,一部分供发电站发电。 3、主要装置工艺流程 3.1备煤装置工艺流程简述 备煤工艺流程分为三个系统: (1)原煤破碎筛分贮存系统,汽运原煤至受煤坑经1#、2#、3#皮带转载至筛分楼、经节肢筛、破碎机、驰张筛加工后,6~50mm块煤由7#皮带运至块煤仓,小于6mm末煤经6#、11#皮带近至末煤仓。 缓 可 能周期性地加至气化炉中。 当煤锁法兰温度超过350℃时,气化炉将联锁停车,这种情况仅发生在供煤短缺时。在供煤短缺时,气化炉应在煤锁法兰温度到停车温度之前手动停车。 气化炉:鲁奇加压气化炉可归入移动床气化炉,并配有旋转炉篦排灰装置。气化炉为双层压力容器,内表层为水夹套,外表面为承压壁,在正常情况下,外表面设计压力为3600KPa(g),内夹套与气化炉之间压差只有50KPa(g)。 在正常操作下,中压锅炉给水冷却气化炉壁,并产生中压饱和蒸汽经夹套蒸汽气液分离器1

四种煤气化技术及其应用

四种煤气化技术及其应用 李琼玖,钟贻烈,廖宗富,漆长席,周述志,赵月兴 (成都益盛环境工程科技公司,四川成都610012) 摘要:介绍了4种煤气化工艺技术,包括壳牌工艺、德士古水煤浆气化工艺、恩德工艺、灰熔聚流化床气化工艺,对其技术特点、工艺流程、主要设备及应用实例进行了详细阐述,并对4种工艺进行了对比。 关键词:煤气化;壳牌工艺;德士古;恩德工艺;灰熔聚工艺;煤气炉 中图分类号:TQ546文献标识码:A文章编号:1003-3467(2008)03-0004-04 Four Coal Gasification Technologi es and Their Applicati on L I Q iong-ji u,ZHONG Y i-lie,LIAO Zong-fu, QI Chang-xi,ZHOU Shu-zhi,ZHAO Yue-xing (Chengdu Y i s heng Envir on m ent Eng i n eering Techo logy C o.Ltd,Chengdu610012,China) Abst ract:Four coal gasificati o n technologies,inc l u d i n g Shell techno logy,Texaco coa l-w ater sl u rry gasif-i cati o n,Enticknap pr ocess,ash agg l o m erati o n fl u i d ized bed gasification technology are intr oduced,and the technical features,technolog ical process,m ai n equipm ent and app lication exa m p le o f the four techno l o g i e s are descri b ed in detai.l K ey w ords:coal gasification;She ll techno logy;Texaco;Enticknap process;ash agglo m erati o n tech-nology;gas stove 1壳牌粉煤气化制取甲醇合成气 1.1壳牌工艺技术的特点 壳牌煤气化过程(SCGP工艺)是在高温加压下进行的,是目前世界上最为先进的第FG代煤气化工艺之一。按进料方式,壳牌煤气化属气流床气化,煤粉、氧气及蒸汽在加压条件下并流进入气化炉内,在极为短暂的时间内完成升温、挥发分脱除、裂解、燃烧及转化等一系列物理和化学过程。一般认为,由于气化炉内温度很高,在有氧存在的条件下,碳、挥发分及部分反应产物(H2、CO等)以发生燃烧反应为主;在氧气消耗殆尽之后发生碳的各种转化反应,过程进入到气化反应阶段,最终形成以CO、H2为主要成分的煤气离开气化炉。 壳牌粉煤气化的技术特点:1干煤粉进料,加压氮气输送,连续性好,气化操作稳定。气化温度高,煤种适应性广,从无烟煤、烟煤、褐煤到石油焦均可气化,对煤的活性几乎没有要求,对煤的灰熔点范围比其它气化工艺更宽。对于高灰分、高水分、含硫量高的煤种同样适应。o气化温度约1400~1700e,碳转化率高达99%以上,产品气体相对洁净,不含重烃,甲烷含量极低,煤气中有效气体(CO+H2)高达90%以上。?氧耗低,与水煤浆气化相比,氧气消耗低,因而与之配套的空分装置投资可减少。?单炉生产能力大,目前已投入运转的单炉气化压力为3MPa,日处理煤量已达2000t。?气化炉采用水冷壁结构,无耐火砖衬里,维护量少,气化炉内无转动部件,运转周期长,无需备炉。?热效率高,煤中约83%的热能转化在合成气中,约15%的热能被回收为高压或中压蒸汽,总的热效率为98%左右。?气化炉高温排出的熔渣经激冷后成玻璃状颗粒,性质稳定,对环境几乎没有影响。气化污水中含氰化合物少,容易处理,必要时可做到零排放,对环境保护十分有利。à壳牌公司专利气化烧嘴可根据需要选择,气化压力2.5~4.0M Pa,设计保证寿命为8000h,荷兰De m ko lec电厂使用的烧嘴在近4年 收稿日期:2007-10-13 作者简介:李琼玖(1930-),男,教授级高级工程师、研究员,长期从事化工设计、建设、生产工程技术工作,主编5合成氨与碳一化学6、5醇醚燃料与化工产品链工程技术6专著,发表论文百余篇,电话:(028)86782889。

煤气化工艺流程

煤气化工艺流程 1、主要产品生产工艺 煤气化是以煤炭为主要原料的综合性大型化工企业,主要工艺围绕着煤的洁净气化、综合利用,形成了以城市煤气为主线联产甲醇的工艺主线。 主要产品城市煤气和甲醇。城市燃气是城市公用事业的一项重要基础设施,是城市现代化的重要标志之一,用煤气代替煤炭是提高燃料热能利用率,减少煤烟型大气污染,改善大气质量行之有效的方法之一,同时也方便群众生活,节约时间,提高整个城市的社会效率和经济效益。作为一项环保工程,(其一期工程)每年还可减少向大气排放烟尘1.86万吨、二氧化硫3.05万吨、一氧化碳0.46万吨,对改善河南西部地区城市大气质量将起到重要作用。 甲醇是一种重要的基本有机化工原料,除用作溶剂外,还可用于制造甲醛、醋酸、氯甲烷、甲胺、硫酸二甲酯、对苯二甲酸二甲酯、丙烯酸甲酯等一系列有机化工产品,此外,还可掺入汽油或代替汽油作为动力燃料,或进一步合成汽油,在燃料方面的应用,甲醇是一种易燃液体,燃烧性能良好,抗爆性能好,被称为新一代燃料。甲醇掺烧汽油,在国外一般向汽油中掺混甲醇5~15%提高汽油的辛烷值,避免了添加四乙基酮对大气的污染。 河南省煤气(集团)有限责任公司义马气化厂围绕义马至洛阳、洛阳至郑州煤气管线及豫西地区工业及居民用气需求输出清洁能源,对循环经济建设,把煤化工打造成河南省支柱产业起到重要作用。 2、工艺总流程简介: 原煤经破碎、筛分后,将其中5~50mm级块煤送入鲁奇加压气化炉,在炉内与氧气和水蒸气反应生成粗煤气,粗煤气经冷却后,进入低温甲醇洗净化装置

,除去煤气中的CO2和H2S。净化后的煤气分为两大部分,一部分去甲醇合成系统,合成气再经压缩机加压至5.3MPa,进入甲醇反应器生成粗甲醇,粗甲醇再送入甲醇精馏系统,制得精甲醇产品存入贮罐;另一部分去净煤气变换装置。合成甲醇尾气及变换气混合后,与剩余部分出低温甲醇洗净煤气混合后,进入煤气冷却干燥装置,将露点降至-25℃后,作为合格城市煤气经长输管线送往各用气城市。生产过程中产生的煤气水进入煤气水分离装置,分离出其中的焦油、中油。分离后煤气水去酚回收和氨回收,回收酚氨后的煤气水经污水生化处理装置处理,达标后排放。低温甲醇洗净化装置排出的H2S到硫回收装置回收硫。空分装置提供气化用氧气和全厂公用氮气。仪表空压站为全厂仪表提供合格的仪表空气。 小于5mm粉煤,作为锅炉燃料,送至锅炉装置生产蒸汽,产出的蒸汽一部分供工艺装置用汽,一部分供发电站发电。 3、主要装置工艺流程 3.1备煤装置工艺流程简述 备煤工艺流程分为三个系统: (1)原煤破碎筛分贮存系统,汽运原煤至受煤坑经1#、2#、3#皮带转载至筛分楼、经节肢筛、破碎机、驰张筛加工后,6~50mm块煤由7#皮带运至块煤仓,小于6mm末煤经6#、11#皮带近至末煤仓。 (2)最终筛分系统:块煤仓内块煤经8#、9#皮带运至最终筛分楼驰张筛进行检查性筛分。大于6mm块煤经10#皮带送至200#煤斗,筛下小于6mm末煤经14#皮带送至缓冲仓。 (3)电厂上煤系统:末煤仓内末煤经12#、13#皮带转至5#点后经16#皮

煤气化工艺流程简述

煤气化工艺流程简述 1)气化 a)煤浆制备 由煤运系统送来的原料煤**t/h(干基)(<25mm)或焦送至煤贮斗,经称重给料机控制输送量送入棒磨机,加入一定量的水,物料在棒磨机中进行湿法磨煤。为了控制煤浆粘度及保持煤浆的稳定性加入添加剂,为了调整煤浆的PH值,加入碱液。 出棒磨机的煤浆浓度约65%,排入磨煤机出口槽,经出口槽泵加压后送至气化工段煤浆槽。 煤浆制备首先要将煤焦磨细,再制备成约65%的煤浆。磨煤采用湿法,可防止粉尘飞扬,环境好。 用于煤浆气化的磨机现在有两种,棒磨机与球磨机;棒磨机与球磨机相比,棒磨机磨出的煤浆粒度均匀,筛下物少。 煤浆制备能力需和气化炉相匹配,本项目拟选用三台棒磨机,单台磨机处理干煤量43~53t/h,可满足60万t/a甲醇的需要。 为了降低煤浆粘度,使煤浆具有良好的流动性,需加入添加剂,初步选择木质磺酸类添加剂。 煤浆气化需调整浆的PH值在6~8,可用稀氨水或碱液,稀氨水易挥发出氨,氨气对人体有害,污染空气,故本项目拟采用碱液调整煤浆的PH值,碱液初步采用42%的浓度。 为了节约水源,净化排出的含少量甲醇的废水及甲醇精馏废水均可作为磨浆水。 b)气化 在本工段,煤浆与氧进行部分氧化反应制得粗合成气。 煤浆由煤浆槽经煤浆加压泵加压后连同空分送来的高压氧通过烧咀进入气化炉,在气化炉中煤浆与氧发生如下主要反应: CmHnSr+m/2O2—→mCO+(n/2-r)H2+rH2S CO+H2O—→H2+CO2 反应在6.5MPa(G)、1350~1400℃下进行。 气化反应在气化炉反应段瞬间完成,生成CO、H2、CO2、H2O和少量CH4、H2S等气体。 离开气化炉反应段的热气体和熔渣进入激冷室水浴,被水淬冷后温度降低并被水蒸汽饱和后出气化炉;气体经文丘里洗涤器、碳洗塔洗涤除尘冷却后送至变换工段。

(最新版)年产30万吨煤制甲醇生产工艺5毕业设计论文

优秀论文审核通过未经允许切勿外传 毕业设计任务书 题目:年产30万吨煤制甲醇生产工艺毕业设计函授站:甘肃石化技师学院 专业:化工工艺 班级: 10高级化工工艺 学生姓名:胡文花 指导教师:王广菊

2013年02月03 毕业设计(论文)任务书 设计(论文)题目:年产30万吨煤制甲醇生产工艺毕业设计 函授站:甘肃函授站专业:应用化工技术(工业分析与检验) 班级:甘化专111 (甘分专111)学生姓名:胡文花 指导教师(含职称):王广菊老师 1.设计(论文)的主要任务及目标 甲醇是一种极重要的有机化工原料,也是一种燃料,是碳化学的基础产品,在国民经济中占有十分重要的地位。近年来,随着甲醇下属产品的开发,特别是甲醇燃料的推广应用,甲醇的需求大幅度上升。为了满足经济发展对甲醇的需求,开展了此20万ta 的甲醇项目。 2.设计(论文)的基本要求和内容 首先是采用GSP气化工艺将原料煤气化为合成气;然后通过变换和NHD脱硫脱碳工艺将合成气转化为满足甲醇合成条件的原料气;第三步就是甲醇的合成,将原料气加压到5.14Mpa,加温到225℃后输入列管式等温反应器,在XNC-98型催化剂的作用下合成甲醇,生成的粗甲醇送入精馏塔精馏,得到精甲醇。然后利用三塔精馏工艺将粗甲醇精制得到精甲醇。 3.主要参考文献 [1]徐振刚,宫月华,蒋晓林.CSP加压气流床气化技术及其在中国的应用前景[J].洁净煤技术,1998,(3):15~18. [2]李大尚.GSP技术是煤制合成气(或H2)工艺的最佳选择[J].煤化工,2005,(3):1~6. [3]林民鸿,张全文,胡新田.NHD法脱硫脱碳净化技术.化学工业与工程技术,1995年,第3期. [4]李琼玖,唐嗣荣,等.近代甲醇合成工艺与合成塔技术(下)[J].化肥设计,2004,42(1):3~8. [5]陈文凯,吴玉塘,梁国华,于作龙.合成甲醇催化剂的研究进展.石油化工,1997年,第26卷. [6]唐志斌,王小虎,付超,于新玲.新型低压甲醇合成催化剂XNC-98的工业应用.石化技术与应用,第5期,第23卷.

煤炭气化工艺

煤炭气化工艺 1、何为煤化工? 答:煤化工是以煤为原料经过化学加工,实现煤的转化并进行综合利用的工业。煤化工包括炼焦工业、煤炭气化工业、煤炭液化工业、煤制化学品工业以及其他煤加工制品工业等。 2、什么是煤气化? 答:煤的气化是煤或煤焦与气化剂在高温下发生化学反应将埭或煤焦中有机物转变为煤气的过程。 3、什么是煤炭的汽化? 答:煤炭气化是指煤在特定的设备内,在一定温度及压力下使煤中有机质与气化剂(如蒸汽/空气或氧气等)发生一系列化学反应,将固体煤转化为含有CO、H2、CH4等可燃气体和CO2、N2等非可燃气体的过程。煤炭气化时,必须具备三个条件,即气化炉、气化剂、供给热量,三者缺一不可。 4、煤气的有效成分:一氧化碳、氢气、甲烷 5、煤气化的四个过程:煤的干燥、干馏、热解、氧化和还原 6、煤的热解的影响因素:煤的品味、煤的颗粒粒径、加热速度、分解温度、压力、周围气体和介质。 7、煤的热解结果生成的三类分子:小分子(气体)、中等分子(焦油)、大分子(半焦) 8、煤产生的热量用于哪些方面?

答:煤产生的热量用于:(1)灰渣带出的热量;(2)水蒸气和碳还原反应需要的热量;(3)煤气带走的热量;(4)传给谁夹套和周围环境的热量 9、分气化技术的分类:(1)按气化技术:地面气化和地下气化;(2)按气化剂不同:富氧气化(产品为空气煤气)、纯氧气化(产品为混合煤气)、氢气气化(产品为水煤气)、水蒸气气化(产品为半水煤气);(3)按给热方式:外热式气化、自热式气化、热载体式气化;(4)按气化炉类型分:移动床气化、流化床气化、气流床气化、熔融床气化;(5)按操作压力分:加压气化和常压气化 10、什么是固定床气化? 答:在气化过程中,煤由气化炉顶部加入,气化剂由气化炉底部加入,煤料与气化剂逆流接触,相对于气体的上升速度而言,煤料下降速度很慢,甚至可视为固定不动,因此称之为固定床气化;而实际上,煤料在气化过程中是以很慢的速度向下移动的,比较准确的称其为移动床气化。 11、煤的气化过程发生哪些主要的化学反应. 答:C+O2→CO2 394.1kJ/mol C+H2O→H2+CO -135.0kJ/mol C+ O2→CO 110.4kJ/mol C+2H2O→2H2+CO2 -96.6KJ/mol C+2H2→CH4 +84.3kJ/mol C+CO2→ 2C0 +173.3 kJ/mol

煤气化技术及其工业应用

煤气化技术及其工业应用 摘要:我国是一个以煤炭为主要能源的国家,煤炭气化技术的发展对我国的经济建设和可持续发展都有具有重要意义。本文介绍了我国的煤化工行业的发展现状以及煤气化技术的工业应用。 关键词:煤化工,煤气化技术,工业应用 我国是一个以煤炭为主要能源的国家。近几十年来,煤炭在我国的一次能源消费中始终占据主要地位,以煤为主的能源格局在相当长的时间内难以改变。中国传统的煤炭燃烧技术存在综合利用效率低,能耗高、煤炭生产效率低、成本高、环境污染严重等问题,煤炭气化技术的发展对我国的经济建设和可持续发展都有具有重要意义。 以煤气化为基础的能源及化工系统,不仅能较好的提高煤转化效率和降低污染排放,而且能生产液体燃料和氢气等能源产品,有效缓解交通能源紧张。煤气化技术正在成为世界范围内高效、清洁、经济地开发和利用煤炭的热点技术和重要发展方向。煤炭的气化和液化技术、煤气化联合循环发电技术等都已得到工业应用。 煤气化技术包括:备煤技术、气化炉技术、气化后工艺技术三部分,其核心是气化炉。按照煤在气化炉内的运动方式,气化方法可划分为三类,即固定床气化法、流化床气化法和气流床气化法,必须根据煤的性质和对气体产物的要求选用合适的煤气化方法。 1煤气化工艺概述 煤炭气化是煤洁净利用的关键技术之一,它可以有效的提高碳转化率、冷煤气效率,降低气化过程的氧耗及煤耗。煤气化工艺是以煤或煤焦为原料,氧气(空气、富氧、纯氧)、水蒸气或氢气等作气化剂(或称气化介质),在高温条件下通过化学反应将煤或煤焦中的可燃部分转化为煤气的热化学加工过程。 目前世界正在应用和开发的煤气化技术有数十种之多,气化炉也是多种多样,最有发展前途的有10余种。所有煤气化技术都有一个共同的特征,即气化炉内煤炭在高温下与气化剂反应,使固体煤炭转化为气体燃料,剩下的含灰残渣排出炉外。气化剂为水蒸气、纯氧、空气、CO2和H2。煤气化的全过程热平衡说明总的气化反应是吸热的,因此必须给气化炉供给足够的热量,才能保持煤气化过程的连续进行。 煤气化根据供热原理大致可分为3种: (1)热分解(约500-1000℃):加热使煤放出挥发分,再由挥发分得到焦油和燃气(CO、CO2、H2、CH4),必须由外部供热,残留的固态炭(粉焦和焦炭等)作它用; (2)部分燃烧气化(约900-1600℃):煤在氧气中部分燃烧产生高温,并加入气化剂(H2O、CO2等),产生可燃气(CO、CO2、H2)和灰分;

煤制甲醇工艺原理

第一章:甲醇生产工艺原理 第一节:甲醇的物理化学性质、用途 甲醇是一种有机化学产品。1661年英国化学家波义耳最早从干馏木材中发现了甲醇。所以也叫木醇。1922年,德国BASF公司用化学方法合成了甲醇。1923年建成年产300吨的甲醇生产装置。采用锌铬催化剂,在高压条件下生产甲醇,所以也叫高压法甲醇。到1966年,英国帝国化学工业(I.C.I)研究出了铜基催化剂,开发出了低压合成工艺,1971年,德国鲁奇公司(Lurgi)也开发出了低压合成甲醇工艺,以后,世界上甲醇生产工艺基本上采用低压合成工艺。 从1975年以后,世界上甲醇生产规模越来越大,甲醇装置单套生产能力达到20万吨/年,到90年代,单套生产能力达到60-80万吨/年,目前已达到100万吨/年的水平。 1.甲醇的物理化学性质 在常态下,甲醇是无色透明的液体,有轻微的酒香;有良好的溶解性,与水、乙醇互溶,在汽油中有较大的溶解度;易燃易爆;有毒性,人摄入20-30ml,会导致失明;摄入50-60ml,会致死。 OH,分子量:32 甲醇分子式:CH 3 结构式: H H -C-OH H 沸点:64.4-64.8℃;冰点:-97.68℃;比重0.791; 爆炸极限:6.0%-36.5%;闪点:16℃;

2.甲醇的主要用途。 甲醇的化学性质很活泼。可进行氧化、脂化、羰基化、胺化、脱水反应。甲醇是一种重要的基本有机化工原料。是碳一化学的基础。用甲醇可以生产上百种化工产品。典型的有:甲醛、聚甲醛、醋酸、甲胺、甲基叔丁基醚(MTBE)、甲基丙烯酸甲脂(MMA)、聚乙烯醇、碳酸二甲脂、硫酸二甲脂、对苯二甲酸二甲脂(DMT)、二甲脂甲酰胺(DMF)、二甲醚、乙烯、丙烯及苯,等等。还是一种重要的能源,可直接做燃料、做甲醇燃料电池、甲醇汽油、还可以分解制氢和一氧化碳。2008年,全球甲醇产量达到4500万吨。我国甲醇产量1000多万吨。 第二节:甲醇生产工艺原理 1.合成气的制造与生产甲醇的主要原料 合成气(含有CO、CO2、H2的气体)在一定压力(5—10MPa)、温度230-280℃)和催化剂的条件下反应生成甲醇,合成反应如下:CO+2H2=CH3OH+Q CO2+3H2=CH3OH+H2O+Q 1.1生产甲醇的主要原料 含有CO、CO2、H2的气体叫合成气。能生产合成气的原料就是生产甲醇的原料。主要有: A.气体原料:天然气、油田伴生气、煤层气、炼厂气、焦炉气、高炉煤气; B.液体原料:石脑油、轻油、重油、渣油; C.固体原料:煤、焦碳。

到2030年全国煤矿将实现智能化开采 基本建成绿色矿山

到2030 年全国煤矿将实现智能化开采基本建成绿色矿山 国家发改委、能源局1 日联合发布《能源技术革命创新行动计划(20162030 年)》明确,重点任务之一就是要实现煤炭无害化开采技术的创新。提升煤炭开发效率和智能化水平,研发高效建井和快速掘进、智能化工作面、 特殊煤层高回收率开采、煤炭地下气化、煤系共伴生资源综合开发利用等技 术,重点煤矿区基本实现工作面无人化,全国采煤机械化程度达到95%以上。 2020 年目标:煤炭安全绿色、高效智能开采技术水平大幅提升。大中型矿区基本实现安全绿色开采,原煤入洗率达到80%,采动环境损害降低70%以上,煤矿稳定塌陷土地治理率达到85%以上;基本实现智能开采,机械装备及智能化控制系统在煤炭生产上全覆盖,重点煤矿区采煤工作面人数减少50%以上,全国煤矿采煤机械化程度达到90%以上,掘进机械化程度达到65%以上;单个气化矿井年气化50 万吨煤炭。 2030 年目标:煤炭实现科学产能。实现煤炭安全开采;基本建成绿色矿山,原煤入洗率达到应洗尽洗,采动环境损伤降低90%以上,煤矿稳定塌陷土地治理率达到90%以上;实现智能化开采,重点煤矿区基本实现工作面无人化、顺槽集中控制,全国煤矿采煤机械化程度达到95%以上,掘进机械化程度达到80%以上;规模化地下气化开采矿井实现工业示范。 2050 年展望:全面建成安全绿色、高效智能矿山技术体系,实现煤炭安全绿色、高效智能生产。 同时还要实现煤炭清洁高效利用技术创新。加强煤炭分级分质转化技术 创新,重点研究先进煤气化、大型煤炭热解、焦油和半焦利用、气化热解一体化、气化燃烧一体化等技术,开展3000 吨/天及以上煤气化、百万吨/年低阶煤

几种常用煤气化技术的优缺点

几种煤气化技术介绍 煤气化技术发展迅猛,种类很多,目前在国内应用的主要有:传统的固定床间歇式煤气化、德士古水煤浆气化、多元料浆加压气化、四喷嘴对置式水煤浆气化、壳牌粉煤气化、GSP气化、航天炉煤气化、灰熔聚流化床煤气化、恩德炉煤气化等等,下别分别加以介绍。 一Texaco水煤浆加压气化技术 德士古水煤浆加压气化技术1983年投入商业运行后,发展迅速,目前在山东鲁南、上海三联供、安徽淮南、山西渭河等厂家共计13台设备成功运行,在合成氨和甲醇领域有成功的使用经验。 Texaco水煤浆气化过程包括煤浆制备、煤浆气化、灰水处理等工序:将煤、石灰石<助熔剂)、添加剂和NaOH称量后加入到磨煤机中,与一定量的水混合后磨成一定粒度的水煤浆;煤浆同高压给料泵与空分装置来的氧气一起进入气化炉,在1300~1400℃下送入气化炉工艺喷嘴洗涤器进入碳化塔,冷却除尘后进入CO变换工序,一部分灰水返回碳洗塔作洗涤水,经泵进入气化炉,另一部分灰水作废水处理。 其优点如下: <1)适用于加压下<中、高压)气化,成功的工业化气化压力一般在 4.0MPa 和6.5Mpa。在较高气化压力下,可以降低合成气压缩能耗。 <2)气化炉进料稳定,因为气化炉的进料由可以调速的高压煤浆泵输送,所以煤浆的流量和压力容易得到保证。便于气化炉的负荷调节,使装置具有较大的操作弹性。 <3)工艺技术成熟可靠,设备国产化率高。同等生产规模,装置投资少。 该技术的缺点是: <1)因为气化炉采用的是热壁,为延长耐火衬里的使用寿命,煤的灰熔点尽可能的低,通常要求不大于1300℃。对于灰熔点较高的煤,为了降低煤的灰熔点,必须添加一定量的助熔剂,这样就降低了煤浆的有效浓度,增加了煤耗和氧耗,降低了生产的经济效益。而且,煤种的选择面也受到了限制,不能实现原料采购本地化。 <2)烧嘴的使用寿命短,停车更换烧嘴频繁<一般45~60天更换一次),为稳定后工序生产必须设置备用炉。无形中就增加了建设投资。 <3)一般一年至一年半更换一次炉内耐火砖。 二多喷嘴对置式水煤浆加压气化技术 该技术由华东理工大学洁净煤技术研究所于遵宏教授带领的科研团队,经过20多年的研究,和兖矿集团有限公司合作,成功开发的具有完全自主知识产权、国际首创的多喷嘴对置式水煤浆气化技术,并成功地实现了产业化,拥有近20项发明专利和实用新型专利。目前在山东德州和鲁南均有工业化装置成功运行。

煤气化制甲醇工艺流程

煤气化制甲醇工艺流程 1 煤制甲醇工艺 气化 a)煤浆制备 由煤运系统送来的原料煤干基(<25mm)或焦送至煤贮斗,经称重给料机控制输送量送入棒磨机,加入一定量的水,物料在棒磨机中进行湿法磨煤。为了控制煤浆粘度及保持煤浆的稳定性加入添加剂,为了调整煤浆的PH值,加入碱液。出棒磨机的煤浆浓度约65%,排入磨煤机出口槽,经出口槽泵加压后送至气化工段煤浆槽。煤浆制备首先要将煤焦磨细,再制备成约65%的煤浆。磨煤采用湿法,可防止粉尘飞扬,环境好。用于煤浆气化的磨机现在有两种,棒磨机与球磨机;棒磨机与球磨机相比,棒磨机磨出的煤浆粒度均匀,筛下物少。煤浆制备能力需和气化炉相匹配,本项目拟选用三台棒磨机,单台磨机处理干煤量43~ 53t/h,可满足60万t/a甲醇的需要。 为了降低煤浆粘度,使煤浆具有良好的流动性,需加入添加剂,初步选择木质磺酸类添加剂。 煤浆气化需调整浆的PH值在6~8,可用稀氨水或碱液,稀氨水易挥发出氨,氨气对人体有害,污染空气,故本项目拟采用碱液调整煤浆的PH值,碱液初步采用42%的浓度。 为了节约水源,净化排出的含少量甲醇的废水及甲醇精馏废水均可作为磨浆水。 b)气化 在本工段,煤浆与氧进行部分氧化反应制得粗合成气。 煤浆由煤浆槽经煤浆加压泵加压后连同空分送来的高压氧通过烧咀进入气化炉,在气化炉中煤浆与氧发生如下主要反应: CmHnSr+m/2O2—→mCO+(n/2-r)H2+rH2S CO+H2O—→H2+CO2 反应在6.5MPa(G)、1350~1400℃下进行。 气化反应在气化炉反应段瞬间完成,生成CO、H2、CO2、H2O和少量CH4、H2S等气体。 离开气化炉反应段的热气体和熔渣进入激冷室水浴,被水淬冷后温度降低并被水蒸汽饱和后出气化炉;气体经文丘里洗涤器、碳洗塔洗涤除尘冷却后送至变换工段。 气化炉反应中生成的熔渣进入激冷室水浴后被分离出来,排入锁斗,定时排入渣池,由扒渣机捞出后装车外运。 气化炉及碳洗塔等排出的洗涤水(称为黑水)送往灰水处理。 c)灰水处理 本工段将气化来的黑水进行渣水分离,处理后的水循环使用。 从气化炉和碳洗塔排出的高温黑水分别进入各自的高压闪蒸器,经高压闪蒸浓缩后的黑水混合,经低压、两级真空闪蒸被浓缩后进入澄清槽,水中加入絮凝剂使其加速沉淀。澄清槽底部的细渣浆经泵抽出送往过滤机给料槽,经由过滤机给料泵加压后送至真空过滤机脱水,渣饼由汽车拉出厂外。 闪蒸出的高压气体经过灰水加热器回收热量之后,通过气液分离器分离掉冷凝液,然后进入变换工段汽提塔。 闪蒸出的低压气体直接送至洗涤塔给料槽,澄清槽上部清水溢流至灰水槽,由灰水泵分别送至洗涤塔给料槽、气化锁斗、磨煤水槽,少量灰水作为废水排往废水处理。 洗涤塔给料槽的水经给料泵加压后与高压闪蒸器排出的高温气体换热后送碳洗塔循环

煤炭气化技术

煤炭气化技术 一.煤炭气化的概念: 煤炭气化是指适当处理后的煤或煤焦为原料,以氧气(空气、富氧、纯氧)、水蒸气或氢气等作为气化剂,在一定的温度和压力条件下通过化学反应将煤或煤 焦中的可燃部分(碳、氢)转化为气体(气体中含有CO、H 2、CH 4 、CO 2 、N 2 )的 热化学过程,而煤中的灰分以废渣的形式排出。煤炭气化时,必须具备三个条件,即气化炉、气化剂、供给热量,三者缺一不可。 二.煤炭气体原理和反应 气化过程是煤炭的一个热化学加工过程。气化时所得的可燃气体成为煤气,对于做化工原料用的煤气一般称为合成气(合成气除了以煤炭为原料外,还可以采用天然气、重质石油组分等为原料),进行气化的设备称为煤气发生炉或气化炉。煤炭气化包含一系列物理、化学变化。一般包括干燥、燃烧、热解和气化四个阶段。干燥属于物理变化,随着温度的升高,煤中的水分受热蒸发。其他属于化学变化,燃烧也可以认为是气化的一部分。煤在气化炉中干燥以后,随着温度的进一步升高,煤分子发生热分解反应,生成大量挥发性物质(包括干馏煤气、焦油和热解水等),同时煤粘结成半焦。煤热解后形成的半焦在更高的温度下与通入气化炉的气化剂发生化学反应,生成以一氧化碳、氢气、甲烷及二氧化碳、氮气、硫化氢、水等为主要成分的气态产物,即粗煤气。气化反应包括很多的化学反应,主要是碳、水、氧、氢、一氧化碳、二氧化碳相互间的反应,其中碳与氧的反应又称燃烧反应,提供气化过程的热量。 煤气的热值分类 中热值煤气的热值在10.0—22.4MJ/m3,主要成分是一氧化碳和氢气,燃烧迅速,火焰温度比天然气高,适合于冶金和机械制造行业供热。低热值煤气是由于在制造过程中混入大量不可燃烧气体,比如煤气化过程中直接采用空气,引入大量氮气,或者气化过程氧超标,室可燃气体被进一步氧化生成二氧化碳,低热值煤气热值一般在3.1—5.6MJ/m3,除一定量的一氧化碳和氢气外,还有大量不可燃氮气,燃烧温度低。高热值煤气热值一般在36.2—37.3MJ/m3,主要成份是甲烷和少量一氧化碳和氢气。其热值与天然气相当。中低热值煤气可以通过催化转化后制得高热值煤气。

煤与生物质共超临界水催化气化制氢的实验研究

第39卷 第5期2005年5月  西 安 交 通 大 学 学 报 J OU RNAL O F XI′AN J IAO TON G UN IV ERSIT Y Vol.39 №5 May2005 煤与生物质共超临界水催化气化制氢的实验研究 闫秋会,郭烈锦,梁 兴,张西民 (西安交通大学动力工程多相流国家重点实验室,710049,西安) 摘要:在压力为20~25M Pa、停留时间为15~30s、NaO H添加量(质量分数)为011%、反应器外壁温度为650℃的条件下,对煤与生物质的模型化合物羧甲基纤维素钠(CMC)在超临界水环境中的催化气化制氢性能进行了研究,探讨了物料浓度、压力以及停留时间对煤与CMC共气化制氢的影响.实验结果表明:煤与CMC共超临界水催化气化制氢的主要气体产物是H2、CO2和CH4,H2的体积分数可高达60%以上;增加物料浓度、升高压力有利于提高产氢率,但延长停留时间不利于氢气的制取. 关键词:制氢;煤;羧甲基纤维素钠;超临界水;共气化 中图分类号:T K16 文献标识码:A 文章编号:0253Ο987X(2005)05Ο0454Ο04 H ydrogen Production from Co2G asif ication of Coal and Biomass in Supercritical W ater by Continuous Flow Thermal2C atalytic R eaction System Yan Qi uhui,Guo L iej i n,L i ang X i ng,Zhang X i mi n (State Key Laboratory of Multiphase Flow in Power Engineering,Xi′an Jiaotong University,Xi′an710049,China) Abstract:Hydrogen is a clean energy carrier wit hout pollution.It is significant for energy source clean2 ability and environmental p rotection to convert t he abundant coal sources and green biomass energy into hydrogen effectively and pollution2f reely.As a test sample of biomass in supercritical water(SCW),t he co2gasification performance of coal and carboxymet hylcellulo se(CMC)is investigated experimentally.The influences of temperat ure,p ressure and co ncent ration on hydrogen p roduction f rom co2gasification of coal and CMC in SCW under t he given conditions(20-25M Pa,650℃,15-30s)are discussed in detail.The experimental result s show t hat H2,CO2and CH4are t he main product gases,and t he molar f raction of hy2 drogen reaches in excess of60%.The higher p ressure and higher CMC content facilitate hydrogen p roduc2 tion,but t he p roduction is decreased remarkably in longer residence time. K eyw ords:hy d rogen p rod uction;coal;CM C;su percritical w ater;co2gasi f ication 近年来,超临界水因其优异的性能在航空航天、食品以及有机废弃物处理等领域正发挥着不可替代的作用,在能源转化领域超临界水的独特性能也日益被众多的研究机构发现和认可[1Ο6],在超临界水中将丰富的煤炭资源和绿色的生物质能源转化为清洁的氢能,具有气态产物中氢气含量高,无需对原料进行干燥,不会造成二次污染等优点.煤或者生物质在超临界水中的气化制氢已有一些研究[1Ο6],但煤与生物质的混合物在超临界水中的气化制氢鲜有报道[7].在煤与生物质共气化时,由于生物质的氢和碳的量比n(H)/n(C)高,且活性比煤的高,故可作为煤气化过程中很好的供氢剂,促进煤气化,获得更好的制氢效果.因此,本文在西安交通大学动力工程多相流国家重点实验室自行研制的连续式煤与生物质共超临界水催化气化制氢装置上,研究探讨了影响煤与生物质共超临界水催化气化制氢过程与结果的主要因素及其规律. 收稿日期:2004Ο12Ο01. 作者简介:闫秋会(1965~),女,博士生;郭烈锦(联系人),男,教授,博士生导师. 基金项目:国家重点基础研究发展规划资助项目(2003CB214500);国家自然科学基金资助项目(50323001).

相关文档
最新文档