基于DSP的数字图像处理

基于DSP的数字图像处理
基于DSP的数字图像处理

论文题目: 基于DSP的数字图像处理

专业:

学号:

姓名:

老师:

成绩:

目录

摘要●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●2

1基于DSP的图像处理●●●●●●●●●●●●●●●●●●●●●2

1.1图像处理的基本概念●●●●●●●●●●●●●●●●●●●2

1.2图像处理的研究背景●●●●●●●●●●●●●●●●●●●2

2基于DSP的图像处理原理简介●●●●●●●●●●●●●●●●3

3图像处理各领域应用●●●●●●●●●●●●●●●●●●●●●3

4数字图像处理技术主要问题●●●●●●●●●●●●●●●●●4

5图像处理研究内容●●●●●●●●●●●●●●●●●●●●●●4

6 TMS320C6000 DSP芯片●●●●●●●●●●●●●●●●●●●●5

6.1 DSP芯片的特点●●●●●●●●●●●●●●●●●●●●●5

6.2基于DSP的图像处理系统●●●●●●●●●●●●●●●●6

6.3图像处理的硬件系统●●●●●●●●●●●●●●●●●●●●7

6.3.1 TMS320C6000 DSP芯片的硬件系统●●●●●●●●●●7

6.3.2 TMS320C6000的硬件结构简介●●●●●●●●●●●●7

6.3.3 TMS320C6000系列CPU结构●●●●●●●●●●●●●7

6.4算术单元●●●●●●●●●●●●●●●●●●●●●●●●●●8

6.5总线结构●●●●●●●●●●●●●●●●●●●●●●●●●●8

6.6专用寻址单元●●●●●●●●●●●●●●●●●●●●●●●●9

6.7流水处理●●●●●●●●●●●●●●●●●●●●●●●●●●9

6.8大容量片内存储器●●●●●●●●●●●●●●●●●●●●●10

6.9零消耗循环控制●●●●●●●●●●●●●●●●●●●●●●10

7基于DSP的图像处理实现●●●●●●●●●●●●●●●●●●10

7.1图像处理分类●●●●●●●●●●●●●●●●●●●●●●●10

7.2图像直方图统计●●●●●●●●●●●●●●●●●●●●10

8基于DSP数字图像具体实例(实际结果见附录)●●●●●●11

8.1图像反色●●●●●●●●●●●●●●●●●●●●●●●●11

8.2图像二值化自适应阀值法●●●●●●●●●●●●●●●●11

9论文总结●●●●●●●●●●●●●●●●●●●●●●●●●●●12

10参考文献●●●●●●●●●●●●●●●●●●●●●●●●●●13

11附录(DSP数字图像处理实验结果)●●●●●●●●●●●●14 11.1图像反色实验●●●●●●●●●●●●●●●●●●●●●14

11.2用固定值128作为阀值●●●●●●●●●●●●●●●●14

11.3用图像的灰度均值作为阀值●●●●●●●●●●●●●●15

11.4用自适应阀值法找出最佳阀值●●●●●●●●●●●●●15

摘要:

随着计算机、多媒体和数据通信技术的高速发展,数字图像技术近年来得到了极大的重视和长足的发展,并在科学研究、工业生产、医疗卫生、教育、娱乐、管理和通信等方面取得了广泛的应用。同时,人们对计算机视频应用的要求也越来越高,从而使得高速、便捷、智能化的高性能数字图像处理设备成为未来视频设备的发展方向,实时图像处理技术在目标跟踪、机器人导航、辅助驾驶、智能交通监控中都得到越来越多的应用。由于图像处理的数据量大,数据处理相关性高,实时的应用环境决定严格的帧、场时间限制,因此实时图像处理系统必须具有强大的运算能力。各种高性能DSP不仅可以满足在运算性能方面的需要,而且由于DSP的可编程性,还可以在硬件一级获得系统设计的极大灵活性。

1基于DSP的图像处理

1.1图像处理的基本概念

图像处理是指安之低昂的需要突出一幅图像中的某些信息,同时削弱或去除默写不需要的信息,他是一种将原来不清晰的图像变得清晰或强调某些感兴趣的特征,一直不感兴趣的特征,是指改善图像质量丰富信息量,加强图像判读和识别效果的图像处理方法。

图像处理就是增强图像中用户感兴趣的信息,其主要目的有两个:一是改善图像的视觉效果,提高图像成分清晰度;二是使图像变得更有利于计算机处理。

1.2图像处理的研究背景

数字图像处理又称为计算机图像处理在国外最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。图像处理中,输入

的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就,属于这些领域的有航空航天、生物医学过程、工业检测、机器人视觉、公安司法、军事制导、文化艺术等,使图像处理成为一门引人注目、前景远大的新型学科。2基于DSP的图像处理原理简介

数字图像的每个象素通常用8个比特表示,因此,图像有256个灰度级,其范围为0一255,其中0对应黑色,255对应白色。数字图像按一定的格式进行存储,BMP格式就是最常用的格式之一。HMP 图像文件是Microsoft windows系统的图像格式,它由BMP图像文件头利图像数据阵列两部分组成。图像数据阵列记录了图像的每个象素值。图像数据的存储是从图像的左下角开始逐行扫描图像,即从左到右,从下而上,将图像的象素值一一记录下来,从而形成了图像数据阵列。

3图像处理各领域应用

基于DSP的数字图像处理广泛应用于物理、化学、生物、医学、环境保护、地质、农业、林业、气象、通信、工业、军事、渔业、水利、法律。例如:结晶分析、谱分析等、细胞分析、染色体分类、X 射线成像;水质及大气污染调查等资源勘测、地图绘制、GIS等;农作物估产、植被分布调查等;卫星云图分析等、传真、电视、多媒体通信等、工业探伤、机器人、产品质量检测等;导弹导航、军事侦察等、鱼群分布调查等;河流分布、水利及水害调查等以及指纹识别等

4数字图像处理技术主要问题

(1)在进一步提高精度的同时,着重解决处理速度问题;

(2)加强软件研究,开发新的处理方法,特别要注意移植和借鉴其他学科的技术和研究成果,创造新的处理方法;

(3)加强边缘学科的研究工作,促进图像处理技术的发展;

(4)加强理论研究,逐步形成处理科学自身的理论体系;

(5)时刻注意图像处理领域的标准化问题。

5图像处理研究内容

数字图像处理主要研究的内容有以下几个方面:

(1)图像变换:由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。往往采用各种图像变换的方法,如傅里叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。

(2)图像编码压缩图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。

(3)图像增强和复原图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影

响。

(4)图像分割:图像分割是数字图像处理中的关键技术之一。图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。

(5)图像描述:图像描述是图像识别和理解的必要前提。作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。对于特殊的纹理图像可采用二维纹理特征描述。

(6)图像分类(识别):图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。

6 TMS320C6000 DSP芯片

6.1 DSP芯片的特点

DSP处理芯片,为了适应信号处理运算的需要,结构与通用的其他计算机或控制处理器相比,有较大的不同,主要的几点为:(1)具有专用的算术单元,如硬件乘法器,DSP内部设有硬件乘法器来完成乘法操作,以提高乘法速度。

(2)具有特殊的总线结构——哈佛结构。这种结构使DSP具有独立的地址和数据总线,可以同时取地址和操作数。

(3)流水处理。流水技术使多个不同的操作可以同时执行,处

理器内将每条指令的执行分为取址、解码、执行等阶段,不同的阶段并行执行,提高了程序执行的效率和速度。

(4)高速的芯片内存储器。DSP芯片一般内部集成有程序和数据存储器,访问速度快,缓解总线接口的压力,提高程序执行的速度。DSP运算的特点是寻址操作。数据寻址范围大,结构复杂但很有规律。例如FFT运算,它的蝶形运算相关节点从相邻两点直至跨越N/2间隔的地址范围,每次变更都很有规律,级间按一定规律排列,虽然要运算log2N遍,但每级的地址都可以预测,也就是寻址操作很有规律而且可以预测。这就不同于一般的通用机,在通用机中对数据库的操作,具有很大的随机性,这种随机寻址方式不是信号处理器的强项。

6.2基于DSP的图像处理系统

基于DSP的图像处理系统的主要思想是利用C5000这样具有强大运算能力的DSP来满足图像处理技术中运算速度和处理的实时性要求。以DSP为核心不见的图像处理系统具有以下优点:

(1)接口方便。DSP系统与其他以现代数字技术为基础的系统或设备均互相兼容,同这样的系统接口来实现某种功能要比模拟系统与这样的系统接口要容易的多;

(2)编程方便。DSP系统中的可编程DSP芯片可使设计人员在开发过程中灵活方便的对软件进行修改和升级;

(3)稳定性好。DSP系统以数字处理为基础,受环境温度及噪音的影响较小,可靠性高;

(4)精度高。16位数字系统的精度可达10-5;

(5)可重复性好。模拟系统的性能受元器件参数性能变化的影响较大,而数字系统基本上不受影响,因此数字系统便于测试、调试和大规模生产;

(6)集成方便。DSP系统中的数字部件有高度的规范性,便于大规模集成。

6.3图像处理的硬件系统

6.3.1 TMS320C6000 DSP芯片的硬件系统

TMS320C6000系列DAP是美国TI公司于1997年推出的新一代高性能的数字信号处理芯片,具有很高的工作频率和极强的并行处理能力。片内有A、B两组共8个并行处理单元,每组内分为L、M、D、S四个单元,每组处理单元结合同侧的寄存器和数据通道,构成了一个完整的数据处理单元。C6000处理器的A、B两个王正德数据处理单元之间可以通过两条数据交叉通路进行数据交叉访问,所以这样的硬件结构非常适合实现数据的并行处理,利于实现数据实时处理。

6.3.2 TMS320C6000的硬件结构简介

TMS320C6000系列DSP(数字信号处理器)是TI公司最新推出的一种并行处理的数字信号处理器。它是基于TI的VLIW技术的,它包含两个子系列:用于定点计算的TMS320C62X系列和用于浮点计算的TMS320c 67x系列其中,TMS320C62xx是定点处理器,TMS320C67xx 是浮点处理器。以TMS320C6201 为例,该处理器的工作频率最高可以采用50MHz,经内部4倍频后升至200MHz。

6.3.3 TMS320C6000系列CPU结构

TMS320C6000的CPU有两个数据通道A和B,每个通道有16个32位字长的寄存器(A0~A15,B0~B15),四个功能单元(L,S,M,D),每个功能单元负责完成一定的算术或者逻辑运行。A、B两通道的寄存器并不是完全共享,只能通过TM320C6000提供的两个交换通道1X、2X,才能实现处理单元从不同通道的寄存器堆那里获取32位字长的操作数。TMS320C6000的地址线为32位,存储器寻址空间是4G。

6.4算术单元

(1)硬件乘法器

由于DSP的功能特点,乘法操作是DSP的一个主要任务。在通用微处理器内是通过程序实现乘法操作的,这往往需要耗费很大的时钟周期,因此在DSP内部设有硬件乘法器来完成乘法乘法操作,以提高乘法速度。所以硬件乘法器是DSP区别于通用微处理器的一个重要标志。

(2)多功能单元

为进一步提高速度,可以在CPU内设置多个并行操作的功能单元(ALU,乘法器,地址产生器等)。如C6000的CPU内部有八个功能单元,即两个乘法器和六个ALU,八个功能单元最多可以在一个周期内同时执行八条32位指令。由于多功能单元的并行操作,使DPS在相同时间内能够完成更多的操作,因而提高了程序的执行速度。

6.5总线结构

通用微处理器是为计算机设计的,通常采用冯诺依曼总线结构,

统一的程序和数据空间,共享的程序和数据总线,由于总线的限制,微处理器执行指令时,取指和存取操作数必须共享总线,因而程序指令只能串行执行。对于DSP而言,采用冯诺依曼总线结构将使系统的性能受到很大的限制,因此DSP采用了独立程序总线的哈弗总线结构,而且很多DSP甚至有两套以上内部数据总线,这种总线结构称为修正的哈佛结构,对于乘法或加法等运算,一条指令要从存储器中取两个操作数,多套数据总线就使得两个操作数可以同时取得,提高了程序效率。

6.6专用寻址单元

DSP面向的是数据密集型应用,因为需要频繁地访问数据,数据地址的计算时间也线性增长,如果不做特殊处理,计算地址的时间有时会比实际的算术操作时间还长。因此,DSP通常都有支持地址计算的算术单元——地址产生器与ALU并行工作,因此地址的计算不再额外占用CPU时间。

6.7流水处理

除了多功能单元外,流水技术是提高DSP程序执行效率的另一个主要手段。流水技术使两个或更多不同的操作可以重叠执行,流水线操作是DSP实现高速度、高效率的关键技术之一。TMS320C6000只有在流水线充分发挥作用的情况下,才能达到1600MIPS的速度。C6000的流水线分为三个阶段:取指、解码、执行、总共11级。和以前的C3x、C54x相比,有非常大的优势,主要表现在:简化了流水线的控制以消除流水线互锁;增加流水线的深度以消除传统流水线结

构在取指、数据访问和乘法操作上的瓶颈。其中取指、数据访问分为多个阶段,使得C6000可以高速地访问存储空是。

6.8大容量片内存储器

大容量片内存储器外部存储器一般不能适应高性能DSP核的处理速度, 因此在片内设置较大容量的程序/数据存储器以减少对外部存储器的访间速度, 充分发挥DSP核的高性能,数据RAM的容量高达7MB。采用大的片内存储器可以减少外部存储器接口的引脚, 甚至省略外部存储器接口, 而且还可以减小芯片的封装体积。

6.9零消耗循环控制

数字信号处理的一大特点是很多运算时间都用在执行较小循环的少量核心代码上大部分DSP芯片具有零消耗循环控制的专门硬件, 可以省去循环计数器的测试指令, 提高了代码效率, 减少了执行时间。

7基于DSP的图像处理实现

7.1图像处理分类

图像处理技术基本上可以分成两大类:品与处理法和空域处理法。频域处理法的基础是卷积定理,它是将图像看做波,然后利用信号处理中的手段对图像波进行处理。空域处理法的基础是灰度映射变换,它是直接针对图像中的像素进行处理,所用到的映射变换拒绝与增强的目的,例如增强图像的对比度,改善图像的灰度层次等处理均属于空域处理法的范畴。

7.2图像直方图统计

灰度直方图是数字图像处理中一个最简单、最有用的工具, 它描述了一幅图像的灰度级内容。任何一幅图像的直方图都包括了可观的信息,某些类型的图像可由其直方图完全描述。灰度直方图是灰度值的函数,描述的是图像中具有该灰度值的像素的个数,其横坐标表示像素的灰度级别,纵坐标是该灰度出现的频率(像素个数与图像像素总数之比)。通过下面的程序可以把直方图的灰度值进行统计,方便图像处理的进一步操作。程序通过数组,申请动态空间,把直方图数据,即各种灰度出现的次数进行储存,释放。通过仿真运行可以直观的看到图像的灰度分布情况。

8基于DSP 数字图像具体实例(实际结果见附录)

8.1图像反色

对图像进行反色处理。设输入图像为f ( x, y ),反色后的图像为g ( x, y ), 那么图像反色的方法为:

),(255),(y x f y x g -=

8.2图像二值化自适应阀值法

用自适应阀值法对图像进行黑白二值化处理。其基本原理为:设图像为f ( x, y ), 二值化后的图像为 g ( x , y ), 阀值为T ,那么图像二值化的自适应阀值法如下:

① 计算输入图像灰度级的归一直方图,用h ( i )表示。 ② 计算灰度均值T μ

∑==2550)

(i T i ih μ

③ 计算直方图的零阶累积矩)(k w 和一阶累积矩)(k μ

∑∑====k i k

i i ih k i h k w 00

)

()()

()(μ, 255,,1,0 =k

④ 计算类分离指标

[][])(1)()()()(2k w k w k k w k T --=μμδ255,,1,0 =k

⑤ 求)255,,1,0)(( =?k k B 的最大值,并将其所对应的k 值作为最佳阀值T 。

⑥ 对输入图像进行二值化处理

???<≥=T y x f T y x f y x g ),(,0),(,255),( 9结论 在图像形成传输或变换的过程中,由于受到客观因素如系统噪声、曝光不足或过量、相对运动等影响,获取的图像往往会与原始的图像之间存在某种差异,成为降质或退化。退化后的图像通常模糊不清或者经过机器团提取的信息量减少甚至错误,因此必须对其采取一些手段进行改善。图像处理技术正是在此意义上提出的。

随着信息技术革命的深入和计算机技术的飞速发展,图像处理技术发展迅速,其应用领域也越开越广泛,已经渗透到工程、工业、医疗保健、航空航天、军事、科研、安全保卫等各个方面, 在国计民生及国民经济中发挥越来越大的作用。由于数字图像处理对于数据量和运算速度的特殊要求,通常采用DSP 设计系统,以提高速度。

图像处理是指按特定的需要突出一幅图像中的默写信息,同时虚弱或去除默写不需要的信息的处理方法。其主要目的是使处理后的图

像在某些特定的应用上,比原图像更适合,处理结果是图像更适于人的视觉特性或机器的识别系统。图像处理有很多方法,本文主要研究一种其中的部分方法,使图像更达到某些特定的要求。

10参考文献

[1] 王旭宇,赵跃进,周渝斌.基于DAP的实施数字图像处理平台[J].光学技术,2004(9),30(5).

[2]阮秋琦,数字图像处理学[ M ],北京:电子工业出版社,2001.

[3]田捷,实用图像分析与处理技术[M],电子工业出版社,1994.

[4]于凤芹,TMS320C6000 DSP结构原理与硬件设计[M],北京航空航天大学出版社,2008.

[5]李进等,DSP技术与DSP芯片[M],电子工业出版社,2007.

[6] 曹阳,王培容,黎明,DSP原理及实践应用,机械工业出版社,2015.1

11附录(DSP数字图像处理实验结果)

11.1图像反色实验

利用反色函数对图像进行处理,处理前后图像对比如下所示(后者为处理后的图像,下同)

图像反色实验程序如下

void FanSe(ip,jp,lx,ly) unsigned char *ip,*jp; unsigned long lx,ly;

{

unsigned long i,j;

unsigned k;

double Max_dk,temp_dk;

for(i=0;i

for(j=0;j

{

gg(i,j)=0;

}

}

11.2用固定值128作为阀值,即灰度小于128的点为0,大于等于128的为255,处理前后图像对比如下所示。

其对应程序如下:

void FanSe(ip,jp,lx,ly) unsigned char *ip,*jp; unsigned long lx,ly; { unsigned long i,j; unsigned k;

double Max_dk,temp_dk;

for(i=0;i

for(j=0;j

{

gg(i,j)=0;

}

for(i=0;i128) gg(i,j)=255; else gg(i,j)=0; }

11.3用图像的灰度均值作为阀值,处理前后图像对比如下所示。

其对应程序如下:

void FanSe(ip,jp,lx,ly)

unsigned char *ip,*jp;

unsigned long lx,ly;

{

unsigned long i,j; unsigned k; double Max_dk,temp_dk;

for(k=0;k<256;k++)

{

h[k]=0;

GrayNum[k]=0;

}

TotalPixel=0;

for(i=0;i

for(j=0;j

{

gg(i,j)=0;

GrayNum[ff(i,j)]++;

TotalPixel++;

}

UT=0; for(k=0;k<256;k++) { h[k]=(float)GrayNum[k]/TotalPixel; UT+=h[k]*k; } for(i=0;iUT) gg(i,j)=255; else gg(i,j)=0; }

} 11.4用自适应阀值法找出最佳阀值,处理前后图像对比如下所示。

其对应程序如下:

void FanSe(ip,jp,lx,ly)

unsigned char *ip,*jp;

unsigned long lx,ly;

{

unsigned long i,j;

unsigned k;

double Max_dk,temp_dk;

w[0]=h[0];

U[0]=0;

for(k=1;k<256;k++)

{

w[k]+=h[k];

U[k]+=h[k]*k;

}

for(k=0;k<256;k++)

{

dk[k]=(UT*w[k]-U[k])*(UT*w[k]-U[k])/( w[k]*(1-w[k]));

}

Max_dk=0;

T=0;

for(k=0;k<255;k++)

{

if(Max_dk

{

Max_dk=dk[k];

T=k;

}

}

for(i=0;i

for(j=0;j

{

if(ff(i,j)>T)

gg(i,j)=255;

else gg(i,j)=0;

}

}

教师评语:

数字图像处理实验1

实验一 实验内容和步骤 练习图像的读取、显示和保存图像数据,步骤如下: (1)使用命令figure(1)开辟一个显示窗口 (2)读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内显示、二值图像和灰度图像,注上文字标题。 (3)保存转换后的灰度图像和二值图像 (4)在同一个窗口显示转换后的灰度图像的直方图 I=imread('BaboonRGB.bmp'); figure,imshow(I); I_gray=rgb2gray(I); figure,imshow(I_gray); I_2bw=Im2bw(I_gray); figure,imshow(I_2bw); subplot(1,3,1),imshow(I),title('RGB图像'); subplot(1,3,2),imshow(I_gray),title('灰度图像'); subplot(1,3,3),imshow(I_2bw),title('二值图像'); imwrite(I_gray,'Baboongray.png'); imwrite(I_2bw,'Baboon2bw.tif'); figure;imhist(I_gray);

RGB 图 像灰度图 像二值图 像 050100150200250 500 1000 1500 2000 2500 3000

(5)将原RGB 图像的R 、G 、B 三个分量图像显示在figure(2)中,观察对比它们的特点,体会不同颜色所对应的R 、G 、B 分量的不同之处。 [A_RGB,MAP]=imread('BaboonRGB.bmp'); subplot(2,2,1),imshow(A_RGB),title('RGB'); subplot(2,2,2),imshow(A_RGB(:,:,1)),title('R'); subplot(2,2,3),imshow(A_RGB(:,:,2)),title('G'); subplot(2,2,4),imshow(A_RGB(:,:,3)),title('B'); (6)将图像放大1.5倍,插值方法使用三种不同方法,在figure(3)中显示放大后的图像,比较不同插值方法的结果有什么不同。将图像放大到其它倍数,重复实验;A=imread('BaboonRGB.bmp'); figure(3),imshow(A),title('原图像'); B=imresize(A,1.5,'nearest'); figure(4),imshow(B),title('最邻近法') C=imresize(A,1.5,'bilinear'); ; figure(5),imshow(C),title('双线性插值'); D=imresize(A,1.5,'bicubic'); figure(6),imshow(D),title('双三次插值 '); RGB R G B

数字图像处理技术的研究现状及其发展方向

目录 绪论 (1) 1数字图像处理技术 (1) 1.1数字图像处理的主要特点 (1) 1.2数字图像处理的优点 (2) 1.3数字图像处理过程 (3) 2数字图像处理的研究现状 (4) 2.1数字图像的采集与数字化 (4) 2.2图像压缩编码 (5) 2.3图像增强与恢复 (8) 2.4图像分割 (9) 2.5图像分析 (10) 3数字图像处理技术的发展方向 (13) 参考文献 (14)

绪论 图像处理技术基本可以分成两大类:模拟图像处理和数字图像处理。数字图像处理是指将图像信号转换成数字信号并利用计算机进行处理的过程。其优点是处理精度高,处理内容丰富,可进行复杂的非线性处理,有灵活的变通能力,一般来说只要改变软件就可以改变处理内容。困难主要在处理速度上,特别是进行复杂的处理。数字图像处理技术主要包括如下内容:几何处理、算术处理、图像增强、图像复原、图像重建、图像编码、图像识别、图像理解。数字图像处理技术的发展涉及信息科学、计算机科学、数学、物理学以及生物学等学科,因此数理及相关的边缘学科对图像处理科学的发展有越来越大的影响。 数字图像处理的早期应用是对宇宙飞船发回的图像所进行的各种处理。到了70年代,图像处理技术的应用迅速从宇航领域扩展到生物医学、信息科学、资源环境科学、天文学、物理学、工业、农业、国防、教育、艺术等各个领域与行业,对经济、军事、文化及人们的日常生活产生重大的影响。 数字图像处理技术发展速度快、应用范围广的主要原因有两个。最初由于数字图像处理的数据量非常庞大,而计算机运行处理速度相对较慢,这就限制了数字图像处理的发展。现在计算机的计算能力迅速提高,运行速度大大提高,价格迅速下降,图像处理设备从中、小型计算机迅速过渡到个人计算机,为图像处理在各个领域的应用准备了条件。第二个原因是由于视觉是人类感知外部世界最重要的手段。据统计,在人类获取的信息中,视觉信息占60%,而图像正是人类获取信息的主要途径,因此,和视觉紧密相关的数字图像处理技术的潜在应用范围自然十分广阔。近年来,数字图像处理技术日趋成熟,它广泛应用于空间探测、遥感、生物医学、人工智能以及工业检测等许多领域,并促使这些学科产生了新的发展。 1数字图像处理技术 1.1数字图像处理的主要特点 (1)目前数字图像处理的信息大多是二维信息,处理信息量很大,因此对计

关于数字图像处理论文的题目

长春理工大学——professor——景文博——旗下出品 1基于形态学运算的星空图像分割 主要内容: 在获取星图像的过程中,由于某些因素的影响,获得的星图像存在噪声,而且星图像的背景经常是不均匀的,为星图像的分割造成了极大的困难。膨胀和腐蚀是形态学的两个基本运算。用形态学运算对星图像进行处理,补偿不均匀的星图像背景,然后进行星图像的阈值分割。 要求: 1> 图像预处理:对原始星空图像进行滤波去噪处理; 2> 对去噪后的图像进行形态学运算处理; 3> 选取自适应阈值对形态学运算处理后的图像进行二值化; 4> 显示每步处理后的图像; 5> 对经过形态学处理后再阈值的图像和未作形态学处理后再阈值的图像进行对比分析。 待分割图像直接分割图像处理后的分割图像 2基于数字图像处理的印刷电路板智能检测方法 主要内容: 通过对由相机实时获取的印刷电路板图像进行焊盘识别,从而提高电子元件的贴片质量,有效提高电路板的印刷效率。 要求: 1> 图像预处理:将原始彩色印刷电路板图像转成灰度图像,对灰度图像进行背景平滑和滤波去噪; 2> 对去噪后的图像进行图像增强处理,增强边缘提取的效果。 3> 对增强后的图像进行边缘提取(至少两种以上的边缘提取算法); 4> 显示每步处理后的图像(原始电路板图像可自行查找); 5> 图像处理后要求能对每个焊盘进行边缘提取,边缘清晰。 3静止背景下的移动目标视觉监控 主要内容:

基于视觉的人的运动分析最有前景的潜在应用之一是视觉监控。视觉监控系统的需求主要来自那些对安全要求敏感的场合,如银行、商店、停车场、军事基地等。通过对静止背景下的目标识别,来提醒监测人员有目标出现。 要求: 1>对原始参考图和实时图像进行去噪处理; 2>对去噪后的两幅图像进行代数运算,找出目标所在位置,提取目标,并将背景置黑; 3> 判断目标大小,若目标超过整幅图像的一定比例时,说明目标进入摄像保护区域,系统对监测人员进行提示(提示方式自选)。 4>显示每步处理后的图像; 5>分析此种图像监控方式的优缺点。 背景目标出现目标提取 4车牌识别图像预处理技术 主要内容: 车辆自动识别涉及到多种现代学科技术,如图像处理、模式识别与人工智能、计算机视觉、光学、机械设计、自动控制等。汽车作为人类生产、生活中的重要工具被广泛的使用,实现自动采集车辆信息和智能管理的车牌自动识别系统具有十分重要的意义: 要求: 1>对原始车牌图像做增强处理; 2>对增强后的彩色图像进行灰度变换; 3>对灰度图像进行直方图均衡处理; 4>选取自适应的阈值,对图像做二值化处理; 5>显示每步处理后的图像; 6>分析此种图像预处理的优缺点及改进措施,简要叙述车牌字符识别方法 原始车牌图像处理后的车牌图像 5医学细胞图像细胞分割图像增强算法研究 主要内容: 医学图象处理利用多种方法对各种图像数据进行处理,以期得到更好的显示效果以便医生根据细胞的外貌进行病变分析。 要求: 1>通过对图像的灰度变换调整改变细胞图像的灰度,突出感兴趣的细胞和细胞核区域。 2>通过直方图修改技术得到均衡化或规定化等不同的处理效果。 3>采用有效的图像平滑方法对细胞图像进行降噪处理,消除图像数字化和传输时所混入的噪声,提高图像的视觉效果。 4>利用图像锐化处理突出细胞的边缘信息,加强细胞的轮廓特征。 5>显示每步处理图像,分析此种细胞分割图像预处理方法的优缺点。 原始细胞图像 图像处理后的细胞图像 6瓶子灌装流水线检测是否液体灌装满瓶体 当饮料瓶子在罐装设备后要进行液体的检测,即:进行判断瓶子灌装流水线是否灌装满瓶体的检测,如液面超过瓶颈的位置,则装满,否则不满,如果不满则灌装液体不合格,需重新进行灌装。 具体要求: 1)将原进行二值化 2)二值化后的图像若不好,将其滤波再进行膨胀处理,并重新进行二值化

数字图像处理复习重点整理

《数字图像处理》复习 第一章绪论 数字图像处理技术的基本内容:图像变换、图像增强、图象恢复、图像压缩编码、图像分割、图像特征提取(图像获取、表示与描述)、彩色图像处理和多光谱及高光谱图像处理、形态学图像处理 第二章数字图像处理基础 2-1 电磁波谱与可见光 1.电磁波射波的成像方法及其应用领域: 无线电波(1m-10km)可以产生磁共振成像,在医学诊断中可以产生病人身体的横截面图像☆微波(1mm-1m)用于雷达成像,在军事和电子侦察领域十分重要 红外线(700nm-1mm)具有全天候的特点,不受天气和白天晚上的影响,在遥感、军事情报侦察和精确制导中广泛应用 可见光(400nm-700nm)最便于人理解和应用最广泛的成像方式,卫星遥感、航空摄影、天气观测和预报等国民经济领域 ☆紫外线(10nm-400nm)具有显微镜方法成像等多种成像方式,在印刷技术、工业检测、激光、生物学图像及天文观测 X射线(1nm-10nm)应用于获取病人胸部图像和血管造影照片等医学诊断、电路板缺陷检测等工业应用和天文学星系成像等 伽马射线(0.001nm-1nm)主要应用于天文观测 2-2 人眼的亮度视觉特征 2.亮度分辨力——韦伯比△I/I(I—光强△I—光照增量),韦伯比小意味着亮度值发生较小变化就能被人眼分辨出来,也就是说较小的韦伯比代表了较好的亮度分辨力 2-3 图像的表示 3. 黑白图像:是指图像的每个像素只能是黑或白,没有中间的过渡,一般又称为二值图像 (黑白图像一定是二值图像,二值图像不一定是黑白图像) 灰度图像:是指图像中每个像素的信息是一个量化了的灰度级的值,没有彩色信息。 彩色图像:彩色图像一般是指每个像素的信息由R、G、B三原色构成的图像,其中的R、B、G是由不同的灰度级来描述的。 4.灰度级L、位深度k L=2^k 5.储存一幅M×N的数字图像所需的比特 b=M×N×k 例如,对于一幅600×800的256灰度级图像,就需要480KB的储存空间(1KB=1024Byte 1Byte=8bit) 2-4 空间分辨率和灰度级分辨率 6.空间分辨率是图像中可分辨的最小细节,主要由采样间隔值决定,反映了数字化后图像的实际分辨率。一种常用的空间分辨率的定义是单位距离内可分辨的最少黑白线对数目(单位是每毫米线对数),比如每毫米80线对。对于一个同样大小的景物来说,对其进行采样的空间分辨率越高,采样间隔就越小,图片的质量就越高。 7.灰度级分辨率是指在灰度级别中可分辨的最小变化,通常把灰度级级数L称为图像的灰度级分辨率(灰度级通常是2的整数次幂) 8.在图像空间分辨率不变的情况下,采样数越少,图像越小。同时也证实了,在景物大小不变的情况下,图像阵列M×N越小,图像的尺寸就越小; 随着空间分辨率的降低,图像大小尺寸不变,图像中的细节信息在逐渐损失,棋盘格似的粗颗粒像素点变得越来越明显。由此也说明,图像的空间分辨率越低,图像的视觉效果越差;随着灰度分辨率的降低,图像的细节信息在逐渐损失,伪轮廓信息在逐渐增加。由于伪轮

数字图像处理实验报告

数字图像处理实验报告 实验一数字图像基本操作及灰度调整 一、实验目的 1)掌握读、写图像的基本方法。 2)掌握MATLAB语言中图像数据与信息的读取方法。 3)理解图像灰度变换处理在图像增强的作用。 4)掌握绘制灰度直方图的方法,理解灰度直方图的灰度变换及均衡化的方 法。 二、实验内容与要求 1.熟悉MATLAB语言中对图像数据读取,显示等基本函数 特别需要熟悉下列命令:熟悉imread()函数、imwrite()函数、size()函数、Subplot()函数、Figure()函数。 1)将MATLAB目录下work文件夹中的forest.tif图像文件读出.用到imread, imfinfo 等文件,观察一下图像数据,了解一下数字图像在MATLAB中的处理就是处理一个矩阵。将这个图像显示出来(用imshow)。尝试修改map颜色矩阵的值,再将图像显示出来,观察图像颜色的变化。 2)将MATLAB目录下work文件夹中的b747.jpg图像文件读出,用rgb2gray() 将其 转化为灰度图像,记为变量B。 2.图像灰度变换处理在图像增强的作用 读入不同情况的图像,请自己编程和调用Matlab函数用常用灰度变换函数对输入图像进行灰度变换,比较相应的处理效果。 3.绘制图像灰度直方图的方法,对图像进行均衡化处理 请自己编程和调用Matlab函数完成如下实验。 1)显示B的图像及灰度直方图,可以发现其灰度值集中在一段区域,用 imadjust函 数将它的灰度值调整到[0,1]之间,并观察调整后的图像与原图像的差别,调整后的灰

度直方图与原灰度直方图的区别。 2) 对B 进行直方图均衡化处理,试比较与源图的异同。 3) 对B 进行如图所示的分段线形变换处理,试比较与直方图均衡化处理的异同。 图1.1 分段线性变换函数 三、实验原理与算法分析 1. 灰度变换 灰度变换是图像增强的一种重要手段,它常用于改变图象的灰度范围及分布,是图象数字化及图象显示的重要工具。 1) 图像反转 灰度级范围为[0, L-1]的图像反转可由下式获得 r L s --=1 2) 对数运算:有时原图的动态范围太大,超出某些显示设备的允许动态范围, 如直接使用原图,则一部分细节可能丢失。解决的方法是对原图进行灰度压缩,如对数变换: s = c log(1 + r ),c 为常数,r ≥ 0 3) 幂次变换: 0,0,≥≥=γγc cr s 4) 对比拉伸:在实际应用中,为了突出图像中感兴趣的研究对象,常常要求 局部扩展拉伸某一范围的灰度值,或对不同范围的灰度值进行不同的拉伸处理,即分段线性拉伸: 其对应的数学表达式为:

数字图像处理技术现状及发展趋势

数字图像处理技术现状及发展趋势 摘要现今是计算机技术、网络技术以及多媒体技术高速发展的时代,更多高科技技术正在全面发展,数字图像处理技术作为一种新式技术,如今已经广泛地应用于人们的生产生活中。数字图像处理技术的应用和发展为人们的生活发展带来了很多的便利,在遥感技术、工业检测方面发展迅速,在医学领域,气象通信领域也有很大的成就。由此,本文主要探讨数字图像处理技术的现状及发展趋势。 关键词数字图像处理技术;现状;发展趋势 现今是计算机和网络技术高速发展的时代,计算机的应用给人们的生产生活带来了很大的便利,人们应用计算机处理各种复杂的数据,将传统方式不能处理的问题以全新的技术和方式有效解决[1]。数字图像处理技术是应用较为广泛的一种技术,在具体应用过程中,能够经过增强、复原、分割等过程对数据进行处理,且具有多样性、精度高、处理量大的显著优势,本文对数字图像处理技术的现状及发展趋势进行研究和探讨。 1 数字图像处理技术发展现状 数字图像处理技术是近年来发展较为迅速的一种技术,具体是指应用计算机对图像进行一系列的处理,最终达到人们要求的水平,在具体的处理过程中,以改善图像的视觉效果为核心,最终呈现出人们想要表达的意思。笔者查阅国内外诸多文献库,发现对数字图像处理技术的研究多数集中于图像数字化、图像增强、图像还原、图像分割等领域[2]。最初数字图像处理技术产生于20世纪20年代,当时普遍将其应用于报纸业,发展至20世纪50年代,图像处理技术跟随着计算机的发展而迅速发展,也有更多的人开始关注和应用该技术,当时在各国的太空计划中发挥了巨大作用,尤其是对月球照片的处理,获得了很大的成功。发展到20世纪70年代时,数字图像处理技术的应用已经很普遍了,尤其是在计算机断层扫面(CT)等方面,该技术的应用得到了一致好评,而现今,数字图像处理技术随处可见,已广泛应用在各行各业中。 2 数字图像处理技术的特点 数字图像处理技术有以下几个特点:①图像处理的多样性特点。数字图像处理技术可以编写多样的算法,以不同的程序模式施加于数字图像技术上,根据实际需求对图像进行处理,因此最终获取的图像效果也截然不同。②图像处理精度高。应用数字图像处理技术处理的图像,其精度和再现性都提高了一个层次,尤其是在各种算法和程序的支撑下,进一步确保了计算的精度和正确性。③交叉融合了多门学科和新技术。数字图像处理的应用基础包含了众多学科和技术,其中数学和物理是关键,而通信、计算机、电子等技术则是确保其处理质量的关键技术。④数据处理量大[3]。图像本身就包含了大量的信息,数字图像处理技术可以更好地区分有用信息和冗余信息,从而获取处理的关键性信息。

数字图像处理毕业论文

毕业论文声明 本人郑重声明: 1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。本人完全意识到本声明的法律结果由本人承担。 2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。 3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。 4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。 学位论文作者(签名): 年月

关于毕业论文使用授权的声明 本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。本人完全了解大学有关保存,使用毕业论文的规定。同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容:按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据库和收录到《中国学位论文全文数据库》进行信息服务。在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。 论文作者签名:日期: 指导教师签名:日期:

成都理工大学数字图像处理复习资料

成都理工大学数字图像处理复习资料 本页仅作为文档封面,使用时可以删除 This document is for reference only-rar21year.March

遥感与数字图像处理基础知识 一、名词解释: 数字影像:物体光辐射能量的数字记录形式或像片影像经采样量化后的二维数字灰度序列图像采样:将空间上连续的图像变换成离散点的操作称为采样 灰度量化:将像素灰度转换成离散的整数值的过程叫量化 像素:将地面信息离散化而形成的格网单元 二、填空题: 1、光学图像是一个连续的光密度函数。 2、数字图像是一个离散的光密度函数。 3、通过成像方式获取的图像是连续的,无法直接进行计算机处理。此外,有些遥感图像是通过摄影方式获取的,保存在胶片上。只有对这些获取的图像(或模拟图像)进行数字化后,才能产生数字图像。数字化包括两个过程:采样和量化。 4、一般来说,采样间距越大,图像数据量小,质量差;反之亦然。 5、一幅数字图像为8位量化,量化后的像素灰度级取值范围是0——255的整数。设该数字图像为600行600列,则图像所需要的存储空间为__ 360000______字节。 6、设有图像文件为200行,200列,8位量化,共7个波段,则该图像文件的大小为280000bit。 三、不定项选择题:(单项或多项选择) 1、数字图像的_____4___。 ①空间坐标是离散的,灰度是连续的②灰度是离散的,空间坐标是连续的 ③两者都是连续的④两者都是离散的 2、采样是对图像___2_____。 ①取地类的样本②空间坐标离散化③灰度离散化 3、量化是对图像____2____。 ①空间坐标离散化②灰度离散化③以上两者。 4、图像灰度量化用6比特编码时,量化等级为____2____。 ①32个②64个③128个④256个

数字图像处理实验 实验二

实验二MATLAB图像运算一、实验目的 1.了解图像的算术运算在数字图像处理中的初步应用。 2.体会图像算术运算处理的过程和处理前后图像的变化。 二、实验步骤 1.图像的加法运算-imadd 对于两个图像f x,y和 (x,y)的均值有: g x,y=1 f x,y+ 1 (x,y) 推广这个公式为: g x,y=αf x,y+β (x,y) 其中,α+β=1。这样就可以得到各种图像合成的效果,也可以用于两张图像的衔接。说明:两个示例图像保存在默认路径下,文件名分别为'rice.png'和'cameraman.tif',要求实现下图所示结果。 代码: I1 = imread('rice.png'); I2 = imread('cameraman.tif'); I3 = imadd(I1, I2,'uint8'); I4 = imadd(I1, I2,'uint16'); subplot(2, 2, 1), imshow(I1), title('?-ê?í???1'); subplot(2, 2, 2), imshow(I2), title('?-ê?í???2'); subplot(2, 2, 3), imshow(I3), title('8??í?????ê?'); subplot(2, 2, 4), imshow(I4), title('16??í?????ê?'); 结果截图:

2.图像的减法运算-imsubtract 说明: 背景图像可通过膨胀算法得到background = imopen(I,strel('disk',15));,要求实现下图所示结果。 示例代码如下: I1 = imread('rice.png'); background = imerode(I1, strel('disk', 15)); rice2 = imsubtract(I1, background); subplot(2, 2, 1), imshow(I1), title('?-ê?í???'); subplot(2, 2, 2), imshow(background), title('±3?°í???'); subplot(2, 2, 3), imshow(rice2), title('′|àíoóμ?í???'); 结果截图: 3.图像的乘法运算-immultiply

数字图像处理技术的现状及其发展方向(笔记)

数字图像处理技术的现状及其发展方向 一、数字图像处理历史发展 数字图像处理(Digital Image Processing)将图像信号转换成数字信号并利用计算机对其进行处理。 1.起源于20世纪20年代。 2.数字图像处理作为一门学科形成于20世纪60年代初期,美国喷气推进实验室(JPL)推动了数字图像处理这门学科的诞生。 3.1972年英国EMI公司工程师Housfield发明了用于头颅诊断的X射线计算机断层摄影装置即CT(Computer Tomograph),1975年EMI公司又成功研制出全身用的CT装置,获得了人体各个部位鲜明清晰的断层图像。 4.从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展,人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界,其中代表性的成果是70年代末MIT的Marr提出的视觉计算理论。 二、数字图像处理的主要特点 1.目前数字图像处理的信息大多是二维信息,处理信息量很大,对计算机的计算速度、存储容量等要求较高。 2.数字图像处理占用的频带较宽,在成像、传输、存储、处理、显示等各个环节的实现上,技术难度较大,成本也高,这就对频带压缩技术提出了更高的要求。 3.数字图像中各个像素是不独立的,其相关性大。因此,图像处理中信息压缩的潜力很大。 4.由于图像是三维景物的二维投影,一幅图像本身不具备复现三维景物的全部几何信息的能力,要分析和理解三维景物必须作合适的假定或附加新的测量。在理解三维景物时需要知识导引,这也是人工智能中正在致力解决的知识工程问题。 5.一方面,数字图像处理后的图像一般是给人观察和评价的,因此受人的因素影响较大,作为图像质量的评价还有待进一步深入的研究;另一方面,计算机视觉是模仿人的视觉,人的感知机理必然影响着计算机视觉的研究,这些都是心理学和神经心理学正在着力研究的课题。 三、数字图像处理的优点 1.再现性好;图像的存储、传输或复制等一系列变换操作不会导致图像质量的退化。 2.处理精度高;可将一幅模拟图像数字化为任意大小的二维数组,现代扫描仪可以把每个像素的灰度等级量化为16位甚至更高。 3.适用面宽;图像可以来自多种信息源,图像只要被变换为数字编码形式后,均是用二维数组表示的灰度图像组合而成,因而均可用计算机来处理。 4.灵活性高;数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数学公式或逻辑关系来表达的一切运算均可用数字图像处理实现。 四、数字图像处理过程及其主要进展 常见的数字图像处理有:图像的采集、数字化、编码、增强、恢复、变换、

数字图像处理应用论文数字图像处理技术论文

数字图像处理应用论文数字图像处理技术论文 关于数字图像处理及其应用的研究 摘要:首先对数字图像处理的关键技术以及相应的处理设备进行详细的探讨,然后对数字图像处理的应用领域以及发展趋势进行详尽论述。 关键词:数字图像处理:关键技术;应用领域 0 引言 人类通过眼、耳、鼻、舌、身接受信息,感知世界。约有75%的信息是通过视觉系统获取的。数字图象处理是用数字计算机处理所获取视觉信息的技术,上世纪20年代Bartlane电缆图片传输系统(纽约和伦敦之间海底电缆)传输一幅图片所需的时间由一周多减少到小于3个小时;上世纪50年代,计算机的发展,数字图像处理才真正地引起人们的巨大兴趣;1964年,数字图像处理有效地应用于美国喷气推进实验室(J.P.L)对“徘徊者七号”太空船发回的大批月球照片的处理;但是直到上世纪六十年代末至七十年代扔,由于离散数学理论的创立和完善,使之形成了比较完整的理论体系,成为一门新兴的学科。数字图像处理的两个主要任务:如何利用计算机来改进图像的品质以便于人类视觉分析;对图像数据进行存储、传输和表示,便于计算机自动化处理。图像处理的范畴是一个受争论的话题,因此也产生了其他的领域比如图像分析和计算机视觉等等。

1 数字图像处理主要技术概述 不论图像处理是基于什么样的目的,一般都需要通过利用计算机图像处理对输入的图像数据进行相关的处理,如加工以及输出,所以关于数字图像处理的研究,其主要内容可以分为以下几个过程。图像获取:这个过程基本上就是把模拟图像通过转换转变为计算机真正可以接受的数字图像,同时,将数字图像显示并且体现出来(例如彩色打印)。数据压缩和转换技术:通过数据压缩和数据转换技术的研究,减少数据载体空间,节省运算时间,实现不同星系遥感数据应用的一体化。图像分割:虽然国内外学者已提出很多种图像分割算法,但由于背景的多变性和复杂性,至今为止还没有一种能适用于各种背景的图像分割算法。当前提出的小波分析、模糊集、分形等新的智能信息处理方法有可能找到新的图像分割方法。图像校正:在理想情况下,卫星图像上的像素值只依赖于进入传感器的辐射强度;而辐射强度又只与太阳照射到地面的辐射强度和地物的辐射特性(反射率和发射率)有关,使图像上灰度值的差异直接反映了地物目标光谱辐射特性的差异,从而区分地物目标。图像复原,以图像退化的数学模型为基础,来改善图像质量表达与描述,图像分割后,输出分割标记或目标特征参数;特征提取:计算描述目标的特征,如目标的几何形状特征、统计特征、矩特征、纹理特征等。图像增强:显示图像中被模糊的细节。或是突出图像中感兴趣的特征。图像识别:统计模式识别、模糊模式识别、人工神经网络等。

数字图像处理——彩色图像实验报告

6.3实验步骤 (1)对彩色图像的表达和显示 * * * * * * * * * * * *显示彩色立方体* * * * * * * * * * * * * rgbcube(0,0,10); %从正面观察彩色立方体 rgbcube(10,0,10); %从侧面观察彩色立方 rgbcube(10,10,10); %从对角线观察彩色立方体 %* * * * * * * * * *索引图像的显示和转换* * * * * * * * * * f=imread('D:\Picture\Fig0604(a)(iris).tif'); figure,imshow(f);%f是RGB真彩图像 %rgb图像转换成8色索引图像,不采用抖动方式 [X1,map1]=rgb2ind(f,8,'nodither'); figure,imshow(X1,map1); %采用抖动方式转换到8色索引图像 [X2,map2]=rgb2ind(f,8,'dither'); figure,imshow(X2,map2); %显示效果要好一些 g=rgb2gray(f); %f转换为灰度图像 g1=dither(g);%将灰色图像经过抖动处理,转换打二值图像figure,imshow(g);%显示灰度图像 figure,imshow(g1);%显示抖动处理后的二值图像 程序运行结果:

彩色立方体原图 不采用抖动方式转换到8色索引图像采用抖动方式转换到8色索引图像 灰度图像抖动处理后的二值图像

(2)彩色空间转换 f=imread('D:\Picture\Fig0604(a)(iris).tif'); figure,imshow(f);%f是RGB真彩图像 %转换到NTSC彩色空间 ntsc_image=rgb2ntsc(f); figure,imshow(ntsc_image(:,:,1));%显示亮度信息figure,imshow(ntsc_image(:,:,2));%显示色差信息figure,imshow(ntsc_image(:,:,3));%显示色差信息 %转换到HIS彩色空间 hsi_image=rgb2hsi(f); figure,imshow(hsi_image(:,:,1));%显示色度信息figure,imshow(hsi_image(:,:,2)); %显示饱和度信息figure,imshow(hsi_image(:,:,3));%显示亮度信息 程序运行结果: 原图 转换到NTSC彩色空间

数字图像处理技术的研究现状与发展方向

数字图像处理技术的研究现状与发展方向 孔大力崔洋 (山东水利职业学院,山东日照276826) 摘要:随着计算机技术的不断发展,数字图像处理技术的应用领域越来越广泛。本文主要对数字图像处理技术的方法、优点、数字图像处理的传统领域及热门领域及其未来的发展等进行相关的讨论。 关键词:数字图像处理;特征提取;分割;检索 引言 图像是指物体的描述信息,数字图像是一个物体的数字表示,图像处理则是对图像信息进行加工以满足人的视觉心理和应用需求的行为。数字图像处理是指利用计算机或其他数字设备对图像信息进行各种加工和处理,它是一门新兴的应用学科,其发展速度异常迅速,应用领域极为广泛。 数字图像处理的早期应用是对宇宙飞船发回的图像所进行的各种处理。到了70年代,图像处理技术的应用迅速从宇航领域扩展到生物医学、信息科学、资源环境科学、天文学、物理学、工业、农业、国防、教育、艺术等各个领域与行业,对经济、军事、文化及人们的日常生活产生重大的影响。 数字图像处理技术发展速度快、应用范围广的主要原因有两个。最初由于数字图像处理的数据量非常庞大,而计算机运行处理速度相对较慢,这就限制了数字图像处理的发展。现在计算机的计算能力迅速提高,运行速度大大提高,价格迅速下降,图像处理设备从中、小型计算机迅速过渡到个人计算机,为图像处理在各个领域的应用准备了条件。第二个原因是由于视觉是人类感知外部世界最重要的手段。据统计,在人类获取的信息中,视觉信息占60%,而图像正是人类获取信息的主要途径,因此,和视觉紧密相关的数字图像处理技术的潜在应用范围自然十分广阔。 1数字图像处理的目的 一般而言,对图像进行加工和分析主要有以下三方面的目的[1]: (1)提高图像的视感质量,以达到赏心悦目的目的。如去除图像中的噪声,改变图像中的亮度和颜色,增强图像中的某些成分与抑制某些成分,对图像进行几何变换等,从而改善图像的质量,以达到或真实的、或清晰的、或色彩丰富的、或意想不到的艺术效果。 (2)提取图像中所包含的某些特征或特殊信息,以便于计算机进行分析,例如,常用做模式识别和计算机视觉的预处理等。这些特征包含很多方面,如频域特性、灰度/颜色特性、边界/区域特性、纹理特性、形状/拓扑特性以及关系结构等。 (3)对图像数据进行变换、编码和压缩,以便于图像的存储和传输。 2数字图像处理的方法 数字图像处理按处理方法分,主要有以下三类,即图像到图像的处理、图像到数据的处理和数据到图像的处理[2]。 (1)图像到图像。图像到图像的处理,其输入和输出均为图像。这种处理技术主要有图像增强、图像复原和图像编码。 首先,各类图像系统中图像的传送和转换中,总要造成图像的某些降质。第一类解决方法不考虑图像降质的原因,只将图像中感兴趣的特征有选择地突出,衰减次要信息,提高图像的可读性,增强图像中某些特征,使处理后的图像更适合人眼观察和机器分析。这类方法就是图像增强。例如,对图像的灰度值进行修正,可以增强图像的对比度;对图像进行平滑,可以抑制混入图像的噪声;利用锐化技

数字图像处理论文

华东交通大学理工学院课程设计报告书 所属课程名称数字图像处理期末论文分院电信分院专业班级14 计科 学号20140210440214 学生姓名习俊 指导教师熊渊 2016 年12 月13 日

摘要 数字图像处理是用计算机对图像信息进行处理的一门技术,主要是为了修改图形,改善图像质量,或是从图像中提起有效信息,还有利用数字图像处理可以对图像进行体积压缩,便于传输和保存。本文论述了用Matlab编程对数字图像进行图像运算的基本方法。图像运算涵盖了MA TLAB程序设计、图像点运算、代数运算、几何运算等基本知识及其应用(点运算是图象处理的一个重要运算)。以及对图像加入噪声、图像缩放和图像旋转。 关键词图像点运算;代数运算;几何运算;图像缩放;图像旋转

目录 绪论 第一章图像运算 2.1点运算 2.2代数运算 2.3几何运算 第二章程序设计与调试 结束语 参考文献

绪论 早期的计算机无论在计算速度或存储容量方面,难于满足对庞大图像数据进行实时处理的要求。随着计算机硬件技术及数字化技术的发展,计算机、内存及外围设备的价格急剧下降,而其性能却有了大幅度的提高。 图像信息是人类获得外界信息的主要来源,数字图像处理技术越来越多的应用于人们日常工作、学习和生活中。和传统图像处理相比,它具有精度高、再观性好、通用性和灵活性强等特点。在近代科学研究、军事技术、工农业生产、医学、气象及天文学等领域中也得到了广泛应用。 近几年来,随着计算机和各个相关领域研究的迅速发展,科学计算可视化、多媒体技术等研究和应用的兴起,数字图像处理从1个专门领域的学科,变成了1种新型的科学研究和人机界面的工具。数字图像作为一门新兴技术,它是二十一世纪五十年代数字计算机发展到相当水平后开拓出来的计算机应用新领域,它把图像转换成数据矩阵存放于计算机中,并进行滤波、增强、删除等处理,包括图像输入输出技术、图像分析、变换于处理技术以及图像识别和特征提取等方面。六十到七十年代数字处理技术的理论和方法更加完善,其准确性、灵活性和通用性逐步提高。 在日常生活中,电脑人像艺术,电视中的特殊效果,自动售货机钞票的识别,邮政编码的自动识别和利用指纹、虹膜、面部等特征的身份识别等均是图像处理的广泛应用。 进行数字图像处理时主要涉及数字图像点运算处理,针对图像的像素进行加、减、乘、除等运算,有效地改变了图像的直方图分布。

数字图像处理知识点

1、点运算是否会改变图像内像素点之间的空间位置关系? 点运算是一种像素的逐点运算,它与相邻的像素之间没有运算关系,点运算不会改变图像内像素点之间的空间位置关系。 2、对图像灰度的拉伸,非线性拉伸与分段线性拉伸的区别? 非线性拉伸不是通过在不同灰度值区间选择不同的线性方程来实现对不同灰度值区间的扩展与压缩,而是在整个灰度值范围内采用统一的非线性变换函数,利用函数的数学性质实现对不同灰度值区间的扩展与压缩。 3.图像获取即图像的数字化过程,包括扫描、采样和量化。 4.图像获取设备由5个部分组成:采样孔,扫描机构,光传感器,量化器和输出存储体。 5.采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时出现马赛克效应 6.采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量好,但数据量大 7.量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大 8.量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小. 9.三种灰度插值方法—最近邻法、双线性插值法和三次内插法 10.图像增强的目的: 采用某种技术手段,改善图像的视觉效果,或将图像转换成更适合于人眼观察和机器分析识别的形式,以便从图像中获取更有用的信息。 11.空间域平滑滤波器方法分类: 1)局部平滑法 2) 超限像素平滑法 3) 灰度最相近的K个邻点平均法 4) 空间低通滤波法 12.图像平滑通过积分过程使得图像边缘模糊,图像锐化则通过微分而使图像边缘突出、清晰。 13.图像恢复和图像增强一样,都是为了改善图像视觉效果,以及便于后续处理。只是图像增强方法更偏向主观判断,而图像恢复则是根据图像畸变或退化原因,进行模型化处理 14. (1)成象系统的象差、畸变、带宽有限等造成图像图像失真; (2)由于成象器件拍摄姿态和扫描非线性引起的图像几何失真; (3)运动模糊,成象传感器与被拍摄景物之间的相对运动,引起所成图像的运动模糊;

数字图像处理实验

《数字图像处理》 实验报告 学院:信息工程学院 专业:电子信息工程 学号: 姓名: 2015年6月18日

目录 实验一图像的读取、存储和显示 (2) 实验二图像直方图分析 (6) 实验三图像的滤波及增强 (15) 实验四噪声图像的复原 (19) 实验五图像的分割与边缘提取 (23) 附录1MATLAB简介 (27)

实验一图像的读取、存储和显示 一、实验目的与要求 1.熟悉及掌握在MATLAB中能够处理哪些格式图像。 2.熟练掌握在MATLAB中如何读取图像。 3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。 4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。 5.图像的显示。 二、实验原理 一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。图像关于x和y坐标以及振幅连续。要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。将坐标值数字化成为取样;将振幅数字化成为量化。采样和量化的过程如图1所示。因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。 三、实验设备 (1) PC计算机 (2) MatLab软件/语言包括图像处理工具箱(Image Processing Toolbox) (3) 实验所需要的图片 四、实验内容及步骤 1.利用imread( )函数读取一幅图像,假设其名为flower.tif,存入一个数组中; 2.利用whos 命令提取该读入图像flower.tif的基本信息; 3.利用imshow()函数来显示这幅图像; 4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息; 5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件设为flower.jpg语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。 6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flower.bmp。 7.用imread()读入图像:Lenna.jpg 和camema.jpg; 8.用imfinfo()获取图像Lenna.jpg和camema.jpg 的大小;

数字图像处理技术

数字图像处理技术 一.数字图像处理概述 数字图像处理是指人们为了获得一定的预期结果和相关数据利用计算机处理系统对获得的数字图像进行一系列有目的性的技术操作。数字图像处理技术最早出现在上个世纪中期,伴随着计算机的发展,数字图像处理技术也慢慢地发展起来。数字图像处理首次获得成功的应用是在航空航天领域,即1964年使用计算机对几千张月球照片使用了图像处理技术,并成功的绘制了月球表面地图,取得了数字图像处理应用中里程碑式的成功。最近几十年来,科学技术的不断发展使数字图像处理在各领域都得到了更加广泛的应用和关注。许多学者在图像处理的技术中投入了大量的研究并且取得了丰硕的成果,使数字图像处理技术达到了新的高度,并且发展迅猛。 二.数字图象处理研究的内容 一般的数字图像处理的主要目的集中在图像的存储和传输,提高图像的质量,改善图像的视觉效果,图像理解以及模式识别等方面。新世纪以来,信息技术取得了长足的发展和进步,小波理论、神经元理论、数字形态学以及模糊理论都与数字处理技术相结合,产生了新的图像处理方法和理论。比如,数学形态学与神经网络相结合用于图像去噪。这些新的方法和理论都以传统的数字图像处理技术为依托,在其理论基础上发展而来的。数字图像处理技术主要包括: ⑴图像增强 图像增强是数字图像处理过程中经常采用的一种方法。其目的是改善视觉效

果或者便于人和机器对图像的理解和分析,根据图像的特点或存在的问题采取的简单改善方法或加强特征的措施就称为图像增强。 ⑵图像恢复 图像恢复也称为图像还原,其目的是尽可能的减少或者去除数字图像在获取过程中的降质,恢复被退化图像的本来面貌,从而改善图像质量,以提高视觉观察效果。从这个意义上看,图像恢复和图像增强的目的是相同的,不同的是图像恢复后的图像可看成时图像逆退化过程的结果,而图像增强不用考虑处理后的图像是否失真,适应人眼视觉和心理即可。 ⑶图像变换 图像变换就是把图像从空域转换到频域,就是对原图像函数寻找一个合适变换的数学问题,每个图像变换方法都存在自己的正交变换集,正是由于各种正交换集的不同而形成不同的变换。图像变换分为可分离变换和统计变换两大类。 ⑷图像压缩 数字图像需要很大的存储空间,因此无论传输或存储都需要对图像数据进行有效的压缩,其目的是生成占用较少空间而获得与原图十分接近的图像。 ⑸图像分割 图像分割的目的是把一个图像分解成它的构成成分,图像分割是一个十分困难的过程。图像分割的方法主要有两类:一种是假设图像各成分的强度值是均匀的,并利用这个特性。另一种方法是寻找图像成分之间的边界,利用的是图像的不均匀性。 ⑹边缘检测 边缘检测技术用于检测图像中的线状局部结构。边缘是图像中具有不同平均

相关文档
最新文档