氧化锆氧量传感器过程应用最新进展

氧化锆氧量传感器过程应用最新进展
氧化锆氧量传感器过程应用最新进展

氧化锆氧量传感器过程应用最新进展

newmaker

1. 前言

电化学传感器气体分析技术在控制能源和原料消耗、改善工业过程生产率以及控制污染物排放等工业领域,正在发挥日益重要的作用。事实上,汽车工业早已开发出各种固态传感器,用于汽车发电机燃烧效率控制。目前,首创于汽车工业的这项检测技术已将应用领域拓展至工业窑炉、锅炉和汽轮机等。

如今,氧化锆氧量传感器广泛应用于各种工业领域和运输工具。Peters和M?bius [3] 以及Weissbart 和Ruka (美国西屋电气公司) [4] 于1961年开发出著名的λ传感器。上世纪70年代初期,在钢铁生产控制中首次采用了一次性氧化锆氧量传感器,分析铁水中的氧含量[5]。上世纪60年代,为了开发固态氧燃料电池(SOFC),研制出坚固耐用的铂电极和固态氧化锆电解质(氧化锆结晶体)。其后,美国西屋电气公司在此基础上,开发出第一台用于过程气体分析的工业用氧化锆氧量传感器。时至今日,氧化锆氧量传感器的主要应用仍然集中在控制汽车发动机的空气/燃油比[6-8]。

在空气与燃油混合点火时,要求空气要达到一定的比例,以期使燃烧过程完全充分。燃烧后废气中的氧含量可以直接反映燃料混合物中空气

量的相对富裕或相对不足。自上世纪70年代起,氧化锆氧量传感器,或称为λ传感器,一直用于监视汽车废气中的氧含量。

1976年,受普通火花赛设计的影响,德国BOSCH(博世)公司首次在其不加热的锥管型λ

传感器(LS)中,装入了氧化锆传感器本体,用于汽车发动机的反馈燃油控制。不加热的氧化锆氧量传感器仅仅依靠废气的热量,使工作温度达到600-900℃。

1982年,BOSCH研制了第二代加热的锥管型λ传感器(LSH),目的是减少冷启动时的废气排放。

1997年,BOSCH又开发了加热的平面型λ传感器(LSF)。LSF传感器由铂电极、固态氧化

锆电解质(氧化锆结晶)、绝缘材料和加热器组成,采用分层结构,叠压在薄形基片上。

最新型的氧化锆传感器技术是基于平面型λ传感器设计,具有直接测量空气/燃油比的功能。以往所有的λ氧传感器均采用传统的来回切换式设计。最新的宽带式λ传感器(WB)则完全摒弃了这种设计理念,可以产生与空气/燃油比成正比的信号。

宽带式氧化锆传感器与锥管型或平面型传感器的相同之处在于:当空气/燃料比中的空气量相对不足时,产生一个低电压信号;当空气量相对富裕时,产生一个高电压信号。不同之处在于:宽带式氧化锆传感器没有快速的切换动作,而是根据空气/燃料比中空气量的相对富裕或相对不足,缓慢地增加或减少电压。在最佳空气/燃料控制比14.7:1位置,宽带式氧化锆传感器会产生稳定的450mV电压信号。若空气量出现微小的相对富裕或相对不足时,传感器的输出电压也相应地产生微小变化,而不是剧烈地增加或减少。宽带式氧化锆传感器的另一个不同之处在于加热器电路。与平面型传感器一样,宽带氧化锆传感器的加热器电路也是印制在陶瓷片上,但是采用脉冲持续时间模块化设计,使工作温度稳定在700-800℃范围内。BOSCH的宽带式λ传感器,即LSU 4.9,对空气/燃油混合物变化的响应时间小于0.1秒,其内部加热器可以使传感器的工作温度在20秒内达到800℃。

氧气泵是宽带式氧化锆传感器的组成部分。为了精确测量,氧气泵抽取被测排放气体,注入到电化学电池组(称为能斯特电池)之间的“扩散”间隙。能斯特电池用导线与氧气泵连接,根据“扩散”间隙中的氧含量,能斯特电池分流一部分电流。当电流值达到动态平衡时,其与被测排放气体中的氧含量成正比,该信号可以为发动机的计算装置,提供精确的空气/燃油比,从而满足国际最新的汽车排放标准。

氧化锆传感器开发的另一个重要里程碑,是引入了焙烧铂金属陶瓷电极技术和釉底料技术。所谓的釉底料技术是将多孔保护膜与等离子喷涂晶体层技术相结合,形成双保护层系统[9]。尽管用于汽车工业排放控制的λ传感器非常先进、可靠,但还是很难适应在线工业过程的应用要求,问题的主要症结在于严酷的工作环境和传感器的封装材料。

2. 理论基础

所有工业用氧化锆传感器均基于以下原理:电池由固态氧化锆电解质(绝大部分为稳定的氧化钇?氧化锆,简称YSZ)和两个铂电极所组成。铂电极焙烧在氧化锆陶瓷片的两侧,暴露在被测过程气和参比气中:

O2(参比侧氧分压),铂电极│ 氧化锆│铂电极,O2(测量侧氧分压)

使用高温密封材料和氧化锆陶瓷片,使测量侧与参比侧彻底分离。由于氧化锆传感器两侧的氧浓度不同,形成浓差电势E,该电势大小符合能斯特方程:

式中,

C为常数,与氧化锆锆头的热接点、参比侧与测量侧的温度和压差有关;R为通用气体常数;T为被测过程气的温度,单位K;F为法拉第常数。

氧反应发生在“三相区域”(简称TPB,即铂电极、固态氧化锆电解质和被测气体),其中,O2代表氧分子;e’代表电子;VO”代表氧离子空穴(请参阅图1A)。氧反应过程包括:氧分子吸收、电解质/电极表面分解、以及最后扩散至TPB,在TPB处发生氧电化学反应。如果使用复合的离子-电子导电电极,或者带电子和离子导体的陶瓷电极(例如:铂-氧化锆),则在电极主体发生氧电化学反应,这样可以有效改善氧传感器的使用性能(请参阅图1B)。

图1. 氧传感器电化学反应

通常,在参比侧固定氧分压,例如,空气压力p(O2)=0.21bar时,热平衡型氧传感器上的信号只取决于过程和/或传感器加热器温度(请参阅图2)。

图2. 工业用氧化锆氧量传感器:温度与浓度的函数关系图

工业氧化锆氧量传感器通常工作在300℃以上的温度条件下,氧离子在氧化锆传感器中迁移,并最终在氧化锆的测量侧、参比侧和氧化锆电解质表界面实现氧平衡。提高工作温度可以改善传感器的性能,但是,高温对传感器的封装材料是一个极大的挑战。因此,绝大多数工业用氧化锆氧量传感器的工作温度在700-800℃范围内。

3. 氧化锆锆头设计

工业用氧化锆氧量传感器的有两种设计结构,一种是密闭的锆管结构,另一种是将盘状锆池封装在铝质或其它金属锆管上的结构(参阅图3)。

图3. 氧化锆锆池示意图

锆管结构或“套筒式”工业设计〔图4:ABB和日本横河公司锆池图例〕,具有良好的使用性能,但是,由于锆池陶瓷组件带凸缘结构,形状较为复杂,且整个锆管均受到热应力的影响,因此,该氧化锆锆池的强度较差。此外,锆池中的电化学反应区域的热平衡也不能达到最佳状态。

图4. 工业用氧化锆锆池设计

盘状锆池封装在金属锆管上的结构(图4,Rosemount),由于金属盘和金属锆管的热膨胀系数完全匹配,因此,参比侧与测量侧之间的温差很小,氧化锆陶瓷组件所受的热应力影响也很少。此外,独特的多孔铂-氧化锆陶瓷电极组件设计(参阅图5),拓宽了发生氧反应的TPB界面,改善了氧传感器的响应时间和使用寿命。

图5. 铂-氧化锆陶瓷组件在扫描式电子显微镜中的图像

工业用氧传感器的最高品质规格是工业在线应用,即要求氧化锆氧量传感器即使是在极端温度和爆炸性环境,也能可靠地工作多年(请参阅图6-7)。

图6. ZR202G氧分析仪(日本横河)

图7. X-STREAM 氧分析仪(Rosemount Analytical)

Inconel、哈氏合金或316L不锈钢属于特种合金,在高温过程环境条件下,具有优异的抗氧化和抗腐蚀性能。可以使用上述合金制做氧化锆锆管、内部标定气管线和参比气管线(请参阅图8)。

图8. X-STREAM O2氧化锆锆头组件

特制的氧化锆锆池组件可以改善热平衡,陶瓷或金属扩散元件适用于含高粉尘的测量应用。这两个特性均可以提高氧分析仪的性能(请参阅图9)。

4.用氧化锆分析仪监控燃烧过程

工业用氧化锆分析仪广泛用于燃烧过程的监测与控制,应用范围包括耗能行业(钢铁、电力、石油化工、陶瓷工艺、纸浆造纸、食品、纺织)和各种燃烧设备(锅炉或焚化炉等)。最佳的燃烧状态要求烟气中CO2含量应达到最大值,O2浓度则应接近于零(请参阅图10)。

图10. 燃烧过程气体成分图

在最佳燃烧状态,氧气和燃料的配比应符合理想比例。通常,烟气中的主要成分是二氧化碳CO2和水H2O。此外,还有极少量的其它气体,如二氧化硫SO2和氮氧化物NOX,这些气体来自于燃料杂质和空气中的氮气被氧化。

理想的化学计量点——最高效率和最低排放,在实际燃烧过程中是无法实现的,原因是燃料/空气的配比、燃能密度、燃料和空气流量都不是一成不变的。氧化燃烧过程会造成热量损耗,并产生大量的氮氧化物污染;还原燃烧过程燃烧不完全的燃料,通过烟囱会排放大量煤烟,造成环境污染,同时极大地缩短燃烧器的使用寿命。此外,由于燃料、空气不可能完全混合,因此,理想燃烧实际上是不可能实现的,绝大多数燃烧设备烟气氧含量均控制在几个百分点。通常,燃气燃烧器烟气氧含量控制在2-3%;锅炉和燃油燃烧器烟气氧含量控制在为2-6%。烟气温度越低,燃烧效率越高(请参阅图11)。

图11. 燃烧效率取决于氧含量和烟气温度

一般来说,氧含量控制在0.75-2%,燃烧可达到最佳状态。不同的烟气温度,燃烧过程氧含量每减少1%,可节约燃料1-3%。

与燃气或燃油锅炉不同,燃煤锅炉的烟气含有大量粉尘,如:飞灰、硫和二氧化硫SO2等。众所周知,抽取式的分析系统存在堵塞和冷凝问题,与之相比,直插式O2/CO测量技术就显示出较高的可靠性。

燃煤电厂锅炉的典型氧含量控制如图12所示。

图12. 使用X-STREAM氧化锆分析仪监视燃烧过程的氧含量

单独测量烟气的氧含量可以较好地控制燃烧过程,如果同时再测量一氧化碳CO,则可以进一步提高燃烧效率和控制稳定性。经验证明:若烟气中含有约100ppm的一氧化碳和少量的氧,则燃烧过程可以接近化学计量点,达到最高的燃烧效率。燃煤电厂锅炉平均的O2/CO 浓度测量示例如图13所示。

图13. 燃烧过程O2/CO监测结果

用氧化锆分析仪监测氧和一氧化碳,控制燃烧过程,对降低氮氧化物NOX和二氧化硫SO2排放也是有效的。因为同时监测两个参数,可以控制燃料燃烧更完全,使燃烧过程接近于化学计量点,燃烧效率最高,此时氧含量控制在1-2%。

燃烧过程中,烟气温度是变量,氧化锆分析仪可以在检测氧含量的同时,观测到烟气温度的变化。在烟气温度变化过程中,为了使氧含量测量更准确,信号更稳定,要求氧化锆分析仪要能够保持热平衡,以消除热接点对氧测量信号的影响(市场上有些氧化锆分析仪,温度的

波动影响达到10mV,对氧测量信号的影响为3±1%O2)。

烟气温度变化对Rosemount Analytical的X-STREAM氧化锆分析仪的斜率和常数影响极小[10]。当被测过程温度在25-600℃范围内变化时,由此产生的氧含量测量误差小于

±0.025%O2(请参阅图14)。这一新型的工业用氧化锆分析仪可以在较宽测量范围内,保证氧含量测量的稳定性和精确度。但是,不包括在空气中测量,因为空气湿度的变化会影响氧分压,而传感器的测量信号与氧浓度成对数关系,因而会给传感器引入比较可观的测量误差(请参阅图15)。

图14. X-STREAM氧化锆分析仪斜率和C常数与过程温度的函数关系

图15. X-STREAM氧化锆分析仪的稳定性和精确度

实时控制可以有效地改善现代燃烧控制过程。一般情况下,燃烧控制过程可以分成两类:操作点控制(OPC)和有效燃烧控制(ACC)。

在有效燃烧控制ACC中,控制器的输出用于调节流量特性,例如调节燃料流量。ACC已经在许多分层火焰燃烧炉和紊流燃烧器中取得了不同程度的业绩。贫燃料预混燃烧可以降低火焰温度,因而是减低NOX排放的有效方法。但是,这种方法有两个缺点,一是熄火,二是控制稳定性不好[2]。在这种控制应用中,要求氧化锆传感器必须能够迅速、精确地确定燃烧系统的工作状况。燃烧不稳定的情况是经常发生的,其发生频率小于500Hz,故在这种控制应用中,要求传感器的实时响应频率要达到kHz级,这样才能提供有效的反馈控制信号。

操作点控制(OPC)是通过调节燃料注入量,控制火焰参数。这种控制没有精确的空气流量信息,只是基于实际的火焰特性和估计的空气流量进行控制。在这种控制应用中,可以利用氧化锆传感器的测量结果,精确地调节燃料/空气比。

有关氧化锆氧量传感器的材质、在不同环境中传感器的使用性能和应用限制等更多详细信息,可以参阅最近发表的相关资料[11-15]。

[1] M. Kleitz, E. Siebert, P. Fabry, J. Fouletier, 固态电化学传感器——传感器综述, Eds. W. Gopel, J. Hesse, J. N. Zemel, VCH, New York, 第2卷, 1991年, 第341-428页

[2] N. Docquier, S. Candel, 过程控制和传感器——回顾, 《能源和燃烧科学进展》, 第28卷, 2002年, 第107-150页

[3] H. Peters, H. H. Mobius, 使用电流型固态电解质元件进行高温气体分析的程序, DD-专利21673, 1991年

[4] J. Weissbart, R. Ruka, 氧表,《科学仪表展望》, 第32卷, 1961年, 第107-150页

[5] W. A. Fisher, D. Janke, 冶金电化学,《Springer Verlag》, New York, 1977年

[6] G. Velasco和J. P. Schnell, 气体传感器及其在汽车工业中的应用, 《物理电子: 科学仪表》杂志, 第16卷, 1983年, 第973-977页

[7] J. Riegel, H. Neumann, H. M. Weidenmann, 汽车排放控制用废气传感器, 《固态离子学》, 第152-153卷, 2002年, 第783-800页

[8] J. H. Lee, 汽车工业用氧化锆空气/燃油比传感器, 《冶金科学》杂志, 第38卷, 2003年, 第4247-4257页

[9] H. Neumann, G. Hoetzel和G. Lindermann, 未来排放控制战略用的先进平面型氧传感器, 《SAE技术杂志》,970459, 1977年, 第1-9页

[10] Rosemount Analytical Inc. 网站

(https://www.360docs.net/doc/a318940847.html,/https://www.360docs.net/doc/a318940847.html,/gas/)

[11] W. C. Maskell, B. C. H. Steele, 固态电位氧气传感器, 《应用电化学杂志》, 第16卷, 1841年, 第475-489页

[12] J. Fouletier, 用电位传感器进行气体分析:回顾, 《传感器与执行器》, 第3卷, 1982/83年, 第295-314页

[13] H. H. Mobius, 气体分析用固态电化学电位传感器—传感器综述, Eds. W. Gopel, J. Hesse, J. N. Zemel, VCH, New York, 第

3卷, 1921年, 第1105-1154页

[14] S. Zhuiykov, 氧化锆气体传感器的电化学, CRC Press, Boca Raton/London/New York, 2008年, 第1-297页

[15] P. Shuk, Y. Guth和E. Bailey, 工业氧化锆传感器: 最新进展, ICST-2007, 2007年, 第488-492页(end)

文章内容仅供参考(投稿) (2011-10-10,阅读1次)

传感器原理及应用

温度传感器的应用及原理 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC的温度等等,下面介绍几种常用的温度传感器。 温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。 热敏电阻器 用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。表1是一个典型的NTC热敏电阻器性能参数。 这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为 14.050KΩ。 图1是热敏电阻的温度曲线,可以看到电阻/温度曲线是非线性的。

虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下: 这里T指开氏绝对温度,A、B、C、D是常数,根据热敏电阻的特性而各有不同,这些参数由热敏电阻的制造商提供。 热敏电阻一般有一个误差范围,用来规定样品之间的一致性。根据使用的材料不同,误差值通常在1%至10%之间。有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏电阻比普通的精度要高很多,也要贵得多。 图2是利用热敏电阻测量温度的典型电路。电阻R1将热敏电阻的电压拉升到参考电压,一般它与ADC的参考电压一致,因此如果ADC的参考电压是5V,Vref 也将是5V。热敏电阻和电阻串联产生分压,其阻值变化使得节点处的电压也产生变化,该电路的精度取决于热敏电阻和电阻的误差以及参考电压的精度。

氧化锆分析仪原理、结构及安装

氧化锆分析仪 一:产品概述 ZOY-4系列智能氧化锆氧量分析仪是一种实用可靠的自动化分析仪表。能与各种电动单元仪表、常规显示记录仪表及DCS集散控制系统配合作用,可对锅炉、窑炉、加热炉等燃烧设备在燃烧过程中所产生的烟气含量进行快速、正确的在线检测分析。以实现低氧燃烧控制,达到节能目的,减少环境污染。ZOY-系列智能氧化锆氧量分析仪有ZOY型氧化锆探头(一次仪表)和ZOY氧量变送器(二次仪表)二部分组成。 二:工作原理 氧化锆锆管是一种金属氧化物,在高温下形成固态电解质具有传导氧离子的特性。被测气体(烟气)通过探头过滤器,进入氧化锆锆管的内侧,参比气体(空气)通过自然对流进入探头氧化锆锆管的外侧。当锆管内外侧氧浓度不同时,在氧化锆锆管内外两侧间会产生氧浓差电动势。 三:型号规格及技术指标

①基本误差:<±2%F·S,仪表精度1级 ②量程:0~5%O2;0~10%O2;0~20%O2;0~25%O2 ③本底修正:-20mV~+20mV ④被测烟气温度:ZOY-4型低于700℃(低温型)ZOY-5型700~1000℃(高温型) ⑤输出信号:可扩展双路隔离输出,0~10mADC和4~20mADC,采取光电隔 离,直接和计算机联网。 ⑥负载能力:0 ~1.2ΚΩ或0~600Ω ⑦环境条件:0~50℃;相对湿度<90% ⑧电源:220V±10%,50Hz ⑨功耗:变送器约8W,加热炉平均约50W ⑩响应时间:90%约3秒 四:安装方式 1、安装点的选择安装点的烟气温度应符合相关要求,一般来说,烟气温度低,检测器使用寿命长,烟气温度高,使用寿命短。检测器不能安装在烟气不流动的死角,也不能安装在烟气流动很快的地方

氧化锆法氧气分析仪测量方法

氧化锆法氧气分析仪测量方法: 氧气分析仪是使用比较多的一种分析仪器,在以后的生产工艺中一定能运用的更多。现在氧气分析仪的应用已经十分广泛,产品种类也越来越多,发展前景很好。 氧气分析仪是怎样测量氧气含量的呢?下面我们就来介绍一种。氧化锆法氧化锆法氧化锆法侧氧气含量。 氧化锆传感器的测量原理以及结构特点氧化锆传感器的测量原理以及结构特点氧化锆传感器的测量原理以及结构特点:: 氧化锆传感器的核心构件是氧化锆固体电解质,氧化锆固体电解质是由多元氧化物组成的。常用的这类电解质有ZrO2·Y2O3,它由二元氧化物组成,其中,ZrO2称为基体,Y2O3称为稳定剂。ZrO2在常温下是单斜晶体,在高温下它变成立方晶体(萤石型),但当它冷却后又变为单斜晶体,因此纯氧化锆的晶型是不稳定的。所以当在ZrO2中掺人一定量的稳定剂Y2O3时,由于Y 置换了Zr 的位置,一方面在晶体中留下了氧离子空穴,另一方面由于晶体内部应力变化的原因,该晶体冷却后仍保留立方晶体,因此又称它为稳定氧化锆。据上分析,稳定氧化锆在高温下(650℃以上)是氧离子的良好导体。 典型的氧化锆传感器是 Pt,P''O2│ZrO2·Y2O3│P'O2,Pt 在上述电池中,Pt 表示两个铂电极,它是涂制在氧化锆电解质的两边,两种氧分压为P''O2和P'O2的气体分别通过电解质的两边。作为氧传感器,其中P''O2是参比气,例如通人空气(20.6%O2),P'O2是待测气,例如通入烟气。在高温下,由于氧化锆电解质是良好的氧离子导体,上述电池便是一个典型的氧浓差电池。

在高温下(650---850℃),氧就会从分压大的P''O2一侧向分压小的P'O2侧扩散,这种扩散,不是氧分子透过氧化锆从P''O2侧到P'O2侧,而是氧分子离解成氧离子后,通过氧化锆的过程。在750℃左右的高温中,在铂电极的催化作用下,在电池的P''O2侧发生还原反应,一个氧分子从铂电极取得4个电子,变成两个氧离子(O2-)进入电解质,即: O2(P''O2)+4e→2O2- P''O2侧铂电极由于大量给出电子而带正电,成为氧浓差电池的正极或阳极。这些氧离子进入电解质后,通过晶体中的空穴向前运动到达右侧的铂电极,在电池的P'O2侧发生氧化反应,氧离子在铂电极上释放电子并结合成氧分子析出,即: 2O-4e→O2(P'O2) P'O2侧铂电极由于大量得到电子而带负电,成为氧浓差电池的负极或阴极。这样在两个电极上,由于正负电荷的堆积而形成一个电势,称之为氧浓差电动势。当用导线将两个电极连成电路时,负极上的电子就会通过外电路流到正极,再供给氧分子形成离子,电路中就有电流通过。 其池电势由能斯特方程给出: E=RT/4F×ln(P''O2/P'O2) 式中R为气体常数,T为电池的热力学温度(K),F为法拉第常数.(1)式是在理想状态下导出的, 必须具有四个条件:(1)两边的气体均为理想气体;(2)整个电池处于恒温恒压系统中;(3)浓差电池是可逆的;(4)电池中不存在任何附加电势。因此称(1)式为氧化锆传感器的理论方程。由(1)式可见由于参比气氧含量P''O2是已知的,因此测得E值后便可求得待测气体氧含量P'O2值。

传感器原理与应用作业参考答案

《传感器原理与应用》作业参考答案 作业一 1.传感器有哪些组成部分在检测过程中各起什么作用 答:传感器通常由敏感元件、传感元件及测量转换电路三部分组成。 各部分在检测过程中所起作用是:敏感元件是在传感器中直接感受被测量,并输出与被测量成一定联系的另一物理量的元件,如电阻式传感器中的弹性敏感元件可将力转换为位移。传感元件是能将敏感元件的输出量转换为适于传输和测量的电参量的元件,如应变片可将应变转换为电阻量。测量转换电路可将传感元件输出的电参量转换成易于处理的电量信号。 2.传感器有哪些分类方法各有哪些传感器 答:按工作原理分有参量传感器、发电传感器、数字传感器和特殊传感器;按被测量性质分有机械量传感器、热工量传感器、成分量传感器、状态量传感器、探伤传感器等;按输出量形类分有模拟式、数字式和开关式;按传感器的结构分有直接式传感器、差分式传感器和补偿式传感器。 3.测量误差是如何分类的 答:按表示方法分有绝对误差和相对误差;按误差出现的规律分有系统误差、随机误差和粗大误差按误差来源分有工具误差和方法误差按被测量随时间变化的速度分有静态误差和动态误差按使用条件分有基本误差和附加误差按误差与被测量的关系分有定值误差和积累误差。 4.弹性敏感元件在传感器中起什么作用 答:弹性敏感元件在传感器技术中占有很重要的地位,是检测系统的基本元件,它能直接感受被测物理量(如力、位移、速度、压力等)的变化,进而将其转化为本身的应变或位移,然后再由各种不同形式的传感元件将这些量变换成电量。 5.弹性敏感元件有哪几种基本形式各有什么用途和特点 答:弹性敏感元件形式上基本分成两大类,即将力变换成应变或位移的变换力的弹性敏感元件和将压力变换成应变或位移的变换压力的弹性敏感元件。 变换力的弹性敏感元件通常有等截面轴、环状弹性敏感元件、悬臂梁和扭转轴等。实心等截面轴在力的作用下其位移很小,因此常用它的应变作为输出量。它的主要优点是结构简单、加工方便、测量范围宽、可承受极大的载荷、缺点是灵敏度低。空心圆柱体的灵敏度相对实心轴要高许多,在同样的截面积下,轴的直径可加大数倍,这样可提高轴的抗弯能力,但其过载能力相对弱,载荷较大时会产生较明显的桶形形变,使输出应变复杂而影响精度。环状敏感元件一般为等截面圆环结构,圆环受力后容易变形,所以它的灵敏度较高,多用于测量较小的力,缺点是圆环加工困难,环的各个部位的应变及应力都不相等。悬臂梁的特点是结构简单,易于加工,输出位移(或应变)大,灵敏度高,所以常用于较小力的测量。扭转轴式弹性敏感元件用于测量力矩和转矩。 变换压力的弹性敏感元件通常有弹簧管、波纹管、等截面薄板、波纹膜片和膜盒、薄壁圆筒和薄壁半球等。弹簧管可以把压力变换成位移,且弹簧管的自由端的位移量、中心角的变化量与压力p成正比,其刚度较大,灵敏度较小,但过载能力强,常用于测量较大压力。波纹管的线性特性易被破坏,因此它主要用于测量较小压力或压差测量中。 作业二 1.何谓电阻式传感器它主要分成哪几种 答:电阻式传感器是将被测量转换成电阻值,再经相应测量电路处理后,在显示器记录仪上显示或记

氧化锆氧量分析仪型号

氧化锆氧量分析仪主要用于测量燃烧过程中烟气的含氧浓度,将此类分析仪应用于燃烧检测过程中,可有效减少一氧化碳等气体的排放。当然,它也分为不同的型号。接下来由安徽康斐尔电气有限公司为您进行简单介绍,希望给您带来一定程度上的帮助。 氧化锆氧量分析仪按检测方式的不同,氧化锆氧探头分为两大类:采样检测式氧探头及直插式氧探头。 1.采样检测式氧探头 采样检测方式是通过导引管,将被测气体导入氧化锆检测室,再通过加热元件把氧化锆加热到工作温度(750℃以上)。氧化锆一般采用管状,电极采用多孔铂电极。其优点是不受检测气体温度的影响,通过采用不同的导流管可以检测各种温度气体中的氧含量,这种灵活性被运用在许多工业在线检测上。其缺点是反应时间慢;结构复杂,容易影响检测精度;在被检测气体杂质较多时,采样管容易堵塞;多孔铂电极容易受到气体中的硫,砷等的腐蚀以及细小粉尘的堵塞而失效;加热器一般用电炉丝加热,寿命不长。

在被检测气体温度较低(0℃~650℃),或被测气体较清洁时,适宜采样式检测方式,如制氮机测氧,实验室测氧等。 2.直插检测式氧探头 直插式检测是将氧化锆直接插入高温被测气体,直接检测气体中的氧含量,这种检测方式适宜被检测气体温度在700℃~1150℃时(特殊结构还可以用于1400℃的高温),它利用被测气体的高温使氧化锆达到工作温度,不需另外用加热器。直插式氧探头的技术关键是陶瓷材料的高温密封和电极问题。 由于需要将氧化锆直接插入检测气体中,对氧探头的长度有较高要求,其有效长度在500mm~1000mm左右,特殊的环境长

度可达1500mm。且检测精度,工作稳定性和使用寿命都有很高的要求,因此直插式氧探头很难采用传统氧化锆氧探头的整体氧化锆管状结构,而多采取技术要求较高的氧化锆和氧化铝管连接的结构。密封性能是这种氧化锆氧探头的最关键技术之一。目前国际上最先进的连接方式,是将氧化锆与氧化铝管永久的焊接在一起,其密封性能极佳,与采样式检测方式比,直插式检测有显而易见的优点:氧化锆直接接触气体,检测精度高,反应速度快,维护量较小。 安徽康斐尔电气有限公司位于长江之滨的的文明城市天长市,是集科技攻关、新品研发、制造营销、出口为一体的生产型企业。主要产品:电力电缆、控制电缆、计算机电缆、核电站用1E级和非1E 级电力电缆。仪器仪表系列:压力变送器、压力表系列、双金温度计、无纸记录仪、工业热电偶、仪表保护箱、温度传感器等。 公司拥有雄厚的技术力量、精良的制造工艺和科学的管理手段。公司严格执行产品标准及行业标准,按照国内各工矿企业的使用环境条件和工艺要求,制定严格的工艺流程,使产品工艺精良。公司自主研制、开发、生产的产品主要有六大系列,400多个品种。被广泛应用于航天、军工、电力、水处理等行业,产品销往国内29个省市自治区,在许多重点工程中使用,获得用户高度评价。

几种气体传感器的研究进展

一、前言 1964 年,由Wickens 和Hatman 利用气体在电极上的氧化还原反应研制出了第一个气敏传感器,1982年英国Warwick 大学的Persaud 等提出了利用气敏传感器模拟动物嗅觉系统的结构,自此后气体传感器飞速发展,应用于各种场合,比如气体泄漏检测,环境检测等。现在各国研究主要针对的是有毒性气体和可燃烧性气体,研究的主要方向是如何提高传感器的敏感度和工作性能、恶劣环境中的工作时间以及降低成本和智能化等。 下面简单介绍各种常用的气体传感器的工作原理和一些常用气体传感器的最新的研究进展。 二、气体传感器的分类和工作原理 气体传感器主要有半导体传感器(电阻型和非电阻型)、绝缘体传感器(接触燃烧式和电容式)、电化学式(恒电位电解式、伽伐尼电池式),还有红外吸收型、石英振荡型、光纤型、热传导型、声表面波型、气体色谱法等。 电阻式半导体气敏元件是根据半导体接触到气体时其阻值的改变来检测气体的浓度;非电阻式半导体气敏元件则是根据气体的吸附和反应使其某些特性发生变化对气体进行直接或间 接的检测。 接触燃烧式气体传感器是基于强催化剂使气体在其表面燃烧时产生热量,使传感器温度上升,这种温度变化可使贵金属电极电导随之变化的原理而设计的。另外与半导体传感器不同的是,它几乎不受周围环境湿度的影响。电容式气体传感器则是根据敏感材料吸附气体后其介电常数发生改变导致电容变化的原理而设计。 电化学式气体传感器,主要利用两个电极之间的化学电位差,一个在气体中测量气体浓度,另一个是固定的参比电极。电化学式传感器采用恒电位电解方式和伽伐尼电池方式工作。有液体电解质和固体电解质,而液体电解质又分为电位型和电流型。电位型是利用电极电势和气体浓度之间的关系进行测量;电流型采用极限电流原理,利用气体通过薄层透气膜或毛细孔扩散作为限流措施,获得稳定的传质条件,产生正比于气体浓度或分压的极限扩散电流。 红外吸收型传感器,当红外光通过待测气体时,这些气体分子对特定波长的红外光有吸收,其吸收关系服从朗伯—比尔(Lambert-Beer)吸收定律,通过光强的变化测出气体的浓度:

光化学传感器及其最新进展

文章编号:100525630(2004)0420057205 光化学传感器及其最新进展 Ξ 徐艳平,顾铮先,陈家璧 (上海理工大学光电功能薄膜实验室,上海200093) 摘要:从传感器材料、检测方法及传感器结构几方面,围绕光化学传感器的灵敏度、选 择性和稳定性展开讨论,总结了光化学传感器近年来的最新进展,并对其今后的发展方向 做出展望。 关键词:光化学传感器;光纤传感器;表面等离子体激元共振 中图分类号:T P 212.14 文献标识码:A Recen t develop m en ts of optica l che m ica l sen sors X U Y an 2p ing ,GU ZH eng 2x ian ,CH EN J ia 2bi (L abo rato ry of Pho to 2electric Functi onal F il m s ,U niversity of Shanghai fo r Science and Techno logy ,Shanghai 200093,China ) Abstract :T he state 2of 2the 2art of op tical chem ical sen so rs is stated in th is p ap er abou t sen so r m aterials ,detecti on m ethods and sen so r structu res .T he p rop erties of op tical chem ical sen so rs such as sen sitivity ,selectivity and stab ility are discu ssed .Fu tu re p ro sp ects of op tical chem ical sen so rs are discu ssed . Key words :op tical chem ical sen so rs ;fiber op tic sen so rs ;su rface p las m on resonance 1 引 言 光化学传感器是利用敏感层与被测物质相互作用前后物理、化学性质的改变而引起的传播光诸特性的变化检测物质的一类传感器[1]。光化学传感器与其它原理的传感器相比,具有安全性好、可远距离检测、分辨力高、工作温度低、耗用功率低、可连续实时监控、易转换成电信号等优点。随着光纤技术及光集成技术的迅猛发展,光化学传感器引起了人们的极大关注,并且已经广泛地应用于工业、环境、生物医学的检测中[2]。 现首先总结了无机材料(氧化物半导体)和有机材料的应用,并介绍了溶胶凝胶工艺制备光化学传感器敏感材料方面的最新进展以及生物敏感材料。其次介绍了光谱法、干涉法、表面等离子体激元共振(su rface p las m on resonance ,SPR )等传感器检测方法的最新进展。最后对今后光化学传感器的发展做出展望。 2 传感器材料 敏感材料作为光化学传感器的重要组成部分,将直接影响传感器的各种性能,如稳定性、选择性、灵敏度和响应时间。现在研究最多的是氧化物半导体、有机半导体材料、生物识别材料等。现将从无机材料、有 第26卷 第4期 2004年8月 光 学 仪 器O PT I CAL I N STRUM EN T S V o l .26,N o.4 A ugu st,2004 Ξ收稿日期:2003209211 基金项目:上海市曙光计划资助项目(02SG 01),上海市科技发展基金资助项目(01F 032) 作者简介:徐艳平(19772),男,山东烟台人,在读博士生,主要从事光电功能薄膜及其传感器、光电精密测量与工程方面的研究。

氧化锆氧量分析仪校准规程

氧化锆氧量分析仪校准规程 1 目的 为了规范氧化锆氧量分析仪的校准操作,确保分析仪运行正常,检测、分析数据准确、可靠,制定本规程。 2 范围 本规程适用于氧化锆氧量分析仪的校准。 3 校准条件 3.1 标气: a) 空气:氧含量,20.6%; b) 零点标气:0.5%或5%含氧量的平衡氮气。 4 校准方法 4.1 校准前注意事项 4.1.1 在仪器面板显示屏上有错误或警告报警信息出现时,不能实施校准工作。 4.1.2 标准气体容器到标定管进气口之间应使用尽量短的连接管线。 4.1.3 仪器处于稳定工作状态。 4.2 空气校准: 4.2.1 按“菜单键”显示器提示输入用户密码,输入密码进入用户模式,显示第一个项目:空气校准。 4.2.2 在分析仪传感器两侧都为空气的状态下(或在线工作状态时,将分析仪的标准气入口的密封螺钉拧下,用泵送入空气时,流量控制在 500~600ml/min范围内,先调好流量,再把空气管路接入检测器的标准气入口),按“确认键”进入,显示的测量值开始闪动。如测量值与标准值20.6相差在2%以内,可不必调整,连续按两次“确认键”即可;如误差超出2%,

“↑”或“↓”键调整测量值到20.6,连续按两次“确认键”保存校准结果。 4.3 标气校准: 4.3.1 把标准气流量调整到500~600ml/min范围内,将分析仪的标准气入口的密封螺钉拧下,将标气管路接入分析仪标准气入口,通入标气,按“确认键”进入,输入所用标气的标称值,连续按两次“确认键”保存校准结果。 注:前两项校准完成后,应立即把标准气入口的螺钉拧紧,保持密封良好。 4.4. 校准完成后,会自动返回主菜单。 5 校准结果及周期 5.1 经校准修复零点和量程迁移,并作好原始记录。 5.2 该仪器校准周期为3个月。 6 本规程执行以下记录 JLJL1224 氧化锆氧量分析仪校准记录

传感器原理及应用试题库

一:填空题(每空1分) 1.依据传感器的工作原理,传感器分敏感元件,转换元件, 测量电路三个部分组成。 2.半导体应变计应用较普遍的有体型、薄膜型、扩散型、外延型等。 3.光电式传感器是将光信号转换为电信号的光敏元件,根据光电效应可以分为 外光电效应,光电效应,热释电效应三种。 4.亮电流与暗电流之差称为光电流。 5.光电管的工作点应选在光电流与阳极电压无关的饱和区域。 6.金属丝应变传感器设计过程中为了减少横向效应,可采用直线栅式应变计 和箔式应变计结构。 7.反射式光纤位移传感器在位移-输出曲线的前坡区呈线性关系,在后坡区与 距离的平方成反比关系。 8.根据热敏电阻的三种类型,其中临界温度系数型最适合开关型温度传感 器。 9.画出达林顿光电三极管部接线方式: U CE 10.灵敏度是描述传感器的输出量对输入量敏感程度的特性参数。其定义为:传 感器输出量的变化值与相应的被测量的变化值之比,用公式表示k(x)=Δy/Δx 。 11.线性度是指传感器的输出量与输入量之间是否保持理想线性特性的一 种度量。按照所依据的基准之线的不同,线性度分为理论线性度、端基线性度、独立线性度、最小二乘法线性度等。最常用的是最

小二乘法线性度。 12.根据敏感元件材料的不同,将应变计分为金属式和半导体式两大 类。 13.利用热效应的光电传感器包含光---热、热---电两个阶段的信息变换过程。 14.应变传感器设计过程中,通常需要考虑温度补偿,温度补偿的方法电桥补偿 法、计算机补偿法、应变计补偿法、热敏电阻补偿法。 15.应变式传感器一般是由电阻应变片和测量电路两部分组成。 16.传感器的静态特性有灵敏度、线性度、灵敏度界限、迟滞差和稳定性。 17.在光照射下,电子逸出物体表面向外发射的现象称为外光电效应,入 射光强改变物质导电率的物理现象称为光电效应。 18.光电管是一个装有光电阴极和阳极的真空玻璃管。 19.光电管的频率响应是指一定频率的调制光照射时光电输出的电流随频率变 化的关系,与其物理结构、工作状态、负载以及入射光波长等因素有关。多数光电器件灵敏度与调制频率的关系为Sr(f)=Sr。/(1+4π2f2τ2) 20.光电效应可分为光电导效应和光生伏特效应。 21.国家标准GB 7665--87对传感器下的定义是:能够感受规定的被测量并按照 一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。 22.传感器按输出量是模拟量还是数字量,可分为模拟量传感器和数字量传感器 23.传感器静态特性的灵敏度用公式表示为:k(x)=输出量的变化值/输入量的变 化值=△y/△x 24.应变计的粘贴对粘贴剂的要求主要有:有一定的粘贴强度;能准确传递应变;

气敏传感器的近期进展

气敏传感器的近期进展Ξ 李 平,余 萍,肖定全 四川大学材料科学系,四川成都610064 摘 要: 综合介绍了气敏传感器材料及元件的最新进展,侧重于气敏材料研究工作的概述,并分析了气敏传感器的发展趋势。关键词: 气敏传感器;半导体陶瓷;敏感材料 1 引 言 现代工业的发展一方面为人类创造出巨大的财富,另一方面却给生态环境带来严重的污染。工业生产中使用的气体原料和在生产过程中产生的气体的种类和数量随着工业的发展而越来越多。这些气体中,有毒性气体和可燃性气体不仅污染环境,而且有产生爆炸、火灾使人中毒的危险。对这些气体迅速准确地检测将有效地防止此类恶性事件的发生。此外,汽车工业的蓬勃发展,家庭液化石油气、煤气和天然气的广泛使用也对气敏传感器提出了更广更高的要求。 气敏传感器所检测的气体大致分为以下几类[1~3]: 可燃性气体:液化石油气(主要成分丙烷)、煤气(主要成分为CO和H2)、天然气(主要成分CH4)、丙烷、CO、H2、CH4、丁烷、乙醇、丙酮、乙烯、甲苯、二甲苯、汽油等; 有毒性气体:H2S、CO、Cl2、HCl、AsH3(砷烷)、PH3(磷烷)等; 大气污染气体:形成酸雨的NO x、SO x、HCl,引起温室效应的CO2、CH4、NO2、O3和破坏臭氧层的碳氟化合物、卤化碳。 除检测上述3类气体外,汽车工业的发展迫切需要开发O2、NO x和空燃比(A/F)传感器;石油、化工、造纸、畜牧、皮革、鱼类等加工过程中产生的恶臭气味的监测以及饮食、香料等香味的鉴别,急需开发各种气味传感器。 2 半导体气敏传感器的分类 对气体的检测方法有电化学方法、光学方法、电学方法等十几种[4]。而一个完美的气敏传感器应有如下几个特点:(1)选择性好,能够在多种气体共存情况下仅对目标气体有明显反应; (2)灵敏度高;(3)长期工作稳定性好;(4)响应时间快;(5)寿命长;(6)成本低,使用维修方便。其中属于电学方法的半导体气敏传感器以其高灵敏度、结构简单、不需要放大电路、使用方便、价格便宜等优点,得到迅速发展。 1931年,P.Brauer发现了Cu2O的电导率随水蒸气的吸附而改变的现象[5],其后不少人进行了气敏效应的研究。到今天半导体气敏传感器已发展成一大体系。按基体材料来分,可分为金属氧化物系、有机高分子半导体系、固体电解质系等;按被测气体可分为:氧敏器件、酒敏器件、氢敏器件等;按制作方法和结构形式,可分为烧结型、薄膜型、厚膜型、结型等;按工作机理可分为:电阻型、电容型、二极管特性型、晶体管特性型、频率型、浓差电池型等。 本文主要对电阻式半导体气敏传感器和一些新型半导体气敏传感器的近期进展做扼要介绍。 2.1 金属氧化物型电阻式半导体气敏传感器 电阻式半导体气敏传感器依据的原理是材料的电阻值随环境气氛的浓度而发生改变,通过这个变化值可获得气氛的状况。通常制备成烧结型、薄膜型或厚膜型。 金属氧化物和一些有机高分子半导体气敏材料具有电阻值随环境气氛而变化的特性。金属氧化物半导体气敏材料分为简单氧化物和复合氧化物两种类型。其中简单氧化物半导体气敏材料以SnO2,ZnO,Fe2O3为代表,而复合氧化物以M0.9La0.1 SnO3(M=Sr,Ca)、Sr0.9La0.1T iO3为代表。有机高分子半导体气敏材料将在2.2中介绍。SnO2是金红石结构,N型半导体,表面电阻控制型。SnO2气敏传感器能检测H2、CH4、丙烷、丁烷、天然气等可燃性气体,CO、NH3、H2S等有毒气体,乙酸、甲苯、二甲苯、汽油等有机溶剂和氟利昂、烟雾,鱼、肉的鲜度等。SnO2气体传感器应用相当广泛,研究工作亦深入到材料微观结构、选择性和灵敏度与催化剂、添加剂关系,新型结构的气体传感器也相继出现。添加剂铂能明显提高响应速度,缩短瞬态过程。近年来采用集成电路工艺把超微粒薄膜加热器测温二极管一起集成在硅衬底上,制成对还原性气体的灵敏度比常规多晶膜高得多的气敏元件,它是一种很有发展前途的新型半导体气敏传感器。SnO2气敏传感器在如何消除环境气氛中湿度的影响方面还没有很好的解决。一旦这方面的研究工作取得突破,那么气体传感器就可能进一步应用在低浓度环境中。总之,SnO2气体传感器的研究工作正方兴未艾。 ZnO具有纤锌矿型结构,N型半导体,表面电阻控制型。它对一般还原性气体,其检测灵敏度比SnO2低,气敏器件的工作温度比SnO2高。ZnO中加入少量铂、钯等贵重金属做催化剂,可以改善气敏元件的灵敏度和选择性。加入Pt,对异丁烷、丙烷、乙烷等含有两个以上碳原子的碳氢化合物气体灵敏度较高。而且,气体分子碳原子数越多,灵敏度就越高,但对H2、CO、CH4等可燃性气体的灵敏度较低。加入Pd对异丁烷、乙烷、丙烷等两个碳原子的气体的灵敏度较低,而对H2、CO、CH4等分子中含碳原子数较少的气体灵敏度增高。掺入Ag有助于提高对可燃性气体的灵敏度,加入V2O5-MoO3对氟里昂敏感。加入Ga2O3对烷烃敏感。 α-Fe 2 O3属刚玉结构,γ-Fe2O3属尖晶石结构。α-Fe2O3稳定性好,对可燃性气体灵敏度低。用先进的材料制备方法(如sol-gel与化学气相沉淀法等)合成纳米级α-Fe2O3,对甲烷、H2、C2H5OH有很好敏感性。微粒α-Fe2O3属于表面电 Ξ基金来源:国家自然科学基金资助课题收稿日期:1998204210

(完整版)传感器原理及应用试题库(已做)

:填空题(每空1分) 1.依据传感器的工作原理,传感器分敏感元件,转换元件 测量电路三个部分组成。 2.金属丝应变传感器设计过程中为了减少横向效应,可米用直线栅式应变计 和箔式应变计结构。 3. 根据热敏电阻的三种类型,其中临界温度系数型最适合开关型温度传感器 4. 灵敏度是描述传感器的输出量对输入量敏感程度的特性参数。其定义为:传 感器输出量的变化值与相应的被测量的变化值之比,用公式表示 k (x)=△ y△ x。 5. 线性度是指传感器的输出量与输入量之间是否保持理想线性特性的一 种度量。按照所依据的基准之线的不同,线性度分为理论线性度、端 基线性度、独立线性度、最小二乘法线性度等。最常用的是最小二乘法线性 度。 6. 根据敏感元件材料的不同,将应变计分为金属式和半导体式两大类。 7. 应变传感器设计过程中,通常需要考虑温度补偿,温度补偿的方法电桥补偿法、 计算机补偿法、应变计补偿法、热敏电阻补偿法。 8. 应变式传感器一般是由电阻应变片和测量电路两部分组成。 9. 传感器的静态特性有灵敏度、线性度、灵敏度界限、迟滞差和稳定性。 10. 国家标准GB7665--87对传感器下的定义是:能够感受规定的被测量并按照一定 的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。11. 传感器按输出量是模拟量还是数字量, 可分为模拟量传感器和数字量传感器12. 传感器静态特性的灵敏度用公式表示为:心)=输出量的变化值/输入量的变化 值=△ y/ △ x 13. 应变计的粘贴对粘贴剂的要求主要有:有一定的粘贴强度;能准确传递应变;蠕 变小;机械滞后小;耐疲劳性好;具有足够的稳定性能:对弹性元件和应变计不产生化学腐蚀作用;有适当的储存期;应有较大的温度适用范围。 14. 根据传感器感知外界信息所依据的基本校园,可以将传感器分成三大类:物理传 感器,化学传感器,生物传感器。

中国原子能科学研究院氧化锆氧量分析仪说明书

目录 1 概述 (1) 2 仪器测量原理 (2) 3 仪器主要技术参数 (3) 4 仪器简介 (3) 4.1 仪器组成 (3) 4.2 各部分简介 (4) 4.2.1 探头简介 (4) 4.2.2 变送器简介 (4) 4.2.2.1 基本结构 (4) 4.2.2.2 基本操作 (5) 4.2.2.3 基本设臵 (6) 5 仪器检验 (6) 6 仪器安装 (8) 6.1 安装前的准备 (8) 6.1.1 探头安装位臵的选择 (8) 6.1.2 炉体法兰的焊接 (9) 6.1.3 现场布线 (9) 6.2 安装 (10) 6.2.1 变送器的安装 (10) 6.2.2 探头的安装 (10) 6.3 现场连线 (11) 7 仪器校准 (11) 7.1 校准前的准备 (11) 7.2 校准方法 (11) 8 仪器日常维护与常见故障排除 (13) 8.1 仪器日常维护 (13) 8.2 常见故障的分析与排除 (13)

1 概述 氧化锆氧分析仪主要用于测定锅炉烟气中的氧分压即氧气的体积百分数含量(简称氧含量或氧量),对于保障锅炉运行安全、提高燃料燃烧效率及减少环境污染将起到重要作用。其应用场所主要有: ●火电厂锅炉; ●炼油厂加热炉和输油管道加热炉; ●冶炼厂加热炉和均热炉; ●化工、轻纺、食品加工、制药、水泥和采暖等企业的工业锅炉。 燃料燃烧效率与空气过剩系数密切相关。在燃烧过程中,当空气过剩系数太小即氧量不足时,由于燃料未充分燃烧而导致热效率降低,且排出的未完全燃烧气体也将对导致环境污染;而当空气过剩系数太大即氧量过多时,虽然能使燃料充分燃烧,但过剩空气带走的热量多,也导致热效率降低,同时过量氧气使烟气中硫化物和氮氧化物含量增大,同样导致环境污染。因此,通过安装氧化锆氧分析仪,在线实时监测烟气中的氧含量,调节空气和燃料的最佳配比,实现优化燃烧,在节能减排与安全环保等方面具有重要意义。 中国原子能科学研究院始建于1950年,是中国核科学技术的发祥地,是以核科学为主、多学科并存的综合性大型科研基地,是我国“两弹一艇”事业的摇篮。氧化锆开发研究室是院下属的集科研、产品开发和市场营销为一体的综合性实体,从事氧化锆测氧技术的研究已30余年,编写了国内本行业第一本专著:《氧离子固体电解质浓差电池与测氧技术》。该技术曾先后多次荣获国家发明奖及部科技成果奖。在这一系列科研成果的基础上,成功研制出ZO系列氧化锆氧分析仪。该产品曾在北京国际博览会上获同类产品最高质量奖,并在全国氧化锆氧分析仪行业质量评比中荣获一等奖。2001年,该产品通过ISO9001国际质量体系认证。此后,我院开发并推出了防硫型、高温型等多种型号的氧化锆氧分析仪,以满足不同用户的需求。

ZO系列氧化锆氧量分析仪

ZO系列氧化锆氧量分析仪 ZO系列氧化锆氧量分析仪是一种可靠的自动化分析仪表,能与各种电动单元仪表,常规显示记录仪及DCS 集散控制系统配合使用,可对锅炉、窑炉加热炉等燃烧设备在燃烧过程中所产生的烟气含氧量进行快速、正确的在线检测分析,以实现低氧燃烧控制,达到节能、减少环境污染。 功能特点: 1、本仪表分JG型氧化锆探头和ZO型氧量变送器二部分组成。 2、JG型探头采用不锈钢结构,氧化锆拆卸调换方便,不必外加气泵,参比气自行对流,并设有标准气接口,进行本底及预置标气检验。根据用户需求亦可配加保护套管。 3、ZO型仪表软件功能完备,全部面板操作,接线简单,电路集成、性能可靠、调试方便、表机性能价格在国内属领先水平。 技术指标 基本误差:<±3%F.S;仪表精度1级;探头精度2级。 量程:0~5%O2;0~10%O2;0~20%O2;0~100%O2; 本底修正:-20mV~+20mV 冷端补偿:在0~80℃时,热电偶冷端补偿值由用户设定。 输出信号:双路隔离输出,0-10mADC或4-20mADC 负载能力:0~1.2KΩ或0~600Ω。 环境条件:0~50℃;相对湿度<90%。 电源:220V±10%;50Hz。 响应时间:90%约5S 功耗:变送器约8W,加热炉平均约50W 开孔尺寸:ZO-ⅠZA墙挂式仪表250mm,M6-2 ZO-ⅠZB盘装式仪表152×76mm(宽×高) ZO-ⅠZC盘装式仪表152×152 mm(宽×高) ZO-ⅠZD盘装式仪表76×152 mm(宽×高) 安装接线图: YT系列ZrO2-II型直插式微机化氧量自动分析仪是在总结氧化锆氧量分析仪多年研究和应用经验后,研制成功的新型氧量分析仪,适用于各种工业锅炉、窑炉及加热炉中烟气的含氧量。它的主要特点是氧量检测器的结构设计及铂电极的化学配方、制作工艺充分考虑了被测炉气组分极端复杂这一特点,可保证检测器在水平直插条件下应用时具体足够长的寿命。而其信号转换部分以单片微处理器为核心,通过软件实现仪表大部分功能,硬件配置重点强化仪表的抗干扰措施。 从提高氧量测量可靠性入手,延长氧量检测器的持续使用寿命,并使仪表具备与检测器要求相适应的自诊断功能及抗干扰能力。本仪表在完善氧化锆头金属化工艺及仪表信号转换器实现智能化等方面较大改进,具体内容如下: (1)多孔性铂电极的化学配方及制作工艺可保证氧量检测器氧化锆探头在锅炉烟气氛中有足够的使用寿命。

传感器原理设计与应用重点总结

本文档根据老师最后一次课上课时所说的相关内容并根据我自己的个人情况简要整理,相对简洁,和大家分享一下。考虑到老师说的内容和考试内容相比,可能不够完整;而且个人水平有限,不可能把握的很准确,所以只是参考而已。。。建议大家根据自己的理解补充完善~ 第一章:传感器概论 1、传感器的定义:传感器(或敏感元件)基于一定的变换原理/规律将被测量(主要是非电量的测量,可采用非电量电测技术)转换成电量信号。变换原理/规律涉及到物理、化学、生物学、材料学等学科。 2、传感器的组成:传感器一般由敏感元件(将非电量变成某一中间量)、转换元件(将中间量转换成电量)、测量电路(将转换元件输出的电量变换成可直接利用的电信号)三部分组成,有的传感器还需加上辅助电源。 3、传感器的分类 按变换原理分类——>利用不同的效应构成物理型、化学型、生物型等传感器。 按构成原理分类: 结构型:依靠机械结构参数变化来实现变换。 物性型:利用材料本身的物理性质来实现变换。 按输入量的不同分类——>温度、压力、位移、流量、速度等传感器 按变换工作原理分类: 电路参数型:电阻型、电容型、电感型传感器 按参电量如:Q(电量)、I、U、E 等分类:磁电型、热电型、压电型、霍尔型、光电式传感器 4、传感器技术的发展动向: 教材表述:发现新现象、开发新材料、采用微细加工技术、研制多功能集成传感器、智能化传感器、新一代航天传感器、仿生传感器 老师表述:微型化、集成化、廉价。 第二章:传感器的一般特性 1、静态特性 检测系统的四种典型静态特性 线性度:传感器的输出与输入之间的线性程度。传感器的理想输出-输入特性是线性的。 灵敏度:系统在静态工作的条件下,其单位输入所产生的输出,实为拟合曲线上某点的斜率。 即S N=输入量的变化/输出量的变化=dy/dx 迟滞性:特性表明传感器在正(输入量增大)反(输入量减小)行程期间输出-输入特性曲线不重合的程度。 (产生的原因:传感器机械部分存在的不可避免的缺陷。) 重复性:重复性表示传感器在输入量按同一方向作全量程多次测量时所得特性曲线不一致程度。曲线的重复性好,误差也小。产生的原因与迟滞性类似。 精确度. 测量范围和量程. 零漂和温漂. 2、动态特性:(传感器对激励(输入)的响应(输出)特性) 动态误差:输出信号不与输入信号具有完全相同的时间函数,它们之间的差异。包括:稳态动态误差、暂态动态误差

目前新型气体传感器的研究动态及其发展方向

目前新型气体传感器的研究动态及其发展方向 摘要:近年来,由于在工业生产、家庭安全、环境监测和医疗等领域对气体传感器的精度、性能、稳定性方面的要求越来越高,因此对气体传感器的研究和开发也越来越重要。随着先进科学技术的应用,气体传感器发展的趋势是微型化、智能化和多功能化。深入研究和掌握有机、无机、生物和各种材料的特性及相互作用,理解各类气体传感器的工作原理和作用机理,正确选择各类传感器的敏感材料,灵活运用微机械加工技术、敏感薄膜形成技术、微电子技术、光纤技术等,使传感器性能最优化是气体传感器的发展方向。 关键词:气体传感器智能化 气体传感器是气体检测系统的核心,通常安装在探测头内。从本质上讲,气体传感器是一种将某种气体体积分数转化成对应电信号的转换器。探测头通过气体传感器对气体样品进行调理,通常包括滤除杂质和干扰气体、干燥或制冷处理、样品抽吸,甚至对样品进行化学处理,以便化学传感器进行更快速的测量。 气体的采样方法直接影响传感器的响应时间。目前,气体的采样方式主要是通过简单扩散法,或是将气体吸入检测器。 简单扩散是利用气体自然向四处传播的特性。目标气体穿过探头内的传感器,产生一个正比于气体体积分数的信号。由于扩散过程渐趋减慢,所以扩散法需要探头的位置非常接近于测量点。扩散法的一个优点是将气体样本直接引入传感器而无需物理和化学变换。样品吸入式探头通常用于采样位置接近处理仪器或排气管道。这种技术可以为传感器提供一种速度可控的稳定气流,所以在气流大小和流速经常变化的情况下,这种方法较值得推荐。将测量点的气体样本引到测量探头可能经过一段距离,距离的长短主要是根据传感器的设计,但采样线较长会加大测量滞后时间,该时间是采样线长度和气体从泄漏点到传感器之间流动速度的函数。对于某种目标气体和汽化物,如SiH4以及大多数生物溶剂,气体和汽化物样品量可能会因为其吸附作用甚至凝结在采样管壁上而减少。 气体传感器是化学传感器的一大门类。从工作原理、特性分析到测量技术,从所用材料到制造工艺,从检测对象到应用领域,都可以构成独立的分类标准,衍生出一个个纷繁庞杂的分类体系,尤其在分类标准的问题上目前还没有统一,要对其进行严格的系统分类难度颇大。 1 主要特性 1.1 稳定性 稳定性是指传感器在整个工作时间内基本响应的稳定性,取决于零点漂移和区间漂移。零点漂移是指在没有目标气体时,整个工作时间内传感器输出响应的变化。区间漂移是指传感器连续置于目标气体中的输出响应变化,表现为传感器输出信号在工作时间内的降低。理想情况下,一个传感器在连续工作条件下,每年零点漂移小于10%。 1.2 灵敏度

智能氧化锆氧量分析仪说明书

智能氧化锆氧量分析仪 使用说明书

一、用途 SK-SZO系列氧化锆氧量分析仪可对锅炉、窑炉、加热炉等燃烧设备在燃烧过程中所产生的烟气含量进行快速、正确的在线检测分析,以实现低氧燃烧控制,达到节能目的,减少环境污染。 SK-SZO系列氧化锆氧量分析仪有氧化锆头(一次仪表)和氧量变送器(二次仪表)二部分组成。 SK-SZO型氧化锆探头外壳采用耐高温、耐腐蚀的不锈钢材料制成。 不必外加气 ,参比气能自行对流。并设有标准气接口,可在现场运行时用标准气体进行标定校验。探头锆管能方便地拆卸更换。 SK-SZO型氧量变送器结构简单,安装尺寸规范,线路设计合理,工艺质量先进,仪表性能稳定可靠,调试方便。 SK-SZO系列氧化锆氧量分析仪由于其优越的性能价格比,数年来在国内大中型电厂得到广泛应用。 二、型号规格 1、氧化锆探头的型号定义 SK-SZO-口—口 探头的长度规格分400、800、1200mm 探头的加热形式 4表示加热式,即低温式 5表示不加热式,即高温式 2、氧量变送器的型号定义 SK-SZO-口—口 Ⅰ表示盘装式 Ⅱ表示盘装横式 Ⅲ表示盘装方式 Ⅳ表示墙挂式 4表示加热式(中低温型) 三、规格尺寸 5表示不加热式(高温型) 1.氧量变送器尺寸 -1-

盘装竖式 (Ⅰ) 160×80 ×250 152 ×76 盘装横式(Ⅱ) 80 ×160 ×250 或160 76 ×152 盘装方式(Ⅲ) 160 ×160 ×250或160 153 ×153 墙挂式(Ⅳ) 325 ×250 ×110 310 ×128 2、氧化锆探头的外形尺寸:单位mm L=400,800,1200 四.技术指标 1.基本误差:<+3%F.S; 仪表精度1级 2.量程:0~25%O2 3.本底修正:-20mV~+20mV 4.被测烟气温度:ZO-4型低于800℃(低温型);ZO-5型 800℃~1200℃ (高温型) 5.输出信号:0~10mADC 4~20mADC任意设置 6.负载能力:0~1.2KΩ(0~10mA时)或0~600Ω(4~20mA时) 7.环境能力:0~50℃,相对湿度〈90% 8.电源/;220V+10%,50Hz。 9.功耗:变送器约8W,加热炉平均为50W。 10.响应时间/;90%约3秒。 11.氧化锆探头加热炉升温时间:约20分钟。 五、仪表接线氧化锆探头的端子接线图 -2- 120

相关文档
最新文档