振动和波

振动和波
振动和波

振动和波

一、 选择题:

1、图中的实线表示t 时刻的一列简谐横波的图像,虚线则表示(t +△t )时刻该波的图像.设T 为该波的周期.则△t 的取值( ).(其中n =0,1,2,3…)

(A)若波沿x 轴正方向传播,△t =(n +

4

1)T (B) 若波沿x 轴负方向传播,△t =(n +2

1)T (C) 若波沿x 轴正方向传播,△t =(n +43)T (D) 若波沿x 轴负方向传播,△t =(n +1)T

2、声音从声源发出,在空气中传播时( ).

(A)传播距离越远声波速度越小

(B) 传播距离越远声音频率越低

(C) 传播距离越远声波的振幅波越小

(D) 传播距离越远声波的波长越短

3、将摆球质量一定、摆长为l 的单摆竖直悬挂中升降机内,在升降机以恒定的加速度a (a

(A) 2πg

l (B) 2πa l (C) 2πa g l + (D) 2πa

g l - 4、对单摆在竖直面内的振动,下面说法中正确的是( ).

(A)摆球所受向心力处处相同

(B)摆球的回复力是它所受的合力

(C)摆球经过平衡位置时所受回复力为零

(D)摆球经过平衡位置时所受合外力为零

5、一轻弹簧上端固定,下端挂一重物,平衡时弹簧伸长了5cm .再将重物向下拉1cm ,然后放手,则在刚释放的瞬间重物的加速度是(g 取10m ∕s 2)( ).

(A)2.0m ∕s 2 (B)7.5 m ∕s 2

(C)10 m ∕s 2 (D)12.5 m ∕s 2

6、在某行星表面处的重力加速度值是地球表面处重力加速度值的4∕9,那么把在地球表面上走得很准的摆钟搬到这个行星表面上,它的分针转一圈经历的时间实际应是( ).

(A)2.25h (B)1.5h (C)4∕9h (D)2∕3h

7、一个单摆,分别在Ⅰ、Ⅱ两个行星上做简谐振动的周期为T 1和T 2,若这两个行星的质量

之比为M1:M2=4:1,半径之比为R1:R2=2:1,则( ).

(A)T1:T2=1:1 (B)T1:T2=2:1

(C)T1:T2=4:1 (D)T1:T2=22:1

8、图是一水平弹簧振子做简谐振动的振动的振动图像(x-t图),由图可推断,振动系统( ).

(A)在t1和t2时刻具有相等的动能和相同的动量

(B)在t3和t4时刻具有相等的势能和相同的动量

(C)在t4和t6时刻具有相同的位移和速度

(D)在t1和t6时刻具有相同的速度和加速度

9、若单摆的摆长不变,摆球的质量增加为原来的4倍,摆球经过平衡位置时的速度减小为原来的1/2,则单摆振动的()

(A)频率不变,振幅不变(B)频率不变,振幅改变

(C)频率改变,振幅改变(D)频率改变,振幅不变

10、呈水平状态的弹性绳,右端在竖直方向上做周期为0.4 s的简谐振动,设t=0时右端开始向上振动,则在t=0.5 s时刻绳上的波形可能是图的哪种情况()

二、填空题:

11、从下图所示的振动图像中,可以判定振子在t=_____s时,具有正向最大加速度;t=____s时,具有负方向最大速度。在时间从____s至_____s内,振子所受回复力在-y方向并不断增大;在时间从_____s至_____s内,振子的速度在+y方向并不断增大。

12、铁路上每根钢轨的长度为1200m,每两根钢轨之间约有0.8cm的空隙,如果支持车厢的弹簧的固有振动周期为0.60s,那么列车的行驶速度v=____ m/s时,行驶中车厢振

动得最厉害。

13、下图所示为一双线摆,它是在一水平天花板上用两根等长细绳悬挂一小球而构成的,绳的质量可以忽略,设图中的l和α为已知量,当小球垂直于纸面做简谐振动时,周期为_____

14、如下图所示,是A、B两单摆做简谐振动的振动图像,如果所在地的重力加速度g=9.80m/s2,那么,根据图中数据可得:A摆的摆长l1=____ cm,两摆的摆长之比l1:l2=_______,最大摆角之比α1:α2=___。

15、如下图所示,为了测量一个凹透镜一侧镜面的半径R,让一个半径为r的钢球在凹面内做振幅很小的往复振动,要求振动总在同一个竖直面中进行,若测出它完成n次全振动的时间为t,则此凹透镜的这一镜面原半径值R=_______.

16、如下图所示,半径是0.2m的圆弧状光滑轨道置于竖直面内并固定在地面上,轨道的最低点为B,在轨道的A点(弧AB所对圆心角小于5°)和弧形轨道的圆心O两处各有一个静止的小球Ⅰ和Ⅱ,若将它们同时无初速释放,先到达B点的是____球,原因是______(不考虑空气阻力)

17、已知地球质量约为月球质量的81倍,地球半径为月球半径的3.8倍,在地球表面振动周期为1 s的单摆,移到月球上去,它每分钟全振动的次数是_____.

18、描述机械振动,除了速度和加速度外,还需要一些物理量,这就是振动的___、___和__.

19、一个水平弹簧振子的固有频率是3Hz,要使它在振动中产生的最大加速度能达到5 m /s2,它振动的振幅A=_____cm.

20、如下图所示,实线为一列简谐波在t=0时刻的波形,虚线表示经过?t=0.2s后它的

波形图像,已知T<?t<2T,则这列传播速度的可能值v=____;这列波振荡频率的可能值f=_____.

三、计算题:

21、一列简谐横波沿一直线在空间传播, 某一时刻直线上相距为d的A、B两点均处在平衡位置, 且A、B之间仅有一个波峰, 若经过时间t, 质点B恰好到达波峰位置, 则该波的波速的可能值是多少?

22、摆长L=1m的单摆, 如图所示悬挂在竖直墙壁前, 静止时摆球刚好跟壁接触而不互相挤压, 将摆球向前拉离竖直方向一个小于50的角度, 无初速释放后使其摆动. 若摆球跟竖直

墙壁的碰撞为弹性正碰, 它就会在墙壁与开始释放的位置之间做周期性的往返运动.

(1) 求摆的振动周期;

(2) 取碰撞处为坐标原点, 画出两个周期的振动图像.

23、如图所示, 在光滑水平面的两端对立着两堵竖直的墙A和B, 把一根劲度系数是k 的弹簧的左端固定在墙A上, 在弹簧右端系一个质量是m的物体1. 用外力压缩弹簧(在弹

s, 紧靠1放一个质量也是m的物体2, 使性限度内)使物体1从平衡位置O向左移动距离

弹簧1和2都处于静止状态, 然后撤去外力, 由于弹簧的作用, 物体开始向右滑动.

(1) 在什么位置物体2与物体1分离? 分离时物体2的速率是多大?

(2) 物体2离开物体1后继续向右滑动, 与墙B发生完全弹性碰撞. B与O之间的距离x应满足什么条件,才能使2在返回时恰好在O点与1相遇?

设弹簧的质量以及1和2的宽度都可忽略不计.

24、如图所示为一双线摆. 它是在水平天花板上用两根细线悬挂一小球构成的, 已知线AC长为l, AC与水平方向成370角, BC与水平方向成530角. 当小球在垂直于两细线所在的平面的竖直平面内做小摆角振动(小于50)时, 周期为多少?

25、某一摆钟的摆长未知, 若将摆锤向上移动△l m, 发现摆钟每分钟快了t s, 求摆钟原来的摆长. (此钟摆可视为单摆)

26、利用声音在空气里和钢铁里传播速度不同可以测定钢铁桥梁的长度. 从桥的一端用锤敲击一下桥, 在桥的另一端的人先后听到这个声音两次, 并测得这两次相隔时间为t=4.5s, 已知空气中的声速1v =340m/s, 钢铁中声速2v =5000m/s, 那么桥长多少m?

27、一列波速为20m/s 的简谐波沿x 轴正方向传播, 在某一时刻波的图像如图所示. 试据此分别画出质点a 、b

(1) 从这个时刻起的振动图像;

(2) 从这个时刻以后1/4周期时起的振动图像.

28、将一摆长为l 的单摆悬挂在车厢中, 当车厢沿水平路面做加速度为a 的匀加速直线运动时, 单摆在车厢前进方向的竖直平面内的小摆角振动的周期是多少?

29、在平静的湖面上停着一条船, 由船上的人在水面激起一列持续的水波, 水波频率一定, 另一人站在岸边计量出水波经过50s 到达岸边, 并估测出两相邻波峰间的距离约为0.5m; 这个人还测出5s 内到达岸边的波数为20个. 试计算船离岸约有多远?

30、如图所示, 3个大小相同、质量相等的弹性小球1m 、2m 和3m . 1m 和2m 分别用细线悬起, 成为摆长分别为1l =1m 、2l =4

1m 的单摆, 由于悬点高度不同, 可使两球刚好跟同一光滑水平面接触而不互相挤压, 两小球的球心相距10cm. 小球3m 从1m 、2m 连线的中点O 处以v=5cm/s 的速度沿光滑水平面向右运动, 跟2m 球发生弹性正碰后, 将停下一段时间, 然后又受2m 球对它的向左碰撞而向左运动; 以后再跟1m 球发生弹性正碰, ……. 在没有摩擦阻力的情况下, 3m 球将在1m 与2m 之间、以O 为中心位置做周期性的往复运动.

(1) 计算3m 往复运动的周期.

(2) 取中心位O 为坐标原点, 并从O 向右运动开始计时, 画出3m 球在两个周期中的振动图像.(碰撞时间短暂可忽略)

答案

一、 选择题: 1、C 2、C 3、D 4、C 5、A 6、B 7、A 8、B 9、B 10、C

二、 填空题:

11、0.4,0.2,0.6 ~ 0.8,0.4 ~ 0.6

12、20.01

13、2πg

l αsin 14、99.4,2.25,1.04

15、2224n

g t π 16、Ⅱ,g

R g R 22π< 17、25.3

18、振幅、周期和频率

19、1.4

20、25m /s ,35m /s ;6.25Hz ,8.75Hz

三、 计算题:

21、A t d t d t d A B t d t d t d B 43,4,23:;4,43,2:

→→ 22、(1) T=s g

l 1=π (2) 见答图.

23、(1) 在O 点分离, 分离时物体2的速率m

k s v 022= (2) 3,2,1,4

20==n s n x π…. 24、g

l 532π

25、lm t t

l ?+=2)60(

26、约1.64km.

27、

见答图 (1) t=0时刻起, (2) t=4T 时刻起

28、222a g l

T +=π

29、约100m.

30、(1) T=)(5.515.04452101

1

s g l

g l =++=++?ππ,

(2) 见答图

机械振动和机械波知识点总结与典型例题

高三物理第一轮复习《机械振动和机械波》 一、机械振动: (一)夯实基础: 1、简谐运动、振幅、周期和频率: (1)简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。 特征是:F=-kx,a=-kx/m (2)简谐运动的规律: ①在平衡位置:速度最大、动能最大、动量最大;位移最小、回复力最小、加速度最小。 ②在离开平衡位置最远时:速度最小、动能最小、动量最小;位移最大、回复力最大、加速度最大。 ③振动中的位移x 都是以平衡位置为起点的,方向从平衡位置指向末位置,大小为这两位置间的直线距离。加速度与回复力、位移的变化一致,在两个“端点”最大,在平衡位置为零,方向总是指向平衡位置。 ④当质点向远离平衡位置的方向运动时,质点的速度减小、动量减小、动能减小,但位移增大、回复力增大、加速度增大、势能增大,质点做加速度增大减速运动;当质点向平衡位置靠近时,质点的速度增大、动量增大、动能增大,但位移减小、回复力减小、加速度减小、势能减小,质点做加速度减小的加速运动。 ④弹簧振子周期:T= 2 (与振子质量有关,与振幅无关) (3)振幅A :振动物体离开平衡位置的最大距离称为振幅。它是描述振动强弱的物理量, 是标量。 (4)周期T 和频率f :振动物体完成一次全振动所需的时间称为周期T,它是标量,单位是秒;单位时间内完成的全振动的次数称为频率,单位是赫兹(Hz )。周期和频率都是描述振动快慢的物理量,它们的关系是:T=1/f. 2、单摆: (1)单摆的概念:在细线的一端拴一个小球,另一端固定在悬点上,线的伸缩和质量可忽略,线长远大于球的直径,这样的装置叫单摆。 (2)单摆的特点: ○ 1单摆是实际摆的理想化,是一个理想模型; ○ 2单摆的等时性,在振幅很小的情况下,单摆的振动周期与振幅、摆球的质量等无关; ○3单摆的回复力由重力沿圆弧方向的分力提供,当最大摆角α<100 时,单摆的振动是简谐运动,其振动周期T= g L π 2。 (3)单摆的应用:○1计时器;○2测定重力加速度g=2 24T L π. 3、受迫振动和共振: (1)受迫振动:物体在周期性驱动力作用下的振动叫受迫振动,其振动频率和固有频率无关,等于驱动力的频率;受迫振动是等幅振动,振动物体因克服摩擦或其它阻力做功而消耗振动能量刚好由周期性的驱动力做功给予补充,维持其做等幅振动。 (2)共振:○1共振现象:在受迫振动中,驱动力的频率和物体的固有频率相等时,振幅最大,这种现象称为共振。 ○ 2产生共振的条件:驱动力频率等于物体固有频率。○3共振的应用:转速计、共振筛。 4、简谐运动图象: (1)特点:用演示实验证明简谐运动的图象是一条正弦(或余弦)曲线。 (2)简谐运动图象的应用: ①可求出任一时刻振动质点的位移。 ②可求振幅A :位移的正负最大值。 ③可求周期T :两相邻的位移和速度完全相同的状态的时间间隔。 ④可确定任一时刻加速度的方向。 ⑤可求任一时刻速度的方向。 ⑥可判断某段时间内位移、回复力、加速度、速度、动能、势能的变化情况。 πm K

振动图像与波的图像及多解问题专题

振动图像与波的图像及多解问题 一、振动图象和波的图象 振动是一个质点随时间的推移而呈现的现象,波动是全部质点联合起来共同呈现的现象. 简谐运动和其引起的简谐波的振幅、频率相同,二者的图象有相同的正弦(余弦)曲线形状,但二图象是有本质区别的.见表: 振动图象波动图象 研究对象一振动质点沿波传播方向所有质点 研究内容一质点的位移随时间的变化规律某时刻所有质点的空间分布规律 图线 物理意义表示一质点在各时刻的位移表示某时刻各质点的位移 图线变化随时间推移图延续,但已有形状不变随时间推移,图象沿传播方向平移 一完整曲线占横坐标距离表示一个周期表示一个波长 例题精选: 例题1:如图6—27所示,甲为某一波动在t=1.0s时的图象,乙为参与该波动的P质点的振动图象 (1)说出两图中AA/的意义? (2)说出甲图中OA/B图线的意义? (3)求该波速v=? (4)在甲图中画出再经3.5s时的波形图 (5)求再经过3.5s时p质点的路程S和位移 解析:(1)甲图中AA/表示A质点的振幅或1.0s时A质点的位移大小为0.2m,方向为负.乙图中AA/’表示P质点的振幅,也是P质点在0.25s的位移大小为0.2m,方向为负. (2)甲图中OA/B段图线表示O 到B之间所有质点在1.0s时的位移、方向均为负.由乙图看出P质点在1.0s时向一y方向振动,由带动法可知甲图中波向左传播,则OA/间各 质点正向远离平衡位置方向振动,A/B间各质点正向靠近平衡位置方向振 动. (3)甲图得波长λ=4 m,乙图得周期T=1s 所以波速v=λ/T=4m/s (4)用平移法:Δx=v·Δt=14 m=(3十?)λ

简谐运动的能量问题

张建斌:浅谈机械波传播过程中介质中质点的运动 浅谈机械波传播过程中介质中质点的运动 张建斌 摘要:人民教育出版社2007年11月版物理《选修3-4》认为:有正弦波传播的介质中的质点在做简谐运动。但笔者查阅了相关书籍后发现这一说法欠妥。本文将从平面简谐波的波动方程和介质波的能量出发,分析机械波能量在空间上的分布、随时间的变化与能量传递的实质,通过与简谐运动的对比,对新教材中关于机械波传播过程中介质中质点的运动作新的描述“简谐波是简谐运动在介质中的传播,但介质中各质点做得并非简谐运动,而是运动规律满足正弦(或余弦)图像的受迫振动”。 关键词:受迫振动简谐运动机械波能量传递 普通高中课程标准实验教科书《物理:选修3-4》(人民教育出版社2007年4月第2版)第27页“介质中有正弦波传播时,介质的质点在做简谐运动”。但简谐运动的能量在整个振动过程中是一个守恒量,简谐运动的过程是动能和势能的相互转化过程,这样做简谐运动的介质中的质点将无法实现传递能量的功能。 实际上,平面波传播时,若介质中质点按正弦(或余弦)规律运动时,叫做平面简谐波,是最基本的波动形式,一些复杂的波可视为平面简谐波的叠加。但平面简谐波传播时,介质中的质点并非简谐运动,只是其运动规律满足正弦(或余弦)规律。因为介质中每一个振动质点(体元)的动能和势能同时达到最大、同时达到最小,质点的机械能在最大值和最小值之间变化,每个质点都在不断吸收和放出能量的过程中实现能量的传递。本文主要阐述机械波的能量及其传递,并尝试对新教材中关于机械波传播过程中介质中质点的运动谈一点自己的看法。 一、波动方程 设一列平面简谐波沿轴正向传播,波源点的振动方程为,在轴上任意点的振动比点滞后(是振动状态传播的速度、即波速),即当点相位为时,点相位为,因此点的振动方程为,这就是平面简谐波方程,它可以描述平面简谐波在传播方向上任意点的振动规律。 二、介质中波的能量分布 一列波在弹性介质中传播时,各体元都在平衡位置附近振动,所以具有动能;同时,各体元发生形变,又有弹性势能。现以简谐横波为例,研究某体元的动能、势能和总能的变化规律。 1、动能 在有简谐横波传播的介质中,取一微元,根据平面简谐波方程可得到其振动速度 设介质密度为,微元体积为,则该体元的动能为 2、形变势能 我们选取的介质中的微元同时受到相邻的微元的作用而发生剪切形变(即在力偶作用下,两平行截面发生相对移动的形变),如图1所示,若设表示假想截面的面积,且在该面上均匀分布,则剪应力。同时,我们用平行截面间相对滑动位移与截面垂直距离之比描述剪切形变,称为剪切应变。由图1:,称为切变角。则可由剪切形变的胡克定律得:在形变范围内(为剪切模量,反映材料抵抗剪切应变的能力),且单位体积剪切形变的弹性势能为。 对于传播横波的介质中的微元而言,其剪切形变简化为如图2所示,。所以选取的微元的形变势能为 3、总能 弹性介质中横波的波动方程可写为: 对偏导运算可得:

高三物理振动和波知识点归纳

2019高三物理振动和波知识点归纳 精品学习高中频道为各位同学整理了高三物理振动和波知识点归纳,供大家参考学习。更多各科知识点请关注新查字典物理网高中频道。 振动和波(机械振动与机械振动的传播) 1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向} 2.单摆周期T=2(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角100;lr} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 5.机械波、横波、纵波〔见第二册P2〕 6.波速v=s/t=f=/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同) 10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率

与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身; (2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处; (3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式; (4)干涉与衍射是波特有的; (5)振动图象与波动图象; (6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。

(完整版)机械振动和机械波练习题【含答案】

机械振动和机械波练习题 一、选择题 1.关于简谐运动的下列说法中,正确的是[ ] A.位移减小时,加速度减小,速度增大 B.位移方向总跟加速度方向相反,跟速度方向相同 C.物体的运动方向指向平衡位置时,速度方向跟位移方向相反;背向平衡位置时,速度方向跟位移方向相同 D.水平弹簧振子朝左运动时,加速度方向跟速度方向相同,朝右运动时,加速度方向跟速度方向相反 2.弹簧振子做简谐运动时,从振子经过某一位置A开始计时,则[ ] A.当振子再次与零时刻的速度相同时,经过的时间一定是半周期 B.当振子再次经过A时,经过的时间一定是半周期 C.当振子的加速度再次与零时刻的加速度相同时,一定又到达位置A D.一定还有另一个位置跟位置A有相同的位移 3.如图1所示,两木块A和B叠放在光滑水平面上,质量分别为m和M,A与B之间的最大静摩擦力为f,B与劲度系数为k的轻质弹簧连接构成弹簧振子。为使A和B在振动过程中不发生相对滑动,则[ ] 4.若单摆的摆长不变,摆球的质量增为原来的4倍,摆球经过平衡位置时的速度减少为原来的二分之一,则单摆的振动跟原来相比 [ ] A.频率不变,机械能不变B.频率不变,机械能改变 C.频率改变,机械能改变D.频率改变,机械能不变 5.一质点做简谐运动的振动图象如图2所示,质点在哪两段时间内的速度与加速度方向相同[ ] A.0~0.3s和0.3~0.6s B.0.6~0.9s和0.9~1.2s C.0~0.3s和0.9~1.2s D.0.3~0.6s和0.9~1.2s

6.如图3所示,为一弹簧振子在水平面做简谐运动的位移一时间图象。则此振动系统[ ] A.在t1和t3时刻具有相同的动能和动量 B.在t3和t4时刻振子具有相同的势能和动量 C.在t1和t4时刻振子具有相同的加速度 D.在t2和t5时刻振子所受回复力大小之比为2∶1 7.摆A振动60次的同时,单摆B振动30次,它们周期分别为T1和T2,频率分别为f1和f2,则T1∶T2和f1∶f2分别等于[ ] A.2∶1,2∶1B.2∶1,1∶2 C.1∶2,2∶1 D.1∶1,1∶2 8.一个直径为d的空心金属球壳内充满水后,用一根长为L的轻质细线悬挂起来形成一个单摆,如图4所示。若在摆动过程中,球壳内的水从底端的小孔缓慢泄漏,则此摆的周期[ ] B.肯定改变,因为单摆的摆长发生了变化 C.T1先逐渐增大,后又减小,最后又变为T1 D.T1先逐渐减小,后又增大,最后又变为T1 9.如图5所示,AB为半径R=2m的一段光滑圆糟,A、B两点在同一水平高度上,且AB弧长20cm。将一小球由A点释放,则它运动到B点所用时间为[ ]

第1章 第2节 简谐运动的力和能量特征

第二节简谐运动的 力和能量特征 1.(3分)一水平弹簧振子做简谐运动,则下列说法中正确的是() A.若位移为负值,则速度一定为正值 B.振子通过平衡位置时,速度为零 C.振子每次通过平衡位置时,速度一定相同 D.振子每次通过同一位置时,其速度不一定相同 【解析】该题考查简谐运动中位移和速度的变化规律.振子做简谐运动时,某时刻位移的方向与速度的方向可能相同,也可能相反,A、C不正确.当通过同一位置时,速度的方向不一定相同,D正确.经过平衡位置时,速度最大,B 错. 【答案】 D 2.(3分)做简谐运动的弹簧振子在某段时间内速度越来越大,则这段时间内() A.振子的位移越来越大 B.振子正向平衡位置运动 C.振子速度与位移同向 D.振子速度与位移方向相反 【解析】弹簧振子的速度越来越大,说明正向平衡位置移动;由于位移总

是由平衡位置指向振子所在的位置,所以在振子向平衡位置运动过程中,其速度方向与位移反向.正确选项为B、D. 【答案】BD 3.(4分)如图1-2-1,小球套在光滑水平杆上,与弹簧组成弹簧振子,O 为平衡位置,小球在O附近的AB间做简谐运动,设向右为正方向,则: 图1-2-1 (1)速度由正变负的位置在________. (2)位移为负向最大的位置在________. 【解析】由简谐运动特点知,速度方向由正变为负的位置为A点,位移为负向最大的位置是B点. 【答案】(1)A(2)B

学生P4 一、简谐运动的力的特征 1.回复力 (1)方向特点:总是指向平衡位置. (2)作用效果:把物体拉回到平衡位置. (3)来源:回复力是根据力的效果(选填“性质”或“效果”)命名的,可能由合力、某个力或某个力的分力提供. (4)表达式:F=-kx.即回复力与物体的位移大小成正比,负号表明回复力与位移方向始终相反,k是一个常数,由振动系统决定. 2.简谐运动的动力学定义 简谐运动是运动图象具有正弦或余弦函数规律、运动过程中受到大小与位移大小成正比,方向与位移方向相反的回复力的作用的运动. 二、简谐运动的能量的特征 1.振动系统的状态与能量的关系 (1)振子的速度与动能:速度不断变化,动能也不断变化. (2)弹簧形变量与势能:弹簧形变量在不断变化,因而势能也在不断变化. 2.简谐运动的能量 一般指振动系统的机械能.振动的过程就是动能和势能互相转化的过程. (1)在最大位移处,势能最大,动能为零; (2)在平衡位置处,动能最大,势能最小.

N考核《大学物理学》机械振动与机械波部分练习题

《大学物理学》机械振动与机械波部分练习题(解答) 一、选择题 1.一弹簧振子,当把它水平放置时,它作简谐振动。若把它竖直放置或放在光滑斜面上,试判断下列情况正确的是 ( C ) (A )竖直放置作简谐振动,在光滑斜面上不作简谐振动; (B )竖直放置不作简谐振动,在光滑斜面上作简谐振动; (C )两种情况都作简谐振动; (D )两种情况都不作简谐振动。 2.两个简谐振动的振动曲线如图所示,则有 ( A ) (A )A 超前/2π; (B )A 落后/2π; (C )B 超前/2π; (D )B 落后/2π。 3.一个质点作简谐振动,周期为T ,当质点由平衡位置向x 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的最短时间为: ( D ) (A )/4T ; (B )/6T ; (C )/8T ; (D )/12T 。 4.分振动方程分别为13cos(50)4 x t π π=+ 和234cos(50)4 x t π π=+ (SI 制)则它们的合振动表达式为: ( C ) (A )5cos(50)4 x t π π=+; (B )5cos(50)x t π=; (C )115cos(50)27x t tg π π-=+ +; (D )145cos(50)23 x t tg ππ-=++。 5.两个质量相同的物体分别挂在两个不同的弹簧下端,弹簧的伸长分别为1l ?和2l ?,且 1l ?=22l ?,两弹簧振子的周期之比T 1:T 2为 ( B ) (A )2; (B )2; (C )1/2; (D )2/1。 6.一个平面简谐波沿x 轴负方向传播,波速u=10m/s 。x =0处,质点振动曲线如图所示,则该波的表式为 (A ) )2 20 2 cos(2π π π+ + =x t y m ; (B ))220 2 cos(2π π π-+ =x t y m ; (C ))2 20 2 sin( 2π π π ++=x t y m ; (D ))2 20 2 sin( 2π π π - + =x t y m 。 -

机械振动和机械波知识点总结

机械振动和机械波 一、知识结构 二、重点知识回顾 1机械振动 (一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。(二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中

“-”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。 1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。 2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T跟频率f之间是倒数关系,即T=1/f。振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。 (四)单摆:摆角小于5°的单摆是典型的简谐振动。 细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆做简谐振动的条件是:最大摆角小于5°,单摆的回复力F是重力在圆弧切线方向的分力。单摆的周期公式是T=。由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。 (五)振动图象。 简谐振动的图象是振子振动的位移随时间变化的函数图象。所建坐标系中横轴表示时间,纵轴表示位移。图象是正弦或余弦函数图象,它直观地反映出简谐振动的位移随时间作周期性变化的规律。要把质点的振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等的变化情况。 (六)机械振动的应用——受迫振动和共振现象的分析

(完整word版)机械振动和机械波知识点复习及练习

机械振动和机械波 一 机械振动知识要点 1. 机械振动:物体(质点)在平衡位置附近所作的往复运动叫机械振动,简称振动 条件:a 、物体离开平衡位置后要受到回复力作用。b 、阻力足够小。 ? 回复力:效果力——在振动方向上的合力 ? 平衡位置:物体静止时,受(合)力为零的位置: 运动过程中,回复力为零的位置(非平衡状态) ? 描述振动的物理量 位移x (m )——均以平衡位置为起点指向末位置 振幅A (m )——振动物体离开平衡位置的最大距离(描述振动强弱) 周期T (s )——完成一次全振动所用时间叫做周期(描述振动快慢) 全振动——物体先后两次运动状态(位移和速度)完全相同所经历的过程 频率f (Hz )——1s 钟内完成全振动的次数叫做频率(描述振动快慢) 2. 简谐运动 ? 概念:回复力与位移大小成正比且方向相反的振动 ? 受力特征:kx F -= 运动性质为变加速运动 ? 从力和能量的角度分析x 、F 、a 、v 、E K 、E P 特点:运动过程中存在对称性 平衡位置处:速度最大、动能最大;位移最小、回复力最小、加速度最小 最大位移处:速度最小、动能最小;位移最大、回复力最大、加速度最大 ? v 、E K 同步变化;x 、F 、a 、E P 同步变化,同一位置只有v 可能不同 3. 简谐运动的图象(振动图象) ? 物理意义:反映了1个振动质点在各个时刻的位移随时间变化的规律 可直接读出振幅A ,周期T (频率f ) 可知任意时刻振动质点的位移(或反之) 可知任意时刻质点的振动方向(速度方向) 可知某段时间F 、a 等的变化 4. 简谐运动的表达式:)2sin( φπ +=t T A x 5. 单摆(理想模型)——在摆角很小时为简谐振动 ? 回复力:重力沿切线方向的分力 ? 周期公式:g l T π 2= (T 与A 、m 、θ无关——等时性) ? 测定重力加速度g,g=2 24T L π 等效摆长L=L 线+r 6. 阻尼振动、受迫振动、共振 阻尼振动(减幅振动)——振动中受阻力,能量减少,振幅逐渐减小的振动 受迫振动:物体在外界周期性驱动力作用下的振动叫受迫振动。 特点:驱受f f = ? 共振:物体在受迫振动中,当驱动力的频率跟物体的固有频率相等的时候,受迫振动的振 幅最大,这种现象叫共振 ? 条件:固驱f f =(共振曲线) 【习题演练一】 1 一弹簧振子在一条直线上做简谐运动,第一次先后经过M 、N 两点时速度v (v ≠0)相同,那么,下列说法正确的是( ) A. 振子在M 、N 两点受回复力相同 B. 振子在M 、N 两点对平衡位置的位移相同 C. 振子在M 、N 两点加速度大小相等 D. 从M 点到N 点,振子先做匀加速运动,后做匀减速运动 2 如图所示,一质点在平衡位置O 点两侧做简谐运动,在它从平衡位置O 出发向最大位移A 处运动过程中经0.15s 第一次通过M 点,再经0.1s 第2次通过M 点。则此后还要经多长时间第3次通过M 点,该质点振动的频率为 3 甲、乙两弹簧振子,振动图象如图所示,则可知( ) A. 两弹簧振子完全相同 B. 两弹簧振子所受回复力最大值之比F 甲∶F 乙=2∶1

振动图像与波的图像(课堂参照)

振动图象和波的图象 振动是一个质点随时间的推移而呈现的现象,波动是全部质点联合起来共同呈现的现象.简谐运动和其引起的简谐波的振幅、频率相同,二者的图象有相同的正弦(余弦)曲线形状,但二图象是有本质区别的.见表: 振动图象波动图象 研究对象一振动质点沿波传播方向所有质点 研究内容一质点的位移随时间的变化规律某时刻所有质点的空间分布规律 图线 物理意义表示一质点在各时刻的位移表示某时刻各质点的位移 图线变化随时间推移图延续,但已有形状 不变 随时间推移,图象沿传播方向平 移 一完整曲线占横坐 标距离 表示一个周期表示一个波长

2012届高考二轮复习专题 :振动图像与波的图像及多解问题 【例1】如图6—27所示,甲为某一波动在t=1.0s 时的图象,乙为参与该波动的P 质点的振动图象 (1)说出两图中AA / 的意义? (2)说出甲图中OA / B 图线的意义? (3)求该波速v=? (4)在甲图中画出再经3.5s 时的波形图 (5)求再经过3.5s 时p 质点的路程S 和位移 解析:(1)甲图中AA / 表示A 质点的振幅或1.0s 时A 质点的位移大小为0.2m ,方向为负.乙 图中AA / ’表示P 质点的振幅,也是 P 质点在 0.25s 的位移大小为0.2m ,方向为负. (2)甲图中OA / B 段图线表示O 到B 之间所有质点在1.0s 时的位移、方向均为负.由乙图 看出P 质点在1.0s 时向一y 方向振动,由带动法可知甲图中波向左传播,则OA / 间各质点 正向远离平衡位置方向振动,A / B 间各质点正向靠近平衡位置方向振动. (3)甲图得波长λ=4 m ,乙图得周期 T =1s 所以波速v=λ/T=4m/s (4)用平移法:Δx =v ·Δt =14 m =(3十?)λ 所以只需将波形向x 轴负向平移?λ=2m 即可,如图所示 (5)求路程:因为n= 2 /T t =7,所以路程S=2An=2×0·2×7=2。8m 求位移:由于波动的重复性,经历时间为周期的整数倍时.位移不变·所以只需考查从图示时刻,p 质点经T/2时的位移即可,所以经3.5s 质点P 的位移仍为零. 【例2】如图所示,(1)为某一波在t =0时刻的波形图,(2)为参与该波动的P 点的振动图象,则下列判断正确的是 A . 该列波的波速度为4m /s ; B .若P 点的坐标为x p =2m ,则该列波沿x 轴正方向传播 C 、该列波的频率可能为 2 Hz ; D .若P 点的坐标为x p =4 m ,则该列波沿x 轴负方向传播; 解析:由波动图象和振动图象可知该列波的波长λ=4m ,周期T =1.0s ,所以波速v =λ/T =4m /s . 由P 质点的振动图象说明在t=0后,P 点是沿y 轴的负方向运动:若P 点的坐标为x p =2m ,则说明波是沿x 轴负方向传播的;若P 点的坐标为x p =4 m ,则说明波是沿x 轴的正方向传播的.该列波周期由质点的振动图象被唯一地确定,频率也就唯一地被确定为f = l /t =0Hz .综上所述,只有A 选项正确. 点评:当一列波某一时刻的波动图象已知时,它的波长和振幅就被唯一地确定,当其媒

简谐运动的能量

第六节简谐运动的能量阻尼振动 ●本节教材分析 本节从功能关系角度来深化对简谐运动的特点的认识. 教学时,在复习机械能守恒的基础上,应向学生说明:在位移最大时,即动能为零时,单摆的振幅最大,重力势能最大;水平弹簧振子的振幅越大,弹性势能越大,因此振幅越大,振动的能量越大. 对于竖直的弹簧振子,涉及弹性势能、重力势能、动能三者的变化,不要求从能量的角度对它进行分析. 简谐运动是一种理想化模型,实际中发生的振动都要受到阻尼的作用,如果阻尼很小,振动物体受到的回复力大小与位移成正比,方向与位移相反,则物体的运动可以看作是简谐 运动,这种将实际问题理想化的方法,应注意让学生理会. 1.知道振幅越大,振动的能量(总机械能) 2. 3. 4.知道什么是阻尼振动和阻尼振动中能量转化的情况. 5.知道在什么情况下可以把实际发生的振动看作简谐运动. 1.分析单摆和弹簧振子振动过程中能量的转化情况,提高学生分析和解决问题的能力. 2.通过阻尼振动的实例分析,提高处理实际问题的能力. 1.简谐运动过程中能量的相互转化情况,对学生进行物质世界遵循对立统一规律观点的渗透. 2.振动有多种不同类型说明各种运动形式都是普遍性下的特殊性的具体体现. 1.对简谐运动中能量转化和守恒的具体分析. 2.什么是阻尼振动. 关于简谐运动中能量的转化. 1.多媒体展示弹簧振子和单摆的振动过程,观察、讨论、阅读课文,得到水平弹簧振子和单摆的振动过程中动能和势能的转化情况. 2.多媒体、结合实验演示,得到阻尼振动的概念. 3.对比认识各种振动的特点. 投影片、CAI 出示本节课的学习目标. 1.会分析弹簧振子和单摆这两种典型简谐运动的能量及能量转化情况. 2.知道简谐运动振幅与振动系统能量的关系. 3.

机械振动和机械波知识点复习及总结

2. 机械振动和机械波知识点复习 机械振动知识要点 机械振动:物体(质点)在平衡位置附近所作的往复运动叫机械振 动,简称振动 条件:a物体离开平衡位置后要受到回复力作用。b、阻力足够小回复力:效果力——在振动方向上的合力 平衡位置:物体静止时,受(合)力为零的位置: 运动过程中,回复力为零的位置(非平衡状态)描述振动的物理量 位移x(m —均以平衡位置为起点指向末位置 振幅A(m ――振动物体离开平衡位置的最大距离(描述振动强弱) 过程频率f (Hz)―― 1s钟内完成全振动的次数叫做频率(描述振动快慢) 简谐运动 概念:回复力与位移大小成正比且方向相反的振动 受力特征:F二-kx运动性质为变加速运动 从力和能量的角度分析x、F、a、v、EK EP 特点:运动过程中存在对称性平衡位置处:速度最大、动能最大;位移最小、回复力最小、加速度最小 最大位移处:速度最小、动能最小;位移最大、回复力最大、加速度最大v、EK同步变化;x、F、a、EP同步变化,同一位置只有v 可能不同3. 简谐运动的图象(振动图象) 物理意义:反映了1个振动质点在各个时刻的位移随时间变化的规律可直接读出振幅A,周期T (频率f )可知任意时刻振动质点的 位移(或反之) 可知任意时刻质点的振动方向(速度方向)可知某段时间F、a 等的变化 4. 简谐运动的表达式:x二Asi n(仝t,J T 5. 单摆(理想模型)一一在摆角很小时为简谐振动 回复力:重力沿切线方向的分力 周期公式:T = 2\丨(T与A m 6无关——等时性) \ g 1. 周期T(s)完成一次全振动所用时间叫做周期(描述振动快慢)全振动物体先后两次运动状态(位移和速度)完全相同所经历的

机械振动与机械波 答案

衡水学院 理工科专业《大学物理B 》机械振动 机械波 习题解答 命题教师:杜晶晶 试题审核人:杜鹏 一、填空题(每空2分) 1、一质点在x 轴上作简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取坐标原点。若t =0时质点第一次通过x =-2cm 处且向x 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为23 s 。 2、一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点,已知周期为T ,振幅为A 。 (a )若t=0时质点过x=0处且朝x 轴正方向运动,则振动方程为cos(2//2)x A t T ππ=-。 (b )若t=0时质点过x=A/2处且朝x 轴负方向运动,则振动方程为cos(2//3)x A t T ππ=+。 3、频率为100Hz ,传播速度为300m/s 的平面简谐波,波线上两点振动的相位差为π/3,则此两点相距 0.5 m 。。 4、一横波的波动方程是))(4.0100(2sin 02.0SI x t y -=π,则振幅是 0.02m ,波长是 2.5m ,频率是 100 Hz 。 5、产生机械波的条件是有 波源 和 连续的介质 。 二、单项选择题(每小题2分) (C )1、一质点作简谐振动的周期是T ,当由平衡位置向x 轴正方向运动时,从1/2最大位移处运动到最大位移处的这段路程所需的时间 为( ) (A )T /12 (B )T /8 (C )T /6 (D ) T /4 ( B )2、两个同周期简谐振动曲线如图1所示,振动曲线1的相位比振动曲线2的相位( ) 图1 (A )落后2π (B )超前2 π (C )落后π (D )超前π ( C )3、机械波的表达式是0.05cos(60.06)y t x ππ=+,式中y 和x 的单位是m ,t 的单位是s ,则( ) (A )波长为5m (B )波速为10m ?s -1 (C )周期为13s (D )波沿x 正方向传播 ( D )4、如图2所示,两列波长为λ的相干波在p 点相遇。波在S 1点的振动初相是1?,点S 1到点p 的距离是r 1。波在S 2点的振动初相是2?,点S 2到点p 的距离是r 2。以k 代表零或正、负整数,则点p 是干涉极大的条件为( ) (A )21r r k π-= (B )212k ??π-= (C )()21212/2r r k ??πλπ-+-= 图2

专题14 振动和波(原卷版)

11年高考(2010-2020)全国1卷物理试题分类解析(原卷版) 专题14 机械振动和机械波 2020年高考 [物理——选修3-4] 15.在下列现象中,可以用多普勒效应解释的有__________。 A. 雷雨天看到闪电后,稍过一会儿才能听到雷声 B. 超声波被血管中的血流反射后,探测器接收到的超声波频率发生变化 C. 观察者听到远去的列车发出的汽笛声,音调会变低 D. 同一声源发出的声波,在空气和水中传播的速度不同 E. 天文学上观察到双星(相距较近、均绕它们连线上某点做圆周运动的两颗恒星)光谱随时间的周期性变化 16.一振动片以频率f做简谐振动时,固定在振动片上的两根细杆同步周期性地触动水面上a、b两点,两波源发出的波在水面上形成稳定的干涉图样。c是水面上的一点,a、b、c间的距离均为l,如图所示。已知除 c点外,在ac连线上还有其他振幅极大的点,其中距c最近的点到c的距离为3 8 l。求: (i)波的波长; (ii)波的传播速度。 一、选择题 1.(2011年)34.(1)(6分) 一振动周期为T,振幅为A。位于x=0点的波源从平衡位置沿y轴正方向开始做简谐运动,该波源产生的一维简谐横波沿x轴正向传播,波速为v,传播过程中无能量损失。一段时间后,该振动传播到某质点P,关于质点P振动的说法正确的是(选对1个给3分,选对2个给4分,选对3个给6分,每选错1个扣3分,最低得分为0分)

A. 振幅一定为A B. 周期一定为T C. 速度的最大值一定为v D. 开始振动的方向沿y轴向上或向下取决于它离波源的距离 E.若P点离波源距离s=vT,则质点P的位移与波源相同 2.(2013年)34.【物理—选修3-4】(1)(6分) 如图,a、b、c、d是均匀介质中x轴上的四个质点。相邻两点的间距依次为2m、4m和6m一列简谐横波以2m/s的波速沿x轴正向传播,在t=0时刻到达质点a处,质点a由平衡位置开始竖直向下运动,t=3s时a 第一次到达最高点。下列说法正确的是(填正确答案标号。选对1个得3分,选对2个得4分,选对3个得6分。每选错1个扣3分,最低得分为0分。) A.在t=6s时刻波恰好传到质点d处 B.在t=5s时刻质点c恰好到达最高点 C.质点b开始振动后,其振动周期为4s D.在4s

高中物理振动和波公式总结

高中物理振动和波公式总结 高中物理振动和波公式 1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向} 2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止 和应用 5.机械波、横波、纵波:波就是振动的传播,通过介质 传播。在同种均匀介质中,振动的传播是匀速直线运动,这 种运动,用波速V表征。对于匀速直线运动,波速V不变(大小不变,方向不变),所以波速V是一个不变的量。介质分 子并没有随着波的传播而迁移,介质分子的永不停息的无规 则的运动,是热运动,其平均速度为零。 6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃332m/s;20℃: 344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相

近、振动方向相同) 10.多普勒效应:由于波源与观测者间的相互运动,导 致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小} 高中物理振动和波知识点 1.简谐运动 (1)定义:物体在跟偏离平衡位置的位移大小成正比, 并且总是指向平衡位置的回复力的作用下的振动,叫做简谐 运动. (2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置. 简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大. (3)描述简谐运动的物理量 ①位移x:由平衡位置指向振动质点所在位置的有向线 段,是矢量,其最大值等于振幅. ②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱. ③周期T和频率f:表示振动快慢的物理量,二者互为 倒数关系,即T=1/f. (4)简谐运动的图像 ①意义:表示振动物体位移随时间变化的规律,注意振

西宁市2020年物理高考二轮复习专题07:振动和波 光学C卷

西宁市2020年物理高考二轮复习专题07:振动和波光学C卷 姓名:________ 班级:________ 成绩:________ 一、多选题 (共7题;共21分) 1. (3分)关于对惠更斯原理的理解,下列说法正确的是() A . 同一波面上的各质点振动情况完全相同 B . 同一振源的不同波面上的质点的振动情况可能相同 C . 球面波的波面是以波源为中心的一个个球面 D . 无论怎样的波,波线始终和波面垂直 2. (3分) (2019高三上·杭州月考) 在均匀介质中坐标原点O处有一波源做简谐运动,其表达式为 ,它在介质中形成的简谐横波沿x轴正方向传播,某时刻波刚好传播到x=12 m处,波形图象如图所示,则() A . 此后再经6 s该波传播到x=24 m处 B . M点在此后第3 s末的振动方向沿y轴正方向 C . 波源开始振动时的运动方向沿y轴负方向 D . 此后M点第一次到达y=-3 m处所需时间是2 s 3. (3分)(2020·洪洞模拟) x=0处的质点在t=0时刻从静止开始做简谐振动,带动周围的质点振动,在x 轴上形成一列向x正方向传播的简谐横波。如图甲为x=0处的质点的振动图像,如图乙为该简谐波在t0=0.03s时刻的一部分波形图。已知质点P的平衡位置在x=1.75m处,质点Q的平衡位置在x=2m。下列说法正确的是()

A . 质点Q的起振方向向上 B . 从t0时刻起经过0.0275s质点P处于平衡位置 C . 从t0时刻算起,质点P比质点Q的先到达最低点 D . 从t0时刻起经过0.025s,质点P通过的路程小于1m E . 从t0时刻起经过0.01s质点Q将运动到x=3m处 4. (3分) (2018高二下·莆田期中) 在均匀介质中选取平衡位置在同一直线上的9个质点.相邻两质点的距离均为L,如图(a)所示。一列横波沿该直线向右传播,t=0时到达质点1,质点1开始向下运动,经过时间△t 第一次出现如图(b)所示的波形。则该波的() A . 周期为△t,波长为8L B . 周期为△t,波长为8L C . 周期为△t,波速为 D . 周期为△t,波速为 5. (3分)下列说法正确的是 A . 声波在空气中的传播速度比在水中的传播速度快

简谐运动和机械波

简谐运动和机械波 重点难点 1.简谐运动特点 ①研究简谐运动,通常以平衡位置为坐标原点. ②对称性:在振动轨迹上关于平衡位置对称的两点,位移、回复力、加速度等大反向;速度等大,方向可能相同,也可能相反;动能、速率等大;振动质点从平衡位置开始第一次通过这两点所用的时间相等. ③周期性: 2.振动图象 振动图象反映的是一个质点的位移随时间的变化规律,由图象可直接读出振幅、周期和任意时刻的运动方向. 由于振动的周期性和非线性,在从任意时刻开始计时的一个周期内或半周期内,质点运动的路程都相等(分别为4A 和2A ),但从不同时刻开始计时的四分之一周期内,质点运动的路程是不一定相等的. 3.单摆 ①单摆周期与高度关系 设地球质量为M 时,半径为R ,地球表面的重力加速度为g 0.离地面高h 处重力加速度为g ,单摆的质量为m ,忽略地球自转的影响,则有 022 ,()GM GM g g R R h ==+ 因此可得单摆在高为h 处的周期T 与地面处周期T 0的关系为 R h R g g T T +==00 或 0 20g L R h R R h R T T +=+=π ②单摆周期与不同行星的关系 把单摆分别置于质量为M 1、M 2,半径为R 1、R 2的两行星表面上,其周期分别为T 1和T 2,重力加速度分别为g 1、g 2,忽略行星自转影响,则有 22 122111,R GM g R GM g ==, 2121221)(M M R R g g ?= 4.波动过程具有时间和空间的周期性 介质在传播振动的过程中,介质中每一个质点相对于平衡位置的位移随时间作周期性变化,这体现了时间的周期性;另一方面,每一时刻,介质中沿波传播方向上各个质点的空间分布具有空间周期性.√如相距波长整数倍的两个质点振动状态相同,即它们在任一时刻的位移、速度及相关量均相同;相距半波长奇数倍的两个质点振动状态相反,即它们在任一时刻的位移、速度及相关量均相反. 5.由波的图象判定质点振动方向或波的传播方向 ①“带动”法 如果已知某质点的振动方向,在波的图象中找一个与它紧邻的另一质点,分析这两个质点哪一个先振,先振的质点靠近振源,从而判断出波的传播方向. 反之,如果知道了波的传播方向,也就知道了振源在哪一侧,再找一个与所研究的质点紧邻且靠近振源的质点,这个质点先振,由此判断所研究质点的振动方向. ②微平移法 规律方法

专题08 振动和波(1)(解析版)

专题08 振动和波(1)-高考物理精选考点专项突破题集(解析版) 一、单项选择题:(在每小题给出的四个选项中,只有一项符合题目要求) 1、利用发波水槽,可以使S1、S2两波源发出的水波产生叠加现象。先使两波源振动情况完全相同,第一次调整S1的振幅后再观察两列波的叠加情况,观察后,请对下面的问题作出判断。如图甲为水波演示槽,可演示两列水波叠加的情形。S1、S2为两个波源,能连续不断地上、下振动产生水波,P为水面上的一点,PS1=PS2。乙、丙两图分别为S1、S2波源的振动图象,则下列判断正确的是( ) A.水面上不能形成干涉图样 B.由于水波波速未知,不能判断P点属振动加强点还是减弱点 C.P点属振动加强点 D.P点振动的振幅1cm 【答案】C。 【解析】由S1、S2两波源的振动图象可直观看出,两波源的振幅分别为A1=2cm、A2=1cm,两波源的振动周期T1=T2=0.02s,所以两波源的振动频率相同,故满足波的干涉条件,能形成稳定的干涉图样,因此A错误。由图象还可看出两波振动是同步的,可以知道在S1、S2的垂直平分线上的各点都满足振动加强的条件,故P为振动加强点,因此B错误C正确。两波在P点叠加时,S1的波峰与S2的波峰叠加时,合位移大小是3cm,当S1的波谷与S2的波谷相遇时,合位移大小是-3cm,故P点振动的振幅为3cm,因此D错误。故本题选C。 【考点】波的干涉 【难度】中等 2、在飞机的发展史中有一个阶段,飞机上天后不久,机翼很快就抖动起来,而且越抖越厉害。后来人们经

过了艰苦的探索,利用在飞机机翼前缘处装置一个配重杆的方法,解决了这一问题,在飞机机翼前装置配重杆的主要目的是( ) A .加大飞机的惯性 B .使机体更加平衡 C .使机翼更加牢固 D .改变机翼的固有频率 【答案】D 。 【解析】飞机上天后,飞机的机翼很快就抖动起来,而且越抖越厉害,是因为驱动力的频率接近机翼的固有频率,装置配重杆让机翼的固有频率和驱动力的频率远离,不发生共振。故本题选D 。 【考点】共振曲线 【难度】中等 3、如图所示,甲为t =1s 时某横波的波形图象,乙为该波传播方向上某一质点的振动图象,距该质点Δx =0.5m 处质点的振动图象可能是( ) 【答案】A 。 【解析】由题意知λ=2m ,T=2s ,波速s /m 1==T V λ,由图乙知t=1s 时质点位移为负且沿y 轴负方向向下运动,该波是可能向左传播,也可能向右传播。而距该质点x=0.5m 处质点,就是时间相差 T 41。沿波的传播方向上的另一个点一定是延后的。运用代入法判断!在四个选项中找1s 和2s 的中点1.5s 时的状态应该是位移为负且沿y 轴负方向向下运动,因此A 正确。故本题选A 。

相关文档
最新文档