蛋白多肽类药物的高分子载体材料研究进展

蛋白多肽类药物的高分子载体材料研究进展
蛋白多肽类药物的高分子载体材料研究进展

氨基酸、多肽及蛋白质类药物

氨基酸、多肽及蛋白质类药物 山东药品食品职业学院张慧婧 第一部分氨基酸、多肽及蛋白质基本知识 一、蛋白质基本知识 蛋白质是一切生命的物质基础,是生物体的重要组成成分之一。无论是病毒、细菌、寄生虫等简单的低等生物,还是植物、动物等复杂的高等生物,均含有蛋白质。蛋白质占人体重量的16%~20%,约达人体固体总量的45%,肌肉、血液、毛发、韧带和内脏等都以蛋白质为主要成分的形式存在;植物体内蛋白质含量较动物偏低,但在植物细胞的原生质和种子中蛋白质含量较高,如大豆中蛋白含量约为38%,而黄豆中高达40%;微生物中蛋白质含量也很高,细菌中的蛋白质含量一般为50%~80%,干酵母中蛋白质含量也高达46.6%,病毒除少量核酸外几乎都由蛋白质组成,疯牛病的病原体——朊病毒仅由蛋白质组成。 这些不同种类的蛋白质,具有独特的生物学功能,几乎参与了所有的生命现象和生理过程,可以说一切生命现象都是蛋白质功能的体现。 1.生物催化作用 作为生命体新陈代谢的催化剂——酶,是被认识最早和研究最多的一大类蛋白质,它的特点是催化生物体内的几乎所有的化学反应。生物催化作用是蛋白质最重要的生物功能之一。正是这些酶类决定了生物的代谢类型,从而才有可能表现出不同的各种生命现象。 2.结构功能 第二大类蛋白质是结构蛋白,它们构成动、植物机体的组织和细胞。在高等动物中,纤维状胶原蛋白是结缔组织及骨骼的结构蛋白,α-角蛋白是组成毛发、羽毛、角质、皮肤的结构蛋白。丝心蛋白是蚕丝纤维和蜘蛛网的主要组成成分。膜蛋白是细胞各种生物膜的重要成分,它与带极性的脂类组成膜结构。 3.运动收缩功能 另一类蛋白质在生物的运动和收缩系统中执行重要功能。肌动蛋白和肌球蛋白是肌肉收缩系统的两种主要成分。细菌的鞭毛或纤毛蛋白同样可以驱动细胞作相应的运动。 4.运输功能 有些蛋白质具有运输功能,属于运载蛋白,它们能够结合并且运输特殊的分子。如脊椎动物红细胞中的血红蛋白和无脊椎动物的血蓝蛋白起运输氧的功能,血液中的血清蛋白运输脂肪酸,β-脂蛋白运输脂类。许多营养物质(如葡萄糖、氨基酸等)的跨膜输送需要载体蛋白的协助,细胞色素类蛋白在线粒体和叶绿体中担负传递电子的功能。 5.代谢调节功能 执行该功能的主要是激素类蛋白质,如胰岛素可以调节糖代谢。细胞对许多激素信号的响应通常由GTP结合蛋白(G蛋白)介导。 6.保护防御功能 细胞因子、补体和抗体等是参与机体免疫防御和免疫保护最为直接和最为有效的功能分子,其化学本质大都为蛋白质,免疫细胞因子、补体和抗体等目前也已用于免疫性疾病和一些非免疫性疾病的预防和治疗。

功能高分子材料聚合方法的研究进展

功能高分子材料聚合方法的研究进展 摘要:本文简述了对功能高分子材料的认识,功能高分子材料的特征和功能高分子材料的分类。并展望了功能高分子材料未来发展方向及其意义。 关键字:高分子;材料;应用;发展 材料是人类赖以生存和发展的物质基础。是人类文明的重要里程碑,如今有人将能源、信息和材料并列为新科技革命的三大支柱。进入本世纪80年代以来。一场与之相适应的“新材料革命”蓬勃兴起。功能材料是新材料发展的方向.而功能高分子材料占有举足轻重的地位。由于其原料丰富、种类繁多,发展十分迅速,已成为新技术革命必不可少的关键材料[1]。 1功能高分子材料 功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。功能高分子材料是上世纪60年代发展起来的新兴领域,是高分子材料渗透到电子、生物、能源等领域后开发涌现出的新材料。近年来,功能高分子材料的年增长率一般都在10%以上,其中高分子分离膜和生物医用高分子的增长率高达50%[2]。 2功能高分子材料的发展现状 2.1反应性高分子 反应性高分子是带有反应性官能团的高分子。可分为高分子试剂、高分子催化剂和离子交换树脂,具有广泛的应用前景,1984年诺贝尔化学奖得主就是由于多肽的固相合成法获得成功而被授与的。高分子催化剂与常规催化剂相比,优势明显,如可随时终止反应、稳定性高、可连续操作和反复使用等。尤其是高分子固定化酶催化剂,催化速度为常规催化剂的千百倍。离子交换树脂具有离子交换功能,目前发展方向主要是特种离子交换树脂,如螯合树脂、蛇笼树脂和耐热性离子交换树脂等[3]。 2.2吸附分离功能高分子 吸附分离功能高分子材料主要是指那些对某些特定离子或分子有选择性亲

(完整版)可降解高分子材料

可降解高分子材料 1 可生物降解高分子材料的定义 可生物降解高分子材料是指在一定的时间和一定的条件下,能被微生物或其分泌物在酶或化学分解作用下发生降解的高分子材料。 2 生物降解高分子材料降解机理 生物降解的机理大致有以下3种方式:生物的细胞增长使物质发生机械性破坏;微生物对聚合物作用产生新的物质;酶的直接作用,即微生物侵蚀高聚物从而导致裂解。一般认为,高分子材料的生物降解是经过两个过程进行的。首先,微生物向体外分泌水解酶和材料表面结合,通过水解切断高分子链,生成分子量小于500的小分子量的化合物(有机酸、酯等);然后,降解的生成物被微生物摄入人体内,经过种种的代谢路线,合成为微生物体物或转化为微生物活动的能量,最终都转化为水和二氧化碳。降解除有以上生物化学作用外,还有生物物理作用,即微生物侵蚀聚合物后,由于细胞的增大,致使高分子材料发生机械性破坏。因此,生物降解并非单一机理,而是一个复杂的生物物理、生物化学协同同作用,相互促进的物理化学过程。到目前为止,有关生物降解的机理尚未完全阐述清楚:除了生物降解外,高分子材料在机体内的降解还被描述为生物吸收、生物侵蚀及生物劣化等。 人们深入研究了不同的生物可降解高分子材料的生物降解性,发现与其结构有很大关系,包括化学结构、物理结构、表面结构等。高分子材料的化学结构直接影响着生物可降解能力的强弱,一般情况下:脂肪族酯键、肽键>氨基甲酸酯>脂肪族醚键> 亚甲基。当同种材料固态结构不同时,不同聚集态的降解速度有如下顺序:橡胶态>玻璃态>结晶态。一般极性大的高分子材料才能与酶相粘附并很好地亲和,微生物粘附表面的方式受塑料表面张力、表面结构、多孑L性、环境的搅动程度以及可侵占表面的影响。生物可降解高分子材料的降解除与材料

新型药用高分子材料的研究现状

新型药用高分子材料的研究现状 首先,我们先来了解一下什么是高分子材料。 高分子材料:macromolecular material,以高分子化合物为基础的材料。高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,高分子是生命存在的形式。所有的生命体都可以看作是高分子的集合。 了解过了高分子材料,我们再来了解下什么是药用高分子材料。 药用高分子材料(polymers for pharmaceuticals)具有生物相容性、经过安全评价且应用于药物制剂的一类高分子辅料。 近年来,随着纳米技术与材料科学的发展,涌现出大量纳米级微粒负载药物的新型制剂,极大地推进了新型药用高分子的研究与发展。在制药领域中,高分子材料的应用具有久远的历史。药用高分子的发展,不仅改变了传统的用药方式,开辟了药物制剂学的新领域,丰富了药物的类型,而且对制剂学与药理学的发展提出了大量的新问题。上世纪六十年代开始,大量新型高分子材料进入药剂领域,推动了药物缓控释剂型的发展。这些高分子材料以不同方式组合到制剂中,起到控制药物的释放速率,释放时间以及释放部位的作用。 那么,它的作用原理又是什么呢? 药用高分子材料是一种药物缓释技术,就是通过医用高分子材料包覆在药物表面,当然药物不是成块状的,而是很小的。有高分子材料的保护,药物在短时间内不会被身体吸收,而是随血液流动到特定区域,当到达之后药物表面的高分子材料已经溶解到血液中,最终随体液排出。而药物能够有针对性的治疗病患处。 那么,目前的药用高分子材料有哪些呢? 首先,是淀粉及其衍生物 其中包括:淀粉、糊精、预胶化淀粉和羧甲基淀粉钠等 然后是纤维素及其衍生物和纤维素醚的酯类 已列入一些国家法定典籍中的要用纤维素有粉状纤维素和微晶纤维素两种。 纤维素衍生物有:纤维素酯类、甲基纤维素、乙基纤维素、羟乙基纤维素、羟丙基纤维素和低取代羟丙基纤维素、羟丙甲纤维素。 纤维素醚的酯类有:羟丙甲纤维素酞酸酯、醋酸羟丙甲纤维素琥珀酸酯。 最后是一些其他的天然药用高分子材料。 其中包括:阿拉伯胶、明胶、瓜尔豆胶、壳多糖和脱乙酰壳多糖、西黄蓍胶、黄原胶、透明质酸、琼脂、海藻酸钠、白蛋和聚麦芽三糖。 而药用高分子对材料又有哪些基本要求呢? 第一,要有利于成品的加工; 第二,要有利于提高生物利用度或病人的适应性; 第三,要有助于从外观鉴别药物制剂; 第四,要有助于增强制剂在贮存或应用时的安全性和有效性。 目前,药用高分子材料在药物制剂中主要作为辅料应用,是药物制剂不可缺

多肽、蛋白质类药物缓释剂型的研究进展天烽

多肽、蛋白质类药物缓释剂型的研究进展 作者:文章来源:点击数:3201 更新时间:2004-7-13 随着生物技术的高速发展,多肽、蛋白质类药物不断涌现。目前已有35种重要治疗药物上市,生物技术与生物制药企业的发展也日益全球化。生物技术药物研究的重点是应用重组技术开发可应用于临床的多肽、蛋白、酶、激素、疫苗、细胞生长因子及单克隆抗体等。据's 报道,目前已有723种生物技术药物正在接受审评(包括Ⅰ~Ⅲ期临床及评估),700种药物处于早期研究阶段(研究与临床前),还有200种以上药物已进入最后批准阶段(Ⅲ期临床与评估)[1]。 生物技术药物的基本剂型是冻干剂。常规制剂尽管其疗效早为临床所证实,但由于半衰期短,需要长期频繁注射给药,从患者的心理与经济负担角度看,这些都是难以接受的问题。为此,各国学者主要从两方面着手研究开发方便合理的给药途径和新制剂:①埋植剂和缓释注射剂。 ②非注射剂型,如呼吸道吸入、直肠给药、鼻腔、口服和透皮给药等[2]。缓释生物技术药物的注射制剂,是很有应用前景的新剂型,有一些品种如能缓释1至3个月的黄体生成素释放激素()类似物微球注射剂已经上市[3],本文着重介绍这类制剂。 1多肽、蛋白质药物缓释制剂的主要类型 多肽、蛋白质药物缓释制剂的研究与开发,从发展过程及剂型看,主要分埋植剂和微球注射剂两类。 1.1埋植剂() 1.1.1细棒型埋植剂[4]埋植剂外形为一空心微型细棒,一头封闭,另一头开口,棒材为聚四氟乙烯等非生物降解聚合物。腔内灌入药物与硅胶(,聚二甲基硅氧烷)混合物。埋植剂埋入人体皮下,药物通过硅胶基质开口处缓慢释放。美国内科医生手册()上收载了商品名为?的埋植剂,药物为左旋-18乙基炔诺酮,用于计划生育。该制剂每根直径 2.4 ,长34 ,医生通过手术将6根细棒状物埋植在患者上臂内侧,药物可在体内按零级模式释药达5年,药物释完后再经手术取出。 1.1.2微型渗透泵埋植剂美国公司20世纪70年代开发了外形像胶囊的埋植剂,该制剂埋植于皮下或其它部分,体液可渗透过外壳,溶解夹层电解层,使体积膨胀的夹层压向塑性内腔,促使药物溶液从开口定速释放。有不少生物大分子药物,如胰岛素、肝素、神经生长因子等作为模型药物的动物体内外研究报道[5]。埋植剂对需要长期用药的慢性患者的治疗具有积极的意义,但它存在以下缺陷:①必须经手术途径植入。②制剂骨架材料为非生物降解聚合物,释药结束后还需经手术取出。③制剂在局部组织有刺激与不适感。 1.1.3可注射的埋植剂可生物降解聚合物作为埋植型或注射型缓释制剂骨架是近20年来国内外学者大力研究的方向,这类聚合物包括两大类:①天然聚合物,如明胶、葡聚糖、白蛋白、甲壳素等。②合成聚合物,如聚乳酸、聚丙交酯、聚乳酸-羟乙酸()、聚丙交酯乙交酯()、聚己内酯、聚羟丁酸等。 近年合成聚合物尤为人们重视,于20世纪70年代起即用作外科缝线及体内埋植材料,如人工关节、护板、螺栓等。聚合物在体内可逐渐

生物医用高分子材料研究进展及趋势

生物医用高分子材料研究进展及趋势

J I A N G S U U N I V E R S I T Y 医用材料学课程学习总结及结课论文生物医用高分子材料的研究及发展趋势

学院名称:材料科学与工程 专业班级:金属1302 学生姓名:钱振 指导教师姓名:王宝志 2016年 10 月 生物医用高分子材料的研究及发展趋势 钱振 学号:63 班级:金属1302 材料科学与工程学院 摘要:随着我国经济发展水平的不断提高,分子材料在各领域得到了显著应用,在医用领域应用更多,本文综述了生物医用高分子材料的分类、特点及基本条件,概述了医用高分子材料的研究现状及其用途,并浅谈了医用高分子材料的发展及展望。通过介绍医用高分子材料在人工脏器、药剂及医疗器械方面的应用,以及我国近年来的研究情况和存在的问题,形成对生物医用功能高分子的认识和其重要性的认识。 关键词:生物材料,生物医用高分子材料,现状,应用,展望 1.引言 生物医用材料是生物医学科学中的最新分支学科,它是生物学、医学、化学、 物理学和材料学交叉形成的边缘学科,是用于人工组织或器官制备、高性能医疗

器械的研制、药物新剂型的开发和和仿生效应研究的基础[1] 。 生物医用材料,简称生物材料(BiomaterialS),是一类具有特殊性能或功能,用于与生物组织接触以形成功能的无生命的材料]2[。主要包括生物医用高分子材料、生物医用陶瓷材料、生物医用金属材料和生物医用复合材料等。研究领域涉及材料学、化学、医学、生命科学]3[,生物医用高分子材料是一门介于现代医学和高分子科学之间的新兴学科。目前医用高分子材料的应用已遍及整个医学领域(如:人工器官、外科修复、理疗康复、诊断治疗、心血管、骨修复、神经传递、皮肤、器官、药物控释等)。 2.研究现状 生物医用高分子材料是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的高分子材料。在功能高分子材料领域,生物医用高分子材料取得了长足的进展,目前已成为发展最快的一个重要分支。随着医用高分子产业的发展,出现了大量的医用新材料和人工装置,如人工心脏瓣膜、人工血管、人工肾用透析膜、心脏起博器及骨生长诱导剂等。近10年来,由于生物医学工程、材料科学和生物技术的发展,医用高分子材料及其制品正以其特有的生物相容性、无毒性等优异性能而获得越来越多的医学临床应用。 生物医用高分子材料是生物材料的重要组成部分,它发展最早、应用最广泛、用量最大、品种繁多,主要包括:塑料、橡胶、纤维、粘合剂等。随着医学的发展,这些材料在医学领域得到广泛的应用。如:膨体聚四氟乙烯人造血管、聚矾中空纤维人工肾、硅橡胶医用导管、介入栓塞材料、介入诊疗导管以及护理方面使用的一次性医疗用品等,都是由高分子材料制成的。这些产品在临床诊断、治疗、护理等方面起着越来越重要的作用。正是由于高分子材料在医学上的独特作用,因而在高分子化学上出现了一个新的分支—医用高分子(Medical highpolymers)。它是把高分子化学的理论、研究方法、临床医学的需要结合起来,用于研究生物体的结构、生物体器官的功能及医用材料的应用等的一门年轻而边缘性的学科]4[。

多肽、蛋白质类药物给药系统

多肽、蛋白质类药物给药系统 摘要随着重组DNA技术的发展.基因工程肽和蛋白质药物的大规模生产已成现实,这类药物应用于临床的数量越来越多。与传统的化学合成约物相比,其优点受到了广泛的关注,即与体内正常生理物质十分接近,更易为机体吸收,其药理活性高、针对性强、毒性低。但由丁多肽、蛋门质类约物(1)分子质量大、稳定性高、易被胃肠道中的的蛋白水解酶降解;(2)生物半衰期短、生物膜渗透性差、生物利用度不高、不易通过生物屏障等,故其给药系统的研究一直足约剂学领域的一个热点。许多学者曾尝试对肽类、蛋白质类约物进衍化学修饰、制成前体药物、应用吸收促进剂、使用酶抑制刺、采用离子电渗法皮肤给药以及设计各种给药系统解决上述问题.此炎药物一般注射给药,基本剂型足注射剂和冻粉针剂,常需频繁注射,患者顺从性差,且加重了患者的身体、心理和经济负担。近年来,脂质体、微球、纳米粒等制剂新技术发展迅述歼逐渐完善,国内外学者将其广泛应用于多肽、蛋白质炎约物给约系统(drug deiivery system,DDS)的研究中,为此炎药物的临床应用铺平了道路。 本文就多肽、蛋白质类约物的给药系统及新技术进行综述。主要介绍注射给药系统和非注射给约系统,及其下属几个分支。重点介绍非注射给药系统。 关键字给药系统注射非注射 l 新型注射给药系统 1.1 控释微球制剂 为了达到多肽、蛋白质类药物控制释放,可将其制成生物可降解的微球制剂。目前已经实际应用的生物可降解材料主要有淀粉、明胶、葡糖糖、清蛋白、聚乳酸(PLA)、聚乳酸乙醇酸共聚物(PIGA)、聚邻酯、聚内酯和聚酐等;其中PLGA最为常用,改变乳酸乙醇酸的比例或相对分子质量,可得到不同降解时间的微球。 PLGA 微球相对于常规注射剂具有如下优点:(1)释药周期长,避免频繁给药; (2)使用安全;(3)药理作用增强;(4)避免发生明显的不良反应;(5)生物利用度显著提高。 1.2 脉冲式给药系统 普通注射剂(疫苗、类毒素)一般至少接种3次,才能确保免疫效果,血药浓度波动大,且不能保证在疾病发作时相应的血药浓度。而脉冲给药制剂具有普通制剂不可比拟的优点,它可以根据忠者发病的节律性提前给药,使给药时间与释药时间有一个与生理周期相匹配的时间差,从而预防发病,降低药物的不良反应,且不易产生耐受性,提高患者的顺应性,是现代药剂学研究的新模式。 2 非注射给药系统 2.1 口服给药系统 多肽、蛋白质类药物口服给药主要存在4个问题:(1)在胃内酸催化降解;(2)在胃肠道内的酶水解;(3)对胃肠道黏膜的透过性差;(4)存在肝的首过效应。因此研制新的剂型,提高多肽、蛋白质类药物的生物利用度是人们关注的 热点。 2.1.1 纳米粒 Kawashima等以降钙素为模型药物制备壳聚糖包衣PLGA纳米粒来评价黏膜黏附纳米粒对肽类药物吸收的影响。体外实验表明,壳聚糖包衣PI GA纳米粒对十二指肠、空肠和回肠的黏膜黏附效应无部位特异性,且壳聚糖的黏附特性要强于聚乙烯醇和海藻酸钠。药物的释放特性与未包衣纳米粒相比没有变化。

氨基酸、多肽及蛋白质类药物

氨基酸、多肽及蛋白质类药物 氨基酸、多肽及蛋白质类药物 山东药品食品职业学院张慧婧 第一部分氨基酸、多肽及蛋白质基本知识 一、蛋白质基本知识 蛋白质是一切生命的物质基础,是生物体的重要组成成分之一。无论是病毒、细菌、寄生虫等简单的低等生物,还是植物、动物等复杂的高等生物,均含有蛋白质。蛋白质占人体重量的16%-20%约达人体固体总量的45%肌肉、血液、毛发、韧带和内脏等都以蛋白质为主要成分的形式存在;植物体内蛋白质含量较动物偏低,但在植物细胞的原生质和种子中蛋白质含量较咼,如大豆中蛋白含量约为38%而黄豆中咼达40%微生物中蛋白质含量也很高,细菌中的蛋白质含量一般为50%-80%干酵母中蛋白质含量也高达46. 6%病毒除少量核酸外几乎都由蛋白质组成,疯牛病的病原体——朊病毒仅由蛋白质组成。 这些不同种类的蛋白质,具有独特的生物学功能,几乎参与了所有的生命现象和生理过程,可以说一切生命现象都是蛋白质功能的体现。 1?生物催化作用 作为生命体新陈代谢的催化剂一一酶,是被认识最早和研究最多的一大类蛋白质,它的特点是催化生物体内的几乎所有的化学反应。生物催化作用是蛋白质最重要的生物功能之一。正是这些酶类决定了生物的代谢类型,从而才有可能表现出不同的各种生命现象。 2?结构功能 第二大类蛋白质是结构蛋白,它们构成动、植物机体的组织和细胞。在高等动物中,纤维状胶原蛋白是结缔组织及骨骼的结构蛋白, a -角蛋白是组成毛发、羽毛、角质、皮肤的结 构蛋白。丝心蛋白是蚕丝纤维和蜘蛛网的主要组成成分。膜蛋白是细胞各种生物膜的重要成分,它与带极性的脂类组成膜结构。 3.运动收缩功能 另一类蛋白质在生物的运动和收缩系统中执行重要功能。肌动蛋白和肌球蛋白是肌肉收缩系统的

高分子材料在生物医药中的应用与发展

高分子材料在生物医药中的应用与发展 摘要:人类使用高分子材料的历史悠久,在生活各个方面无处不见,随着人类社会对材料的需求不断膨胀,高分子材料急剧发展,向国民经济各个方面扩张,尤其在生物医药领域,高分子材料发挥着不可替代的作用,由此,生物高分子材料成为高分子材料的一个重要组成部分。而生物医用高分子作为生物医用材料中发展最早、应用最广泛、用量最大的材料,鉴于其具有原料来源广泛、可以通过分子设计改变结构、生物活性高、材料性能多样等优点,是目前发展最为迅速的领域,已经成为现代医疗材料中的主要部分。关键词:发展过程,组成材料,医学用途,未来发展 一:医用高分子材料的发展过程及应用领域人类使用高分子材料的历史,可以追溯到7000年前。我国浙江省余姚县出土的河姆渡文化遗址中发现了涂有大漆的木碗,我国西汉时期已有麻布增强大漆树脂而成的脱胎漆器技术,这应是世界上最早的“树脂基复合材料”。蚕丝的使用可以追溯到4-5千年前,在浙江吴兴出土了中国4-5千年前的蚕丝织物。 由天然高分子化学改性或由人工合成探索新高分子材料的近代高分 子材料研究始于19世纪中叶。1844年Goodyear(美国)发明的天然橡胶硫化技术,开创了近代的高分子材料研究。1868年出现了硝基

纤维素酯用樟脑作增塑剂,制赛璐珞的技术,从而出现了塑料。1890年出现了硝基纤维素酯用乙醇做溶剂湿法纺丝的成纤技术,从而出现了人造纤维。1895年左右出现了用帆布增强硫化橡胶制轮胎的技术,这是首次出现的近代技术的复合材料。 生物医用高分子材料指用于生理系统疾病的诊断、治疗、修复或替换生物体组织或器官,增进或恢复其功能的高分子材料。研究领域涉及材料学、化学、医学、生命科学。在功能高分子材料领域,生物医用高分子材料可谓异军突起,目前已成为发展最快的一个重要分支。合成医用高分子材料发展的第一阶段始于1937年,其特点是所用高分子材料都是已有的现成材料,如用丙烯酸甲酯制造义齿的牙床。第二阶段始于1953年,其标志是医用级有机硅橡胶的出现。目前的研究焦点已经从寻找替代生物组织的合成材料转向研究一类具有主动诱导、激发人体组织器官再生修复的新材料,这标志着生物医用高分子材料的发展进入了第三个阶段。 生物医用高分子材料的特性要求:医用高分子材料,是指在医学上使用的高分子材料。其对于挽救生命.救治伤残.提高人类生活质量等方面具有重要意义。通过归纳,应当符合以下要求:(1)生物相容性。生物相容性是描述生物医用材料与生物体相互作用情况的。是作为医用材料必不可少的条件。 2)生物功能性。生物功能性是指生物材料具有在其植入位置上行使功能所要求的物理和化学性质.(3)无毒性。无毒性即化学惰性。此外,还应具备耐生物化.物理和力学稳定性。(4)可加工性:能够成型、消毒。

多肽和蛋白质类药物的应用及发展前景

生物制药学课程论文题目多肽和蛋白质类药物的应用及发展前景 学院 专业班级 姓名学号 指导教师 2013 年04 月25 日 新疆农业大学教务处制

多肽和蛋白质类药物的应用及发展前景 摘要:生物技术被认为是21世纪最具主导地位的高新技术,生物技术药物基本都是多肽蛋白类药物,对肿瘤遗传性和非遗传性疾病有着特殊的疗效。随着科学与技术的不断发展以及人民对生活质量的要求在不断提高蛋白药物的制备必将发展成为21世纪我国最具吸引力的新技术产业之一。多肽类和蛋白质作为药物,具有生理活性强、免疫原性低、疗效高等诸多优点,随着生物技术的不断发展,其在人类疾病治疗中的地位也日趋重要,目前已成为国际药学界研究的热点之一。本文从多肽和蛋白类药物的认识,多肽和蛋白类药物开发的技术研究,多肽和蛋白类药物给药方法,以及对多肽和蛋白类药物的研究前景等方面,对多肽和蛋白类药物的开发有了综合性的认识。 关键词:蛋白类药物蛋白质多肽开发生物技术发展 随着生物技术和基因工程的发展,越来越多的多肽和蛋白类药物用于临床治疗。近年来,蛋白类药物使用虽呈现上升趋势,但因制备工艺复杂、投递效率低、生物利用度差等诸多原因而受到限制,其中给药途径最为关键。随着生物物理学、生物化学以及材料学在药学中的应用,诸如脂质体、微球、微囊以及纳米囊等技术的出现为解决上述问题提供了新的思路,其中微球以制备工艺简便、生物利用度高、靶向性强等优点而备受关注。迄今为止,蛋白类药物由于诸多原因未能得到广泛应用,主要原因之一是较低的生物利用度问题难以解决。而可生物降解微球在药物投递过程中可有效改善上述问题,它特有的载药方式能够明显减少蛋白类药物被机体复杂生理环境以及酶类物质的破坏,另外缓释及靶向特性对发挥其生物学效应也会起到十分重要的作用。目前,其优势主要在疫苗和少数几个蛋白药物上得到验证和肯定。想要在蛋白类药物的开发上有更新的进展,必须对它的开发有一个全面的了解。 一、多肽和蛋白类药物的基本认识 1多肽和蛋白类药物的概念 多肽和蛋白质类药物指用于预防、治疗和诊断的多肽和蛋白质类物质生物

高分子药物控释体发展综述

高分子药物控释体发展综述 姓名:杨雪学号:5601112017 班级:生物科学121班摘要:通过介绍高分子材料在药物方面的应用,概述膜控释制剂中高分子控释膜的研究现状,为膜控释制剂的设计与制备提供新思路。主要了解了国外近年来在高分子控释膜包衣工艺对控释膜性质的影响等方面的研究成果。进一步了解膜控释制剂的控释机制,为处方设计奠定基础。说明药用高分子材料在缓释控制剂中具有十分重要的作用。 关键词:高分子;控释体;包衣;药物载体 1.前言 药用高分子系指利用功能高分子聚合物的主链或支链,结合具有药理活性的某些药物基团,使其成为在体内容易降解定释,有足够药理活性的高分子药物,这类新型药物具有低毒、高效、长效、定向、控释等特点,高分子药物系指在药物制造过捏中,根据功能高分子聚合物的物化特性,分别用于药物的稀释剂、粘合剂、包埋材料、微型胶囊、包衣或内外包装材料等,其本身并不具有药效,只是药物成品过程中,起着不可缺少的从属辅助作用或者强化作用。 在化学治疗中主要有两个目的,即增加药物的特异性和药效的持续时间【1】。而传统的用药方式,往往达不到理想的效果。近年来,由于医药高分子化合物的特殊理化性质,高分子在医疗方面的应用取得了很大成果,在药学领域的应用则更为广泛。 在生物医药高分子领域的研究中,高分子药物缓释材料是最热门的研究课题之一,药物缓释就是将小分子药物与高分子载体以物理或化学方法结合,在体内通过扩散、渗透等方式,将小分子药物以适当的浓度持续的释放出来,从而达到充分发挥药效的目的。【2】本文通过查阅现有相关资料对高分子药物控释体系近年来的发展做出综合性概述。 2.高分子在药物控释体系方面的应用 2.1高分子药物控释体的发展 一直以来,医学工作者广泛地利用天然的动植物来源的高分子材料,如淀粉、多糖、蛋白质、胶质等作为传统药物制剂的黏合剂、赋形剂、助悬剂、乳化剂。再到合成的高分子材料大量涌现,在药物制剂的研究和生产中的应用日益广泛。可以说任何一种剂型都需要利用高分子材料,而每一种适宜的高分子材料的应用都使制剂的内在质量或外在质量得到提高。而今,大量新型高分子材料进入药剂领域,推动了药物缓控释剂型的发展。这些高分子材料以不同方式组合到制剂中,起到控制药物的释放速率,释放时间以及释放部位的作用。目前用作缓释、控释药物载体的材料很多,包括脂质体、多糖、天然和人工高分子聚合物等【3】。董淑聪曾对高分子控速缓释和定向输送体系方面的原理、制备方法及其应用做了概述。 七十年代采用新的高分子化合物以来,使药物在控速缓释和定向输送万而郁有了新的发展。扩散、渗透理论、半衰期和稳态血药浓度、各种吸收途径及创、机制以及药用高分子化合物的开发等成为它的理论与实践的基础。

药物高分子‘1

一、名词解释 高分子化合物:简称高分子,是指相对分子质量很高的一类化合物。 缩聚反应:指含有两个或两个以上官能团的单体分子间逐步缩合聚合形成聚合物的反应。 加聚反应:指单体经过加成聚合反应形成聚合物的化学反应,它是自由基的连锁聚合反应。 结晶高分子: 结晶态是高分子聚集态的主要形态之一,结晶聚合物是部分结晶,晶区和非晶区共存,即结晶的不完整性,结晶高分子具有结晶度和宽范围的熔程。 交联剂和交联反应: 交联反应:高分子在热、光、辐射能或交联剂作用下,分子间以化学键联结起来构成三维网状或体型结构的反应称为交联反应。 交联剂:能在线型分子间起架桥作用从而使多个线型分子相互键合交联成网络结构,促进或调节聚合物分子键共价键或离子键形成的物质 二、写出下列的中文名称(或英文缩写)及合成反应式 1.羧甲基淀粉钠:CMSNa [][]O nxH nxNaCl COONa OCH OH O H C COOH nxClCH nxNaOH OH O H C n x x n 22 32762 3276)()()(++→+?- 2.聚丙烯酸: PAA 2HC C H COOH H 2C H C COOH n n 3.聚乳酸:PLA CH O CH O CH 3 H 3C -H 2O 3HC H C OH O C H2C CH 3 O n COOH 4.HPMC :羟丙甲纤维素 n y y x n OH H OC OHC OH O H C O H nyC Cl nxCH nxNaOH OH O H C )]()([])([63332766333762--→++?H 5.PVP :聚维酮 H 2C H 2C N C H 2C n O HC CH 2 H 2C H 2C N C H 2C n O C H H 2C n 6.PEG :聚乙二醇 CH 2 H 2C O n + H 2O OH H 2C O H CH 2 n 7.chitosan :壳聚糖

智能化高分子的研究进展

智能化高分子的研究进展 摘要:近年来,在新材料领域中正在兴起一门新的分支学科——智能高分子材料。本文对一些智能高分子材料在各个领域的研究及应用做出综述性的阐述,并对该领域的发展做出一些展望。 关键字:智能高分子材料(Intelligent Polymer Materials)特征应用发展智能高分子材料 智能高分子材料(Intelligent Polymer Materials)又称智能聚合物,机敏性聚合物,刺激相应型聚合物,环境敏感型聚合物。智能高分子材料是一种能够通过对周围的环境变化的感觉,针对这个变化采取一定反应的高分子材料。智能高分子材料它在模仿生命系统中同时具有感知和驱动双重功能的材料,即不仅能够感知外界环境或内部状态所发生的变化,而且能够通过材料自身的或外界的某种反馈机制,实时地将材料的一种或多种性质改变,做出所期望的具有某种响应的材料,又称机敏材料。目前智能高分子材料主要研究,记忆功能高分子材料、智能高分子凝胶、智能药物释放系统、聚合物电流变流体、智能高分子膜、智能纺织品、智能橡塑材料、生物材料的仿生化、智能化等等。 表1智能材料的分类 分类方法智能材料种类 按材料的种类 金属类智能材料非金属类智能材料高分子类智能材料智能复合材料 按材料的来源 天然智能材料合成智能材料建筑用智能材料工业用智能材料

按材料的应用领域军用智能材料 医用智能材料 航天用智能材料 按材料的功能半导体;压电体;电致流变体按电子结构和化学键金属;陶瓷;聚合物;复合材料 20世纪80年代,人们提出智能材料的概念,20世纪90年代以来,美国、日本、意大利、英国等国家都在大力加强对智能材料的基础研究和应用研究。智能材料要求材料体系集感知、驱动和信息处理于一体,形成类似生物材料那样的具有智能属性的材料。其概念设计可以从以下观点构思:(1)材料开发的历史——由结构材料、功能材料进而到智能材料;(2)人工智能在材料的水平反映——生物计算机的未来模式;(3)从材料设汁的立场制造智能材料;(4}软件功能引入材料;(5)人们对材料的期望;(6)能量传递;(7)材料具有时间轴,要求材料有寿命预告、自修复、自分解,甚至自学习、自增殖、自净化功能和可对应外部刺激时间轴积极自变的动态功能。智能高分子材料在信息、电子、宇宙、海洋科学、生命科学等领域得到了大力的发展和应用。 记忆功能高分子材料 形状记忆高分子材料(shape memory polymer,SMP)就是运用现代高分子物理学理论和高分子合成及改性技术,对通过高分子材料进行分子组合和改性获得的一类高分子材料。例如:聚乙烯,聚酰胺等高分子材料进行分子设计及分子结构的调整,使他们在一定的条件下,被赋予一定的形状初始态(initial state)当外部的环境发生变化之后,他可以相应地改变形状并将其固定变形态(varrable morphology)。如果环境以特定的方式和规律再次发生变化,它便可逆的恢复到初始态。形状记忆过程可简单表达为:初始形状的制品→2次形变→形变固定→形变恢复。 根据实现记忆功能的条件的不同,可以将SMP分为以下四种。 (1)热致SMP。(2)电致SMP。(3)光致SMP。(4)化学感应型SMP。目前研究最多,并投

高分子前药

高分子前药及其研究进展 摘要:高分子前药具有不同于小分子载体前药的特殊的优越性,可以控制药物释放速度,提高药物的稳定性,降低药物的毒副作用,减少抗药性,增强抗肿瘤药物的靶向性和选择性等,本文综述了近年来高分子药物的研究进展,主要从高分子前药的结构模型,作用机制以及各种大分子前药的合成研究等方面做了论述,探讨了高分子前药领域的研究前景 关键词:高分子前药;紫杉醇;5-氟尿嘧啶 1.高分子前药的结构模型 Ringsdor在1975年首次提出了大分子前药的一般模型,包括五部分:大分子药物载体,小分子活性药物,可溶性基团,可断裂连接基和靶向基团[1] (见图1-1) 载体与活性小分子药物相连得到的大分子前药与前体小分子药物相比,具有下列优势:(l)减少药物的抗原活性,减弱免疫学反应;(2)通过增加低溶解性或不溶解药物的水溶性,从而增加了药物利用度;(3)形成包含一些其它的活性成分的复合的药物释放体系,从而使主药物具有更多的特殊作用;(4)保护药物在体内循环及转运到靶器官或组织,以及细胞内运输期间免于失活,并储存到作用位点后释放活性;(5)具有主动或被动靶向性,使药物到达指定作用位点;(6)改进药物动力学。 2.高分子前药的作用原理 选择或合成一个通用的、适合的大分子前药的载体难度很大。合成大分子前药所应具备的基本要求[2,3]:首先,聚合物载体既要满足生物相容性,也要满足生物可降解性;其次,药物——大分子复合物能改变前药的生物相容性;另外,小分子药物可以连接到大分子药物载体上,也可重新断裂下来;最后,靶向基团引导大分子前药到达人体中特定的组织及细胞。 合成大分子前药的最终目的是:(l)通过改变药物的分子大小及溶解性来改善药物在体内的转运;(2)通过有识别能力的基团使活性药物转运到靶细胞;(3)以从载体中缓释的方式维持体内适当的药物浓度;(4)内吞作用使活性药物进入细胞的数量增加,从而改善治疗效果。但是,在设计大分子前药时,要考虑大分子载体的物理、化学以及生物学性质,合适分

蛋白多肽类药物药代动力学分析方法研究进展

蛋白多肽类药物药代动力学分析方法研究进展 作者:张琪王广基 摘要通过查阅近期国内外有关文献10余篇,综述了现代分析方法在蛋白多肽类药物代谢动力学研究中的应用,重点介绍了生物检定法、同位素标记法、免疫学、色谱等方法的原理、特点、及发展状况。 关键词蛋白质;多肽;药物动力学;生物检定法;同位素标记法;免疫学;色谱文章编号:1005-8915(2000)02-0126-03 The Progress of the Analysis Method of Protein Polypeptide Drug Pharmac okinetics Zhang Qi Wang Guangji (Center of Pharmacokinetics, China Pharmaceutical University,Nanjing 210009) Abstract A review of application of modern analysis methods in studying the pha rmacokinetics of protein polypeptide drug is presented with 16 references. The paper emphasizes the principle, characteristic, and progress of bioassay, radioi odination, immunoassay, and chromatography. Key Words Protein, Polypeptide, Pharmacokinetics, Bioassay, Rad ioiodination, Immunoassay, Chromatography 在国家确定的发展高新技术计划中,生物技术产品一直作为优先开发的领域之一。蛋白多肽类药物在实现产品的产业化过程中,受到诸多因素的制约,其中药物动力学的研究面临着更高的要求。其主要原因是蛋白多肽类药物的结构特殊、用药量很小、生物体内有大量相似物质的干扰,这一切都使得该类药的分析方法不同于传统药物,大大增加了检测的难度。本文就目前进行该类药药物代谢动力学过程中所使用或发展中的几种分析方法做一概述。 1蛋白多肽类药物的分析方法 1.1生物检定法 由于蛋白多肽类药物多为有生物活性的物质,且生物活性不仅取决于药物的一级结构,

最新整理生物大分子药物讲解学习

生物大分子药物 近年来,生物大分子药物发展迅猛,受到的关注也越来越多。与传统小分子药物相比,生物大分子药物具有相对分子质量大、不易透过生物膜、给药剂量低、易在体内降解等特点,这导致其具有与小分子药物不同的药代动力学特征。以蛋白多肽药物、单克隆抗体药物、抗体药物偶联物和核酸药物4 类生物大分子药物为例,综述近年来生物大分子药物的药代动力学研究进展,旨在为生物大分子药物及生物类似药的研发提供参考。 [ 关键词] 生物大分子药物;蛋白多肽药物;单克隆抗体药物;抗体药物偶联物;核酸药物;药代动力学 生物大分子药物是指一类利用现代生物技术方法生产的源自生物体内并被用于疾病的诊断、治疗或预防的生物大分子,狭义上也称为生物技术药物。随着分子生物学、基因工程和基因组学的研究发展,生物技术药物得以迅猛发展,其种类也日趋增多。目前生物技术药物包括DNA 重组技术生产的蛋白质、多肽、酶、激素、疫苗、单克隆抗体(mono-clonal antibody,mAb)和细胞因子药物,也包括蛋白质工程技术生产的上述产品的各类修饰物,还包括用于基因治疗的基因、反义寡核苷酸和核酶及病毒和非病毒基因递送载体等。 药代动力学研究对于药物的有效性和安全性评估非常重要,如选择合适的给药途径,设定合适的给药频率和给药剂量,明确药物是否可以到达相应的靶器官等。但不同于传统的小分子化学药物,生物大分子药物具有相对分子质量大、不易透过生物膜、给药剂量低、易在体内降解等特点,使其在生物体内的处置过程变得更为复杂(见表1),也给药代动力学研究提出了新的挑战。本文将分别围绕蛋白多肽药物、mAb 药物、抗体药物偶联物(antibody-drug conjugate,ADC)和核酸药物,对其药代动力学特点进行分析和讨论。 1 生物大分子药物的体内吸收 生物大分子药物包括蛋白多肽药物、核酸药物、ADC 药物和mAb 药物等,与传统小分子药物(相对分子质量为200 ~ 700)相比,其相对分子质量(1 500 ~ 150 000)较大,不易被吸收,同时存在口服后易被消化道酶降解破坏的问题,各种生物大分子药物在吸收方面存在许多相似的特点,在此一并阐述。 1.1 给药方式的选择 精品文档

多肽类药物

多肽类药物 多肽和蛋白质类生物药物按药物的结构分类可分为:氨基酸及其衍生物类药物、多肽和蛋白质类药物、酶和辅酶类药物、核酸及其降解物和衍生物类药物、糖类药物、脂类药物、细胞生长因子和生物制品类药物。 结构分析 多肽的定性至少应包括氨基酸分析、序列分析及质谱分析。纯肽的氨基酸分析可提供该多肽的氨基酸组成和数量。序列分析则提供氨基酸残基的精确排列顺序。基于多种技术的质谱, 如快原子轰击、电喷雾、激光解吸, 经常用于提供多肽的相对分子量及其序列信息。肽谱是蛋白质或多肽通过酶解得到的肽片段经分离和分析所得到的“指纹图谱”。当多肽含有20 个以上的氨基酸残基时, 肽谱分析对多肽结构研究和特性鉴别具有重要意义。 2. 1 氨基酸分析 用于氨基酸分析的水解方法主要是酸水解, 同时辅以碱水解。酸水解中使用最广泛的是盐酸(一般浓度为6mo l?L )。多肽于110 ℃真空或充氮的安瓿瓶内水解10~ 24 h, 然后除去盐酸。水解过程中氨基酸遭破坏的程度与保温时间有线性关系, 因此该氨基酸在多肽中的真实含量可通过以不同的保温时间对相应时间的样品中该氨基酸的含量作图, 用外推法求出。高氨基酸分析仪的使用使氨基酸的分析越来越准确, 如W aters 公司的氨基酸分析系统的检出限已达100 fmo l。 2. 2 序列分析 氨基酸测序主要为化学法, 酶法也有一定的意义。化学法以Edman 降解法最为经典, 它对所有氨基酸残基具有普适性和近乎定量的高产率, 是近50年N 2端顺序分析技术的基础。Edman 机理的液相(旋转杯) 自动蛋白顺序分析仪在1967 年推出。近年来不断对其改进, 其灵敏度已达到可以对0. 1pmo l 的样品进行常规分析。 2. 3 质谱(mass spect romet ry,M S) 质谱以质量分析为基础, 可提供化合物的分子量以及一些结构信息。1980 年代以后发展了许多新的“软电离”技术, 使其在蛋白质多肽分析中的应用越来越广。目前应用较多的有原子轰击、电喷雾和基质辅助激光解吸质谱。质谱测序是对Edman 降解的一个很好补充, 它可对N 2端封闭的多肽进行测序; 并可以通过碰撞诱导断裂(C ID ) 得到部分至完全的序列信息后, 作出M S2肽谱, 这可对修饰的氨基酸残基定性, 并确证其位臵。而且质谱技术与分离技术如HPLC、HPCE 直接相连可相互验证, 同时还可对混合肽进行测序。 2. 3. 1 快原子轰击质谱(fast atom bombardmen t2mass spect romet ry, FAB2M S)FAB2M S 克服了传统质谱中样品必须加热气化的限制, 可对热不稳定、难挥发的蛋白质多肽进行分析。与其他质谱技术相比, FAB2M S 更适合于小分子多肽的检测[6 ]。FAB2M S 测定肽的氨基酸序列具有用量少、方便和快速的优点。一些寡肽, 特别是人工合成的有保护基的寡肽在遇到N 2端封闭不宜用氨基酸序列仪测定其结构的情况下, 有可能用少量样品采用FAB2M S 直接获得寡肽的分子量和氨基酸序列。俞振培等[7 ]用FAB2M S 对7 个带有不同保护基的3~5 肽成功地进行了氨基酸序列研究。串联FAB2M S 将第一次轰击得到的分子离子进行再一次惰性原子轰击, 使肽链在不同部位断裂, 从而得到一组片段的质谱信息, 使多肽测序得以实现 2. 3. 2 电喷雾质谱(elect ro sp ray ion izat ion2massspect romet ry, ES I2M S)

医用高分子材料应用及研究进展(论文-18)

医用高分子材料应用及研究进展 摘要:随着人民生活水平的提高,人们对于医疗保健方面的要求也越来越强,使得对于生物医用 材料的要求也越苛刻。本文介绍了国内外生物医用高分子材料的分类、特性及研究成果,详细阐 述了生物医用功能高分子材料近年来的应用研究及发展状况,展望了未来的生物医用高分子材料 的发展趋势。 关键词:医用高分子应用状况发展趋势 1.引言 医用高分子是一类令人瞩目的功能高分子材料,是一门介于现代医学和高分子科学之间的新兴学科。医用高分子材料[1 ]是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的新型高技术合成高分子材料,是科学技术中的一个正在发展的新领域,不仅技术含量和经济价值高,而且对人类的健康生活和社会发展具有极其重大意义,它已渗入到医学和生命科学的各个部门并应用于临床的诊断与治疗。 2.医用高分字的现状 2.1医用高分子材料的目前需求 人的健康长寿依赖于医学的发展。现代医学的进步已经越来越依赖于生物材料和器械的发展,没有医用材料的医学诊断和治疗在现代医学中几乎是不可想象的。目前全球大量用于医疗器械的生物医学材料主要有20 种,其中医用高分子12 种,金属4 种,陶瓷2 种,其他2 种[2]。利用现有的生物医学材料已开发应用的医用植入体、人工器官等近300 种,主要包括:起搏器、心脏瓣膜、人工关节、骨板、骨螺钉、缝线、牙种植体,以及药物和生物活性物质控释载体等。近年来,西方国家在医学上消耗的高分子材料每年以10 %~20 %的速度增长[3 ] ,而国内也以20 %左右的速度迅速增长。随着现代科学技术的发展,尤其是生物技术的重大突破,生物材料的应用将更加广泛,需求量也随之越来越大。生物医用材料产业发展如此迅猛,主要动力来自于人口老龄化、中青年创伤的增多、疑难疾病患者的增加和高新技术的发展。生物材料的研究与开发被许多国家列入高技术关键新材料发展计划,并迅速成为国际高技术制高点之一。作为世界人口最多的国家,生物材料的市场潜力十分巨大。据民政部门报告:我国现有的肢体不自由患者已超过1 500 万,其中肢残患者约800 万;由类风湿引发的大骨节病患者有数百万;冠心病患者已超过1 000 万;白内障盲人约500 万;牙缺损和牙缺失患者高达3 亿~ 4 亿人; 肝炎病毒携带者1. 2 亿;心血管病患者2 000 万;需计划生育的育龄妇女2 000 万;伴随人口老龄化(60 岁以上的老年人口已达1. 39 亿人,约占全国人口的10. 69 %) 的骨质疏松患者7 000 万;每年由于疾病、交通事故和运动创伤等造成的骨缺损和缺失患者人数近1 000 万人;需要进行颅颌面和胸部美容整形的人数有数千万人。这还不包括数目庞大的各类软组织、血液和器官疾病患者人数[4]。我国医用高分子材料研制和生产迅速发展,初具规模,已经成为一个新兴产业,总产值的增长率远高于国民经济平均发展速度。可见,生物材料是一个巨大的产业,生物材料的不可缺少性,尤其是进口材料动辄上万元的价格决定了我国必须加强具有自主知识产权的生物材料的研究开发[5]。 2.2生物医用功能高分子材料分类 生物医用高分子材料分合成和天然两大类,下面我们就分别对这两种材料进

相关文档
最新文档