大学生方程式赛车空气动力学性能仿真分析概论

大学生方程式赛车空气动力学性能仿真分析概论
大学生方程式赛车空气动力学性能仿真分析概论

河北工业大学

毕业论文

作者:丁伟峻学号: 100290 学院:机械工程学院

系(专业):车辆工程

题目:大学生方程式赛车空气动力学仿真分析指导者:张小俊副教授

(姓名) (专业技术职务)

评阅者:

(姓名) (专业技术职务)

2014 年 6 月 7 日

目录

1绪论 (1)

1.1课题研究背景及意义 (1)

1.2FSAE空气动力学的发展现状 (1)

1.3课题的主要任务 (3)

2 赛车空气动力学特性 (5)

2.1负升力产生原理 (7)

2.2空气动力学附加装置 (7)

3 空气动力组件与车身的CAD初步模型 (11)

4 空气动力组件与车身的前期处理 (13)

4.1 模型检查 (13)

4.2 设置网格参数 (14)

4.3 网格划分并检查质量 (15)

5 空气动力组件与车身的流体分析 (16)

5.1边界条件 (16)

5.2 外流场分析 (16)

结论 (21)

参考文献 (22)

致谢 (24)

1绪论

1.1课题研究背景及意义

空气动力学(Aerodynamics)是研究物体在与周围空气作相对运动时两者之间相互作用力的关系及运动规律的科学[1]。空气动力学特性直接影响汽车的经济性、动力性、操纵稳定性和乘坐舒适性等[2]。车身的空气动力学研究目前是车身设计的一个重要课题,是整车性能提升的一个部分。对于大学生方程式大赛,中国从2010年开始至今的四年里,国内车队有了很大程度的提升,空气动力套件也逐渐被各个车队引入到设计当中。在强度日渐更大,竞技性更强的比赛中,设计空气套件已经被提到日程里。大学生方程式是一项场地比赛,对轮胎及赛道有较高要求,在静态比赛中要求阐述方案的设计过程及仿真分析,并以此评分;在动态比赛中其最大的目标就是在保证稳定性和遵守赛规的前提下发挥发动机的最大功率,防止轮胎发生空转打滑的现象,以最快的速度完成比赛。方程式赛车追求轻量化、稳定性,这会引发轮胎附着力不足的问题,增加空气套件是最直接有效的方法。

动态比赛分为75米加速、8字绕环、高速避障、耐久赛四项。空气动力套件在高速避障和耐久赛中发挥着重要作用。组委会为限制赛车的最高车速,在赛场的布置上,70%以上为弯道,要求赛车的过弯性能必须卓越。过弯速度的快慢,直接影响圈速和最后的总时间。要提高过弯速度,轮胎的附着力要好,空气套件的作用这时候就体现出来了,通过增加下压力,使赛车的驱动力不会大于地面附着力,维持方向的稳定性和转向控制能力。

1.2FSAE空气动力学的发展现状

对车身的流体特性最直接的测试方式是风洞试验,风洞的中保持了空气动力学的相似参数,可以精确模拟汽车的行驶条件,并且可以对汽车的各总成进行测试[3]。但是风洞的建设和实验耗资相当高,并且试验周期长。计算流体力学(Computer Fluid Dynamic)作为一个独立学科迅速发展。CFD通过计算机数值模拟计算和图形显示的方法,在时间和空间上定量描述的数值解,从而达到对物理问题进行细致研究的目的[4]。随着计算机技术的发展,CFD数值模拟方法已经越来越多地应用到汽车设计当中。

目前,全世界大约有30种以上的CFD商业化软件,目前流行的大型商业化CFD软件主要有FLUENT、STAR-CD、CFX和FLOTRAN等。使用FLUENT可以进行多相流动,热传递,化学反应以及可压、不可压、定常、非定常等大量工程问题的模拟计算。CFD的基本思想可以归结为:把原来在时间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通过一定的规则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求解代数方程组获得场变量的近似值[5]。

CFD技术从上世纪六十年代以来发展迅速,其费用低、周期短、实验效果理想,已经成为汽车领域进行设计、分析、优化的必经步骤和重要手段。国内CFD虽起步较晚,但随着汽车制造的日益壮大,以及对汽车理论的更加深入的研究,我国正在对相关技术方法逐年增加人力、财力的投入,在这方面加大了研究力度。

对于行驶条件有特殊要求的赛车,为增加轮胎和路面的附着力,充分发挥发动机的驱动力,赛车上广泛安装了为满足高速行驶稳定性的更高要求而设计的空气动力学组件,例如定风翼、后扰流板、扩散器,都是为了充分发挥空气动力学的效率,将空气阻力降低到最小,而升力降低到零或负升力[6]。目前在国内的车队中底部扩散器被广泛应用,它是赛车发展中最有效率的空气动力组件,理论上不会产生阻力,其作用是在赛车底部形成真空,将赛车吸附在路面上,增加负升力。而定风翼和后扰流板会在产生负升力的同时产生一定的阻力。

汽车行驶过程中,会受到周围气流的空气力和力矩的作用,空气力是由行驶速度、车身外形和风向角决定的[7]。作用于运动汽车的空气力和力矩是相应六个自由度的六个分力,即沿X、Y、Z轴的分力和绕轴的力矩,坐标原点是是在前后轴的中心的地平面上(如图三)。在汽车外部,阻力分为车身表面摩擦力和压力阻力,而外形的空

图二扩散器

图一前负升力翼

气阻力占了压力阻力的60%;在内部为冷却通风通过汽车的空气流。由此可见车身外形是影响空气阻力的主要因素。

1.3课题的主要任务

首先明确大学生方程式赛车空气动力学特性,即在把空气阻力减到最小的同时尽量增加下压力,使之与更轻量化的车重相配合,增加轮胎与地面的附着能力,使赛车在高速过弯时负升力能抵抗离心力防止侧滑和侧翻。

赛车行驶过程中,正面气流主要分三个方向,即通过赛车上表面及两侧气流。车身和空气动力组件必须将这三个方向的气流适当引导,

使之不互相干扰,并且不在赛车尾部形成真空区。车身的线条必须流畅而尽量避免突出的棱角,从而避免气流的扰乱。空气动力组件包括定风翼、扰流板(尾翼)及扩散器,各个组件发挥着不同的作用。

空气阻力系数为:

(3-1)

图三 汽车空气力坐标系

式中:——雷诺数;——莫泊数;——普兰克数;——动粘性系数;——粘性系数;k——热传导率;——定压比热;——定容比热;a——轴距;f——迎风面积。

空气阻力系数是雷诺数、莫泊数和普兰克数等一些无量纲数值的函数,要减小空气阻力必须减小正面迎风面积。

高速行驶时,赛车周围的高速气流会对其产生向上的升力F

r

(3-2)

—式中:——空气密度;v——车辆与空气相对速度;S——车辆迎风面积;C

L —车辆气动系数[8]。

升力与车速的平方成正比,方程式赛车都追求轻量化,质量过轻车辆无法平衡高速气流带来的升力,会很大程度影响车辆平稳。本课题的一个任务是解决速度与轻量化一同增加的矛盾,即通过空气动力组件在减小车重的同时最大程度的产生负升力。

本课题是基于河北工业大学2013年方程式赛车“AERI-3”号除车身以外的系统,进行车身及配套空气动力组件的设计。基本工作步骤如下。

1.3.1 使用UG对车身各个部件进行建模。

大学生方程式大赛规则对空气动力组件的规定

(1)位置要求:从俯视图看,任何空气动力学装置(如负升力翼、底部导流板及分流片)都必须满足一下要求[9]:

a.不可以超出前胎前端762mm(30英寸)。

b.不可以超出后胎后端305mm(12英寸)。

c.不可以比前胎外侧或者后胎外侧二者之中最宽的更宽(以前轮中心高度为测量标准)。

(2)空气动力学装置边缘的最小半径要求:所有的定风翼(包括负升力翼、端板及各种尾翼)可能接触到行人的部件必须满足半径不小于1.5mm(0.060英寸)(3)地面效应设备:禁止使用有动力驱动的可以控制空气流动的装置,转外散热的风扇除外。禁止使用动力地面效应装置。

模型的建立必须满足上述规则,保证安全性与通过车检是比赛的一切前提。

1.3.2 前期处理。三维模型建立好以后,将它分成小网格以供后续分析计算。

1.3.3 边界条件设定。将划分好网格的模型导入FLUENT软件,定义各项参数,给定合理边界条件。

1.3.4 FLUENT计算结果。评价该模型是否符合技术要求,并进行优化,直到得到合理的结果。

2 赛车空气动力学特性

空气动力学在赛车领域的应用,主要是让空气在赛车高速行驶的过程中的高速相对流动产生的气压对赛车形成有利影响[10]。在课题研究中,可看作车运动,大气不动,当车速达到某种程度,空气流动的影响便会产生很大的作用,如能引导得当,能变成有利因素,否则会严重阻碍赛车行驶甚至发生事故。一般车速超过100 km/h时,气流对车辆产生的阻力就会超过车轮的滚动阻力,这时就必须考虑空气动力的影响。如图2.1所示。气动力对赛车的影响,还包括发动机的进排气、车辆行驶的稳定性、过弯速度、刹车距离,甚至轮胎温度等。

空气动力学在赛车领域的应用,主要是让空气在赛车高速行驶的过程中的高速相对流动产生的气压对赛车形成有利影响[11]。在课题研究中,可看作车运动,大气不动,当车速达到某种程度,空气流动的影响便会产生很大的作用,如能引导得当,能变成有利因素,否则会严重阻碍赛车行驶甚至发生事故。一般车速超过100 km/h时,气流对车辆产生的阻力就会超过车轮的滚动阻力,这时就必须考虑空气动力的影响。如图2.1所示。气动力对赛车的影响,还包括发动机的进排气、车辆行驶的稳定性、过弯速度、刹车距离,甚至轮胎温度等。

赛车的空气动力学属于低速空气动力学,高速流与低速流的空气压缩性能有很大差别,通常用M 数(马赫数)来划分,定义流速V 与大气中声音的传播速度a 之比为M 数,则M=V/a 。M <0.3是低速范围,汽车、滑翔伞,以及多种球类运动属于这个范围。

在赛车行驶过程收到的众多作用力中,负升力是赛车空气动力学的主要研究对象。运用负升力原理来改善赛车性能的措施被证明是极其有效的,在不增加赛车质量的前提下,负升力改善了轮胎与地面的附着状况,提高了动力性和操纵稳定性。轮胎侧滑角与侧向力及轮胎载荷的关系可以由图2.2看出。轮胎所受的垂直载荷包括负升力、赛车自重和车手体重,为提高赛车的过弯能力,会增加赛车附着力的设定值,通过优化设计附加装置即负升力翼,可以增加轮胎载荷。随之产生的弊端是增加空气阻力,降低赛道上的直线速度。为减小这一弊端,往往将赛车车身设计成楔形,整体趋于扁平,迎风面积减小,从而空气阻力减小。使赛车获得足够负升力和减小赛车高速行驶的空气阻力是本课题的主要研究问题。

赛车的空气动力性能的好坏直接影响车手的圈速以及最后的总时间。在襄阳赛道上,弯道所占部分超过百分之70%。所以拥有良好的空气动力性能的赛车意味着具有更大的优势,而且在规则在一定程度上限制了发动机的功率,即限制了最高车速,在必要的时候,可以牺牲一部分直线赛道的极速,将气动附加装置偏向提高弯道性能的方向设计,在减小阻力与增大负升力之间找到平衡点。 图 2.2 轮胎侧滑角与侧向力及轮胎载荷的关

图2.3 有无负升力作用的赛车侧向加速度

2.1负升力产生原理

赛车上所使用的升力翼原理与飞机的机翼是相同的,只是飞机机翼是产生向上抬升的力,赛车要产生向下压制的力。机翼截面的形状如图2.4所示,设计成上边缘比下边缘长,空气流经机翼的时候,被分成两个方向,一部分从上面经过,一部分从下面经过,然后在翼片后方重新聚合。机翼上表面更长,空气流速比下表面快,其密度减小,气压相应减小,下方压力比上方压力大,从而产生升力,而且速度越大压力差越大[12]。压强与流速的关系可以由伯努利方程得到,方程表述为:

P+0.5ρv2=常数(1-1)其中P是压强,ρ是流体密度,v是流体速度[13]。

把机翼倒过来,就能产生相反的气动效果,产生向下的压制力。赛车简单的负升力翼模型由此而来。然而负升力原理在赛车上的应用与飞机还是有些区别,前负升力翼收到强烈地面效应,以及车身、轮胎、其他气动附加装置的影响。外流场的参数随着车身外部的流态变化而变化[13]。

2.2空气动力学附加装置

产生负升力的区域主要位于三个位置:前负升力翼装置、底盘、后负升力翼装置[15]。这也是赛车空气动力学的主要研究目标。一辆赛车空气动力学特性的优劣取决于这些部位的精细程度。赛车的负升力由这些装置来提供,在高速过弯的时候使轮胎有足够的附着力,防止侧滑,发动机的功率能够最大程度地得到利用。气动附加装置的优化很难用理论解决,需要根据每个赛道的特点进行改进并不断完善,利用仿真软件和实验甚至试车进行验证。

2.2.1前负升力翼

图2.4 机翼受升力原理

前负升力翼是赛车最前端的装置,起到引导气流的作用。它决定着气流通过上下车身、扩散器以及后负升力翼的比例和方向。前负升力翼可以抵消赛车高速行驶时自然产生的升力,增大前轮的地面附着力,改善转向性能,同时还可平衡后负升力翼引起的车头上仰的力矩,起着非常重要的作用。因为大学生方程式赛车属于中置后驱,质心偏后,如果前轮附着力不足,容易产生转向不足,使赛车不能按照车手的意图来行驶,降低了操纵稳定性。

前负升力翼上往往设置襟翼(如图2.5),襟翼的攻角α与离地间隙h对负升力系数C L和空气阻力系数C D有较大影响,在翼面几何尺寸不变的条件下,总负升力C Ltot 与襟翼攻角α成二次曲线关系,前翼负升力C

Lw

与攻角α成线性关系(如图2.6)。相反地,总气动阻力C Dtot与攻角α成线性关系,前翼气动阻力C Dw与攻角α成二次曲线关系(如图 2.7)。前负升力翼离地间隙与负升力系数、空气阻力系数关系如图2.8[16]。

图2.5 襟翼

图2.6 C Ltot、C Lw与α的关系图2.7 C Dtot、C Dw与α的关系

2.2.2后负升力翼

后负升力翼(即尾翼)作用于赛车后轮,使其附着力增加,如果在过弯时后轮发生侧滑,会让赛车产生转向过度,也是不稳定的工况。而且尾翼有提高起步能力和入弯前制动的制动性能。设计尾翼涉及的参数主要有尾翼与车身表面的距离、以及尾翼攻角。

其一是尾翼与车身表面的距离,通常用尾翼距离车身表面距离h与赛车轴距l之比来描述,一般取0.25<h/l<0.62。尾翼距离较高时可以不受气流干扰,较好地发挥作用,但是支架过高容易产生剧烈振动甚至断裂,一般不宜超过800mm。

其二是尾翼与地面的距离,尾翼最低点与地面距离为h,翼片截面两个端点间直图2.8 前负升力翼离地间隙h与负升力系数、空气阻力系数

大学生方程式赛车悬架系统设计

大学生方程式赛车悬架系统设计 中国大学生方程式汽车大赛,在XX年开始举办,至XX 年已举办三届,大赛目的是为了提高大学生汽车设计与团队协作等能力,而华南农业大学XX年才组队设计赛车,现在还没有派队参加比赛,本文初步探讨SAE赛车悬架设计的方案,为日后华南农业大学参赛打下基础。 本课题的重点和难点 1、根据整车的布置对FSAE赛车悬架的结构形式进行的选择。 2、对前后悬架的主要参数和导向机构进行初步的设计。 3、用Catia或Proe建立悬架三维实体模型。 4、在Adams/car中建立该悬架的虚拟样机模型,进行仿真,分析其运动学性能。 5、悬架设计方案确定后的优化改良。优化的方案一:用ADAMS/Insight进行优化,以车轮的定位参数优化目标,以上下横臂与车架的铰接点为设计变量进行优化。优化的方案二:轻量化,使用Ansys软件进行模拟悬架工作状况,进行受力分析,强度校核,优化个部件结构,受力情况。 1、查阅FSAE悬架的设计。 2、运用Pro/E或者Catia进行零件设计和仿真建模,设计出悬架的雏形。 3、在Adams/car中建立该悬架的虚拟样机模型,进行仿真,分析其运动学性能。 4、用ADAMS/Insight进行优化,改善操纵稳定性。

5、使用Ansys软件进行模拟悬架工作状况,进行受力分析,优化个部件结构及轻量化。 悬架设计流程如下: 首先要确定赛车主要框架参数,包括:外形尺寸、重量、发动机马力等等。 确定悬架系统类型,一般都会选用双横臂式,主要是决定选用拉杆还是推杆。 确定赛车的偏频和赛车前后偏频比。 估计簧上质量和簧下质量的四个车轮独立负重。 根据上面几个参数推算出赛车的悬架刚度和弹簧的弹性系数。 推算出赛车在没有安装防侧倾杆之前的悬架刚度初值,并计算车轮在最大负重情况下的轮胎变形。 计算没安装防侧倾杆时赛车的横向负载转移分布。 根据上面计算数值,选择防侧倾杆以获得预想的侧倾刚度和 LLTD。最后确定减振器阻尼率。 上面计算和选型完成后,再重新对初值进行校核。 运用Pro/E或者Catia进行零件设计和仿真建模,设计出悬架的雏形。在Adams/car中建立该悬架的虚拟样机模型,进行仿真,分析其运动学性能,并用ADAMS/Insight进行优化分析。 使用Ansys软件进行模拟悬架工作状况,进行受力分析,

大学生方程式赛车使用材料分析

大学生方程式赛车使用材料分析 摘要:本论文主要内容为大学生方程式赛车正在普及中国的高校,在参赛队伍的努力下,这项比赛正在给中国的汽车制造业注入活力。对于参赛者而言,对汽车材料知识的学习非常重要,因为通过对车架、车身、轮胎、油气系统材料选择以及优化可以极大提高赛车的整体性能下文,将会对现在的方程式赛车的整体车结构的材料进行分析以及对于参赛者材料选择重要性的论述。 Abstract: the main content of this thesis is to popularize Chinese for college students of Formula One racing college, in the team's efforts, this game is to Chinese automobile manufacturing industry infuse vigor.The contestants, to automotive materials knowledge learning is very important, because the frame, body, tires, oil and gas system in material selection and optimization can greatly improve the overall performance of the car below, will be on the present formula car integral structure material for analysis and material selection for contestants in the exposition of the importance. 中国大学生方程式汽车大赛(以下简称“FSAE”)是中国汽车工程学会及其合作会员单位在学习和总结美、日、德等国家相关经验的基础上结合中国国情精心打造的一项全新赛事。我们大学生参与其中主要意义在于通过动手实践增强理论知识,为我国的汽车工业发展输送高素质的人才。在参与FASE中,对于赛车的设计固然重要,但是对于赛车材料的选择同样是重中之重。通过对材料的准确把握,设计制造出合格的赛车,是FASE的灵魂。而灵魂的重要性值得所有参与其中的人认真研究。 首先我们从车架说起。车架是是构起赛车的基本,车架是车辆的主体结构,为其他部件,如悬架、发动机、座椅、踏板、传动装置等提供安装的位置,并承受所有部件传来的力。所以我们说,对于车架材料的选择非常重要,因为它决定了赛车的稳定性。对因为于大学生来讲,设计的赛车从简单以及可行性来考虑,多采用空间衍架结构,设计制造简单便宜,并且发生碰撞后可以很容易的检修。

F1方程式赛车的空气动力学课件.doc

F1方程式赛车的空气 动力学 班级: 学号: 姓名: 年月号 引言 空气动力学在F1 领域中扮演着重要的角色。在引擎的研发相对稳定的下,空气动力学 几乎主宰着一辆赛车的全部性能。从上纪六十年代F1 赛车第一次使用尾翼,到七十年代地 面效应的引进,再到近些年双层扩散器、废气驱动扩散器等设计的提出,空气动力学在短短的几十年时间里取得了长足的进步,几乎可以与航空工业并驾齐驱,甚至有超越后者的势头。

空气动力学是流体力学的一个重要分支,主要研究空气或其它气体的运动规律、空气或其它气体与飞行器或其他物体相对运动时的相互作用和伴随产生的物理变化。 F1的空气动力学主要研究下压力,阻力和灵敏度三个方面,其中,提高压力是提升弯 中表现的有效手段,降低阻力是获得高尾速输出的必要手段,灵敏性又称敏感度,主要研究空气动力学环境改变而导致的自身变化的强度。确切地说,就是研究由路况差异而导致的气 动翼片与底盘间距的变化对赛车性能的干预强弱。 前翼 前翼是安装在车体最前端的气动附加装置,它不仅负责制造赛车前部的下压力,还影响向后流动的气流的走向。F1赛车的前翼的工作受到多种因素的影响,首先,作用在翼面上 的气流并不是理想状态的,风速,风向都时刻变化,且不确定,此外,赛车在弯道中行驶时,作用在翼面上的气流会发生横向的偏转和移动,形成不稳定的流场,这不仅降低了前翼产生的气动负升力的效率,还影响到了前翼后部的气流环境,不利于气流的正常传输。 人类在流体力学的研究过程中一直在发展,进步,在可以产生气动负升力的翼形的研究 中更是如此,先后出现了伯努利,牛顿等不同时期的翼形,这些翼形在气动性能上也不断提升,今天F1赛车所采用的主襟翼结合的翼形就是人类经过长期探索换来的智慧结晶,这种 翼形不仅成熟,而且有效。 F1赛车在高速行驶时,流过前翼所在区域的气流被前前翼分割为两部分:一部分从翼 片的上表面流过,另一部分则流过翼片的下表面,这两股气流依附在翼片上流动,最后在前

大学生方程式赛车设计——转向系统

赛车转向系统是用于改变或保持赛车行驶方向的专门机构。起作用是使赛车在行驶过程中能按照车手的操纵要求而适时地改变其行驶方向,并在受到路面传来的偶然冲击及赛车意外地偏离行驶方向时,能与行驶系统配合共同保持赛车继续稳定行驶。因此,转向系统的性能直接影响着赛车的操纵稳定性和安全性。对赛车的行驶安全至关重要,因此赛车转向系统的零件都称为保安件。赛车转向系统和制动系统都是赛车安全必须要重视的两个系统。当转动赛车方向盘时,车轮就会转向。为了使车轮转向,方向盘和轮胎之间发生了许多复杂的运动。最常见的赛车转向系统的工作原理包括:齿条齿轮式转向系统和循环球式转向系统。当赛车转向时,两个前轮并不指向同一个方向。要让赛车顺利转向,每个车轮都必须按不同的圆圈运动。由于内车轮所经过的圆圈半径较小,因此它的转向角度比外车轮要大。如果对每个车轮都画一条垂直于它们的直线,那么线的交点便是转向的中心点。转向拉杆具有独特的几何结构,可使内车轮的转向度大于外车轮。赛车转向系统分为两大类:机械转向系 统和动力转向系统。a机械转向 系统:完全靠车手手力操纵的转 向系统。b动力转向系统:借助 动力来操纵的转向系统。动力转 向系统又可分为液压动力转向系 统和电动助力动力转向系统。机 械转向系以车手的体力作为转向 能源,其中所有传力件都是机械 的。机械转向系由转向操纵机构、 转向器和转向传动机构三大部分 组成(如图)。车手对转向盘施 加的转向力矩通过转向轴输入转 向器。从转向盘到转向传动轴这 一系列零件即属于转向操纵机构。作为减速传动装置的转向器中有级减速传动副。经转向器放大后的力矩和减速后的运动传到转向横拉杆,再传给固定于转向节上的转向节臂,使转向节和它所支承的转向轮偏转,从而改变了赛车的行驶方向。这里,转向横拉杆和转向节属于转向传动机构。。 转向操纵机构由方向盘、转向轴、转向管柱等组成,它的作用是将车手转动转向盘的操纵力传给转向器。机械转向器(也常称为转向机)是完成由旋转运动到直线运动(或近似直线运动)的一组齿轮机构,同时也是转向系中的减速传动装置。常用的有齿轮齿条式、循环球曲柄指销式、蜗杆曲柄指销式、循环球-齿条齿扇式、蜗杆滚轮式等。齿条齿轮式齿轮组被包在一个金属管中,齿条的各个齿端都突出在金属管外,并用横拉杆连在一起。小齿轮连在

大学生方程式赛车队员培养规划

锐狮电动方程式赛车队人员培养规划 2018.5.04 一、指导思想 社会是人才需求的提出方和最终的决定者,并长期处于市场主导地位。为了缩短毕业生的磨合期,提高学生能力,高校通过修正培养目标及培养计划、提供实践平台等方式以满足社会的需求;学生为了以后能尽快适应工作岗位,可以在在校期间,通过丰富理论知识、增加实践过程来完善自己。 大学生方程式赛车项目,是学生理论与实践相结合的平台,为培养学生的专业技能和团队协作能力奠定了基础。上海工程技术大学锐狮电动方程式赛车队提供了该项目的岗位培训与实践平台,该项目要求大学生团队在一年内完成一辆方程式赛车的设计、加工、组装、调试,并通过营销报告、设计报告、成本报告全方位锻炼学生能力,同时通过团队的管理、财务的运营、车队宣传交流及商业赞助协恰提高了学生管理、财务、交流、商务等方面能力,符合上海工程技术大学面向生产一线培养优秀人才的办学宗旨和建设现代化特色大学的办学理念,适应了我国社会、经济和工程技术发展对高等工程技术人才的需求。 二、培养目标 上海工程技术大学锐狮电动方程式车队面向全校各专业,培养具有扎实的理论基础,掌握工业设计、工程制图、工业制造、电子电工、商务营销、项目管理、财务会计等理论知识和实践能力的专才和全才。培养能够担任车队运营、发展任务的战略人才。培养具有零部件设计、生产工艺、成本控制、产品试验及质量控制等工程实践能力,具有良好的团队合作精神、创新意识和创业精神,具备适应现代行业快速发展的优良专业素养,能够在企业从事管理、财务、商务、设计、制造、研发、测试、质量控制等工作的工程应用型人才。 三、培养方案 1.各组根据各组培养规划进行组内培训,车队按期举办全体培训。 2.队员以各组培养规划为纲领,结合个人分工,自学为主,车队培训为辅。 3.通过学习完成知识体系构建,形成自主学习意识,并能够将理论与实践相结合。 四、能力要求 1. 工程知识:能够利用工程基础理论和专业知识解决一般工程问题。 2. 问题分析:能够应用自然科学和工程科学的基本原理,识别、表达、并通过文献分析复杂工 程问题,并获得有效结论。 3. 设计/开发解决方案:能够设计针对优化问题的解决方案,设计满足方程式赛车需求的系统、 零部件,熟悉项目整套运营方案,并能够在设计环节中体现创新意识。 4. 研究:能够基于科学原理并采用科学方法对复杂工程问题进行研究,包括设计实验、分析与 解释数据、并通过信息综合得到合理有效的结论。 5. 使用现代工具:能够针对复杂工程问题,选择与使用恰当的技术、资源、工具和软件,包括 对复杂工程问题的预测与模拟,并能够理解其局限性。 6. 个人和团队:能够在多学科背景下的团队中承担个体、团队成员以及负责人的角色。 7. 沟通:能够就复杂工程问题与相关负责人进行有效沟通,包括撰写设计报告和成本报告、陈 述发言或回应指令。并具备一定的国际视野,能够在跨文化背景下进行沟通和交流。 8. 项目管理:理解并掌握工程管理原理与经济决策方法,并能在多学科环境中应用。 9. 文件处理:能够按照规范编写各种文件,能够与正规公司进行邮件的接洽交流。 10.自主学习:大学不是填鸭式教育,也不可能靠督促来学习,但人与人之间的差距往往就在自 主学习中拉开,所以要具有自主学习的意识,能够根据目标快速学习并应用。

走近F1——空气动力学基础

空气动力学 与公路上普通汽车相比,现代一级方程式赛车和喷气式战斗机有更多的相似之处。空气动力学是赛车运动中致胜的关键,每年车队们都会投入几千万美元用于这方面的研发。 气动设计师有两个首要关注点:第一,制造下压力使赛车轮胎更贴近赛道地面,同时提升回旋力;第二,将由空气涡流引起、使车速减慢的空气阻力降低至最小。 20世纪60年代,一些车队开始尝试现在我们熟知的车侧翼实验。赛车侧翼与飞机机翼的运转法则完全相同,只不过方向刚好相反。根据伯努利定律,飞机所在等高线的飞行距离不同,机翼上下的气流速度也不同,导致压强不同。因为上下压力要保持平衡,机翼就会向压力小的方向运动。飞机就是利用机翼起飞,赛车用它的侧翼产生下压力。正因为空气动力的下压力存在,一部现代一级方程式赛车在侧面可以产生3.5g的回旋力,这个大小是其车身重量的3.5倍。即为,理论上讲,这个压力可以让赛车高速时挨着地面行驶。 早期试验中使用的可移动的车翼和单点悬挂造成过几起极为严重的事故,因此1970年赛季引入了车翼大小和位置的限制规定。随着时间推移,这些规定直到今天仍然大面积适用。

20世纪70年代中期,人们发现了“地面效应”下压力。莲花公司的工程师发现,通过在赛车的底面安装巨大的车翼可以使车子像翅膀一样运动同时又紧贴地面。源于这一想法最典型的例子是戈登?墨里设计的布拉汉姆BT46B,这部车加装冷却风扇抽取车身裙角处的空气以增加巨大的下压力。在其它车队技术革新后,这部车仅在赛场上出现一次之后便销声匿迹了。根据“地面效应”的成效,规则也跟着不断改变。起先,禁止在车身裙角处控制低压区域。之后,对阶形地板提出要求标准。

首届中国大学生方程式赛车大赛的筹备介绍

首届中国大学生方程式赛车大赛的筹备介绍 一、FSAE背景 1. 赛事目的 Formula SAE比赛由美国车辆工程师学会(SAE)于1979年开办,比赛要求参赛的大学生以一年时间,开发一部排气量为610 c.c.以下的假日休闲赛车,组装必须简单,可以让小型工厂每天至少生产四部。 这项比赛重点不是在比快,而意在做出一辆安全而且容易操作的竞赛型车辆。SAE方程式(Formula SAE)系列赛将挑战本科生、研究生团队构思、设计与制造小型方程式赛车的能力。为了给予车队较高的设计弹性和自我表达创意与想象力的空间,在整车设计方面将作较小的限制。赛前车队通常需要8到12个月的时间设计、制造、测试和准备赛车。在与来自世界各地的大学代表队的交流与切磋中,赛事给了车队证明与展示其创造力和工程技术能力的机会。 Formula SAE赛事由汽车工程师协会(the Society of Automotive Engineers)赞助。SAE是一个拥有超过60000名会员的世界性的工程协会,致力与海、陆、空各类交通工具的发展进步。 Formula SAE是一项面对美国汽车工程师学会学生会员组队参与的国际赛事,于1980年在美国举办了第一届赛事。比赛的目的是设计、制造一辆小型的高性能赛车。目前美国、欧洲和澳大利亚每年都会定期举办该项赛事。 Formula SAE向年轻的工程师们提供了一个参与有意义的综合项目的机会。由参与的学生负责管理整个项目,包括时间节点的安排,做预算以及成本控制、设计、采购设备、材料、部件以及制造和测试。Formula SAE为在传统教室学习中的学生提供了一个真实世界的工程经历。Formula SAE队员经受考验,面对挑战,具有创造性思维,培养实践能力。队员们相对同龄人有专业的优势,这保证了他们与其他人合作时更高效地完成项目。 该项目的目标是由学生构思、设计、制造一辆小型方程式赛车。通过该项目重点考察和培养参与学生的知识水平、创造力和想象力。在这样一项具有非常意义的

空气动力学的公式SAE

大学生方程式赛车的空气动力学:初步设计和性能预测 斯科特Wordley和杰夫·桑德斯 莫纳什风洞,机械工程 莫纳什大学 版权所有?2005 SAE国际 摘要 一个空气动力学套件的初始设计描述了SAE方程式赛车。式SAE审查关于空气动力学的规则是用来开发对前、后规范的实际参数倒置的机翼,―翅膀‖。这种翼包为了在产生最大的下压力规定的可接受的范围内增加阻力和减少最高速度。这些翅膀上公式的净效应SAE汽车的性能在动态事件之后预测。一个配套文件[ 1 ]详细介绍,CFD,风洞和赛道上的测试这的空气动力学套件的开发。 简介 SAE方程式是一个大学生设计竞赛,学生设计组,建立自己的开放的比赛轮赛车。自1981开始在美国[ 2 ],这个公式已经蔓延到欧洲,亚洲,南美国和澳大利亚,几百国际团队,每年都有许多赛车比赛举行的世界。不同于传统的赛车比赛,球队获得八分不同的事件,和最高的球队累积总获胜。有三的静态事件(成本,演示,设计)在球队是判断他们设计的理由,介绍和成本技术,五动态事件(加速,刹车盘,越野,燃油经济性,耐久性)测试的汽车和赛道上的[ 3 ]学生驾驶性能。这个加权分系统决定,成功是一种仔细平衡赛车的各个方面的事过程设计和开发。 SAE方程式:设计收敛? 不同于其他形式的长期稳定的比赛规则,大学生方程式赛车已经收敛于一个单一的,好的定义,设计模式。有几种理论这是为什么:规则的权重可以更仔细通过对竞争对手在其他车辆性能的一个方面的性能提升地区。例如涡轮增压器可用于在潜在费用增加发动机功率燃油经济性和成本的评分贫困和知识信息管理保持团队内由于高翻身成员可以破坏长期设计验证周期,造成重复错误经常回广场的人。大多数的团队在一个只有竞争竞争每年,意味着实际的时间在驱动开发这些车是有限的,与周的顺序。缺乏定期比赛和与其他球队的比较因此限制了接触,并通过,最佳实践。竞争仍然集中在学习,这样的团队将继续技术感兴趣的人以及那些看到提供一个整体的性能优势。过去的SAE方程式比赛的结果[ 4 ]分析表明,迄今为止,最简单的方法往往是最成功的十强,绝大多数完成团队的运行空间钢框架的汽车自然吸气发动机600cc。虽然这是假设这种趋势还会持续一段时间,四在设计理念的重大转变,已经出现在最近的年。碳纤维硬壳式底盘使用的增加,为球队尽力降低底盘重量同时保持或提高抗扭刚度。宽传播对涡轮增压也浮出水面随着康奈尔的不断成功,伍伦贡大学。新一代单缸摩托车的发动机提供的性能增益在相反的方向,像RMIT和代尔夫特理工队使用减小的重量和燃料使用的大学抵消减少的功率。几支球队,包括在阿灵顿,密苏里罗拉德克萨斯大学,加州—聚和莫纳什都使用了机翼和其它气动装置产生压力的提高过弯速度的主要目的。一些球队采用一个以上的这些方法。主要的设计变化以上,性能气动设备可能是最困难的学生小组预测和量化。像这样的,相当多的争论仍在继续的SAE方程式社区的利益(或其他)的使用倒翼型的―翅膀‖,这种竞争。莫纳什大学队(墨尔本,澳大利亚)用他们的SAE方程式空气动力装置汽车运行近四年来。这个团队也在有定期的访问有些独特的位置一个全面的汽车风洞空气动力学测试。本文中,第二由同一作者【1】,总结了四年之久的气动设计和发展过程中所进行的这个团队,和提出了在公共领域的第一个数据气动性能的SAE方程式赛车。这是希望的信息和方法,包含这里将作为一个指导和基准其他球队考虑气动使用在SAE方程式装置。SAE方程式规则的思考与大多数其他赛车类相比,目前的SAE方程式规则[ 2 ]提供了一些独特的气动使用的机遇和挑战设备。这些规则将简要探讨在这里,从那些对通用汽车的设计和性能,并移动到更多的有关对气动助手的使用。广阔的这些规则对设计的影响一个SAE方程式赛车性能也将讨论了在适当的地方越野/耐力轨道设计而轨道布局为滑锅加速事件是固定的几何形状,参加比赛/耐力轨道设计每年都在变化按规则,个人描述参数通过不同的比赛场地的限制全世界。

大学生方程式赛车使用材料分析

大学生方程式赛车使用材料分析 机械工程学院 1116150107 包俊 中文摘要:本篇论文介绍了大学生方程式赛车所用的材料,主要从车身材料,底盘材料以及车轮材料三个方面介绍。材料是方程式赛车的基础,必须具有优良的性能。其中,车身材料主要采用的是碳纤维,它具有轻盈,抗冲击的性能;赛车底盘则采用蜂窝铝材和碳纤维合成的复合材料,其具有机械强度高,耐温性好,耐腐蚀性好等性能;而车轮材料则比较复杂,会根据比赛赛道的不同选用不同的轮胎,有的软,有的硬,每场比赛所使用的轮胎成分差别很大,但是其外框主要是尼龙和聚酯纤维的复杂编织物。 English Abstract: This paper introduces the formula of materials used for college students, mainly from the body material, material of the chassis and wheel material is introduced from three aspects. Material is a Formula One racing based, must have excellent performance, which, the body material is the main use of carbon fiber, it has a light, shock resistant performance; racing chassis uses the titanium alloy material, which has high mechanical strength, good temperature resistance, good corrosion resistance and other properties; while the wheel material more complex, depending on the race track choose different tires, some soft, some hard, every game the used tire composition varies greatly, but the frame is mainly nylon and polyester fiber complex woven fabric. 中国大学生方程式汽车大赛(简称“中国FSAE”)是一项由高等院校汽车工程或汽车相关专业在校学生组队参加的汽车设计与制造比赛。各参赛车队按照赛事规则和赛车制造标准,在一年的时间内自行设计和制造出一辆在加速、制动、操控性等方面具有优异表现的小型单人座休闲赛车,能够成功完成全部或部分赛事环节的比赛。而本文则主要对其车身所用材料展开探究,赛车主要由车身,底盘和轮胎构成,下面就从这三方面来分别详细地介绍其所用材料和性能特点。 车身材料:碳纤维 车身是一辆赛车的主体部分,其重要性不言而喻,而赛车对于速度的追求则理所当然地要求车身材料必须具有轻盈的特点。而作为赛车手的屏障,其又必须具有良好的抗冲击性能,这两种看似矛盾的要求必须在一种材料中体现,似乎有些困难,而碳纤维材料则很好地符合了这两样要求。碳纤维,又称碳化纤维,泛指一些以碳纤维编织或多层复合而成的材料。因为它又轻又坚硬,所以它的用途很广泛。碳纤维在汽车领

方程式赛车悬架系统设计分析中期报告

河北工业大学本科毕业设计(论文)中期报告 毕业设计(论文)题目:方程式赛车悬架系统设计分析 专业:车辆工程 学生信息:学号:082886;姓名:樊广阔;班级:车辆083 指导教师信息:教师号:86024;姓名:武一民;职称:教授 报告提交日期: 一、前期具体工作及取得进展 1.查阅FSAE赛车及相似汽车悬架结构,确定所设计赛车悬架结构。 根据文献及FSAE赛车实车相关图片初步确定采用不等长双横臂拉杆弹簧独立悬架,制动器形式采用盘式制动。上下两横臂采用A型结构,且由杆件代替,上下A臂不平行且不等长,为了保证运动时轮距变化不大采用上横臂短、下横臂长的结构形式。 悬架杆件采用SAE4130钢管,尺寸为12x1.5以及,并采用SA型外螺纹杆端关节轴承,型号为:SA8E。横臂与转向节的链接采用GE型向心关节轴承,型号为:GE8C。减震器及弹簧选取螺旋弹簧套在减震器外侧的结构,减震器的一端通过摇臂与拉杆连接,另一端连接在车架上。横向稳定杆与摇臂的连接同样采用外螺纹杆端关节轴承,型号为:SA6E。摇臂的旋转中心采用的是自润滑轴承,型号为10x14x20。整体结构的布置形式大概如下图所示: 2.初步确定悬架相关参数。 根据赛事规定6.3.1 赛车轮辋直径必须至少为203.2mm(8.0 英寸),因此结合查阅相关资料及简单计算轮辋采用13X8尺寸,即轮辋直径为330mm。轮胎选取Continental轮胎,型号为195/45R13,轮胎外径为510mm。 根据赛事规定6.2 离地间隙:在比赛中,在有车手乘坐时,赛车的静态离地间隙必需至少25.4mm(1 英寸),因此,初步设计赛车最小离地间隙为30mm。 根据赛事规定2.3 轴距赛车的轴距必须至少为1525mm(60 英寸)。轴距是指在车轮指向正前方时同侧两车轮的接地面中心点之间的距离。因此,初步设计赛车轴距为1535mm。 根据赛事规定2.4 轮距赛车较小的轮距(前轮或后轮)必须不小于较大轮距的75%。 此次设计初步设计前轮距为1200mm,后轮距为1180mm。 根据赛事规定 6.1.1 赛车所有车轮必须安装有功能完善的、带有减震器的悬架。 在有车手乘坐的情况下,轮胎的跳动行程至少为50.8mm(2 英寸),其中向上25.4mm

大学生方程式赛车悬架设计

大学生方程式赛车悬架设计 加布里埃尔·德·波拉爱德华多 圣保罗大学摘要 独立完成一次大学生方程式赛车的悬架设计。首先分析赛规,通常,赛规会对悬架的最小行程和轴距作出限制,并且给出本次设计所要达成的最终目的,除此之外还会评判出得分最高的一个团队。本文会讨论到轮胎的运动,并详细分析前后悬架的拉杆不等长的摆臂。维度论是基于CAD的尺寸限制发展出来的。在总的力与时间的图上分析了暂态稳定、控制和操纵性能。在分析运动学和动力学时创建了多体模型。该模型能模仿侧翻,驾驶和操纵并且能进行几何调整,使得弹簧和阻尼器实现其性能。 前言 美国汽车工程师学会举办的大学生方程式汽车大赛激励学生 们去设计、制作一个小的方程式风格的赛车,并参加比赛。竞争的基础是假设一个公司集合了一个工程师团队来制造一个小的方程式赛车。第一步是分析赛事规则,赛规限制悬架系统的最小轮距为50mm,轴距大于1524mm。FSAE悬架工作在一个狭窄的车辆动力学范围,这是由于赛道尺寸决定的有限过弯速度,140公里每小时为最高速度和60公里每小时为转弯最高速度。比赛的动态部分包括15.25m的直径防滑垫,91.44m的加速项目,0.8km的越野赛,44km耐力赛。 设计目标已经给定并且会评判出得分最高的十个团队。悬架系统的几何部分集中在一些悬架设计理念和亮点的基本领域。因此,

FSAE悬架设计应该集中在竞赛的限制因素方面。例如,车辆轮距宽度和轴距是决定汽车操纵性设计成功与否的关键因素。这两个尺寸不仅影响重量传递还影响转弯半径。设计目标是首先满足赛则,其次降低系统重量,创造最大的机械抓地力,提供快速响应,准确的传输驱动程序的反馈,并能调节平衡。 轮胎和车轮 悬架设计过程中采用了“由外而内”的方法,先选择满足赛车要求的轮胎,然后设计悬架以适应轮胎参数。短的比赛时间和低速的比赛项目都要求轮胎快速达到其工作温度。轮胎对于车辆操纵性很重要,设计团队应当充分地调查轮胎尺寸及可用的化合物材料。轮胎的尺寸在这一阶段的设计中很重要,因为在确定悬架的几何结构之前,轮胎的尺寸必须已知。例如,一个给定了车轮直径的轮胎高度决定,如果轮胎内部被组装起来了,下球接头应当离地面多近。 设计者应当意识到提供对于给定车轮直径的轮胎尺寸的数量是有限的。因此,考虑到轮胎对于汽车操纵性的重要性,选择轮胎的过程应当有条不紊。由于轮胎在地面上的部分对抓地力有很大的影响,有时希望使用宽的轮胎,增加牵引力。然而,切记宽的轮胎使回转质量增加,而这又使FSAE发动机的加速受到限制。 相比较使用宽轮胎而引起的牵引力的增加,这些增加的回转质量也许会对整车的性能产生更大的损害。宽轮胎不仅增大质量,而且使受热的橡胶数量增加。因此比赛用的轮胎必须设计成在某一特定的

F1方程式赛车的空气动力学资料

F1方程式赛车的空气 动力学

F1方程式赛车的空气 动力学 班级: 学号: 姓名: 年月号 引言 空气动力学在F1领域中扮演着重要的角色。在引擎的研发相对稳定的下,空气动力学几乎主宰着一辆赛车的全部性能。从上纪六十年代F1赛车第一次使用尾翼,到七十年代地面效应的引进,再到近些年双层扩散器、废气驱动扩散

器等设计的提出,空气动力学在短短的几十年时间里取得了长足的进步,几乎可以与航空工业并驾齐驱,甚至有超越后者的势头。 空气动力学是流体力学的一个重要分支,主要研究空气或其它气体的运动规律、空气或其它气体与飞行器或其他物体相对运动时的相互作用和伴随产生的物理变化。 F1的空气动力学主要研究下压力,阻力和灵敏度三个方面,其中,提高压力是提升弯中表现的有效手段,降低阻力是获得高尾速输出的必要手段,灵敏性又称敏感度,主要研究空气动力学环境改变而导致的自身变化的强度。确切地说,就是研究由路况差异而导致的气动翼片与底盘间距的变化对赛车性能的干预强弱。 前翼 前翼是安装在车体最前端的气动附加装置,它不仅负责制造赛车前部的下压力,还影响向后流动的气流的走向。F1赛车的前翼的工作受到多种因素的影响,首先,作用在翼面上的气流并不是理想状态的,风速,风向都时刻变化,且不确定,此外,赛车在弯道中行驶时,作用在翼面上的气流会发生横向的偏转和移动,形成不稳定的流场,这不仅降低了前翼产生的气动负升力的效率,还影响到了前翼后部的气流环境,不利于气流的正常传输。 人类在流体力学的研究过程中一直在发展,进步,在可以产生气动负升力的翼形的研究中更是如此,先后出现了伯努利,牛顿等不同时期的翼形,这些翼形在气动性能上也不断提升,今天F1赛车所采用的主襟翼结合的翼形就是人类经过长期探索换来的智慧结晶,这种翼形不仅成熟,而且有效。

2019中国大学生方程式汽车大赛

中国大学生方程式汽车大赛 参赛确认回执

参赛免责条款 车队自愿参加年中国大学生方程式系列赛事。承诺遵守赛事规则及社会相关法律法规的要求,充分了解安全用电、用火知识和组委会相关规定,强化队员自我保护意识。在备赛及参赛的过程中,由车队队员造成的不符合各项安全准则和规定的事故、引起的纠纷及造成的一切后果由车队及学校承担。 若出现暴雨、飓风.泄洪、地震等极端气候或灾害而停止或暂停比赛,车队将以队员安全为重、服从现场管理者的指挥。

注:(以下提示文字可以删除) .只有经过审核满足要求的车队才可以进行正式报名,即只有“报名车队”才能下载到此参赛确认回执。 .请下载此参赛确认回执的车队,仔细完整地填写上方回执。第二页提示文字可以删除,并保存成文件,于年月日前上传至赛事管理系统。 .报名车队请于年月前将报名费电汇至收款账户,对公汇款请务必在汇款备注处写明:报名费。个人汇款请务必在汇款备注处写明学校,如:吉大报名费,并将汇款凭据以照片或者截图等方式留存。若在规定时间内未缴纳报名费的车队将自动失去参赛资格。(缴费时间为年月日年月日)汇款凭据文件命名为:车号学校名称赛事代码汇款凭据文件,并保存成文件(文件大小<),上传至赛事管理系统。. 组委会秘书处收到报名费后个工作日内核实车队实际的缴费情况与参赛确认回执和报名费提交凭证提交情况。实

际缴费情况为已缴费,该车队则成为年正式参赛车队。最终将以公告的形式公示正式参赛队名单。 注意:文件名称不符合规定或提交位置错误,均视为未提交。截止日期前未正确提交的相应文件的车队将自动失去参赛资格。 中国大学生方程式汽车大赛官网 赛事管理系

大学生方程式赛车悬架资料

Error No. 1 This picture shows a classic design error that all Judges hate, and is considered a "Mortal Sin". Every year several cars are presented like this as teams ignore the advice or directions they are given. The outer spherical bearings are threaded rod ends loaded in bending! The entire mass of the car, plus bump loads, weight transfer and brake torque are reacted to the chassis by bending the threaded shank of the lower joint. This is going to break! GTB! Do not do this! The upper rod end is being asked to react brake torque in bending. It is also being carried in single shear on top of the upright. These errors are not so serious, but still examples of poor design. The judges understand why teams do this. It makes camber adjustment easy, but there are better solutions. Teams will argue they have selected a rod end with sufficient bending capacity, but this argument will not hold with the judges. A Rod end with a sufficiently strong shank will be far too big and heavy, and as the thread roots are good stress raisers, the joint will probably crack and break anyway. In any case, we are talking about the Design Competition, and incorrect use of fasteners is not good design.

大学生方程式赛车车身外流场ANSYS分析报告

大学生方程式赛车 车身外流场ANSYS分析报告 指导老师:詹振飞 小组序号:第五小组 小组成员:刘宇航黄志宇 谢智龙陈治安 重庆大学方程式赛车创新实践班 二〇一六年十月

摘要 大学生方程式赛车起源于国外,近几年才在国内兴起并得以迅速发展,成为各个高校研发实力的侧影,因此得到了各个高校的重视,赛车外形设计更是赛车很重要的一部分,它不仅是赛车的外壳,更可以利用空气动力学来为赛车减少阻力,提高赛车的性能。因此外形设计时赛车总体设计中很重要的一部分,通过有限元法对赛车外壳进行风洞模拟测试对赛车外形的改进及优化分析有重要的意义。 利用ANSYS中的fluent进行有限元模拟风洞试验试验,能够准确反映汽车行驶状态时的空气动力学特性数据,其研究对象主要有汽车空气动力特性和汽车各部位的流场。ANSYS在此过程中起到极其重要的作用。 对于一辆优秀的赛车而言,它的性能不仅取决于优秀的结构设计和强劲的发动机性能,还在一定程度上取决于它的外形。赛车的外形不仅能够影响赛车的美观度,更重要的是能够影响车身所受的阻力。因此,如果赛车有一个好的外观设计,利用好空气动力学的原理,则能够在一定程度上减小车身的阻力,从而提高整车的性能。 本小组利用CATIA等建模软件建立了适当的赛车外观模型。在此基础上,利用ANSYS中的Fluent进行有限元的模拟风洞试验,并得出了一定的结论,整理成报告。 关键字:CATIA三维设计,车身外流场,ANSYS,风洞模拟,有限元

1.利用三维建模软件建立车身模型 在2016年发布的大赛规则限定的范围内,本小组利用CATIA等相关的建模软件建立了合适的赛车车身模型,以用于后续分析。 2.2016年大赛关于车身的部分规则要求 1)赛车的轴距至少为 1525mm(60 英寸)。轴距是指在车轮指向正前方时同侧 两车轮的接地面中心点之间的距离。 2)赛车较小的轮距(前轮或后轮)必须不小于较大轮距的 75%。 3)在正常乘坐并系好安全带的情况下,车的尺寸需适合男性第 95 百分位模板 的乘坐尺寸相关要求。 3.车身模型方案 赛车轴距越大,车身内部纵向空间大。但相应的车身越大,相应的质量越大。出于轻量化的原则,且要求赛车的灵活性及降低成本。综合考虑,车身外形建模轴距定为1620mm。 赛车轮距越大,赛车横向稳定性越好,车内部横向空间更大。但同样轮距大,质量大,并影响转弯直径。此外设计前轮距大于后轮距,使赛车具有更好地转向能力。于是综合考虑,前轮距定为1240mm,后轮距为1190mm。 4.小组作品

大学生方程式赛车设计说明书(制动与行走系统设计) (新)

毕业设计(论文) 题目大学生方程式赛车设计(制动与行走系统设计) 2013年5月30日

大学生方程式赛车制动与行走系统设计 摘要 Formula SAE自1978年在美国第一次举办以来,现已成为一项顶尖的国际赛事。按比赛规定,赛车必须在加速,制动和操控性能方面表现出色。其中,为保障车辆和驾驶人员的安全,赛车的制动与行走系统设计显得尤为重要。 本文主要阐述了Formula SAE赛车的制动与行走系统设计过程。本次设计参照上代及其他参赛团体的赛车,进行了整体优化。本文在分析大赛规则及往届成型赛车的基础上,通过计算分析设计出制动与行走系统的总体方案。其中,制动系统以制动器为核心,设计出制动操纵机构(踏板装置)及制动操纵驱动机构(II型液压双回路)。行走系统以轮胎为核心,依次进行轮辋、轮毂、立柱的设计。本次设计在分析研究国外经典赛车基础上,参照实物及经典模型,利用UG对各零件进行三维建模和装配,利用CAD、CAXA等软件建立模型进行运动干涉分析,保证设计的合理性及优良性。 最后,本次设计运用UG等软件,对制动系统中的连接件、紧固件、制动盘、制动踏板、制动油路等和行走系统中的立柱、轮毂、轮辋进行了仿真及有限元分析,并制造出样件,对样件装车试验,取得良好效果。最终本设计的结果,确保了本赛车具有出色的制动性和在极限工况下的安全性。 关键词:赛车,制动及行走系统,优化,仿真,有限元分析

COLLEGESTUDENTS'FORMULA RACING BRAKE AND WALKING SYSTEM DESIGN ABSTRACT Formula SAE held in the United States for the first time since 1978, has now become a top international event. The car's design must be in acceleration, braking and handling performance. Among them, in order to guarantee the safety of the vehicle and driver, braking and walking system design is especially This article mainly elaborated the Formula SAE racing car brake and important. walking system design process. Design with reference to the parent group and other participants of the car, on the whole optimization. Based on the analysis of the competition rules and past molding car, on the basis of analysis by calculation braking and walking system overall scheme are given. Among them, the braking system to brake as the core, designed the brake operating mechanism and brake control driving mechanism. Walking system to tire as the core, in turn to carry on the rim, hub, pillar design. Refer to physical objects and the classic case in design process, the parts to make use of UG three-dimensional modeling and assembly, optimize the braking control drive mechanism, using CAD, CAXA, such as motion interference analysis, to ensure the rationality of the design and the optimal benign. Using software such as UG, the design of the braking system of the fittings, fasteners, brake pedal, brake disc and walking system such as columns, in the hub, rim has carried on the simulation and finite element analysis, to ensure that this car has good brake and safety under limit conditions. KEY WORDS:car, brake and walking system, optimization, simulation, finite element analysis

相关文档
最新文档