大学物理期末考试复习题

大学物理期末考试复习题
大学物理期末考试复习题

1.一质点作直线运动,某时刻的瞬时速度2/v m s =,瞬时加速度22/a m s =-,则1秒后质点的速度( D )

(A)等于零 (B)等于2/m s - (C)等于2/m s (D)不能确定

2.一质点沿半径为R 的圆周做匀速率运动,每t 时间转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为( B ) (A)

2R t π,2R t π (B)O, 2R t π (C)0,0 (D)2R

t

π,0 3.如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动。设该人以匀速率0v 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( c )

(A)匀加速运动,0

cos v v θ= (B)匀减速运动,0cos v v θ= (C)变加速运动,0cos v

v θ

= (D)变减速运动,0cos v v θ=

(E)匀速直线运动,0v v =

4. 以下五种运动形式中,a

保持不变的运动是( D ) (A) 单摆的运动. (B) 匀速率圆周运动. (C) 行星的椭圆轨道运动. (D) 抛体运动. (E) 圆锥摆运动.

5. 质点沿轨道AB 作曲线运动,速率逐渐减小,图中哪一种情况正确地表示了质点在C 处的加速度? ( C )

(A) (B) (C) (D

1.一物体作如图所示的斜抛运动,测得在轨道P点处速度大小为v ,其方向与水平方向成30°角。则物体在P点的切向加速度a τ= -0.5g ,轨道的曲率半径ρ= 2v 2/√3g 。

2. 轮船在水上以相对于水的速度1V 航行,水流速度为2V

,一人相对于甲板以速度3V 行走,如人相对于岸静止,则1V 、2V 和3V

的关系是:v1+v2+v3=0____。

3.加速度矢量可分解为法向加速度和切向加速度两个分量,对匀速圆周运动,_切_向加速度为零,总的加速度等于_法向加速度。

1.如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋.

解:雨对地的速度2v 等于雨对车的速度3v

加车对地的速度1v ,由此可作矢量三角形.根

据题意得tan α = l/h .

根据直角三角形得v 1 = v 2sin θ + v 3sin α,

其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ,

因此v 1 = v 2sin θ + v 2cos θsin α/cos α,

即 12(sin cos )

l

v v h θθ=+.

2.质点沿半径为R 的圆周按s =2

02

1bt t v -

的规律运动,式中s 为质点离圆周上某点的弧长,0v ,b 都是常量,求:(1)t 时刻质点加速度的大小;(2)t 为何值时,加速度在数值上等于b . 解:(1)bt v t s

v -==

0d d b t

v a -==d d τ

R

bt v R v a n 2

02)(-==

则 2

4

02

22

)(R

bt v b a a a n

-+=+=τ (2)由题意应有 2

4

02

)(R bt v b b a -+==

即 0)(,)(402

4

02

2

=-?-+=bt v R

bt v b b ∴当b

v t 0

=

时,b a = 二章

1.一个质量为m 的物体以初速度0v 从地面斜向上抛出,抛射角为θ,若不计空气阻力,当物体落地时,其动量增量的大小和方向为( c )

(A)增量为0, (B)θsin 20mv ,竖直向上; (C)θsin 20mv ,竖直向下; (D)θcos 20mv ,水平;

2. 质点的质量为m ,置于光滑球面的顶点A 处(球面固定不动),如图所示.当它由静止开始下滑到球面上B 点时,它的加速度的大小为( d )

(A))cos 1(2θ-=g a (B)θsin g a = (C)g a = (D)θθ2222sin )cos 1(4g g a +-=.

3.有两个倾角不同,高度相同、质量一样的斜面放在光滑的水平面上,斜面是光滑的,有两个一样的物块分别从这两个斜面的顶点由静止开始滑下,则(d ) (A)物块到达斜面底端时的动量相 (B)物块到达斜面底端时的动能相等 (C)物块和斜面(以及地球)组成的系统,机械能不守恒 (D)物块和斜面组成的系统水平方向上动量守恒.

4. 一炮弹由于特殊原因在水平飞行过程中,突然炸裂成两块,其中一块作自由下落,则另一块着地点(飞行过程中阻力不计) ( a )

(A) 比原来更远 (B) 比原来更近 (C) 仍和原来一样远 (D) 条件不足,不能判定.

5. 水平公路转弯处的轨道半径为R ,汽车轮胎与路面间的摩擦系数为μ,要使汽车在转弯处不致于发生侧向打滑,汽车在该处行驶速率( b ) (A)不得小于Rg μ (B)不得大于Rg μ

(C)必须等于Rg μ (D)应由汽车质量决定

1. 如图所示,竖直放置的轻弹簧的倔强系数为k ,一质量为m 的物体从离弹簧h

高处自由下落,则物体的最大动能为k

g m mgh 22

2+。

2.一质量为2kg 的物体沿X 轴运动,初速度为50m/s ,若受到反方向大小为10N 的阻力的作用,则产生的加速度为__-5_______m/s 2,在该阻力的作用下,经过 5 s物体的速度减小为初速度的一半。

3.在光滑的水平面内有两个物体A 和B ,已知2A B m m =。(a)物体A 以一定的动能k E 与静止的物体B 发生完全弹性碰撞,则碰撞后两物体的总动能为_k E ; (b)物体A 以一定的动能k E 与静止的物体B 发生完全非弹性碰撞,则碰撞后两物体的总动能为_2

3

k E ___。

1.如图所示,光滑水平桌面上,一根轻弹簧(弹簧的倔强系数为k )两端各连着质量为m 的滑块A 和B 。如果滑块A 被水平飞来的质量为m/4、速度为v 的子弹射中,并留在其中,试求运动过程中弹簧的最大压缩量。

解: 子弹进入物块A 的过程中,子弹、物块A 在水平方向上动量守恒

1

154415

mv mv v v

==

以子弹、物块A 、B 为系统,弹簧具有最大压缩量时,子弹、物块A 、B 具有相同的速度'

v ,系统在水平方向上动量守恒,

'

'94419

mv mv v v

== 系统达到相同速度的过程中,有机械能守恒:

22'2

1max 1511924224

m m v kx v =+

max x =

2. 一质量为M 的平顶小车,在光滑的水平轨道上以速度v 做直线运动。今在车顶前缘放上一质量为m 的物体,物体相对于地面的初速度为0.设物体与车顶之间的摩擦系数为μ,为

使物体不致从车顶上跌下去,问车顶的长度l 最短应为多少?

解:由于摩擦力做功的结果,最后使得物体与小车具有相同的速度,这时物体相对小车

静止而不会跌下。以物体和小车为一系统,水平方向动量守恒,有

V m M Mv )(+=

一对摩擦力的功为:222

1

)(21Mv V m M mgl -+=

联立以上两式可解得车顶的最小长度为:)

(22

m M g Mv l +=μ

34.一质量为m 的物体,从质量为M 的圆弧形槽顶端由静止滑下,设圆弧形槽的半径为R ,张角为/2π,如图所示,所有摩擦都忽略,求:(1)物体刚离开槽底端时,物体和槽的速度各是多少?(2)在物体从A 滑到B 的过程中,物体对槽所做的功W 。 解:(1)物体运动到槽底时,根据机械能定律守恒得

2211

22mgR mv MV =

+,

根据动量守恒定律得 0 = mv - MV .

因此

2211

()22mgR mv MV M =

+2211()22mv mv M =+

解得

v =

从而解得

V =-

(2)物体对槽所做的功等于槽的动能的增量

22

12m gR W MV M m ==

+.

4.一质量为kg m 2=的质点在合力为:)(23)(N j t i t F

-=的作用下在xoy 平面内运动,)(0s t =时质点的初速为:)(0s

m

j i v -=。试求:

(1)t = 2(s) 时质点的速度;(2)t = 0(s) 至t = 2(s)时间内合力对质点冲量; (3)t = 0(s) 至t = 2(s) 时间内合力对质点所作的功。 解: (1))(34)2(s

m j i t v

-==

(2))(46)(0

s N j i dt t F I t t ?-==?

(3)23k A E J =?=

4.F x =30+4t (式中F x 的单位为N ,t 的单位为s)的合外力作用在质量m=10kg 的物体上,试求(1)在开始2s 内此力的冲量I ;(2)若物体的初速度V 1=10m.s -1,方向与F x 相同,在t=2s 时,此物体的速度V 2。 解: (1) 2.0

2.0

2.02

(304)(230)

68I Fdt t dt t t N s =

=+=+=?

?

(2)由质点的动量定理:0I p mv =?=-

18/v m s = 三章

1. 关于力矩有以下几种说法,在下述说法中正确的有:( B )①对某个定轴而言,内力矩不会改变刚体的角动量;②作用力和反作用力对同一轴的力矩之和必为零;③质量相等,形状和大小不同的两个刚体,在相同力矩作用下,它们的角加速度一定相等。 (A)只有②是正确的 (B)①、②是正确的 (C)②、③是正确的; (D)①、②、③都是正确的.

2.关于力矩有以下几种说法,其中正确的是( B ) : (A)内力矩会改变刚体对某个定轴的角动量(动量矩); (B)作用力和反作用力对同一轴的力矩之和必为零; (C)角速度的方向一定与外力矩的方向相同;

(D)质量相等、形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等。

3.一个转动惯量为J 的圆盘绕一固定轴转动,初角速度为0ω。设它所受阻力矩与转动角速度成正比M=ωk -(k 为正常数),它的角速度从0ω变为0ω/2所需时间是( Jln2/k ) (A) J /2 (B) J /k (C) (J /k )ln 2 (D) J /2k 。

4.一根长为l 、质量为M 的匀质棒自由悬挂于通过其上端的光滑水平轴上。现有一质量为m 的子弹以水平速度v 0射向棒的中心,并以v 0/2的水 平速度穿出棒,此后棒的最大偏转角恰为?90,则v 0的大小为( A ) (A)

3/4gl m

M (B) 2/gl (C)

gl m

M 2

5.( )如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统 C

(A) 只有机械能守恒 (B) 只有动量守恒 (C) 只有对转轴O 的角动量守恒 (D) 机械能、动量和角动量均守恒.

1. 图示为一圆锥摆,质量为m 的小球在水平面内以角速度ω

匀速转动,在小球转动一周的过程中 (1)小球动量增量的大小等于___0___; (2)小球所受重力的冲量的大小为__2∏mg/w _; (3)小球所受绳子拉力的水平分量冲量大小为_2Πmg/w _。

2.如图所示,一匀质木球系在一细绳下端(不计细绳质量),且可绕水平光滑固定轴O 转动,今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则此击中过程中木球、子弹系统对O 点的角动量__守恒 ,原因是_对O 点的合外力矩为0_。木球被击中后棒和球升高的过程中,对子弹、木球、细棒、地球系统的机械能_守恒___。

1. 一质量为M =15 kg 、半径为R =0.30 m 的圆柱体,可绕与其几何

轴重合的水平固定轴转动(转动惯量J =

22

1

MR ).现以一不能伸长的轻绳绕于柱面,而在绳的下端悬一质量m =8.0 kg 的物体.不计圆柱体与轴之间的摩擦,求:物体自静止下落, 5s 内下降的距离和绳中的张力. 解: J =

22

1

MR =0.675 kg·m 2 ∵ mg -T =ma TR =J β a =R β

∴ a =mgR 2 / (mR 2 + J )=5.06 m / s 2 下落距离 h =

2

2

1at =63.3 m 张力 T =m (g -a )=37.9 N

2. 长为L ,质量为M (未知)的匀质细杆,一端悬于O 点,自由下垂,紧挨O 点悬挂一单摆,轻质摆线的长度也是L ,摆球的质量为m 。单摆从水平位置由静止开始自由下摆,与细杆作完全弹性碰撞。碰撞后,单摆正好停止。若不计轴承的摩擦,试求:(1)细杆的质量?=M ;(2)细杆被碰后,摆动的最大角度max θ。(设细杆绕O 点的转动惯量为 23

1

ML J =

) 解:摆球与细杆作完全弹性碰撞,在碰撞过程中对0点的角动量守恒,且机械能守恒。

21

3

ML ω=

2211

23

mgL ML ω=

max (1cos )2

L

mgL Mg θ=-

解得:m M 3=;

70.53)31

(01max ==-Cos θ

四章

1.( )一弹簧振子作简谐振动,当位移为振幅的一半时,其动能为总能量的(D) (A)1/4. (B)1/

2. (C)2/1. (D)34

2.( )两个同方向,同频率,振幅均为A 的简谐振动,合成后的振幅仍为A ,则这两个分振动的位相差为(A) (A)

3π (B)2

π

(C)23π (D)π

3. ( C )对一个作简谐振动的物体,下面说法正确的是 (A)物体处在运动正方向的端点时,速度和加速度都达到最大值; (B)物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C)物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D)物体处在负方向的端点时,速度最大,加速度为零。

4.( A )在简谐波传播过程中,沿传播方向相距为λ2

1(λ为波长)的两点的振动速度必定

(A)大小相同,而方向相反. (B)大小和方向均相同. (C)大小不同,方向相同. (D)大小不同,而方向相反. 5.( )平面简谐波在传播的过程,以下说法正确的是

(A)质元离开平衡位置的位移y 为最大时,质元的势能最大,动能为零; (B)质元在平衡位置时动能最大,势能为零; (C)质元的机械能守恒; (D)质元在平衡位置时相对形变量

y

x

??最大,其势能和动能都达最大值。 6. ( A )某时刻驻波波形曲线如图所示,则a ,b 两点相位差是

(A)π (B)2π (C)54

π (D)0

7.( D )机械波在弹性媒质中传播时,若媒质质元刚好经过平衡位置,则它的能量为: (A)动能最大,势能也最大 (B)动能最小,势能也最小 (C)动能最大,势能最小 (D)动能最小,势能最大.

1.两个同方向不同频率简谐振动合成时,振幅随时间作周期性的缓慢变化,形成了振幅时而加强时而减弱的现象,该现象成为__拍__现象。

2.一平面简谐波的波动方程为y=0.02cos(400πt -20πx ),式中各物理量的单位均为国际单位制(SI)。该平面简谐波的波速为 m/s 、波源振动频率为 Hz 。

3.已知质点作简谐运动,其x t -如图所示,则其振动方程为 。

1.一平面简谐波沿x 轴负向传播,波长 1.0m λ=,原点处质点的振动频率为

2.0Hz υ=,振幅0.1A m =,且在0t =时恰好通过平衡位置向y 轴负向运动,求此平面波的波动方程.

解: 由题知0=t 时原点处质点的振动状态为0,000<=v y ,故知原点的振动初相为

2

π

, 取波动方程为:])(2cos[0φλπ++=x

T t A y

则有]2)12(2cos[1.0π

π++=x t y

)2

24cos(1.0π

ππ++=x t m

2.一列机械波沿x 轴正向传播,t =0时的波形如图所示,已知波速为1

10.m s -,波长为2m ,求:

(1)波动方程;(2)P 点的振动方程.

解: 由图可知1.0=A m ,0=t 时,0,200<=

v A y ,∴3

φ=,由题知2=λm , 10=u 1s m -?,则52

10

==

=

λ

υu

Hz ∴ ππυω102== (1)波动方程为

]3

)10(10cos[.01π

π+-

=x t y m (2)由图知,0=t 时,0,2<-

=P P v A y ,∴3

φ-=P (P 点的位相应落后于0点,故取负值)

∴P 点振动方程为)3

4

10cos(1.0ππ-=t y p

3.两相干波源S 1与S 2相距5m ,其振幅相等,频率都是100Hz ,位相差为π;波在媒质中的传播速度为400m ·s -1

,试以S 1S 2连线为坐标轴x ,以S 1S 2连线中点为原点,求S 1S 2间因干涉而静止的各点的坐标.

解:4u

uT m λν

==

= 两个振动的相差为

0201212()()r r π

???λ

?=---

=2[(2.5)(2.5)](21)4x x k π

ππ-

--+=+ [0,2.5]x ∈

∴当k = -1、0和1时,

可得静止点的坐标为x = -2m 、0、2m

4.一列简谐波沿x 轴正向传播,在t 1 = 0s ,t 2 = 0.25s(2t T <)时刻的波形如图所示.试求:(1)P 点的振动表达式;(2)波动方程.

解:(1)设P 点的振动方程为y P =

A cos(ωt +

φ),

其中A = 0.2m 在Δt = 0.25s 内,波向右传播了Δx

= 0.45/3 =

0.15(m),

所以波速为u = Δx/Δt = 0.6(m·s -1). 波长为λ = 4Δx = 0.6(m), 周期为T = λ/u = 1(s),

圆频率为ω = 2π/T = 2π. 当t = 0时,y P = 0,因此cos φ = 0; 由于波沿x 轴正向传播,所以P 点在此时向上运动,速度大于零,所以φ = -π/2. P 点的振动表达式为y P = 0.2cos(2πt - π/2). (2)P 点的位置是x P = 0.3m ,所以波动方程为

0.2cos[2()]2P x x y t u ππ-=-

-100.2cos(2)32t x ππ

π=-+.

大学物理试卷期末考试试题答案

2003—2004学年度第2学期期末考试试卷(A 卷) 《A 卷参考解答与评分标准》 一 填空题:(18分) 1. 10V 2.(变化的磁场能激发涡旋电场),(变化的电场能激发涡旋磁场). 3. 5, 4. 2, 5. 3 8 6. 293K ,9887nm . 二 选择题:(15分) 1. C 2. D 3. A 4. B 5. A . 三、【解】(1) 如图所示,内球带电Q ,外球壳内表面带电Q -. 选取半径为r (12R r R <<)的同心球面S ,则根据高斯定理有 2() 0d 4πS Q r E ε?==? E S 于是,电场强度 204πQ E r ε= (2) 内导体球与外导体球壳间的电势差 22 2 1 1 1 2200 01211d 4π4π4πR R R AB R R R Q Q dr Q U dr r r R R εεε?? =?=?==- ????? ? r E (3) 电容 12 001221114π/4πAB R R Q C U R R R R εε??= =-= ?-?? 四、【解】 在导体薄板上宽为dx 的细条,通过它的电流为 I dI dx b = 在p 点产生的磁感应强度的大小为 02dI dB x μπ= 方向垂直纸面向外. 电流I 在p 点产生的总磁感应强度的大小为 22000ln 2222b b b b dI I I dx B x b x b μμμπππ===? ? 总磁感应强度方向垂直纸面向外. 五、【解法一】 设x vt =, 回路的法线方向为竖直向上( 即回路的绕行方向为逆时

针方向), 则 21 d cos602B S Blx klvt Φ=?=?= ? ∴ d d klvt t εΦ =- =- 0ac ε < ,电动势方向与回路绕行方向相反,即沿顺时针方向(abcd 方向). 【解法二】 动生电动势 1 cos602 Blv klvt ε?动生== 感生电动势 d 111 d [cos60]d 222d d dB B S Blx lx lxk klvt t dt dt dt εΦ=- =?=--?===?感生- klvt εεε==感生动生+ 电动势ε的方向沿顺时针方向(即abcd 方向)。 六、【解】 1. 已知波方程 10.06cos(4.0)y t x ππ=- 与标准波方程 2cos(2) y A t x π πνλ =比较得 , 2.02, 4/Z H m u m s νλνλ==== 2. 当212(21)0x k ππΦ-Φ==+合时,A = 于是,波节位置 21 0.52k x k m += =+ 0,1,2, k =±± 3. 当 21222x k A ππΦ-Φ==合时,A = 于是,波腹位置 x k m = 0,1,2, k =±± ( 或由驻波方程 120.12cos()cos(4)y y y x t m ππ=+= 有 (21) 00.52 x k A x k m π π=+?=+合= 0,1,2, k =±± 20.122 x k A m x k m π π=?=合=, 0,1,2, k =±± )

大学物理(下)期末考试试卷

大学物理(下)期末考试试卷 一、 选择题:(每题3分,共30分) 1. 在感应电场中电磁感应定律可写成?-=?L K dt d l d E φ ,式中K E 为感应电场的电场强度。此式表明: (A) 闭合曲线L 上K E 处处相等。 (B) 感应电场是保守力场。 (C) 感应电场的电力线不是闭合曲线。 (D) 在感应电场中不能像对静电场那样引入电势的概念。 2.一简谐振动曲线如图所示,则振动周期是 (A) 2.62s (B) 2.40s (C) 2.20s (D) 2.00s 3.横谐波以波速u 沿x 轴负方向传播,t 时刻 的波形如图,则该时刻 (A) A 点振动速度大于零, (B) B 点静止不动 (C) C 点向下运动 (D) D 点振动速度小于零. 4.如图所示,有一平面简谐波沿x 轴负方向传 播,坐标原点O 的振动规律为)cos(0φω+=t A y , 则B 点的振动方程为 (A) []0)/(cos φω+-=u x t A y (B) [])/(cos u x t A y +=ω (C) })]/([cos{0φω+-=u x t A y (D) })]/([cos{0φω++=u x t A y 5. 一单色平行光束垂直照射在宽度为 1.20mm 的单缝上,在缝后放一焦距为2.0m 的会聚透镜,已知位于透镜焦平面处的屏幕上的中央明条纹宽度为2.00mm ,则入射光波长约为 (A )100000A (B )40000A (C )50000A (D )60000 A 6.若星光的波长按55000A 计算,孔镜为127cm 的大型望远镜所能分辨的两颗星2 4 1

大学物理期末考试复习题

1.一质点作直线运动,某时刻的瞬时速度2/v m s =,瞬时加速度22/a m s =-,则1秒后质点的速度( D ) (A)等于零 (B)等于2/m s - (C)等于2/m s (D)不能确定 2.一质点沿半径为R 的圆周做匀速率运动,每t 时间转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为( B ) (A)2R t π,2R t π (B)O, 2R t π (C)0,0 (D)2R t π,0 3.如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮 拉湖中的船向岸边运动。设该人以匀速率0v 收绳,绳不伸长且湖水静 止,小船的速率为v ,则小船作( c ) (A)匀加速运动,0cos v v θ = (B)匀减速运动,0cos v v θ= (C)变加速运动,0cos v v θ= (D)变减速运动,0cos v v θ= (E)匀速直线运动,0v v = 4. 以下五种运动形式中,a ? 保持不变的运动是( D ) (A) 单摆的运动. (B) 匀速率圆周运动. (C) 行星的椭圆轨道运动. (D) 抛体运动. (E) 圆锥摆运动. 5. 质点沿轨道AB 作曲线运动,速率逐渐减小,图中哪一种情况正确地表示了质点在C 处的加速度 ( C ) (A) (B) (C) (D 1.一物体作如图所示的斜抛运动,测得在轨道P点处速度大小为v ,其方向与水平 方向成30°角。则物体在P点的切向加速度a τ= ,轨道的曲率半径ρ= 2v2/√3g 。 2. 轮船在水上以相对于水的速度1V r 航行,水流速度为2V r ,一人相对于甲板以速 度3V r 行走,如人相对于岸静止,则1V r 、2V r 和3V r 的关系是:v1+v2+v3=0____。 3.加速度矢量可分解为法向加速度和切向加速度两个分量,对匀速圆周运动,_切_向加速度为零,总的加速度等于_法向加速度。 1.如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋. 解:雨对地的速度2v r 等于雨对车的速度3v r 加车对

大学物理期末考试经典题型(带详细答案的)

例1:1 mol 氦气经如图所示的循环,其中p 2= 2 p 1,V 4= 2 V 1,求在1~2、2~3、3~4、4~1等过程中气体与环境的热量交换以及循环效率(可将氦气视为理想气体)。O p V V 1 V 4 p 1p 2解:p 2= 2 p 1 V 2= V 11234T 2= 2 T 1p 3= 2 p 1V 3= 2 V 1T 3= 4 T 1p 4= p 1V 4= 2 V 1 T 4= 2 T 1 (1)O p V V 1 V 4 p 1p 21234)(1212T T C M m Q V -=1→2 为等体过程, 2→3 为等压过程, )(2323T T C M m Q p -=1 1123)2(23RT T T R =-=1 115)24(2 5RT T T R =-=3→4 为等体过程, )(3434T T C M m Q V -=1 113)42(2 3 RT T T R -=-=4→1 为等压过程, )(4141T T C M m Q p -=1 112 5)2(25RT T T R -=-= O p V V 1 V 4 p 1p 21234(2)经历一个循环,系统吸收的总热量 23121Q Q Q +=1 112 13 523RT RT RT =+=系统放出的总热量1 41342211 RT Q Q Q =+=% 1.1513 2 112≈=-=Q Q η三、卡诺循环 A → B :等温膨胀B → C :绝热膨胀C → D :等温压缩D →A :绝热压缩 ab 为等温膨胀过程:0ln 1>=a b ab V V RT M m Q bc 为绝热膨胀过程:0=bc Q cd 为等温压缩过程:0ln 1<= c d cd V V RT M m Q da 为绝热压缩过程:0 =da Q p V O a b c d V a V d V b V c T 1T 2 a b ab V V RT M m Q Q ln 11= =d c c d V V RT M m Q Q ln 12= =, 卡诺热机的循环效率: p V O a b c d V a V d V b V c ) )(1 212a b d c V V V V T T Q Q (ln ln 11-=- =ηT 1T 2 bc 、ab 过程均为绝热过程,由绝热方程: 11--=γγc c b b V T V T 1 1--=γγd d a a V T V T (T b = T 1, T c = T 2)(T a = T 1, T d = T 2) d c a b V V V V =1 212T T Q Q -=- =11η p V O a b c d V a V d V b V c T 1T 2 卡诺制冷机的制冷系数: 1 2 1212))(T T V V V V T T Q Q a b d c ==(ln ln 2 122122T T T Q Q Q A Q -= -== 卡ω

大学物理期末考试题(上册)10套附答案

n 3 电机学院 200_5_–200_6_学年第_二_学期 《大学物理 》课程期末考试试卷 1 2006.7 开课学院: ,专业: 考试形式:闭卷,所需时间 90 分钟 考生: 学号: 班级 任课教师 一、填充題(共30分,每空格2分) 1.一质点沿x 轴作直线运动,其运动方程为()3262x t t m =-,则质点在运动开始后4s 位移的大小为___________,在该时间所通过的路程为_____________。 2.如图所示,一根细绳的一端固定, 另一端系一小球,绳长0.9L m =,现将小球拉到水平位置OA 后自由释放,小球沿圆弧落至C 点时,30OC OA θ=o 与成,则 小球在C 点时的速率为____________, 切向加速度大小为__________, 法向加速度大小为____________。(210g m s =)。 3.一个质点同时参与两个在同一直线上的简谐振动,其振动的表达式分别为: 215 5.010cos(5t )6x p p -=?m 、211 3.010cos(5t )6 x p p -=?m 。则其合振动的频率 为_____________,振幅为 ,初相为 。 4、如图所示,用白光垂直照射厚度400d nm =的薄膜,为 2 1.40n =, 且12n n n >>3,则反射光中 nm ,

波长的可见光得到加强,透射光中 nm 和___________ nm 可见光得到加强。 5.频率为100Hz ,传播速度为s m 300的平面波,波 长为___________,波线上两点振动的相差为3 π ,则此两点相距 ___m 。 6. 一束自然光从空气中入射到折射率为1.4的液体上,反射光是全偏振光,则此光束射角等于______________,折射角等于______________。 二、选择題(共18分,每小题3分) 1.一质点运动时,0=n a ,t a c =(c 是不为零的常量),此质点作( )。 (A )匀速直线运动;(B )匀速曲线运动; (C ) 匀变速直线运动; (D )不能确定 2.质量为1m kg =的质点,在平面运动、其运动方程为x=3t ,315t y -=(SI 制),则在t=2s 时,所受合外力为( ) (A) 7j ? ; (B) j ?12- ; (C) j ?6- ; (D) j i ? ?+6 3.弹簧振子做简谐振动,当其偏离平衡位置的位移大小为振幅的4 1 时,其动能为振动 总能量的?( ) (A ) 916 (B )1116 (C )1316 (D )1516 4. 在单缝夫琅和费衍射实验中波长为λ的单色光垂直入射到单缝上,对应于衍 射角为300的方向上,若单逢处波面可分成3个半波带,则缝宽度a 等于( ) (A.) λ (B) 1.5λ (C) 2λ (D) 3λ 5. 一质量为M 的平板车以速率v 在水平方向滑行,质量为m 的物体从h 高处直落到车子里,两者合在一起后的运动速率是( ) (A.) M M m v + (B). (C). (D).v

大学物理_物理学_上册_期末考试复习试卷

中国计量学院200 5 ~ 200 6 学年第 2 学期 《 大学物理A(上) 》课程考试试卷( A ) 开课二级学院: 理学院 ,考试时间: 年____月____日 时 考试形式:闭卷■、开卷□,允许带 入场 考生姓名: 学号: 专业: 班级: 一、选择题(30分,每题3分) 1、(0587)如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率0v 收绳,绳不伸长、湖 水静止,则小船的运动是 (A) 匀加速运动. (B) 匀减速运动. (C) 变加速运动. (D) 变减速运动. (E) 匀速直线运动. [ ] 2、 (5020) 有一劲度系数为k 的轻弹簧,原长为l 0,将它吊在天花板上.当它下端挂一托盘平衡时,其长度变为l 1.然后在托盘中放一重物,弹簧长度变为l 2,则由l 1伸长至l 2的过程中,弹性力所作的功为 (A) ?-21d l l x kx . (B) ? 2 1 d l l x kx . (C) ?---0201d l l l l x kx . (D) ? --0 20 1d l l l l x kx . [ ] 3、(0073) 质量为m 的一艘宇宙飞船关闭发动机返回地球时,可认为该飞船只在地球的引力场中运动.已知地球质量为M ,万有引力恒量为G ,则当它从距地球中心R 1处下降到R 2 处时,飞船增加的动能应等于 (A) 2 R GMm (B) 2 2 R GMm (C) 212 1R R R R GMm - (D) 21 21R R R GMm - (E) 2 2 212 1R R R R GMm - [ ]

《大学物理 》下期末考试 有答案

《大学物理》(下)期末统考试题(A 卷) 说明 1考试答案必须写在答题纸上,否则无效。请把答题纸撕下。 一、 选择题(30分,每题3分) 1.一质点作简谐振动,振动方程x=Acos(ωt+φ),当时间t=T/4(T 为周期)时,质点的速度为: (A) -Aωsinφ; (B) Aωsinφ; (C) -Aωcosφ; (D) Aωcosφ 参考解:v =dx/dt = -A ωsin (ωt+φ) ,cos )sin(2 4/?ω?ωπA A v T T t -=+?-== ∴选(C) 2.一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的 (A) 7/6 (B) 9/16 (C) 11/16 (D )13/16 (E) 15/16 参考解:,1615)(221242122122 1221=-=kA k kA kA mv A ∴选(E ) 3.一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中: (A) 它的动能转换成势能. (B) 它的势能转换成动能. (C) 它从相邻的一段质元获得能量其能量逐渐增大. (D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小. 参考解:这里的条件是“平面简谐波在弹性媒质中传播”。由于弹性媒质的质元在平衡位置时的形变最大,所以势能动能最大,这时动能也最大;由于弹性媒质的质元在最大位移处时形变最小,所以势能也最小,这时动能也最小。质元的机械能由最大变到最小的过程中,同时也把该机械能传给相邻的一段质元。∴选(D )

4.如图所示,折射率为n 2、厚度为e 的透明介质薄膜 的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1 <n 2<n 3.若用波长为λ的单色平行光垂直入射到该薄膜 上,则从薄膜上、下两表面反射的光束①与②的光程差是 (A) 2n 2 e . (B) 2n 2 e -λ / 2 . (C) 2n 2 e -λ. (D) 2n 2 e -λ / (2n 2). 参考解:半波损失现象发生在波由波疏媒质到波密媒质的界面的反射现象中。两束光分别经上下表面反射时,都是波疏媒质到波密媒质的界面的反射,同时存在着半波损失。所以,两束反射光的光程差是2n 2 e 。 ∴选(A ) 5.波长λ=5000?的单色光垂直照射到宽度a=0.25mm 的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹,今测得屏幕上中央明条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离d=12mm ,则凸透镜的焦距f 为: (A) 2m (B) 1m (C) 0.5m (D) 0.2m ; (E) 0.1m 参考解:由单缝衍射的暗纹公式, asin φ = 3λ, 和单缝衍射装置的几何关系 ftg φ = d/2, 另,当φ角很小时 sin φ = tg φ, 有 1103 310500061025.0101232==?=---?????λa d f (m ) , ∴选(B ) 6.测量单色光的波长时,下列方法中哪一种方法最为准确? (A) 双缝干涉 (B) 牛顿环 (C) 单缝衍射 (D) 光栅衍射 参考解:从我们做过的实验的经历和实验装置可知,最为准确的方法光栅衍射实验,其次是牛顿环实验。 ∴选(D ) 7.如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I 0的自然光垂直入射在偏振片上,则出射光强为 (A) I 0 / 8. (B) I 0 / 4. (C) 3 I 0 / 8. (D) 3 I 0 / 4. 参考解:穿过第一个偏振片自然光的光强为I 0/2。随后,使用马吕斯定律,出射光强 10201 60cos I I I == ∴ 选(A ) n 3

《大学物理》期末考试复习资料

各科期末考试复习资料 整理... 一、考试命题计划表 二、各章考点分布及典型题解分析

补充典型题 1、 容器中装有质量为M 的氮气(视为刚性双原子分子理想气体,分子量为28),在高速v 运动 的过程中突然停下.设气体定向运动的动能全部转化为气体的内能,试求:气体的温度上升多少 2、一质点沿x 轴作简谐振动,其角频率ω = 10 rad/s .试分别写出以下两种初始状态下的振动方程: (1) 其初始位移x 0 = 7.5 cm ,初始速度v 0 = 75.0 cm/s ; (2) 其初始位移x 0 =7.5 cm ,初始速度v 0 =-75.0 cm/s . 3、有两个相同的容器,一个盛有氦气,另一个盛有氢气(看作刚性分子),它们的压强和温度都相等。现将5J 的热量传给氢气,使氢气温度升高,如果使氦气也升高同样的温度,求应向氦气传递多少的热量。 4、刚性双原子分子的理想气体在一等压膨胀过程中所做的功为A ,试求:(1)此过程中气体内能的增量;(2)此过程中气体吸收的热量。 5、有一平面简谐波沿Ox 轴负方向传播,已知振幅A=1.0m ,周期T=4.0 s, 波长λ=5.0m ,在t=0时坐标原点处的质点位于y=0.5m 处且沿Oy 轴负方向运动。求该平面简谐波的波动方程。 一、 选择题(每个小题只有一个正确答案,3×10=30分) (力)1、一质点运动方程j t i t r )318(2-+=,则它的运动为 。 A 、匀速直线运动 B 、匀速率曲线运动 C 、匀加速直线运动 D 、匀加速曲线运动 (力)2、一质点在光滑平面上,在外力作用下沿某一曲线运动,若突然将外力撤消,则该质点将作 。 A 、匀速率曲线运动 B 、匀速直线运动 C 、停止运动 D 、减速运动 (力)3、质点作变速直线运动时,速度、加速度的关系为 。 A 、速度为零,加速度一定也为零 B 、速度不为零,加速度一定也不为零 C 、加速度很大,速度一定也很大 D 、加速度减小,速度的变化率一定也减小 (力)4、关于势能,正确说法是 。 A 、重力势能总是正的 B 、弹性势能总是负的 C 、万有引力势能总是负的 D 、势能的正负只是相对于势能零点而言

大学物理期末考试题库

1某质点的运动学方程x=6+3t-5t 3 ,则该质点作 ( D ) (A )匀加速直线运动,加速度为正值 (B )匀加速直线运动,加速度为负值 (C )变加速直线运动,加速度为正值 (D )变加速直线运动,加速度为负值 2一作直线运动的物体,其速度x v 与时间t 的关系曲线如图示。设21t t →时间合力作功为 A 1,32t t →时间合力作功为A 2,43t t → 3 C ) (A )01?A ,02?A ,03?A (B )01?A ,02?A , 03?A (C )01=A ,02?A ,03?A (D )01=A ,02?A ,03?A 3 关于静摩擦力作功,指出下述正确者( C ) (A )物体相互作用时,在任何情况下,每个静摩擦力都不作功。 (B )受静摩擦力作用的物体必定静止。 (C )彼此以静摩擦力作用的两个物体处于相对静止状态,所以两个静摩擦力作功之和等于 零。 4 质点沿半径为R 的圆周作匀速率运动,经过时间T 转动一圈,那么在2T 的时间,其平均 速度的大小和平均速率分别为(B ) (A ) , (B ) 0, (C )0, 0 (D ) T R π2, 0 5、质点在恒力F 作用下由静止开始作直线运动。已知在时间1t ?,速率由0增加到υ;在2t ?, 由υ增加到υ2。设该力在1t ?,冲量大小为1I ,所作的功为1A ;在2t ?,冲量大小为2I , 所作的功为2A ,则( D ) A .2121;I I A A <= B. 2121;I I A A >= C. 2121;I I A A => D. 2121;I I A A =< 6如图示两个质量分别为B A m m 和的物体A 和B 一起在水平面上沿x 轴正向作匀减速直线 运动,加速度大小为a ,A 与B 间的最大静摩擦系数为μ,则A 作用于B 的静摩擦力F 的 大小和方向分别为(D ) 轴正向相反与、轴正向相同 与、轴正向相同 与、轴正向相反 与、x a m D x a m x g m x g m B B B B ,,C ,B ,A μμT R π2T R π2T R π2t

大学物理期末考试试题

西安工业大学试题纸 1.若质点的运动方程为:()2r 52/2t t i t j =+-+(SI ),则质点的v = 。 2. 一个轴光滑的定滑轮的转动惯量为2/2MR ,则要使其获得β的角加速度,需要施加的合外力矩的大小为 。 3.刚体的转动惯量取决于刚体的质量、质量的空间分布和 。 4.一物体沿x 轴运动,受到F =3t (N)的作用,则在前1秒内F 对物体的冲量是 (Ns )。 5. 一个质点的动量增量与参照系 。(填“有关”、“无关”) 6. 由力对物体的做功定义可知道功是个过程量,试回答:在保守力场中,当始末位置确定以后,场力做功与路径 。(填“有关”、“无关”) 7.狭义相对论理论中有2个基本原理(假设),一个是相对性原理,另一个是 原理。 8.在一个惯性系下,1、2分别代表一对因果事件的因事件和果事件,则在另一个惯性系下,1事件的发生 2事件的发生(填“早于”、“晚于”)。 9. 一个粒子的固有质量为m 0,当其相对于某惯性系以0.8c 运动时的质量m = ;其动能为 。 10. 波长为λ,周期为T 的一平面简谐波在介质中传播。有A 、B 两个介质质点相距为L ,则A 、B 两个质点的振动相位差=?φ____;振动在A 、B 之间传播所需的时间为_ 。 11. 已知平面简谐波方程为cos()y A Bt Cx =-,式中A 、B 、C 为正值恒量,则波的频率为 ;波长为 ;波沿x 轴的 向传播(填“正”、“负”)。 12.惠更斯原理和波动的叠加原理是研究波动学的基本原理,对于两列波动的干涉而言,产生稳定的干涉现象需要三个基本条件:相同或者相近的振动方向,稳定的位相差,以及 。 13. 已知一个简谐振动的振动方程为10.06cos(10/5)()X t SI π=+,现在另有一简谐振动,其振动方程为20.07cos(10)X t =+Φ,则Φ= 时,它们的合振动振幅最 大;Φ= 时,它们的合振动振幅最小。 14. 平衡态下温度为T 的1mol 单原子分子气体的内能为 。 15. 平衡态下理想气体(分子数密度为n ,分子质量为m ,分子速率为v )的统计压强P= ;从统计角度来看,对压强和温度这些状态量而言, 是理想气体分子热运动激烈程度的标志。

大学物理知识点期末复习版

A r r y r ? 第一章 运动学 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r 称为位矢 位矢r xi yj =+,大小 2r r x y ==+运动方程 ()r r t = 运动方程的分量形式() ()x x t y y t =???=?? 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?△,2r x =?+△路程是△t 时间内质点运动轨迹长度s ?是标量。 明确r ?、r ?、s ?的含义(?≠?≠?r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t u u u D D = =+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?(速度方向是曲线切线方向) 瞬时速度:j v i v j dt dy i dt dx dt r d v y x +=+==,瞬时速率:2222y x v v dt dy dt dx dt r d v +=?? ? ??+??? ??== ds dr dt dt = 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=? 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?△ a 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x 2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ??+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x

大学物理上册期末考试题库

质 点 运 动 学 选择题 [ ]1、某质点作直线运动的运动学方程为x =6+3t -5t 3 (SI),则点作 A 、匀加速直线运动,加速度沿x 轴正方向. B 、匀加速直线运动,加速度沿x 轴负方向. C 、变加速直线运动,加速度沿x 轴正方向. D 、变加速直线运动,加速度沿x 轴负方向. [ ]2、某物体的运动规律为2v dv k t dt =-,式中的k 为大于零的常量.当0=t 时,初速v 0,则速度v 与时间t 的函数关系是 A 、0221v kt v += B 、022 1v kt v +-= C 、02211v kt v +=, D 、02211v kt v +-= [ ]3、质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻 质点的速率) A 、dt dv B 、R v 2 C 、R v dt dv 2+ D 、 242)(R v dt dv + [ ]4、关于曲线运动叙述错误的是 A 、有圆周运动的加速度都指向圆心 B 、圆周运动的速率和角速度之间的关系是ωr v = C 、质点作曲线运动时,某点的速度方向就是沿该点曲线的切线方向 D 、速度的方向一定与运动轨迹相切 [ ]5、以r 表示质点的位失, ?S 表示在?t 的时间内所通过的路程,质点在?t 时间内平均速度的大小为 A 、t S ??; B 、t r ?? C 、t r ?? ; D 、t r ?? 填空题 6、已知质点的运动方程为26(34)r t i t j =++ (SI),则该质点的轨道方程 为 ;s t 4=时速度的大小 ;方向 。 7、在xy 平面内有一运动质点,其运动学方程为:j t i t r 5sin 105cos 10+=(SI ), 则t 时刻其速度=v ;其切向加速度的大小t a ;该质 点运动的轨迹是 。 8、在x 轴上作变加速直线运动的质点,已知其初速度为v 0,初始位置为x 0加速度为a=C t 2 (其中C 为常量),则其速度与时间的关系v= , 运动

大学物理下期末知识点重点总结(考试专用)

1.相对论 1、力学相对性原理和伽利略坐标变换。(1)牛顿力学的一切规律在伽利略变换下其形式保持不变,亦即力学规律对于一切惯性参考系都是等价的。(2)伽利略坐标换算。 2、狭义相对论的基本原理与时空的相对性。(1)在所有的惯性系中物理定律的表达形式都相同。(2)在所有的惯性系中真空中的光速都具有相同的量值。(3)同时性与所选择的参考系有关。(4)时间膨胀。在某一惯性参考系中同一地点先后发生的两个事件的时间间隔。(5)长度收缩。在不同的惯性系中测量出的同一物体的长度差。 3、当速度足够快时,使用洛伦兹坐标变换和相对论速度变换。但是当运动速度远小于光速时,均使用伽利略变换。 4、光的多普勒效应。 当光源相对于观察者运动时,观察者接受到的频率不等于光源实际发出的频率。 5、狭义相对论揭示出电现象和磁现象并不是互相独立的,即表现为统一的电磁场。 2.气体动理论 一.理想气体状态方程: 112212 PV PV PV C =→=; m PV R T M ' = ; P nkT = 8.31J R k mol = ;231.3810J k k -=?; 2316.02210A N mol -=?;A R N k = 二. 理想气体压强公式 2 3kt p n ε= 分子平均平动动能 1 2kt m ε= 三. 理想气体温度公式 1322kt m kT ε== 四.能均分原理 自由度:确定一个物体在空间位置所需要的独立坐标数目。 气体分子的自由度 单原子分子 (如氦、氖分子)3i =;刚性双原子分子5i =;刚性多原子分子6i = 3. 能均分原理:在温度为T 的平衡状态下,气体分子每一自由度上具有的平均动都相等, 其值为1kT 4.一个分子的平均动能为:k i kT ε= 五. 理想气体的内能(所有分子热运动动能 之和) 1.1m ol 理想气体i E R T = 一定量理想气体 ()2i m E R T M ν ν' == 3.热力学 一.准静态过程(平衡过程) 系统从一个平衡态到另一个平衡态,中间经历的每一状态都可以近似看成平衡态过程。 二.热力学第一定律 Q E W =?+;dQ dE dW =+ 1.气体2 1 V V W Pdv = ? 2.,,Q E W ?符号规定 3. 2121()V m V m m m dE C dT E E C T T M M ''= -=- 或 V m i C R = 三.热力学第一定律在理想气体的等值过程和绝热过程中的应用 1. 等体过程 210()V m W Q E C T T ν=?? ? =?=-?? 2. 等压过程 212121()()()p m W p V V R T T Q E W C T T νν=-=-?? ? =?+=-?? C 2 ,1 2C p m p m V m V m i C C R R γ+=+=> 热容比= 3.等温过程 212211 0T T E E m V m p Q W R T ln R T ln M V M p -=? ? ''? ===?? 绝热过程 210()V m Q W E C T T ν=?? ? =-?=--?? 绝热方程1P V C γ =, -1 2V T C γ= , 13P T C γγ--= 。 四.循环过程 特点:系统经历一个循环后,0E ?= 系 统 经 历 一 个 循 环 后 Q W =(代数和)(代数和) 正循环(顺时针)-----热机 逆循环(逆时针)-----致冷机 热机效率: 122111 1Q Q Q W Q Q Q η-= ==- 式中:1Q ------在一个循环中,系统从高温热源吸收的热量和; 2Q ------在一个循环中,系统向低温热源放 出的热量和; 12W Q Q =-------在一个循环中,系统对外 做的功(代数和)。 卡诺热机效率: 2 1 1c T η=- 式中: 1T ------高温热源温度;2T ------低温热源温度; 4. 制冷机的制冷系数: 22 12 Q = Q -Q = 定义:Q e W 卡诺制冷机的制冷系数:22 1212 Q T e Q Q T T == -- 五. 热力学第二定律 开尔文表述:从单一热源吸取热量使它完全变为有用功的循环过程是不存在的(热机效 率为100%是不可能的)。 克劳修斯表述:热量不能自动地从低温物体传到高温物体。 两种表述是等价的. 4.机械振动 一. 简谐运动 振动:描述物质运动状态的物理量在某一数值附近作周期性变化。 机械振动:物体在某一位置附近作周期性的往复运动。 简谐运动动力学特征:F kx =- 简谐运动运动学特征:2 a x ω=- 简谐运动方程: cos()x A t w j =+ 简谐 振动物体 的速度 : () sin dx v A t w w j ==-+ 加速度() 2 2cos d x a A t w w j ==-+ 速度的最大值m v A w =, 加速度的最大值2m a A w = 二. 振幅A : A 取决于振动系统的能量。 角(圆)频率 w :22T p w pn ==,取决于振动 系统的性质 对于弹簧振子 w 、对于单摆 ω相位——t w j +,它决定了振动系统的运动 状态(,x v ) 0t =的相位—初相 arc v tg x j w -= 四.简谐振动的能量 以弹簧振子为例: 222221111 k p E E E mv kx m A kA ω=+= +== 五.同方向同频率的谐振动的合成 设 ()111cos x A t ω?=+ ()222cos x A t ω?=+ 12cos()x x x A t ω?=+=+ 合成振动振幅与两分振动振幅关系为: A A 1 122 1122cos cos tg A A ???=+ 合振动的振幅与两个分振动的振幅以及它们之间的相位差有关。 () 20 12k k ?π?==±± 12A A A + )12 ??± 12A A A - 一21可以取任意值 1212 A A A A A -<<+ 5.机械波 一.波动的基本概念 1.机械波:机械振动在弹性介质中的传播。 2. 波线——沿波传播方向的有向线段。 波面——振动相位相同的点所构成的曲面 3.波的周期T :与质点的振动周期相同。 波长λ:振动的相位在一个周期内传播的距离。 波速u:振动相位传播的速度。波速与介质的性质有关 二. 简谐波 沿ox 轴正方向传播的平面简谐波的波动方 程 质点的振动速度 ] )(sin[?ωω+--=??=u x t A t y v 质点的振动加速度 2cos[()]v x a A t t u ωω??= =--+? 这是沿ox 轴负方向传播的平面简谐波的波 动 方 程 。 c o s [ ()]c o s [2()] x t x y A t A u T ω?π ? = -+=-+ cos 2()t x y A T π?λ?? =++???? 三.波的干涉 两列波 频率相同,振动方向相同,相位相同或相位差恒定,相遇区域内出现有的地方振动始终加强,有的地方振动始终减弱叫做波的干涉现象。 两列相干波加强和减弱的条件: (1) ()π π ???k r r 221 212±=---=?) ,2,1,0(???=k 时, 2 1A A A += (振幅最大,即振动加强) ()()π λ π???1221212+±=---=?k r r ) ,2,1,0(???=k 时, 2 1A A A -= (振幅最小,即振动减弱) (2)若12??=(波源初相相同)时,取 21r r δ=-称为波程差。 212r r k δλ =-=±) ,2,1,0(???=k 时, 2 1A A A +=(振动加强) () 1212λ δ+±=-=k r r ) ,2,1,0(???=k 时, 2 1A A A -=(振动减弱); 其他情况合振幅的数值在最大值12 A A +和最小值 12A A -之间。 6.光学 杨氏双缝干涉(分波阵面法干涉) 1、 x d d d r ===-=θθδtan sin r 12波程差 2、明纹位置: λ k D x d ± =),2,1,0k ( = 3、暗纹位置: 2 ) 12(λd D k x +±=),2,1,0( =k 4、相邻明(暗)纹间距 λd D x = ? 4、若用白光照射,则除了中央明纹(k=0级)是白色之外,其余明纹为彩色。 二、分振幅法干涉 1、薄膜干涉(若两束反射光中有一束发生半波损失,则光程差δ在原来的基础上再加上 2 λ ;若两束光都有半波损失或都没有,则无 需加上λ )以下结果发生在入射光垂直入射时 ?? ???=+==+ -=)(),2,1,0(12) (),2,1(2 sin 222122暗纹)(明纹 k k k k i n n d λλλ δ 2、劈尖干涉(出现的是平行直条纹) 1)明、暗条纹的条件: ?? ? ??=+==+=) (),2,1,0(2)12() (),2,1(2 2暗纹明纹 k k k k nd λλλδ 2)相邻明纹对应劈尖膜的厚度差为n 2e 1λ=-=??+k k k d d d )(图中为 3)相邻明(暗)纹间距为θλθ λn n L 2sin 2≈ = 3、牛顿环(同心环形条纹,明暗环条件同劈尖干涉) 1)明环和暗环的半径: ) () ,2,1,0()(),2,1(2)12(暗环明环 == =-=k n kR r k n R k r λ λ ③相邻明环、暗环所对应的膜厚度差为 n 21λ= -=?+k k k d d d 。 三、迈克尔逊干涉仪 1)可移动反射镜移动距离d 与通过某一参考点条纹数目N 的关系为 2 λ N d = 2)在某一光路中插入一折射率n,厚d 的透明介质薄片时,移动条纹数N 与n 、d 的关系为 21n λN d =-)( 五、夫琅禾费衍射 1、明纹条件:????? =+±==),2,1(2)12(sin 0 k k a λ??(中央明纹) 2、暗纹条件: ),2,1(sin =±=k k a λ? 3、中央明纹宽度(为1±级暗纹间距离): a 2sin 2tan 20f f f l λ??≈ == 其它暗纹宽度: 2 sin sin tan tan 111o k k k k k k l a f f f f f x x l == -=-=-=+++????? 4、半波带数: 明纹(又叫极大)为(2k+1);暗纹(又叫极小)为(2k )。 六、衍射光栅 1、光栅常数d=a(透光宽度)+b (不透光宽度)=单位长度内刻痕(夹缝)数的倒数 2、光栅方程 ) ,2,1,0(sin ) =±=+k k b a λ?( 明纹(满足光栅方程的明纹称为主极大明纹) k=0、1、2、3 称为0级、1级、2级、 3级 明纹 3、缺级 条 件 ??? ????±±±==+±±±==+±±±==++=????±=±=+主极大消失 、、如果、、如果、、如果( 1284449633364222k sin sin )k k a b a k k a b a k k a b a k b a k a k b a λ?λ?七、光的偏振 1、马吕斯定律α2 cos I =I ( α为入射偏振 光的振动方向与偏振片的偏振化方向间的夹角) 2、布儒斯特定律1 20an n n i t = , 0i 称为布儒斯特 角或起偏角。 当入射角为布儒斯特角时,反射光为垂直于入射面的线偏振光,并且该线偏振光与折射光线垂直。 7.量子力学 光电效应 光电效应方程W m h m += 2 1 νγ(式中γ表示光子 的频率,W 表示逸出功) 02 U 1e m m =ν(0U 表示遏止电压) h γ=W ( 0γ表示入射光最低频率/红限频率) 说明了光具有粒子性。 光的波粒二象性 能量: γεh = 动量:22c h m mc γ ε= = 光子动量: λγh c h mc p == = 二、康普顿效应 1、散射公式 2sin 22sin 22200θλθλλλc c m h == -=? 2、说明了光具有粒子性。 四、实物粒子的波粒二象性 1、德布罗意波 h = λ 测不准关系 2 ≥ ???x P x (一定的数值) 2、波函数 1)归一化波函数 x n a x n π ψsin 2)(= ( a x <<0) 概率密度为2 )(x n ψ? =a n dx x 0 2 1 )(ψ 粒子能 量 ) 321(2 2 、、== n h n E n 2)标准化条件 单值性,有限性,连续性

大学物理期末考试试卷(含答案)

《大学物理(下)》期末考试(A 卷) 一、选择题(共27分) 1. (本题3分) 距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为 (A) 3×10-5 T . (B) 6×10-3 T . (C) 1.9×10-2T . (D) 0.6 T . (已知真空的磁导率μ0 =4π×10-7 T ·m/A) [ ] 2. (本题3分) 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将 (A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C) 正比于B ,反比于v . (D) 反比于B ,反比于v . [ ] 3. (本题3分) 有一矩形线圈AOCD ,通以如图示方向的电流I ,将它置于均匀磁场B 中,B 的方向与x 轴正方向一致,线圈平面与x 轴之间的夹角为α,α < 90°.若AO 边在y 轴上,且线圈可绕y 轴自由转动,则线圈将 (A) 转动使α 角减小. (B) 转动使α角增大. (C) 不会发生转动. (D) 如何转动尚不能判定. [ ] 4. (本题3分) 如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使 ab 向右平移时,cd (A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ ] 5. (本题3分) 如图,长度为l 的直导线ab 在均匀磁场B 中以速度v 移动,直导线ab 中的电动势为 (A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. [ ] 6. (本题3分) 已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数 c a b d N M B

相关文档
最新文档