考研概率论第二章复习题

考研概率论第二章复习题
考研概率论第二章复习题

1.设事件{X=K}表示在n 次独立重复试验中恰好成功K 次,则称随机变量X 服从( )

A.两点分布

B.二项分布

C.泊松分布

D.均匀分布

2.设X 的概率密度为f(x)=?

?

?<<-其它,02

x 1),x 2x 4(K 2 则K=

( )

A.16

5 B.2

1 C.

4

3 D.5

4

3.)5,0(~U ξ

,则0

2442

=+++ξξx x

有实数根的概率为 ( )

A 、 0

B 、1

C 、0.4

D 、 0.6 4.设随机变量X 的期望)(X

E 和方差)(X D 相等,则X 不能服从

( )

A 正态分布

B 指数分布

C 泊松分布

D 二项分布 5.设随机变量X 服从参数2=λ的泊松分布,则下列正确的是( )

A 2

)1(-=e F B 2

)0(-=e

F

C }

1{}0{===X P X P D 2

2}1{-=≤e

X

P

6.设)

,(~2

σμN X

,则随着μ的减小,概率}3|{|

σμ<-X P 的

数值( )

A 单调减少

B 单调增大

C 保持不变

D 增减不定

7. 设随机变量X 的概率密度为??

???<<-=,

,;

x ,

x )x (f 其他0224

则P {-1

8.设随机变量X 的分布函数

F (x )=????????

?≥<≤<≤<,

3x ,1;3x 1,32;1x 0,21

;0x ,

,

则P (X=1)=___________. 9.),1(~2

σ

N X ,且=->=≤≤}1{,3.0}31{x P x P 则 。

10.设连续型随机变量X 的分布函数为

F(x)=

??

?

??

≤>+-;

0x ,0,0x ,Be

A 2

x

2

(1)求常数A 和B ;

(2)求随机变量X 的概率密度; (3)计算P{1

11.设顾客在某银行窗口等待服务的时间X (单位:分钟)具有

概率密度

??

??

?>=-.x e x f x

其他,;

,)(00313 某顾客在窗口等待服务,若超过9分钟,他就离开.

(1)求该顾客未等到服务而离开窗口的概率P {X >9}; (2)若该顾客一个月内要去银行5次,以Y 表示他未等到服务

而离开窗口的次数,即事件{X >9}在5次中发生的次数,试求P {Y =0}.

12.(1) X 是(-1,1)上的均匀分布,求||X Y =的密度函数。

(2)设连续型随机变量的密度是)(x f X ,求3

X Y =的密度。 (3) 设连续型随机变量)(~λE X ,求3

X Y =的密度函数。

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

概率论与数理统计2.第二章练习题(答案)

第二章练习题(答案) 一、单项选择题 1. 已知连续型随机变量X 的分布函数为 3.若函数f(x)是某随机变量X 的概率密度函数,则一定成立的是(C ) A. f(x)的定义域是[0, 1] B. f(x)的值域为[0,1] 4.设X - N(l,l),密度函数为f(x),则有(C ) 5.设随机变量X ~ N (/M6), Y ?N 仏25),记 P1 = P (X “ + 5), 则正确的是 (A)对任意“,均有Pi = p 2 (B)对任意“,均有Pi v p? (c)对任意〃,均有Pl > Pi (D )只对“的个别值有P1 = P2 6.设随机变量x ?N(10^s 2) 9 则随着s 的增加 P{|X- 10|< s} ( C ) F(x) = o, kx+b 、 x<0 0 < x< x> 则常数&和〃分别为 (A) k = —b = 0 龙, (B) k = 0,b 丄 (C) k = —,b = 0 (D) k = 0,b= 1 n In In 2.下列函数哪个是某随机变量的分布函数 (A ) z 7 fl -cosx ; 2 0, f sinx, A. f(x)』沁,xnO C. f (x)= a (a>0); B. f (x) 1, x < 0 [cosx, — - < X < - 1 2 2 D. f (x) 其他 0, 0 < X < 7T 其他 —-< x < - 2 2 其他 C- f(x)非负 D. f (x)在(-叫+00)内连续 A. P {X O } B. f(x)= f(-x) C. p{xl} D ? F(x) = l-F(-x) A.递增 B.递减 C.不变 D.不能确定

概率论与数理统计期末考试题及答案

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 模拟试题一 一、 填空题(每空3分,共45分) 1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。 P( A ∪B) = 。 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ; 4、已知随机变量X 的密度函数为:, ()1/4, 020,2 x Ae x x x x ??

8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本, 1 1n i i X X n ==∑为样本均值,则θ的矩估计量为: 。 9、设样本129,, ,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =, 求参数a 的置信度为95%的置信区间: ; 二、 计算题(35分) 1、 (12分)设连续型随机变量X 的密度函数为: 1, 02()2 0, x x x ??≤≤?=???其它 求:1){|21|2}P X -<;2)2 Y X =的密度函数()Y y ?;3)(21)E X -; 2、(12分)设随机变量(X,Y)的密度函数为 1/4, ||,02,(,)0, y x x x y ?<<??

概率论与数理统计第四版第二章习题答案

概率论与数理统计 第二章习题 1 考虑为期一年的一张保险单,若投保人在投保一年内意外死亡,则公司赔付20万元,若投保人因其它原因死亡,则公司赔付5万元,若投保人在投保期末自下而上,则公司无需传给任何费用。若投保人在一年内因意外死亡的概率为0.0002,因其它原因死亡的概率为0.0010,求公司赔付金额的分崣上。 解 设赔付金额为X ,则X 是一个随机变量,取值为20万,5万,0,其相应的概率为0.0002;0.0010; 2.(1)一袋中装有5只球,编号为1,2,3,4,5。在袋中同时取3只,以X 表示取出的3只球中的最大号码,写出随机变量X 的分布律 (2)将一颗骰子抛掷两次,以X 表示两次中得到的小的点数,试求X 的分布律。 解 (1)在袋中同时取3个球,最大的号码是3,4,5。每次取3个球,其总取法: 3554 1021 C ?= =?,若最大号码是3,则有取法只有取到球的编号为1,2,3这一种取法。因而其概率为 2 2335511 {3}10 C P X C C ==== 若最大号码为4,则号码为有1,2,4;1,3,4; 2,3,4共3种取法, 其概率为23335533 {4}10 C P X C C ==== 若最大号码为5,则1,2,5;1,3,5;1,4,5;2,3,5;2,4,5;3,4,5共6种取法 其概率为 25335566 {5}10 C P X C C ==== 一般地 3 5 21 )(C C x X p x -==,其中21-x C 为最大号码是x 的取法种类数,则随机变量X 的分布律为

(2)将一颗骰子抛掷两次,以X表示两次中得到的小的点数,则样本点为S={(1,1),(1,2),(1,3),…,(6,6)},共有36个基本事件, X的取值为1,2,3,4,5,6, 最小点数为1,的共有11种,即(1,1,),(1,2),(2,1)…,(1,6),(6,1),11 {1} 36 P X==; 最小点数为2的共有9种,即(2,2),(2,3),(3,2),…,(3,6),(6,3), 9 {2} 36 P X==; 最小点数为3的共有7种, 7 {3} 36 P X==; 最小点数为4的共有5种, 5 {4} 36 P X==; 最小点数为5的共有3种, 3 {5} 36 P X==; 最小点数为6的共有1种, 1 {6} 36 P X== 于是其分布律为 3 设在15只同类型的产品中有2只次品,在其中取3次,每次任取1只,作不放回抽样,以X表示取出的次品的次数, (1)求X的分布律; (2)画出分布律的图形。 解从15只产品中取3次每次任取1只,取到次品的次数为0,1,2。在不放回的情形下, 从15只产品中每次任取一只取3次,其总的取法为:3 15151413 P=??,其概率为 若取到的次品数为0,即3次取到的都是正品,其取法为3 13131211 P=?? 其概率为 13121122 {0} 15141335 p X ?? === ??

概率论与数理统计习题 含解答 答案

概率论与数理统计复习题(1) 一. 填空. 1.3.0)(,4.0)(==B P A P 。若A 与B 独立,则=-)(B A P ;若已知B A ,中至少有一个事件发生的概率为6.0,则=-)(B A P 。 2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。 3.设),(~2σμN X ,且3.0}42{ },2{}2{=<<≥=}0{X P 。 4.1)()(==X D X E 。若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则 =≠}0{X P 。 5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P 6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。 7.)16,1(~),9,0(~N Y N X ,且X 与Y 独立,则=-<-<-}12{Y X P (用Φ表示), =XY ρ 。 8.已知X 的期望为5,而均方差为2,估计≥<<}82{X P 。 9.设1?θ和2?θ均是未知参数θ的无偏估计量,且)?()?(2221θθE E >,则其中的统计量 更有效。 10.在实际问题中求某参数的置信区间时,总是希望置信水平愈 愈好,而置信区间的

长度愈 愈好。但当增大置信水平时,则相应的置信区间长度总是 。 二.假设某地区位于甲、乙两河流的汇合处,当任一河流泛滥时,该地区即遭受水灾。设某时期内甲河流泛滥的概率为0.1;乙河流泛滥的概率为0.2;当甲河流泛滥时,乙河流泛滥的概率为0.3,试求: (1)该时期内这个地区遭受水灾的概率; (2)当乙河流泛滥时,甲河流泛滥的概率。 三.高射炮向敌机发射三发炮弹(每弹击中与否相互独立),每发炮弹击中敌机的概率均为0.3,又知若敌机中一弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。(1)求敌机被击落的概率;(2)若敌机被击落,求它中两弹的概率。 四. X 的概率密度为? ??<<=其它 ,0,0 ,)(c x kx x f 且E(X)=32。(1)求常数k 和c ;(2) 求X 的分布函数F(x); 五. (X,Y )的概率密度 ???<<<<+=otherwise ,02 0,42 ),2(),(y x y kx y x f 。求 (1)常数k ;(2) X 与Y 是否独立;(3)XY ρ; 六..设X ,Y 独立,下表列出了二维随机向量(X ,Y )的分布,边缘分布的部分概率,试 将其余概率值填入表中空白处.

概率论与数理统计复习题带答案

;第一章 一、填空题 1.若事件A?B且P(A)=, P(B) = , 则 P(A-B)=()。 2.甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为,乙击 中敌机的概率为.求敌机被击中的概率为()。 3.设A、B、C为三个事件,则事件A,B,C中不少于二个发生可 表示为(AB AC BC ++)。 4.三台机器相互独立运转,设第一,第二,第三台机器不发生故障 的概率依次为,,,则这三台机器中至少有一台发生故障的概率为()。 5.某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二 次的概率为()。 6.设A、B、C为三个事件,则事件A,B与C都不发生可表示为 (ABC)。 7.设A、B、C为三个事件,则事件A,B,C中不多于一个发生可 表示为(AB AC BC); 8.若事件A与事件B相互独立,且P(A)=, P(B) = , 则 P(A|B)= ();

9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为,乙击中敌机的概率为.求敌机被击中的概率为( ); 10. 若事件A 与事件B 互不相容,且P (A )=, P(B) = , 则 P(B A -)= ( ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的 概率依次为,,,则这三台机器中最多有一台发生故障的概率为( )。 12. 若事件 A ? B 且P (A )=, P(B) = , 则 P(B A )=( ); 13. 若事件 A 与事件 B 互不相容,且P (A )=, P(B) = , 则 P(B A )= ( ) 14. A、B为两互斥事件,则A B =( S ) 15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为 ( ABC ABC ABC ++ ) 16. 若()0.4P A =,()0.2P B =,()P AB =则(|)P AB A B =( ) 17. A、B为两互斥事件,则AB =( S ) 18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概 率为( 1 10000 )。 二、选择填空题

概率统计试题和答案

题目答案的红色部分为更正部分,请同志们注意下 统计与概率 1.(2017课标1,理2)如图,正方形ABCD 内的图形来自中国古代的 太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中 心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( B ) A .14 B . π8 C .12 D . π 4 2.(2017课标3,理3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图. 根据该折线图,下列结论错误的是( A ) A .月接待游客量逐月增加 B .年接待游客量逐年增加 C .各年的月接待游客量高峰期大致在7,8月 D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 3.(2017课标2,理13)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D X = 。 4.(2016年全国I 理14)5(2)x x + 的展开式中,x 3的系数是 10 .(用数字填写答案) 5.(2016年全国I 理14)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( B ) (A )13 (B )12 (C )23 (D )3 4 5.(2016年全国2理10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y , ()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近 似值为( C )(A ) 4n m (B )2n m (C )4m n (D )2m n 6.(2016年全国3理4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气 温的雷达图。图中A 点表示十月的平均最高气温约为150 C ,B 点表示四月的平均 最低气温约为50 C 。下面叙述不正确的是( D ) (A) 各月的平均最低气温都在00 C 以上 (B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200 C 的月份有5个 7.(15年新课标1理10)投篮测试中,每人投3次,至少投中2次才能通过测试。已知某同学每次投

1概率统计试题分析

概率统计试题分析 1 一、填空题 1、已知3.0)(,5.0)(=-=B A P B P ,求( )P A B = 0.2 。 2、设X 和Y 相互独立,都在区间[1,3]上服从均匀分布,记事件 }{}{a Y B a X A >=≤=,,且7 ()9 P A B = ,则常数 a = 5733 a =或。 3、某机构有一个9人组成的顾问小组,如每个顾问提出正确意见的概率是7.0,现在该机构对某事可行与否征求各位顾问的意见, 并按多数人意见做出决策,做出正确决策的概率= (写出计算表达式)9 9950.70.3k k k k C -=??∑ 4、设(0,1)X U :,则2ln Y X =-的概率密度为 21, 0()2 00 y Y e y f y y -?>?=??≤? 5、如果存在常数)0(,≠a b a , 使()1P Y aX b =+=,且 +∞<

22 1 1(1)~(4)n i i n X χ=-∑ 8、设∧ θ是θ的无偏估计,()0D θ∧ >,则比较大小2 ()E θ∧ > 2 θ 二、(10分)对有100名学生的班级考勤情况进行评估,从课堂上随机点了10位同学的名字,如果班上学生的缺勤人数从0到2是等可能的,并且已知该班考核为全勤,计算该班实际上确实全勤的概率。 解 设i A 表示实际缺勤人数0,1,2i =,所以1 ()3 i P A = 设B 表示点名为全勤(优秀)1010010100 ()i i C P B A C -=,0,1,2i = 0002 ()() 110 ()0.369298 ()() i i i P A P B A P A B P A P B A == = =∑ 三、(12分)设二维随机变量()Y X ,的联合密度函数为: ()201,02 ,3 xy x x y f x y ?+ <<<

概率论与数理统计复习题

《概率论与数理统计》综合练习题 第一章﹑事件与概率 1. 事件之间的关系与运算:事件的积、和、差,事件的包含,尤其是对互不相容(互斥)事件,互逆(对立)事件,事件的独立性等概念的理解及其应用;交换律,结合律,分配律,对偶律等的运用 例1.设A ﹑B 是任意两个概率不为零的互不相容事件,则下列结论中哪些是正确的: A 、P(AB)=P(A)P(B), B 、P(A+B)=P(A)+P(B), C 、P(A ˉB ˉ)=0, D 、P(A-B)=P(A), E 、P(A ∪B)=1, F 、P(AB) > 0 2.古典概型的计算:公式P(A)=N(A)/N(Ω) 例2.将五个不同的球随机地放入四个不同的杯中,求(1)出现三个空杯的概率;(2)杯中球的个数最多为一个的概率。 3.伯努利概型,二项概率公式的应用,其公式:X~B(n,p), P{X=k}= C n k p k (1-p)n-k , k=0,1,2,…,n 。 例3.一批产品的次品率为p (0

概率统计试题库及答案

、填空题 1、设 A 、B 、C 表示三个随机事件,试用 A 、B 、C 表示下列事件:①三个事件都发生 ____________ ;__②_ A 、B 发生,C 3、 设 A 、 B 、C 为三个事件,则这三个事件都不发生为 ABC; A B C.) 4、 设 A 、B 、C 表示三个事件,则事件“A 、B 、C 三个事件至少发生一个”可表示为 ,事件“A 、B 、 C 都发生”可表 示为 , 5、 设 A 、 B 、 C 为三事件,则事件“A 发生 B 与 C 都不发生”可表示为 ________ 事__件; “A 、B 、C 不都发生”可表 示为 ____________ ;_事_ 件“A 、B 、C 都不发生”可表示为 ____ 。_(_ABC ,A B C ;A B C ) 6、 A B ___________ ;__ A B ___________ ;__A B ___________ 。_(_ B A , A B , A B ) 7、 设事件 A 、B 、C ,将下列事件用 A 、B 、C 间的运算关系表示:(1)三个事件都发生表示为: _______ ;_(_ 2)三 个 事件不都发生表示为: ________ ;_(_ 3)三个事件中至少有一个事件发生表示为: _____ 。_(_ ABC , A B C , A B C ) 8、 用 A 、B 、C 分别表示三个事件,试用 A 、B 、C 表示下列事件: A 、B 出现、C 不出现 ;至少有一 个 事 件 出 现 ; 至 少 有 两 个 事 件 出 现 。 ( ABC,A B C,ABC ABC ABC ABC ) 9、 当且仅当 A 发生、 B 不发生时,事件 ________ 发_生_ 。( A B ) 10、 以 A 表 示 事 件 “甲 种 产 品 畅 销 , 乙 种 产 品 滞 销 ”, 则 其 对 立 事 件 A 表 示 。(甲种产品滞销或乙种产品畅销) 11、 有R 1, R 2 , R 3 三个电子元件,用A 1,A 2,A 3分别表示事件“元件R i 正常工作”(i 1,2,3) ,试用 A 1,A 2,A 3表示下列事件: 12、 若事件 A 发生必然导致事件 B 发生,则称事件 B _____ 事_件 A 。(包含) 13、 若 A 为不可能事件,则 P (A )= ;其逆命题成立否 。(0,不成立) 14、 设A、B为两个事件, P (A )=0 .5, P (A -B )=0.2,则 P (A B ) 。(0.7) 15、 设P A 0.4,P A B 0.7,若 A, B 互不相容,则P B ______________ ;_若 A, B 相互独立,则P B _______ 。_(_0.3, 概率论与数理统计试题库 不发生 _________ ;__③三个事件中至少有一个发生 2、 设 A 、B 、C 为三个事件,则这三个事件都发生为 _______________ 。_(__A_BC , ABC , A B C ) ;三个事件恰有一个发生 为 ABC; ABC ABC ABC )。 ;三个事件至少有一个发生为 事件“A 、 B 、C 三事件中至少有两个发生”可表示为 。( A B C , ABC , AB BC AC ) 三个元件都正常工作 ;恰有一个元件不正常工作 至少有一个元件 正常工作 。( A 1 A 2 A 3, A 1A 2 A 3 A 1 A 2A 3 A 1A 2A 3,A 1 A 2 A 3)

概率论与数理统计第二章答案

第二章 随机变量及其分布 1、解: 设公司赔付金额为X ,则X 的可能值为; 投保一年内因意外死亡:20万,概率为0.0002 投保一年内因其他原因死亡:5万,概率为0.0010 投保一年内没有死亡:0,概率为1-0.0002-0.0010=0.9988 所以X 2、一袋中有5X 表示取出的三只球中的最大号码,写出随机变量X 的分布律 解:X 可以取值3,4,5,分布律为 10 61)4,3,2,1,5()5(1031)3,2,1,4()4(10 11)2,1,3()3(35 2 435 2 335 2 2=?= === ?==== ?= ==C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为 也可列为下表 X : 3, 4,5 P :10 6, 103,101 3、设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。 解:任取三只,其中新含次品个数X 可能为0,1,2个。 35 22 )0(315313= ==C C X P 3512)1(3 15213 12=?==C C C X P 35 1)2(3 15 113 22= ?= =C C C X P 再列为下表 X : 0, 1, 2 P : 35 1, 3512,3522 4、进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0

概率统计习题含答案

作业2(修改2008-10) 4. 掷一枚非均匀的硬币,出现正面的概率为(01)p p <<,若以X 表示直至掷到正、反面 都出现为止所需投掷的次数,求X 的概率分布. 解 对于2,3,k =L ,前1k -次出现正面,第k 次出现反面的概率是1(1)k p p --,前1k -次出现反面,第k 次出现正面的概率是1(1)k p p --,因而X 有概率分布 11()(1)(1)k k P X k p p p p --==-+-,2,3,k =L . 5. 一个小班有8位学生,其中有5人能正确回答老师的一个问题.老师随意地逐个请学生回答,直到得到正确的回答为止,求在得到正确的回答以前不能正确回答问题的学生个数的概率分布. 第1个能正确回答的概率是5/8, 第1个不能正确回答,第2个能正确回答的概率是(3/8)(5/7)15/56=, 前2个不能正确回答,第3个能正确回答的概率是(3/8)(2/7)(5/6)5/56=, 前3个不能正确回答,第4个能正确回答的概率是(3/8)(2/7)(1/6)(5/5)1/56=, 前4个都不能正确回答的概率是(3/8)(2/7)(1/6)(0/5)0=. 设在得到正确的回答以前不能正确回答问题的学生个数为X ,则X 有分布 6. 设某人有100位朋友都会向他发送电子邮件,在一天中每位朋友向他发出电子邮件的概率都是0.04,问一天中他至少收到4位朋友的电子邮件的概率是多少?试用二项分布公式和泊松近似律分别计算. 解 设一天中某人收到X 位朋友的电子邮件,则~(100,0.04)X B ,一天中他至少收到4位朋友的电子邮件的概率是(4)P X ≥. 1) 用二项分布公式计算 3 1001000(4)1(4)10.04(10.04)0.5705k k k k P X P X C -=≥=-<=--=∑. 2) 用泊松近似律计算 331004 1000 04(4)1(4)10.04(10.04)10.5665! k k k k k k P X P X C e k --==≥=-<=--≈-=∑ ∑ .

大学概率论与数理统计必过复习资料试题解析(绝对好用)

《概率论与数理统计》复习提要第一章随机事件与概率1.事件的关系 2.运算规则(1)(2)(3)(4) 3.概率满足的三条公理及性质:(1)(2)(3)对互不相容的事件,有(可以取)(4)(5) (6),若,则,(7)(8) 4.古典概型:基本事件有限且等可能 5.几何概率 6.条件概率(1)定义:若,则(2)乘法公式:若为完备事件组,,则有(3)全概率公式: (4) Bayes公式: 7.事件的独立 性:独立(注意独立性的应用)第二章随机变量与概率分 布 1.离散随机变量:取有限或可列个值,满足(1),(2)(3)对 任意, 2.连续随机变量:具有概率密度函数,满足(1)(2); (3)对任意, 4.分布函数,具有以下性质(1);(2)单调非降;(3)右连续;(4),特别;(5)对离散随机变量,; (6)为连续函数,且在连续点上, 5.正态分布的 概率计算以记标准正态分布的分布函数,则有(1);(2);(3) 若,则;(4)以记标准正态分布的上侧分位 数,则 6.随机变量的函数(1)离散时,求的值,将相同的概率相加;(2)连续,在的取值范围内严格单调,且有一阶连续导 数,,若不单调,先求分布函数,再求导。第三章随机向量 1.二维离散随机向量,联合分布列,边缘分布,有(1);(2 (3), 2.二维连续随机向量,联合密度,边缘密度,有 (1);(2)(4)(3);,3.二维均匀分布,其中为的面积 4.二维正态分布 且; 5.二维随机向量的分布函数有(1)关于单调非降;(2)关 于右连续;(3);(4),,;(5);(6)对 二维连续随机向量, 6.随机变量的独立性独立(1) 离散时独立(2)连续时独立(3)二维正态分布独立,且 7.随机变量的函数分布(1)和的分布的密度(2)最大最小分布第四章随机变量的数字特征 1.期望 (1) 离散时 (2) 连续 时, ;,; (3) 二维时, (4); (5);(6);(7)独立时, 2.方差(1)方差,标准差(2); (3);(4)独立时, 3.协方差 (1);;;(2)(3);(4)时, 称不相关,独立不相关,反之不成立,但正态时等价;(5) 4.相关系数;有, 5.阶原点矩,阶中心矩第五章大数定律与中心极限定理 1.Chebyshev不等式 2.大数定律 3.中心极限定理(1)设随机变量独立同分布, 或,或

概率论与数理统计-期末测试(新)第二章练习题

一、选择题 1、离散型随机变量X 的分布律为(),1,2,k P X k b k λ===L ,则λ为( )。 (A)0λ>的任意实数 (B)1b λ=+ (C)11b λ=+ (D)1 1 b λ=- 2、设随机变量X 的分布律为()! k P X k ak λ== (λ>0,k=1,2,3,…),则a = ( )。 (A)e λ- (B) e λ (C) 1e λ-- (D) 1e λ- 3、离散型随机变量X 的分布律为{},0,1,2,3! k A P X k k k ===L 则常数A 应为( )。 (A) 3 1e (B) 3 1-e (C) 3 -e (D) 3 e 4、离散型随机变量X ,则{||2|0}P X X ≤≥为( )。 (A) 2129 (B)2229 (C)23 (D)1 3 5、随机变量X 服从0-1分布,又知X 取1的概率为它取0的概率的一半,则(1)P X =为( )。 (A) 1 3 (B) 0 (C) 12 (D) 1 6、设随机变量X 的分布律为: 012 0.250.350.4 X P ,而{}()F x P X x =≤,则 =)2( F ( )。 (A) 0.6 (B) 0.35 (C) 0.25 (D) 0 7、已知离散型随机变量的分布律为 101 0.250.50.25 X P -,则以下各分布律正确的是( )。 (A) 22020.510.5X P - (B) 21113 0.250.250.5 X P +- (C) 20 1 0.50.25X P (D) 201 0.50.5 X P

8、随机变量,X Y 都服从二项分布:~(2, ), ~(4, )X B p Y B p ,01p <<,已知 {}5 19 P X ≥= ,则{}1P Y ≥=( )。 (A) 6581 (B) 5681 (C) 80 81 (D) 1 9、随机变量X 的方差()3D X =,则(25)D X -等于( )。 (A) 6 (B) 7 (C) 12 (D) 17 10、随机变量X 的分布律为:1 ()(),1,2,2(1) P X n P X n n n n ===-= =+L , 则()E X =( )。 (A)0 (B)1 (C)0.5 (D)不存在 11、具有下面分布律的随机变量中数学期望不存在的是( )。 (A) 32 ,1,2,...3k k P X k k ??===???? (B) {},0,0,1,2,...!k P X k e k k λλλ-==>= (C) {}1,1,2,...2k P X k k ??=== ??? (D) {}()11,01,0,1.k k P X k p p p k -==-<<= 12、设随机变量X 服从λ=2的泊松分布。则随机变量2Y X =的方差()Var Y =( )。 (A) 8 (B) 4 (C) 2 (D) 16 13、随机变量X 服从泊松分布,参数4=λ,则2 ()X E =( )。 (A) 16 (B) 20 (C) 4 (D) 12 14、如果( ),则X 一定服从普哇松分布。 (A) ()()E X Var X = (B)2()()E X E X = (C)X 取一切非负整数值 (D) X 是有限个相互独立且都服从参数为λ的普哇松分布的随机变量的和。 15、设随机变量X 服从参数为λ的普哇松分布,又1()1x f x x ?=?-? 为偶数 为奇数,()Y f X =, 则(1)P Y ==( )。 (A)212e λ-+ (B) 212 e λ -- (C) 22e λ- (D)以上都不对

概率统计试题及答案

<概率论>试题 一、填空题 1.设 A 、B 、C 是三个随机事件。试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生 3)A 、B 、C 不多于一个发生 2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。则P(B )A U = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,U 则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为 5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为 6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===???则 A=______________ 7. 已知随机变量X 的密度为()f x =? ??<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a = ________ b =________ 8. 设X ~2 (2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80 81 ,则该射手的命中率为_________ 10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥= ,4 {0}{0}7 P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<= 13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<= 14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分

概率论和数理统计考试试题和答案解析

一.填空题(每空题2分,共计60分) 1、A 、B 是两个随机事件,已知0.3)B (p ,5.0)(,4.0)A (p ===A B P ,则=)B A (p 0.6 , =)B -A (p 0.1 ,)(B A P ?= 0.4 , =)B A (p 0.6。 2、一个袋子中有大小相同的红球6只、黑球4只。(1)从中不放回地任取2只,则第一次、 第二次取红色球的概率为: 1/3 。(2)若有放回地任取2只,则第一次、第二次取红色球的概率为: 9/25 。(3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为: 21/55 。 3、设随机变量X 服从B (2,0.5)的二项分布,则{}=≥1X p 0.75, Y 服从二项分布B(98, 0.5), X 与Y 相互独立, 则X+Y 服从 B(100,0.5),E(X+Y)= 50 ,方差D(X+Y)= 25 。 4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1、0.15.现从由甲厂、 乙厂的产品分别占60%、40%的一批产品中随机抽取一件。 (1)抽到次品的概率为: 0.12 。 (2)若发现该件是次品,则该次品为甲厂生产的概率为: 0.5 . 5、设二维随机向量),(Y X 的分布律如右,则=a 0.1, =)(X E 0.4, Y X 与的协方差为: - 0.2 , 2Y X Z +=的分布律为: 6、若随机变量X ~)4 ,2(N 且8413.0)1(=Φ,9772.0)2(=Φ,则=<<-}42{X P 0.815 , (~,12N Y X Y 则+= 5 , 16 )。 7、随机变量X 、Y 的数学期望E(X)= -1,E(Y)=2, 方差D(X)=1,D(Y)=2, 且X 、Y 相互独立,则: =-)2(Y X E - 4 ,=-)2(Y X D 6 。 8、设2),(125===Y X Cov Y D X D ,)(,)(,则=+)(Y X D 30 9、设261,,X X 是总体)16,8(N 的容量为26的样本,X 为样本均值,2S 为样本方差。则:~X N (8 , 8/13 ), ~16252 S )25(2χ, ~5 2/8s X - )25(t 。

概率统计试卷及答案

概率统计试卷 A 一、填空题(共5 小题,每题 3 分,共计15分) 1、设P(A) =, P(B) = , P() = ,若事件A与B互不相容,则 = . 2、设在一次试验中,事件A发生的概率为,现进行n次重复试验,则事件A至少发生一次的概率为 . 3、已知P() = , P(B) = , P() = ,则P()= . 4、设随机变量的分布函数为则= . 5、设随机变量~,则P{}= . 二、选择题(共5 小题,每题3 分,共计15分) 1、设P(A|B) = P(B|A)=,, 则( )一定成立. (A) A与B独立,且. (B) A与B独立,且. (C) A与B不独立,且. (D) A与B不独立,且. 2、下列函数中,()可以作为连续型随机变量的概率密度. (A) (B) (C) (D) 3、设X为一随机变量,若D(10) =10,则D() = ( ). (A) . (B) 1. (C) 10. (D) 100. 4、设随机变量服从正态分布,是来自的样本, 为样本均值,已知,则有(). (A) . (B) . (C) . (D) . 5、在假设检验中,显著性水平的意义是(). (A)原假设成立,经检验不能拒绝的概率. (B)原假设不成立,经检验被拒绝的概率. (C) 原假设成立,经检验被拒绝的概率. (D)原假设不成立,经检验不能拒绝的概率. 三、10片药片中有5片是安慰剂, (1)从中任取5片,求其中至少有2片是安慰剂的概率. (2)从中每次取一片,作不放回抽样,求前3次都取到安慰剂的概率. (本题10分) 四、以表示某商店从早晨开始营业起直到第一个顾客到达的等待时间(以分计),的分布函数是 求下述概率: (1){至多3分钟}. (2){3分钟至4分钟之间}. (本题10分) 五、设随机变量(,Y)的概率密度为 (1) 求边缘概率密度.

概率统计第二章答案

概率论与数理统计作业 班级 姓名 学号 任课教师 第二章 随机变量及其分布 教学要求: 一、理解随机变量的概念;理解离散型随机变量及其分布律的定义,理解分布律的性质;掌 握(0-1)分布、二项分布、Poisson 分布的概念、性质;会计算随机变量的分布律. 二、理解分布函数的概念及其性质;理解连续型随机变量的定义、概率密度函数的基本性质, 并熟练掌握有关的计算;会由分布律计算分布函数,会由分布函数计算密度函数,由密度函数计算分布函数. 三、掌握均匀分布、正态分布和指数分布的概念、性质. 一、掌握一维随机变量函数的分布. 重点:二项分布、正态分布,随机变量的概率分布. 难点:正态分布,随机变量函数的分布. 练习一 随机变量、离散型随机变量及其分布律 1.填空、选择 (1)抛一枚质地均匀的硬币,设随机变量?? ?=,,出现正面 ,,出现反面H T X 10 则随机变量X 在区间 ]22 1 ,(上取值的概率为21. (2)一射击运动员对同一目标独立地进行4次射击,以X 表示命中的次数,如果 {}81 80 1= ≥X P ,则{}==1X P 8. (3)设离散型随机变量X 的概率分布为{},,2,1, ===i cp i X P i 其中0>c 是常数, 则( B ) (A )11-=c p ; (B )1 1 +=c p ; (C )1+=c p ; (D )0>p 为任意常数 2.一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取出3只球,以X 表示取出的3只球中的最大号码,写出随机变量X 的分布律. 解:从1~5中随机取3个共有103 5=C 种取法. 以X 表示3个中的最大值.X 的所有可能取值为;5,4,3 {}3=X 表示取出的3个数以3为最大值,其余两个数是1,2,仅有这一种情况,则

相关文档
最新文档