半导体制冷器原理及使用

半导体制冷器原理及使用
半导体制冷器原理及使用

一、介绍

半导体致冷器(TE)也叫热电致冷器,是一种热泵,它的优点是没有滑动部件,应用在一些空间受到限制,可靠性要求高,无致冷剂污染的场合。

半导体致冷器的工作运转是用直流电流,它既可致冷又可加热,通过改变直流电流的极性来决定在同一致冷器上实现致冷或加热,这个效果的产生就是通过热电的原理,以下的图就是一个单片的致冷器,它由两片陶瓷片组成,其中间有N型和P型的半导体材料(碲化铋),这个半导体元件在电路上是用串联形式连结组成。

半导体致冷器的工作原理是:当一块N型半导体材料和一块P 型半导体材料联结成电偶对时,在这个电路中接通直流电流后,就能产生能量的转移,电流由N型元件流向P型元件的接头吸收热量,成为冷端由P型元件流向N型元件的接头释放热量,成为热端。吸热和放热的大小是通过电流的大小以及半导体材料N、P的元件对数来决定,以下三点是热电致冷的温差电效应。

1、塞贝克效应(SEEBECK EFFECT)

一八二二年德国人塞贝克发现当两种不同的导体相连接时,如两个连接点保持不同的温差,则在导体中产生一个温差电动势: ES=S.△T

式中:ES为温差电动势

S(?)为温差电动势率(塞贝克系数)

△T为接点之间的温差

2、珀尔帖效应(PELTIER EFFECT)

一八三四年法国人珀尔帖发现了与塞贝克效应的效应,即当电流流经两个不同导体形成的接点时,接点处会产生放热和吸热现象,放热或吸热大小由电流的大小来决定。

Qл=л.I л=aTc

式中:Qπ 为放热或吸热功率

π为比例系数,称为珀尔帖系数

I为工作电流

a为温差电动势率

Tc为冷接点温度

3、汤姆逊效应 (THOMSON EFFECT)

当电流流经存在温度梯度的导体时,除了由导体电阻产生的焦耳热之外,导体还要放出或吸收热量,在温差为△T的导体两点之间,其放热量或吸热量为:

Qτ=τ.I.△T

Qτ为放热或吸热功率

τ为汤姆逊系数

I为工作电流

△T为温度梯度

以上的理论直到本世纪五十年代,苏联科学院半导体研究所约飞院士对半导体进行了大量研究,于一九五四年发表了研究成果,表明碲化铋化合物固溶体有良好的致冷效果,这是最早的也是最重要的热电半导体材料,至今还是温差致冷中半导体材料的一种主要成份。

约飞的理论得到实践应用后,有众多的学者进行研究到六十年代半导体致冷材料的优值系数,才达到相当水平,得到大规模的应用,也就是我们现在的半导体致冷器件。

中国在半导体致冷技术开始于50年代末60年代初,当时在国际上也是比较早的研究单位之一,60年代中期,半导体材料的性能达到了国际水平,60年代末至80年代初是我国半导体致冷器技术发展的一个台阶。在此期间,一方面半导体致冷材料的优值系数

提高,另一方面拓宽其应用领域。中国科学院半导体研究所投入了大量的人力和物力,获得了半导体致冷器,因而才有了现在的半导体致冷器的生产及其两次产品的开发和应用。

二、致冷器的技术应用

半导体致冷器作为特种冷源,在技术应用上具有以下的优点和特点:

1、不需要任何致冷剂,可连续工作,没有污染源没有旋转部件,

不会产生回转效应,没有滑动部件是一种固体器件,工作时没有震动、噪音、寿命长,安装容易。

2、半导体致冷器具有两种功能,既能致冷,又能加热,致冷效

率一般不高,但致热效率很高,永远大于1。因此使用一个器件就可以代替分立的加热系统和致冷系统。

3、半导体致冷器是电流换能型器件,通过输入电流的控制,可

实现高精度的温度控制,再加上温度检测和控制手段,很容易实现遥控、程控、计算机控制,便于组成自动控制系统。

4、半导体致冷器热惯性非常小,致冷致热时间很快,在热端散

热良好冷端空载的情况下,通电不到一分钟,致冷器就能达到最大温差。

5、半导体致冷器的反向使用就是温差发电,半导体致冷器一般

适用于中低温区发电。

6、半导体致冷器的单个致冷元件对的功率很小,但组合成电堆,

用同类型的电堆串、并联的方法组合成致冷系统的话,功率就可以做的很大,因此致冷功率可以做到几毫瓦到上万瓦的范围。

7、半导体致冷器的温差范围,从正温90℃到负温度130℃都可

以实现。

通过以上分析,半导体温差电器件应用范围有:致冷、加热、发电,致冷和加热应用比较普遍,有以下几个方面:

1、军事方面:导弹、雷达、潜艇等方面的红外线探测、导行系

统。

2、医疗方面:冷力、冷合、白内障摘除器、血液分析仪等。

3、实验室装置方面:冷阱、冷箱、冷槽、电子低温测试装置、

各种恒温、高低温实验仪器。

4、专用装置方面:石油产品低温测试仪、生化产品低温测试仪、

细菌培养箱、恒温显影槽、电脑等。

5、日常生活方面:空调、冷热两用箱、冷藏箱、饮水机、电子

冷热牛奶箱、车载冷热两用箱等。

此外,还有其它方面的应用,这里就不一一提了。

三、致冷器的性能

在应用致冷器前,要进一步的了解它的性能,实际上致冷器的冷端从周围吸收的热Qл外,还有两个,一个是焦耳热Qj;另一个是传导热Qk。电流从元件内部通过就产生焦耳热,焦耳热的一半传到冷端,另一半传到热端,传导热从热端传到冷端。

产冷量Qc=Qπ-Qj-Qk

=(2p-2n).Tc.I-1/2j2R-K(Th-Tc)

式中,R表示一对电偶的总电阻,K是总热导。

热端散掉的热Qh=Qπ+Qj-Qk

=(2p-2n).Th.I+1/2I2R-K(Th-Tc)

从上面两公式中可以看出,输入的电功率恰好就是热端散掉的热与冷端吸收的热之差,这就是“热泵”的一种:

Qh-Qc=I2R=P

由上式得出一个电偶在热端放出的热量Qh等于输入电功率与冷端产冷量之和,相反得出冷端产冷量Qc等于热端放出的热量与输入电功率之差。

Qh=P+Qc

Qc=Qh-P

四、致冷器的选择过程

半导体致冷应用产品的心脏部分是半导体致冷器,根据半导体温差电堆的特点,弱点及应用范围,选用电堆时首先应确定以

下几个问题:

1、确定电堆的工作状态。根据工作电流的方向和大小,就可以

决定电堆的致冷,加热和恒温性能,尽管最常用的是致冷方式,

但也不应忽视它的致热和恒温性能。

2、确定致冷时热端实际温度。因为电堆是温差器件,要达到最

佳的致冷效果,电堆必须安装在一个良好的散热器上,根据散

热条件的好坏,决定致冷时电堆热端的实际温度,要注意,由

于温度梯度的影响,电堆热端实际温度总是要比散热器表面温

度高,通常少则零点几度,多则高几度、十几度。同样,除了

热端存在散热梯度以外,被冷却的空间与电堆冷端之间也存在

温度梯度。

3、确定电堆的工作环境和气氛。这包括是工作在真空状况还是

在普通大气,干燥氮气,静止或流动空气及周围的环境温度,

由此来考虑保温(绝热)措施,并决定漏热的影响。

4、确定电堆工作对象及热负载的大小。除了受热端温

度影响以外,电堆所能达到的最低温度或最大温差是在空载和

绝热两个条件下确定的,实际上工作的,电堆既不可能真正绝

热,也必须有热负载,否则无意义。

5、确定致冷器的级数。电堆级数的选定必须满足实际温差的要求,

即电堆标称的温差必须高于实际要求的温差,否则达不到要求,但是级数也不能太多,因为电堆的价格随着级数的增加而大大提高。

6、电堆的规格。选定电堆的级数以后,就可以选定电堆的规格,

特别是电堆的工作电流。因为同时能满足温差及产冷的电堆有好几种,但是由于工作条件不同,通常选用工作电流最小的电堆,因为这时配套电源费用较小,然而电堆的总功率是决定因素,同样的输入电功率减少工作电流就得增加电压(每对元件

0.1v),因而元件对数就得增加。

7、确定电堆的数量。这是根据能满足温差要求的电堆产冷总功

率来决定的,它必须保证在工作温度时电堆产冷量的总和大于工作对象热负载的总功率,否则无法达到要求。电堆的热惯性非常小,空载下不大于一分钟,但是由于负载的惯性(主要是由于负载的热容量造成的),因此实际要达到设定温度时的工作速度要远远大于一分钟,多时达几小时。如工作速度要求愈大,电堆的数量也就愈多,热负载的总功率是由总热容量加上漏热量(温度愈低、漏热量愈大)。

上述七个方面是选用电堆时考虑的一般原则,根据上述原用户首先应根据需要提出要求来选择致冷器件。一般的要求:

①、给定使用的环境温度Th ℃

②、被冷却的空间或物体达到的低温度Tc ℃

③、已知热负载Q(热功率Qp 、漏热Qt) W

已知Th、Tc和Q,再根据温差致冷器的特性曲线就可估算所需的电堆及电堆数量。

1、确定致冷器的型号规格。

2、选定型号后,查阅该型号的温差电致冷特性曲线图。

3、由使用环境温度和散热方式确定致冷器的热端温度Th,得出相

近的Tc。

4、在相应的特性曲线图中查出冷端Qc的产冷量。

5、由所需的产冷量Q除以每个电堆的产冷量Qc就得到所需的电堆

数量N=Q/Qc

六、半导体致冷器的散热方式

半导体致冷器件的散热是一门专业技术,也是半导体致冷器件能否长期运行的基础。良好的散热才能获得最低冷端温度的先决条件。以下就是半导体致冷器的几种散热方式:

1、自然散热。

采用导热较好的材料,紫铜铝材料做成各种散热器,在静止的空气中自由的散发热量,使用方便,缺点是体积太大。

2、充液散热。

用较好的散热材料做成水箱,用通液体或通水的方法降温。缺点是用水不方便,浪废太大,优点是体积小,散热效果最好。

3、强迫风冷散热。

工作气氛为流动空气,散热器所用的材料和自然散热器相同,使用方便,体积比自然冷却的小,缺点是增加一个风机出现噪音。

4、真空潜热散热。

最常用的就是“热管”散热器,它是利用蒸发潜热快速传递热容量。

七、半导体致冷器的电源

半导体致冷器是输入直流电源工作的,必须配备专用电源。

1、直流电源。直流电源的优点是可以直接使用,不需要转换,

缺点是电压电流必须适用于半导体致冷器,有些可以通过半导

体致冷器的串、并联的方式解决。

2、交流电流。这是一个最普通的电源,使用时必须整流为直流

才能供致冷器使用。由于致冷器件是低电压大电流器件,应用

时先降压、整流、滤波,有些为了方便使用还要加上温度测量,温度控制,电流控制等。

3、由于半导体致冷器是直流电源供应,电源的波纹系数必须小

于10%,否则对致冷效果有较大的影响。

4、半导体致冷器的工作电压及电流必须符合所工作器件的需

要,例如:型号为TEC112706的器件,则127为致冷器件,PN

的电偶对数,致冷器的工作极限电压V=电偶对数×0.11,06

为允许通过最大的电流值。

5、致冷器冷热交换时的通电必须待两端面恢复到室温时(一般

需要5分钟以上方可进行),否则易造成致冷器的线路损坏和

陶瓷片的破裂。

八、半导体致冷器的安装方法

致冷器的安装方法一般有三种:焊接、粘合、螺栓压缩固定。

在生产上具体用那一种方法安装,要根据产品的要求来定,总的来说对于这三种的安装时,首先都要用无水酒精棉,将致冷器件的两端面擦洗干净,储冷板和散热板的安装表面应加工,表面平面度不大于0.03mm,并清洗干净,以下就是三种安装的操作过程。

1、焊接。

焊接的安装方法要求致冷器件外表面必须是金属化,储冷板 和散热板也必须能够上焊料(如:铜材的储冷板或散热板)安装时先将储冷板、散热板、致冷器进行加温,(温度和焊料的熔点差不多)在各安装表面都熔上约70℃——110℃之间的低温焊料

0.1mm。然后将致冷器件的热面和散热板的安装面,致冷器件的

冷面和储冷板的安装面平行接触并且旋转挤压,确保工作面的接触良好后冷却,该安装方法较复杂,不易维修,一般应用在较特殊的场合。

2、粘合。

粘合的安装方法是用一种具有导热性能较好的粘合剂,均匀的涂在致冷器件、储冷板、散热板的安装面上。粘合剂的厚度在

0.03mm,将致冷器的冷热面和储冷板、散热板的安装面平行的挤

压,并且轻轻的来回旋转确保各接触面的良好接触,通风放置24小时自然固化。该安装方法一般应用在想永久的把致冷器固定在散热板或储冷板的地方。

3、螺柱压缩固定。

螺柱压缩固定的安装方法是将致冷器件、储冷板、散热板各安装面均匀的涂上很薄的一层导热硅脂,厚度大约在0.03mm。然后将致冷器件的热面和散热板的安装面、致冷器件的冷面和储冷板的安装面平行接触,并且轻轻的来回旋转致冷器,挤压过量的导热硅脂,一定要确保各工作面的接触良好,再用螺丝将散热板、致冷器、储冷板三者之间紧固,紧固时用力应均匀,切勿过量或太轻,重了易压坏致冷器件,轻了容易造成工作面不接触。该安装简单、快速,维修方便,可靠性较高,是目前产品应用中最多的一种安装方法。

以上三种安装方法为了能够达到最佳的致冷效果,储冷板和散热板之间应用隔热材料填充,固定螺丝应用隔热垫圈,为减少冷热交替,储冷板和散热板的尺寸大小取决于冷却方法及冷却功率大小,根据应用情况决定。下图是一种压缩固定安装方法供用户参考。

半导体制冷片工作原理

半导体制冷片工作原理 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

半导体制冷片工作原理 致冷器件是由半导体所组成的一种冷却装置,随着近代的半导体发展才有实际的应用,也就是致冷器的发明。其工作原理是由直流电源提供电子流所需的能量,通上电源后,电子负极(-)出发,首先经过P型半导体,于此吸热量,到了N型半导体,又将热量放出,每经过一个NP模块,就有热量由一边被送到令外一边造成温差而形成冷热端。冷热端分别由两片陶瓷片所构成,冷端要接热源,也就是欲冷却之。在以往致冷器是运用在CPU的,是利用冷端面来冷却CPU,而热端面散出的热量则必需靠风扇来排出。致冷器也应用于做成车用冷/热保温箱,冷的方面可以冷饮机,热的方面可以保温热的东西。 半导体致冷器的历史 致冷片是由半导体所组成的一种冷却装置,于1960左右才出现,然而其理论基础Peltier effect 可追溯到19世纪。下图(1)是由X及Y两种不同的金属导线所组成的封闭线路,通上电源之后,A 点的热量被移到B点,导致A点温度降低,B点温度升高,这就是着名的Peltier effect。这现象最早是在1821年,由一位德国科学家Thomas Seeback首先发现,不过他当时做了错误的推论,并没有领悟到背后真正的科学原理。到了1834年,一位法国表匠,同时也是兼职研究这现象的物理学家JeaNPeltier,才发现背后真正的原因,这个现象直到近代随着半导体的发展才有了实际的应用,也就是「致冷器」的发明。 一、因半导体致冷片薄而轻巧,体积很小,不占空间,并可以携带,做成车用电冷/热保温箱,放置车上,不占空间,并可变成冰箱及保温箱,夏天可以摆上几瓶饮料,就可以便冰饮,在冬天就可以变成保温箱。 图(1) 致冷器件的作用原理致冷器的名称相当多,如 Peltier cooler、thermoelectric、thermoelectric cooler (简称或、thermoelectric module,另外又称为热帮浦 (heat pump)。 二、致冷器件的结构与原理 下图(2)是一个制冷器的典型结构。 图(2) 致冷器的典型结构 致冷器是由许多N型和P型半导体之颗粒互相排列而 成,而NP之间以一般的导体相连接而成一完整线路,通 常是铜、铝或其它金属导体,最后由两片陶瓷片像夹心 饼干一样夹起来,陶瓷片必须绝缘且导热良好,外观如 下图(3)所示,看起来像三明治。 图(3) 致冷器的外观 以下详细说明N型和P型半导体的原理: 三、N型半导体 (1) 如果在锗或硅中均匀掺杂五价元素,由于价电子间 会互相结合而形成共价键,故每个五价元素会与邻近四 价之锗或硅原子互成一共价键,而多出一个电子来,如图(4)所示,这就称为N型半导体。(N表示negative,电子带负电) 。 图(4) N型半导体 (2) 由于加入五甲元素后会添加电子,故五价元素又被称为施体原子。 (3) 加入五价元素而产生之自由电子,在N型半导体里又占大多数,故称为多数载体(majority carriers) 。由温度的引响所产生之电子─电洞对是少数,所以N型半导体中称电洞为少数载体(minority carriers) 。 四、P型半导体 (1) 如果在锗或硅中均匀掺杂三价元素,由于价电子间会互相结合而形成共价键,故每个三价元素会与邻近四价之锗或硅原子互成一共价键,而多缺少一个电子,在原子中造成一个空缺来,这个空

半导体制冷片工作原理

半导体制冷片工作原理 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

半导体制冷片工作原理 致冷器件是由半导体所组成的一种冷却装置,随着近代的半导体发展才有实际的应用,也就是致冷器的发明。其工作原理是由直流电源提供电子流所需的能量,通上电源后,电子负极(-)出发,首先经过P型半导体,于此吸热量,到了N型半导体,又将热量放出,每经过一个NP模块,就有热量由一边被送到令外一边造成温差而形成冷热端。冷热端分别由两片陶瓷片所构成,冷端要接热源,也就是欲冷却之。在以往致冷器是运用在CPU的,是利用冷端面来冷却CPU,而热端面散出的热量则必需靠风扇来排出。致冷器也应用于做成车用冷/热保温箱,冷的方面可以冷饮机,热的方面可以保温热的东西。 半导体致冷器的历史 致冷片是由半导体所组成的一种冷却装置,于1960左右才出现,然而其理论基础Peltier effect可追溯到19世纪。下图(1)是由X及Y两种不同的金属导线所组成的封闭线路,通上电源之后,A点的热量被移到B点,导致A点温度降低,B点温度升高,这就是着名的Peltier effect。这现象最早是在1821年,由一位德国科学家Thomas Seeback首先发现,不过他当时做了错误的推论,并没有领悟到背后真正的科学原理。到了1834年,一位法国表匠,同时也是兼职研究这现象的物理学家JeaNPeltier,才发现背后真正的原因,这个现象直到近代随着半导体的发展才有了实际的应用,也就是「致冷器」的发明。 一、因半导体致冷片薄而轻巧,体积很小,不占空间,并可以携带,做成车用电冷/热保温箱,放置车上,不占空间,并可变成冰箱及保温箱,夏天可以摆上几瓶饮料,就可以便冰饮,在冬天就可以变成保温箱。 二、致冷器件的结构与原理

半导体器件原理简明教程习题答案

半导体器件原理简明教程习题答案 傅兴华 1.1 简述单晶、多晶、非晶体材料结构的基本特点. 解 整块固体材料中原子或分子的排列呈现严格一致周期性的称为单晶材料; 原子或分子的排列只在小范围呈现周期性而在大范围不具备周期性的是多晶材料; 原子或分子没有任何周期性的是非晶体材料. 1.6 什么是有效质量,根据E(k)平面上的的能带图定性判断硅鍺和砷化镓导带电子的迁移率的相对大小. 解 有效质量指的是对加速度的阻力.k E h m k ??=2 1*1 由能带图可知,Ge 与Si 为间接带隙半导体,Si 的Eg 比Ge 的Rg 大,所以Ge μ>Si μ.GaAs 为直接带隙半导体,它的跃迁不与晶格交换能量,所以相对来说GaAs μ>Ge μ>Si μ. 1.10 假定两种半导体除禁带宽度以外的其他性质相同,材料1的禁带宽度为1.1eV,材料2 的禁带宽度为 3.0eV,计算两种半导体材料的本征载流子浓度比值,哪一种半导体材料更适合制作高温环境下工作的器件? 解 本征载流子浓度:)exp( )( 1082.42 15 T dp dn i k Eg m m m n ?= Θ两种半导体除禁带以外的其他性质相同 ∴)9.1exp()exp()exp(0.31.121T k k k n n T T ==-- ΘT k 9.1>0 ∴21n n > ∴在高温环境下2n 更合适 1.11 在300K 下硅中电子浓度330102-?=cm n ,计算硅中空穴浓度0p ,画出半导体能带图, 判断该半导体是n 型还是p 型半导体. 解 3 173 21002 02 0010125.1102)105.1(p -?=??==→=cm n n n p n i i ∴>00n p Θ是p 型半导体 1.16 硅中受主杂质浓度为31710-cm ,计算在300K 下的载流子浓度0n 和0p ,计算费米能级相 对于本征费米能级的位置,画出能带图. 解 3 17010-==cm N p A 200i n p n = T=300K →3 10 105.1-?=cm n i 330 2 01025.2-?==∴cm p n n i 00n p >Θ ∴该半导体是p 型半导体 )105.110ln(0259.0)ln(10 17 0??==-i FP i n p KT E E

半导体制冷片工作原理

半导体制冷片工作原理 致冷器件是由半导体所组成的一种冷却装置,随着近代的半导体发展才有实际的应用,也就是致冷器的发明。其工作原理是由直流电源提供电子流所需的能量,通上电源后,电子负极(-)出发,首先经过P型半导体,于此吸热量,到了N型半导体,又将热量放出,每经过一个NP模块,就有热量由一边被送到令外一边造成温差而形成冷热端。冷热端分别由两片陶瓷片所构成,冷端要接热源,也就是欲冷却之。在以往致冷器是运用在CPU的,是利用冷端面来冷却CPU,而热端面散出的热量则必需靠风扇来排出。致冷器也应用于做成车用冷/热保温箱,冷的方面可以冷饮机,热的方面可以保温热的东西。 半导体致冷器的历史 致冷片是由半导体所组成的一种冷却装置,于1960左右才出现,然而其理论基础Peltier effect可追溯到19世纪。下图(1)是由X及Y两种不同的金属导线所组成的封闭线路,通上电源之后,A点的热量被移到B点,导致A点温度降低,B点温度升高,这就是着名的Peltier effect。这现象最早是在1821年,由一位德国科学家Thomas Seeback首先发现,不过他当时做了错误的推论,并没有领悟到背后真正的科学原理。到了1834年,一位法国表匠,同时也是兼职研究这现象的物理学家JeaNPeltier,才发现背后真正的原因,这个现象直到近代随着半导体的发展才有了实际的应用,也就是「致冷器」的发明。 一、因半导体致冷片薄而轻巧,体积很小,不占空间,并可以携带,做成车用电冷/热保温箱,放置车上,不占空间,并可变成冰箱及保温箱,夏天可以摆上几瓶饮料,就可以便冰饮,在冬天就可以变成保温箱。 图(1) 致冷器件的作用原理致冷器的名称相当多,如 Peltier cooler、thermoelectric、thermoelectric cooler (简称或、thermoelectric module,另外又称为热帮浦 (heat pump)。 二、致冷器件的结构与原理

常用半导体器件

第4章常用半导体器件 本章要求了解PN结及其单向导电性,熟悉半导体二极管的伏安特性及其主要参数。理解稳压二极管的稳压特性。了解发光二极管、光电二极管、变容二极管。掌握半导体三极管的伏安特性及其主要参数。了解绝缘栅场效应晶体管的伏安特性及其主要参数。 本章内容目前使用得最广泛的是半导体器件——半导体二极管、稳压管、半导体三极管、绝缘栅场效应管等。本章介绍常用半导体器件的结构、工作原理、伏安特性、主要参数及简单应用。 本章学时6学时 4.1 PN结和半导体二极管 本节学时2学时 本节重点1、PN结的单向导电性; 2、半导体二极管的伏安特性; 3、半导体二极管的应用。 教学方法结合理论与实验,讲解PN结的单向导电性和半导体二极管的伏安特性,通过例题让学生掌握二半导体极管的应用。 4.1.1 PN结的单向导电性 1. N型半导体和P型半导体 在纯净的四价半导体晶体材料(主要是硅和锗)中掺入微量三价(例如硼)或五价(例如磷)元素,半导体的导电能力就会大大增强。掺入五价元素的半导体中的多数载流子是自由电子,称为电子半导体或N型半导体。而掺入三价元素的半导体中的多数载流子是空穴,称为空穴半导体或P型半导体。在掺杂半导体中多数载流子(称多子)数目由掺杂浓度确定,而少数载流子(称少子)数目与温度有关,并且温度升高时,少数载流子数目会增加。 2.PN结的单向导电性 当PN结加正向电压时,P端电位高于N端,PN结变窄,而当PN结加反向电压时,N端电位高于P端,PN结变宽,视为截止(不导通)。 4.1.2 半导体二极管 1.结构 半导体二极管就是由一个PN结加上相应的电极引线及管壳封装而成的。由P区引出的电极称为阳极,N区引出的电极称为阴极。因为PN结的单向导电性,二极管导通时电流方向是由阳极通过管子内部流向阴极。 2. 二极管的种类 按材料来分,最常用的有硅管和锗管两种;按用途来分,有普通二极管、整流二极管、稳压二极管等多种;按结构来分,有点接触型,面接触型和硅平面型几种,点接触型二极管(一般为锗管)其特点是结面积小,因此结电容小,允许通过的电流也小,适用高频电路的检波或小电流的整流,也可用作数字电路里的开关元件;面接触型二极管(一般为硅管)其特点是结面积大,结电容大,允许通过的电流较大,适用于低频整流;硅平面型二极管,结面积大的可用于大功率整流,结面积小的,适用于脉冲数字电路作开关管。

半导体制冷片的利弊(精)

原理: 半导体制冷片的工作运转是用直流电流 , 它既可制冷又可加热, 通过改变直流电流的极性来决定在同一制冷片上实现制冷或加热,这个效果的产生就是通过热电的原理。 优点 半导体制冷片作为特种冷源,在技术应用上具有以下的优点和特点: 1、不需要任何制冷剂 ,可连续工作,没有污染源没有旋转部件,不会产生回转效应,没有滑动部件是一种固体片件,工作时没有震动、噪音、寿命长,安装容易。 2、半导体制冷片具有两种功能,既能制冷,又能加热,制冷效率一般不高,但制热效率很高,永远大于 1。因此使用一个片件就可以代替分立的加热系统和制冷系统。 3、半导体制冷片是电流换能型片件,通过输入电流的控制,可实现高精度的温度控制,再加上温度检测和控制手段,很容易实现遥控、程控、计算机控制,便于组成自动控制系统。 4、半导体制冷片的温差范围,从正温 90℃到负温度 130℃都可以实现。 缺点: 1、半导体制冷片热惯性非常小,制冷制热时间很快,在热端散热良好冷端空载的情况下, 通电不到一分钟,制冷片就能达到最大温差。 2、半导体制冷片的反向使用就是温差发电,半导体制冷片一般适用于中低温区发电。 3、半导体制冷片的单个制冷元件对的功率很小,但组合成电堆,用同类型的电堆串、并联的方法组合成制冷系统的话, 功率就可以做的很大, 因此制冷功率可以做到几毫瓦到上万瓦的范围。

4、半导体制冷的热面温度不应超过 60℃ ,否则就有损坏的可能。若在额定的工作电压(12V 下,一般的散热风扇根本无法为制冷片提供足够的散热能力,容易造成制冷片过热损坏。同时千万不要在无散热器的情况下为致冷器长时间通电, 否则会造成致冷器内部过热而烧毁。半导体制冷片具有两种功能, 既能制冷, 又能加热,制冷效率一般不高,但制热效率很高,永远大于 1。要是这样的话安 全问题有代考虑! 其次散热片由于间距太小, 很容易被灰尘堵住, 而且清洗不了, 这样就很容易因为温度过高而烧毁,从而影响整车的安全。 使用说明: 一、正确的安装、组装方法:1、制冷片一面安装散热片,一面安装导冷系统,安装表面平面度不大于 0.03mm ,要除去毛刺、污物。 2、制冷片与散热片和导冷块接触良好,接触面须涂有一薄层导热硅脂。 3、固定制冷片时既要使制冷片受力均匀,又要注意切勿过度,以防止瓷片压裂。 二、正确的使用条件:1、使用直流电源电压不得超过额定电压 ,电源波纹系数小于 10%。 2、电流不得超过组件的额定电流。 3、制冷片正在工作时不得瞬间通反向电压 (须在 5分钟之后。 4、制冷片内部不得进水。 5、制冷片周围湿度不得超过 80%。

常用半导体器件

《模拟电子技术基础》 (教案与讲稿) 任课教师:谭华 院系:桂林电子科技大学信息科技学院电子工程系 授课班级:2008电子信息专业本科1、2班 授课时间:2009年9月21日------2009年12月23日每周学时:4学时 授课教材:《模拟电子技术基础》(第4版) 清华大学电子学教研组童诗白华成英主编 高教出版社 2009

第一章常用半导体器件 本章内容简介 半导体二极管是由一个PN结构成的半导体器件,在电子电路有广泛的应用。本章在简要地介绍半导体的基本知识后,主要讨论了半导体器件的核心环节——PN 结。在此基础上,还将介绍半导体二极管的结构、工作原理,特性曲线、主要参数以及二极管基本电路及其分析方法与应用。最后对齐纳二极管、变容二极管和光电子器件的特性与应用也给予简要的介绍。 (一)主要内容: ?半导体的基本知识 ?PN结的形成及特点,半导体二极管的结构、特性、参数、模型及应用电 路 (二)基本要求: ?了解半导体材料的基本结构及PN结的形成 ?掌握PN结的单向导电工作原理 ?了解二极管(包括稳压管)的V-I特性及主要性能指标 (三)教学要点: ?从半导体材料的基本结构及PN结的形成入手,重点介绍PN结的单向导 电工作原理、 ?二极管的V-I特性及主要性能指标 1.1 半导体的基本知识 1.1.1 半导体材料 根据物体导电能力(电阻率)的不同,来划分导体、绝缘体和半导体。导电性能介于导体与绝缘体之间材料,我们称之为半导体。在电子器件中,常用的半导体材料有:元素半导体,如硅(Si)、锗(Ge)等;化合物半导体,如砷化镓(GaAs)等;以及掺杂或制成其它化合物半导体材料,如硼(B)、磷(P)、锢(In)和锑(Sb)等。其中硅是最常用的一种半导体材料。 半导体有以下特点: 1.半导体的导电能力介于导体与绝缘体之间 2.半导体受外界光和热的刺激时,其导电能力将会有显著变化。 3.在纯净半导体中,加入微量的杂质,其导电能力会急剧增强。

半导体制冷技术

半导体制冷技术 实物图 半导体制冷又称电子制冷,或者温差电制冷,是从50年代发展起来的一门介于制冷技术和半导体技术边缘的学科,它利用特种半导体材料构成的P-N结,形成热电偶对,产生珀尔帖效应,即通过直流电制冷的一种新型制冷方法,与压缩式制冷和吸收式制冷并称为世界三大制冷方式。 1834年,法国物理学家帕尔帖在铜丝的两头各接一根铋丝,再将两根铋丝分别接到直流电源的正负极上,通电后,他惊奇的发现一个接头变热,另一个接头变冷;这个现象后来就被称为"帕尔帖效应"。"帕尔帖效应"的物理原理为:电荷载体在导体中运动形成电流,由于电荷载体在不同的材料中处于不同的能级,当它从高能级向低能级运动时,就会释放出多余的热量。反之,就需要从外界吸收热量(即表现为制冷)。 所以,"半导体制冷"的效果就主要取决于电荷载体运动的两种材料的能级差,即热电势差。纯金属的导电导热性能好,但制冷效率极低(不到1%)。半导体材料具有极高的热电势,可以成功的用来做小型的热电制冷器。但当时由于使用的金属材料的热电性能较差,能量转换的效率很低,热电效应没有得到实质应用。直到本世纪五十年代,苏联科学院半导体研究所约飞院士对半导体进行了大量研究,于1945年前发表了研究成果,表明碲化铋化合物固溶体有良好的致冷效果。这是最早的也是最重要的热电半导体材料,至今还是温差致冷中半导体材料的一种主要成份。约飞的理论得到实践应用后,有众多的学者进行研究到六十年代半导体致冷材料的优值系数,达到相当水平,才得到大规模的应用。80年代以后,半导体的热电制冷的性能得到大幅度的提高,进一步开发热电制冷的应用领域。 二、半导体制冷片制冷原理 原理图

半导体制冷片工作原理

半导体制冷片工作原理

————————————————————————————————作者: ————————————————————————————————日期:

半导体制冷片工作原理 致冷器件是由半导体所组成的一种冷却装置,随着近代的半导体发展才有实际的应用,也就是致冷器的发明。其工作原理是由直流电源提供电子流所需的能量,通上电源后,电子负极(-)出发,首先经过P型半导体,于此吸热量,到了N型半导体,又将热量放出,每经过一个NP模块,就有热量由一边被送到令外一边造成温差而形成冷热端。冷热端分别由两片陶瓷片所构成,冷端要接热源,也就是欲冷却之。在以往致冷器是运用在CPU的,是利用冷端面来冷却CPU,而热端面散出的热量则必需靠风扇来排出。致冷器也应用于做成车用冷/热保温箱,冷的方面可以冷饮机,热的方面可以保温热的东西。半导体致冷器的历史 致冷片是由半导体所组成的一种冷却装置,于1960左右才出现,然而其理论基础Peltier effect 可追溯到19世纪。下图(1)是由X及Y两种不同的金属导线所组成的封闭线路,通上电源之后,A点的热量被移到B点,导致A点温度降低,B点温度升高,这就是著名的Peltier effect。这现象最早是在1821年,由一位德国科学家ThomasSeeback首先发现,不过他当时做了错误的推论,并没有领悟到背后真正的科学原理。到了1834年,一位法国表匠,同时也是兼职研究这现象的物理学家JeaNPeltier,才发现背后真正的原因,这个现象直到近代随着半导体的发展才有了实际的应用,也就是「致冷器」的发明。 一、因半导体致冷片薄而轻巧,体积很小,不占空间,并可以携带,做成车用电冷/热保温箱,放置车上,不占空间,并可变成冰箱及保温箱,夏天可以摆上几瓶饮料,就可以便冰饮,在冬天就可以变成保温箱。

常用半导体器件教案

第一章 常用半导体器件 1.1 半导体基础知识 1.1.1 本征半导体 一、半导体 1. 概念:导电能力介于导体和绝缘体之间。 2. 本征半导体:纯净的具有晶体结构的半导体。 二、本征半导体的晶体结构(图1.1.1) 1. 晶格:晶体中的原子在空间形成排列整齐的点阵。 2. 共价键 三、本征半导体中的两种载流子(图1.1.2) 1. 本征激发:在热激发下产生自由电子和空穴对的现象。 2. 空穴:讲解其导电方式; 3. 自由电子 4. 复合:自由电子与空穴相遇,相互消失。 5. 载流子:运载电荷的粒子。 四、本征半导体中载流子的浓度 1. 动态平衡:载流子浓度在一定温度下,保持一定。 2. 载流子浓度公式: )2/(2/31kT E i i GO e T K p n -== 自由电子、空穴浓度(cm -3),T 为热力学温度,k 为波耳兹曼常数(K eV /1063.85-?),E GO 为热力学零度时破坏共价键所需的能量(eV ),又称禁带宽度,K 1是与半导体材料载流子有效质量、有效能级密度有关的常量。 1.1.2 杂质半导体 一、概念:通过扩散工艺,掺入了少量合适的杂质元素的半导体。 二、N 型半导体(图1.1.3) 1. 形成:掺入少量的磷。 2. 多数载流子:自由电子 3. 少数载流子:空穴 4. 施主原子:提供电子的杂质原子。 三、P 型半导体(图1.1.4) 1. 形成:掺入少量的硼。 2. 多数载流子:空穴

3. 少数载流子:自由电子 4. 受主原子:杂质原子中的空穴吸收电子。 5. 浓度:多子浓度近似等于所掺杂原子的浓度,而少子的浓度低,由本征激发形成, 对温度敏感,影响半导体的性能。 1.1.3 PN 结 一、PN 结的形成(图1.1.5) 1. 扩散运动:多子从浓度高的地方向浓度低的地方运动。 2. 空间电荷区、耗尽层(忽视其中载流子的存在) 3. 漂移运动:少子在电场力的作用下的运动。在一定条件下,其与扩散运动动态平衡。 4. 对称结、不对称结:外部特性相同。 二、PN 结的单向导电性 1. PN 结外加正向电压:导通状态(图1.1.6)正向接法、正向偏置,电阻R 的作用。 (解释为什么Uho 与PN 结导通时所表现的外部电压相反:PN 结的外部电压为U 即平时的0.7V ,而内电场的电压并不对PN 结的外部电压产生影响。) 2. PN 结外加反向电压:截止状态(图1.1.7)反向电压、反向偏置、反向接法。形成 漂移电流。 三、PN 结的电流方程 1. 方程(表明PN 结所加端电压u 与流过它的电流i 的关系): )1(-=T U u S e I i q kT U T = q 为电子的电量。 2. 平衡状态下载流子浓度与内电场场强的关系: 3. PN 结电流方程分析中的条件: 4. 外加电压时PN 结电流与电压的关系: 四、PN 结的伏安特性(图1.1.10) 1. 正向特性、反向特性 2. 反向击穿:齐纳击穿(高掺杂、耗尽层薄、形成很强电场、直接破坏共价键)、雪 崩击穿(低掺杂、耗尽层较宽、少子加速漂移、碰撞)。 五、PN 结的电容效应 1. 势垒电容:(图1.1.11)耗尽层宽窄变化所等效的电容,C b (电荷量随外加电压而增 多或减少,这种现象与电容器的充放电过程相同)。与结面积、耗尽层宽度、半导体介电常数及外加电压有关。 2. 扩散电容:(图1.1.12) (1) 平衡少子:PN 结处于平衡状态时的少子。 (2) 非平衡少子:PN 结处于正向偏置时,从P 区扩散到N 区的空穴和从N 区 扩散到P 区的自由电子。 (3) 浓度梯度形成扩散电流,外加正向电压增大,浓度梯度增大,正向电流增 大。 (4) 扩散电容:扩散区内,电荷的积累和释放过程与电容器充放电过程相同。i 越大、τ越大、U T 越小,Cd 就越大。 (5) 结电容d b j C C C += pF 级,对于低频忽略不计。

《制冷原理与设备》详细知识点

《制冷原理与设备》详细知识点 制冷原理与设备复习题 绪论 一、填空: 1接近0k为超低温冷冻。 2、人工制冷的方法包括(相变制冷)(气体绝热膨胀制冷)(气体涡流制冷)(热电制冷)几种。 3、蒸汽制冷包括(单级压缩蒸气制冷)(两级压缩蒸气制冷)(复叠式制冷循环)三种。 二、名词解释:人工制冷;制冷;制冷循环;热泵循环;制冷装置;制冷剂。 1. 人工制冷:用人工的方法,利用一定的机器设备,借助于消耗一定的能量不断将热量由低温物体转移给高温物体的连续过程。 2.制冷:从低于环境温度的空间或物体中吸取热量,并将其转移给环境介质的过程称为制冷。 3.制冷循环:制冷剂在制冷系统中所经历的一系列热力过程总称为制冷循环 4.热泵循环:从环境介质中吸收热量,并将其转移给高于环境温度的加热对象的过程。 5.制冷装置:制冷机与消耗能量的设备结合在一起。 6.制冷剂:制冷机使用的工作介质。

三、问答: 制冷原理与设备的主要内容有哪些? 制冷原理的主要内容: 1.从热力学的观点来分析和研究制冷循环的理论和应用; 2.介绍制冷剂、载冷剂及润滑油等的性质及应用。 3.介绍制冷机器、换热器、各种辅助设备的工作原理、结构、作用、型号表示等。 第一章制冷的热力学基础 一、填空: 1、lp-h图上有_压强_、_温度_、_比焓_、__比熵_、_干度_、比体积_六个状态参数。 2、一个最简单的蒸气压缩式制冷循环由_压缩机__、__蒸发器_、_节流阀、_冷凝器___几大件组成。 3、一个最简单的蒸气压缩式制冷循环由_绝热压缩、_等压吸热_、_等压放热_、__绝热节流_几个过程组成。 4、在制冷技术范围内常用的制冷方法有_相变制冷_、__气体绝热膨胀制冷_、_气体涡流制冷_、_热电制冷_几种。 5、气体膨胀有__高压气体经膨胀机膨胀_、_气体经节流阀膨胀_、_绝热放气制冷三种形式。 6、实际气体节流会产生零效应_、热效应_、冷效应_三种效应。制冷是应用气体节流的_冷_效应。理想气体节流后温度_不变_。 二、名词解释:

半导体制冷片工作原理

半导体制冷器的原理与使用 一、原理概述 半导体制冷器的用途很多 ,可用于制作便携冷藏/保温箱、冷热饮水机等。也用于电子器件的散热。目前制冷器所采用的半导体材料最主要为碲化铋,加入不纯物经过特殊处理而成 N 型或 P 型半导体温差元件。以市面常见的TEC1-12605为例,其 额定电压为:12v, 额定电流为5A,最大温差可达60摄氏度,外型尺寸为4 X 4 X 0.4Cm,重约25克。它的工作特点是一面制冷而一面发热。 接通直流电源后,电子由负极(-)出发,首先经过 P 型半导体,在此吸收热量,到了 N 型半导体,又将热量放出, 每经过一个NP 模组,就有热量由一边被送到另外一边,造成温差,从而形成冷热端。下图是一个致冷器的典型结构,由许多 N 型和 P 型半极体之颗粒互相排列而成, 而 N P 之间以一般的导体相连接而成一完整线路,通常是铜、铝或其他金属导体,最后用两片陶瓷片像汉堡包一样夹起来。 二、安装使用 制冷片的安装及使用很简单。在安装前,最好准备一点导热硅脂,然后,找一节干电池,接在制冷器两根引线上,就可感到一端明显发凉而另一端发热,记住引线的极性并确定好制冷器的冷、热端。 正式安装时,在制冷器两端均匀涂上导热硅脂,在CPU与散热器之间插入制冷片,请注意先试好的冷热面方向,冷面贴着CPU,热面与强力的(功率越高越好)散热片接触。然后想法固定好三者。要注意风扇的卡子不能太短,否则会很难固定。 固定好后,就可以给制冷片和风扇接上电源了(一定要注意极性),如果你机箱电源功率小于250W,我劝你别接到机箱电源上,否则有可能因电源功率不足,造成电脑无法正常工作。推荐使用外接电源,在12V电压下制冷片的制冷量和冷热面温差都比较合适。

《制冷原理与设备》详细知识点解析

制冷原理与设备复习题 绪论 一、填空: 1、人工制冷温度范围的划分为:环境温度~-153.35为普通冷冻;-153.35℃~-268.92℃为低温冷冻;-268.92℃~接近0k为超低温冷冻。 2、人工制冷的方法包括(相变制冷)(气体绝热膨胀制冷)(气体涡流制冷)(热电制冷)几种。 3、蒸汽制冷包括(单级压缩蒸气制冷)(两级压缩蒸气制冷)(复叠式制冷循环)三种。 二、名词解释:人工制冷;制冷;制冷循环;热泵循环;制冷装置;制冷剂。 1.人工制冷:用人工的方法,利用一定的机器设备,借助于消耗一定的能量不断将热量由低温物体转移给高温物体的连续过程。 2.制冷:从低于环境温度的空间或物体中吸取热量,并将其转移给环境介质的过程称为制冷。 3.制冷循环:制冷剂在制冷系统中所经历的一系列热力过程总称为制冷循环 4.热泵循环:从环境介质中吸收热量,并将其转移给高于环境温度的加热对象的过程。 5.制冷装置:制冷机与消耗能量的设备结合在一起。 6.制冷剂:制冷机使用的工作介质。 三、问答: 制冷原理与设备的主要内容有哪些? 制冷原理的主要内容: 1.从热力学的观点来分析和研究制冷循环的理论和应用; 2.介绍制冷剂、载冷剂及润滑油等的性质及应用。 3.介绍制冷机器、换热器、各种辅助设备的工作原理、结构、作用、型号表示等。 第一章制冷的热力学基础 一、填空: 1、lp-h图上有_压强_、_温度_、_比焓_、__比熵_、_干度_、比体积_六个状态参数。 2、一个最简单的蒸气压缩式制冷循环由_压缩机__、__蒸发器_、_节流阀、_冷凝器___几大件组成。 3、一个最简单的蒸气压缩式制冷循环由_绝热压缩、_等压吸热_、_等压放热_、__绝热节流_几个过程组成。 4、在制冷技术范围内常用的制冷方法有_相变制冷_、__气体绝热膨胀制冷_、_气体涡流制冷_、_热电制冷_几种。 5、气体膨胀有__高压气体经膨胀机膨胀_、_气体经节流阀膨胀_、_绝热放气制冷三种形式。 6、实际气体节流会产生零效应_、热效应_、冷效应_三种效应。制冷是应用气体节流的_冷_效应。理想气体节流后温度_不变_。 二、名词解释: 相变制冷;气体绝热膨胀制冷;气体涡流制冷;热电制冷;制冷系数;热力完善度;热力系数; 洛伦兹循环;逆向卡诺循环; 1.相变制冷:利用液体在低温下的蒸发过程或固体在低温下的融化或升华过程从被冷却的物体吸取热量以制取冷量。 2.气体绝热膨胀制冷:高压气体经绝热膨胀以达到低温,并利用膨胀后的气体在低压下的复热过程来制冷 3.气体涡流制冷:高压气体经涡流管膨胀后即可分离为热、冷两股气流,利用冷气流的复热过程即可制冷。4.热电制冷:令直流电通过半导体热电堆,即可在一段产生冷效应,在另一端产生热效应。 5制冷系数:消耗单位功所获得的制冷量的值,称为制冷系数。ε=q。/w。 6.热力完善度:实际循环的制冷系数与工作于相同温度范围内的逆向卡诺循环的制冷系数之比。其值恒小于1。 7.热力系数:获得的制冷量与消耗的热量之比。用ζ0表示 8.洛仑兹循环:在热源温度变化的条件下,由两个和热源之间无温差的热交换过程及两个等熵过程组成的逆向可逆循环是消耗功最小的循环,即制冷系数最高的循环。 9.逆向卡诺循环:当高温热源和低温热源的温度不变时,具有两个可逆的等温过程和两个可逆的绝热过程组成的

半导体器件中的载流子寿命及其控制原理

半导体器件中的载流子寿命及其控制原理 微电子器件2011-01-21 17:42:18 阅读106 评论0 字号:大中小订阅 (为什么少子寿命对器件的开关特性、导通特性和阻断特性有很大的影响? 器件的开关特性、导通特性和阻断特性对于少子寿命长短的要求分别怎样?) Xie Meng-xian. (电子科大,成都市) 半导体中的非平衡载流子寿命是半导体的一个基本特性参数,它的长短将直接影响到依靠少数载流子来工作的半导体器件的性能,这种器件有双极型器件和p-n结光电子器件等。但是,对于在结构上包含有p-n结的单极型器件(例如MOSFET)也会受到载流子寿命的影响。 非平衡载流子寿命主要是指非平衡少数载流子的寿命。影响少子寿命的主要因素是半导体能带结构和非平衡载流子的复合机理;对于Si 、Ge、GaP等间接禁带半导体,一般决定寿命的主要因素是半导体中的杂质和缺陷。 对于少子寿命有明显依赖关系的电子器件特性,主要有双极型器件的开关特性、导通特性和阻断特性;对于光电池、光电探测器等之类光电子器件,与少子寿命直接有关的特性主要有光生电流、光生电动势等。 (1)少子寿命对半导体器件性能的影响: ①双极型器件的开关特性与少子寿命的关系: 双极型器件的开关特性在本质上可归结为p-n结的开关性能。 p-n结的开关时间主要是关断时间,而关断时间基本上就是导通时注入到扩散区中的少子电荷消失的过程时间(包括有存储时间和下降时间两个过程)。少子寿命越短,开关速度就越快。因此,为了提高器件的开关速度,就应该减短少子寿命。 ②器件的阻断特性与少子寿命的关系: 半导体器件在截止状态时的特性——阻断特性,实际上也就是p-n结在反向电压下反向漏电流大小的一种反映。因此,这里器件的阻断特性不单指双极型器件,而且也包括场效应器件在内。 p-n结的反向漏电流含有两个分量:一是两边扩散区的少子扩散电流,二是势垒区中复合中心的产生电流;这些电流都与少子寿命有关,载流子寿命越长,反向漏电流就越小,则器件的阻断特性也就越好。当载流子寿命减短到一定程度时,反向电流即大幅度地上升,就会产生反向电流不饱和的“软”的阻断特性。 一般,硅p-n结的反向漏电流主要是势垒区复合中心的产生电流,因此载流子的产生寿命将严重地影响到器件的阻断特性。所以注意工艺控制,减小杂质和缺陷的不良影响,对于提高器件的阻断特性至关重要。 总之,为了获得良好的器件阻断特性,要求器件应该具有较长的少数载流子寿命。为此,半导体的掺杂浓度不可太高,势垒区中的复合中心浓度要尽量减少。 ③器件的导通特性与少子寿命的关系:

半导体制冷器的原理与使用

半导体制冷器的原理与使用 1半导体致冷器作为特种冷源,在技术应用上具有以下的优点和特点:1 不需要任何致冷剂,可连续工作,没有污染源没有旋转部件,不会产生回转效应,没有滑动部件是一种固体器件,工作时没有震动、噪音、寿命长,安装容易。 2 半导体致冷器具有两种功能,既能致冷,又能加热,致冷效率一般不高,但致热效率很高,永远大于1。因此使用一个器件就可以代替分立的加热系统和致冷系统。 3 半导体致冷器是电流换能型器件,通过输入电流的控制,可实现高精度的温度控制,再加上温度检测和控制手段,很容易实现遥控、程控、计算机控制,便于组成自动控制系统。 4 半导体致冷器热惯性非常小,致冷致热时间很快,在热端散热良好冷端空载的情况下,通电不到一分钟,致冷器就能达到最大温差。 5 半导体致冷器的反向使用就是温差发电,半导体致冷器一般适用于中低温区发电。 6 半导体致冷器的单个致冷元件对的功率很小,但组合成电堆,用同类型的电堆串、并联的方法组合成致冷系统的话,功率就可以做的很大,因此致冷功率可以做到几毫瓦到上万瓦的范围。 7 半导体致冷器的温差范围,从正温90℃到负温度130℃都可以实现。通过以上分析,半导体温差电器件应用范围有:致冷、加热、发电,致冷和加热应用比较普遍,有以下几个方面: 8 军事方面:导弹、雷达、潜艇等方面的红外线探测、导行系统。 9 医疗方面:冷力、冷合、白内障摘除器、血液分析仪等。 10 实验室装置方面:冷阱、冷箱、冷槽、电子低温测试装置、各种恒温、高低温实验仪器。 11 专用装置方面:石油产品低温测试仪、生化产品低温测试仪、细菌培养箱、恒温显影槽、电脑等。 12 日常生活方面:空调、冷热两用箱、饮水机、电子信箱等。

半导体制冷的原理(精)

低温制冷装置 常用的低温制冷装置有贮液式制冷器、G-M循环制冷器、斯特林循环制冷器、VM制冷器等多种。 ①贮液式制冷器:将贮存低温液体的容器绝热,使需要冷却的电子元件、器件与这种液体直接或间接地接触。电子元件、器件引入的热量(或本身原有的热量)为液体蒸发所吸收,电子元件、器件即被冷却。这种制冷器可分为整体容器式和液体传输式两类。在整体容器式制冷器中,电子元件、器件直接装在低温液体的贮存容器内。液体传输式制冷系统包括低温液体存放容器、液体传输管路、冷头和必要的控制系统,靠重力或气体压力传输液体(图2)。这种制冷器使用时间不长就需要添加低温液体,应用受到限制。 ②G-M循环制冷机:由压缩机和膨胀机及其附属装置组成(图3)。压缩机压缩来自膨胀机的低压气体,提供一定压力的纯净工作物质氦气。膨胀机使高压气体在其内部膨胀而致冷。

③斯特林循环制冷机:斯特林循环由二个等容、二个等温组成的闭式循环。它有单级、双级二种。它是冷却电子器件的微型制冷机之一。它效率高、体积小、重量轻、操作简单、使用低温温区和冷量范围大。 ④VM制冷机:完全或主要靠热能进行工作,可直接由热量产生冷量。凡能使热腔保持足够高的温度和提供足够热的能源都可利用,如电能、化学燃烧能、放射性同位素(如钚 238)、太阳能等。这种制冷机是回热式制冷机的变种,又叫热泵制冷机(图4)。有时,只使用很少的电能用于克服活塞与汽缸之间的摩擦力。它振动小、不易损坏、寿命长、重量轻和体积小,适于野外和航空使用, 尤其适于在航天技术中应用。

⑤热电制冷器:又称半导体制冷器。它利用半导体的帕耳帖效应,即两种不同金属或半导体组成闭合回路时,通以直流电,引起材料两接点一个变冷一个变热的现象,组成多级的半导体PN结热电制冷器,通常用于红外和低温电子技术(图5)。它具有体积小、重量轻等优点。但制冷温度不能达到很低的程度。 ⑥辐射制冷器:主要是利用一部分宇宙空间的高真空(10-18帕)和星际的有效低温太空接受 3~4K的低温源,辐射制冷器(图6)是一种不需要任何热源和

《制冷原理与设备》课程教学大纲

《制冷原理与设备》课程教学大纲 一、课程差不多信息 课程代码:050028 课程名称:制冷原理与设备 英文名称:Principles and Equipment of Refrigeration 课程类别:专业课 学时:58 学分:3.0 适用对象: 热能与动力工程专业 考核方式:考试,平常成绩占总成绩的30%。 先修课程:工程热力学、传热学、流体力学 二、课程简介 本课程系是热能与动力工程专业的一门专业课,旨在向学生系统介绍制冷原理和制冷装置,使学生把握各种制冷循环的组成、特点及热力运算方法,并以蒸汽压缩式制冷为主线进行讲解,原理部分侧重理论分析,设备部分则侧重讲解各种制冷设备的结构、特点及选型运算,同时也为学生进一步学习其它专业课程打下基础。 Principles and Equipment of Refrigeration is one of profession course about Thermal Power engineering. In this course, the refrigeration principle and refrigeration equipment introduced to students. Student will command the characteristic in kinds of refrigeration cycle, thermodynamics calculation. and used the steam compress Refrigeration system to explain in detail. the principle part lays emphasis the theories analyzes, equipments the construction, characteristics that part then lay emphasis to explain in detail the cold equipments in every kind of system and choose the type compute. 三、课程性质与教学目的 制冷原理是热能与动力工程专业的主干课程。目的是使学生把握人工制冷的各种方法、原理、系统和设备。为今后从事制冷技术方面的产品开发、科学研究、工

半导体制冷的制冷原理拆解后的ZENO96半导体制冷片及其外接电源

半导体制冷的制冷原理 拆解后的ZENO 96 半导体制冷片及其外接电源接口 我们可以清晰地看到完整的带有外接电源的半导体制冷片。那么,它究竟是怎样实现强大的制冷效果呢?这里的外接电源有什么意义呢? 我们知道,传统的风冷散热系统是不可能把显示芯片的温度降到环境温度以下的,因为当两者的温度几乎相等的时候会很快达到热平衡,此时便根本无法继续降温,顶多也只能接近环境温度。而半导体制冷却可以打破常规,能够强行将显示芯片的温度降到比环境温度还

低。而它实现的原理,就是强行打破热平衡,实现温差效果。那么,这种温差效果又是如何实现的呢? 首先我们需要明确一些基本概念。 1.帕尔贴效应:1834年,法国科学家帕尔贴发现了热电致冷和致热现象,即金属温差电逆效应。由两种不同金属组成一对热电偶,当热电偶输入直流电流后,因直流电通入的方向不同,将在电偶结点处产生吸热和放热现象,称这种现象为帕尔贴效应。帕尔贴效应早在20O年之前发现,但是用到致冷还是近几十年的事。 2.N型半导体:任何物质都是由原子组成,原子是由原子核和电子组成。电子以高速度绕原子核转动,受到原子核吸引,因为受到一定的限制,所以电子只能在有限的轨道上运转,不能任意离开,而各层轨道上的电子具有不同的能量(电子势能)。离原子核最远轨道上的电子,经常可以脱离原子核吸引,而在原子之间运动,叫导体。如果电子不能脱离轨道形成自由电子,故不能参加导电,叫绝缘体。半导体导电能力介于导体与绝缘体之间,叫半导体。半导体重要的特性是在一定数量的某种杂质渗入半导体之后,不但能大大加大导电能力,而且可以根据掺入杂质的种类和数量制造出不同性质、不同用途的半导体。将一种杂质掺入半导体后,会放出自由电子,这种半导体称为N型半导体。 3.P型半导体:是靠“空穴”来导电。在外电场作用下“空穴”流动方向和电子流动方向相反,即“空穴”由正板流向负极,这是P型半导体原理。 4.载流子现象:N型半导体中的自由电子,P型半导体中的“空穴”,他们都是参与导电,统称为“载流子”,它是半导体所特有,是由于掺入杂质的结果。 5.半导体致冷材料:是对特殊半导体材料,通过掺入的杂质改变其温差电动势率、导电率和热导率,使其满足致冷需要的材料。温差电致冷组件就是由这种特殊的N型和P型半导体制成的。 在明确了这些基本概念后,我们现在就来揭示温差制冷的原理。 1.半导体致冷原理:如图把一只N型半导体元件和一只P型半导体元件联结成热电偶,接上直流电源后,在接头处就会产生温差和热量的转移。在上面的一个接头处,电流方向是

半导体制冷在投影仪散热中应用的前景

半导体制冷在投影仪散热中应用的前景 温度对发光二极管的电学和光谱参数均有较大影响。一些采用发光二极管作为光源的投影仪,为了保证仪器性能并且能正常工作,需要对其光源受温度影响的特性作深入的研究,进而掌握仪器的最佳工作环境温度。 半导体制冷,又称电子制冷、温差电制冷、热电制冷或珀尔帖制冷等,半导体制冷器的尺寸小,可以制成体积不到1cm 小的制冷器;重量轻,微型制冷器往往能够小到只有几克或几十克。无机械传动部分,工作中无噪音,无液、气工作介质,因而不污染环境,制冷参数不受空间方向以及重力影响,在大的机械过载条件下,能够正常地工作;通过调节工作电流的大小,可方便调节制冷速率;通过切换电流方向,可使制冷器从制冷状态转变为制热工作状态;作用速度快,使用寿命长,且易于控制。 1 半导体制冷基本原理 所谓的热电效应,是当受热物体中的电子(洞),因随着温度梯度由高 温区往低温区移动时,所产生电流或电荷堆积的一种现象。而这个效应的大小,则是用称为thermopower(Q)的参数来测量,其定义为Q=E/-dT(E 为因电荷堆积产生的电场,dT 则是温度梯度)。 半导体制冷器件的工作原理是基于帕尔帖原理,该效应是在1834 年由J.A.C 帕尔帖首先发现的,即利用当两种不同的导体A 和B 组成的电路且通有直流电时,在接头处除焦耳热以外还会释放出某种其它的热量,而另一个接头处则吸收热量,且帕尔帖效应所引起的这种现象是可逆的,改变电流方向时,放热和吸热的接头也随之改变,吸收和放出的热量与电流强度I[A]成正比,且 与两种导体的性质及热端的温度有关。 热电效应是半导体制冷的最基本依据,其中最着名的是塞贝尔效应和珀

相关文档
最新文档