材料力学性能基础

材料力学性能基础
材料力学性能基础

材料力学性能基础

课程编号:30350193

课程名称:材料力学性能基础

英文名称:Foundation for Mechanical Properties of Materials

学分:3

先修课程:材料科学基础

教材:自编

一、课程简介

本课程目的在于使学生了解金属、陶瓷、复合材料、高分子材料等材料的强度、塑性、韧性等力学行为的物理意义、测量方式,特别是材料宏观力学行为与细观、微观组织结构的关系,从而对材料力学行为的本质和机理有一正确的理解。为学生在今后工作中对材料的选用、设计、改造、创新打下良好的基础。

二、基本要求

实验及技能:几种主要实验的设计、数据分析、实验报告

基础知识:强度、韧性、塑性、强韧化等方面的材料宏观行为与微观结构的关系。

分析能力:不同工况要求下材料的选用;材料强韧化途径

三、内容概要

第一章材料力学性能概论

1.1 引言

1.2 材料力学性能的应用背景

1.3 材料几种主要力学性能的意义

第二章材料的强度和塑性

2.1 材料静态拉伸试验方法

2.2 材料其它静态试验

a.压缩试验

b.扭转试验

c.弯曲试验

d.硬度试验

2.3 弹性变形和塑性变形

2.4 几种典型的应力-应变曲线及其微观过程

a.理想弹塑性

b.线性强化弹塑性

c.刚塑性

2.5 粘弹性、粘塑性和牛顿流体

第三章材料的断裂

3.1 断裂的基本特征-塑性断裂和脆性断裂等

3.2 裂纹形核核扩展的位错模型

3.3 冲击韧性、断裂韧性的试验、典型材料及微观过程

第四章材料的增强、增韧和表面改性

4.1 材料几种强化方式及其微观机理

4.2 材料几种韧化方式及其微观机理

4.3 强度、塑性、韧性的合理配合

4.4 金属、陶瓷等材料的表面改性

第五章材料的疲劳

5.1 疲劳试验及材料的疲劳性能

5.2 疲劳裂纹萌生与扩展

5.3 疲劳失效分析和防止

第六章材料在特殊条件下的力学行为

6.1 材料在高温和低温下的力学行为

6.2 材料在高速加载和低速率变形下的行为

6.3 材料在环境介质作用下的力学行为

6.4 材料在辐照条件下的力学行为

第七章若干材料的力学特征及其应用

7.1 工程结构陶瓷的力学性能

7.2 聚合物的力学行为

7.3 复合材料的力学性能

7.4 岩石、土壤的力学性能

四、实验

1. 拉伸试验

2. Gleeble 1500D 热力模拟试验

3. 疲劳试验

五、参考书

l. 匡震邦,顾海澄,李中华,材料的力学行为,高等教育出版社,1998

2. 潘金生,全健民,田民波,材料科学基础,清华大学出版社,1998

3. M.A.Meyers and K.K.Chawla,金属力学原理及应用,高等教育出版社,1992

材料力学性能课后答案(时海芳任鑫)

第一章 1.解释下列名词①滞弹性:金属材料在弹性围快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。②弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。③循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。④包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。⑤塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。⑥韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力 ⑦加工硬化:金属材料在再结晶温度以下塑性变形时,由于晶粒发生滑移, 出现位错的缠结,使晶粒拉长、破碎和纤维化,使金属的强度和硬度升高,塑性和韧性降低的现象。⑧解理断裂:解理断裂是在正应力作用产生的一种穿晶断裂,即断裂面沿一定的晶面(即解理面)分离。 2.解释下列力学性能指标的意义弹性模量);(2)ζ p(规定非比例伸长应力)、ζ e(弹性极限)、ζ s(屈服强度)、ζ 0.2(屈服强度);(3)ζ b (抗拉强度);(4)n(加工硬化指数); (5)δ (断后伸长率)、ψ (断面收缩率) 4.常用的标准试样有5 倍和10倍,其延伸率分别用δ 5 和δ 10 表示,说明为什么δ 5>δ 10。答:对于韧性金属材料,它的塑性变形量大于均匀塑性变形量,所以对于它的式样的比例,尺寸越短,它的断后伸长率越大。

5.某汽车弹簧,在未装满时已变形到最大位置,卸载后可完全恢复到原来状态;另一汽车弹簧,使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,而且塑性变形量越来越大。试分析这两种故障的本质及改变措施。答:(1)未装满载时已变形到最大位置:弹簧弹性极限不够导致弹性比功小;(2)使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,这是构件材料的弹性比功不足引起的故障,可以通过热处理或合金化提高材料的弹性极限(或屈服极限),或者更换屈服强度更高的材料。 6.今有45、40Cr、35CrMo 钢和灰铸铁几种材料,应选择哪种材料作为机床机身?为什么?答:应选择灰铸铁。因为灰铸铁循环韧性大,也是很好的消振材料,所以常用它做机床和动力机器的底座、支架,以达到机器稳定运转的目的。刚性好不容易变形加工工艺朱造型好易成型抗压性好耐磨损好成本低 7.什么是包申格效应?如何解释?它有什么实际意义?答:(1)金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象,称为包申格效应。(2)理论解释:首先,在原先加载变形时,位错源在滑移面上产生的位错遇到障碍,塞积后便产生了背应力,背应力反作用于位错源,当背应力足够大时,可使位错源停止开动。预变形时位错运动的方向和背应力方向相反,而当反向加载时位错运动方向和背应力方向一致,背应力帮助位错运动,塑性变形容易了,于是,经过预变形再反向加载,其屈服强度就降低了。(3)实际意义:在工程应用上,首先,材料加工成型工艺需要考虑包申格效应。例如,大型精油输气管道管线的UOE 制造工艺:U 阶段是将原始板材冲压弯曲成U 形,O 阶段是将U 形板材径向压缩成O 形,再进行周边焊接,最后将管子径进行扩展,达到给定大小,

工程材料力学性能 东北大学

课后答案 第一章 一、解释下列名词 材料单向静拉伸载荷下的力学性能 滞弹性:在外加载荷作用下,应变落后于应力现象。 静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。 弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。比例极限:应力—应变曲线上符合线性关系的最高应力。 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(ζP)或屈服强度(ζS)增加;反向加载时弹性极限(ζP)或屈服强度(ζS)降低的现象。 解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数,表面能低的晶面。 解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。 静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 二、金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学性能? 答案:金属的弹性模量主要取决于金属键的本性和原子间的结合力,而材料的成分和组织对它的影响不大,所以说它是一个对组织不敏感的性能指标,这是弹性模量在性能上的主要特点。改变材料的成分和组织会对材料的强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。 三、什么是包辛格效应,如何解释,它有什么实际意义? 答案:包辛格效应就是指原先经过变形,然后在反向加载时弹性极限或屈服强度降低的现象。特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了。包辛格效应可以用位错理论解释。 第一,在原先加载变形时,位错源在滑移面上产生的位错遇到障碍,塞积后便产生了背应力,这背应力反作用于位错源,当背应力(取决于塞积时产生的应力集中)足够大时,可使位错源停止开动。背应力是一种长程(晶粒或位错胞尺寸范围)内应力,是金属基体平均内应力的度量。因为预变形时位错运动的方向和背应力的方向相反,而当反向加载时位错运动的方向与原来的方向相反了,和背应力方向一致,背应力帮助位错运动,塑性变形容易了,于是,经过预变形再反向加载,其屈服强度就降低了。这一般被认为是产生包辛格效应的主要原因。 其次,在反向加载时,在滑移面上产生的位错与预变形的位错异号,要引起异号位错消毁,这也会引起材料的软化,屈服强度的降低。 实际意义:在工程应用上,首先是材料加工成型工艺需要考虑包辛格效应。其次,包辛格效应大的材料,内应力较大。另外包辛格效应和材料的疲劳强度也有密切关系,在高周疲劳中,包辛格效应小的疲劳寿命高,而包辛格效应大的,由于疲劳软化也较严重,对高周疲劳寿命不利。可以从河流花样的反“河流”方向去寻找裂纹源。解理断裂是典型的脆性断裂的代表,微孔聚集断裂是典型的塑性断裂。 5.影响屈服强度的因素与以下三个方面相联系的因素都会影响到屈服强度位错增值和运动晶粒、晶界、第二相等外界影响位错运动的因素主要从内因和外因两个方面考虑 (一)影响屈服强度的内因素 1.金属本性和晶格类型(结合键、晶体结构)单晶的屈服强度从理论上说是使位错开始运动的临界切应力,其值与位错运动所受到的阻力(晶格阻力--派拉力、位错运动交互作用产生的阻力)决定。派拉力:位错交互作用力(a 是与晶体本性、位错结构分布相关的比例系数,L 是位错间距。) 2.2.晶粒大小和亚结构晶粒小→晶界多(阻碍位错运动)→位错塞积→提供应力→位错开动→产生宏

常用材料力学性能.

常用材料性质参数 材料的性质与制造工艺、化学成份、内部缺陷、使用温度、受载历史、服役时间、试件尺寸等因素有关。本附录给出的材料性能参数只是典型范围值。用于实际工程分析或工程设计时,请咨询材料制造商或供应商。 除非特别说明,本附录给出的弹性模量、屈服强度均指拉伸时的值。 表 1 材料的弹性模量、泊松比、密度和热膨胀系数 材料名称弹性模量E GPa 泊松比V 密度 kg/m3 热膨胀系数a 1G6/C 铝合金-79 黄铜 青铜 铸铁 混凝土(压 普通增强轻质17-31 2300 2400 1100-1800

7-14 铜及其合金玻璃 镁合金镍合金( 蒙乃尔铜镍 塑料 尼龙聚乙烯 2.1-3.4 0.7-1.4 0.4 0.4 880-1100 960-1400 70-140 140-290 岩石(压 花岗岩、大理石、石英石石灰石、沙石40-100 20-70 0.2-0.3 0.2-0.3 2600-2900 2000-2900 5-9 橡胶130-200 沙、土壤、砂砾钢

高强钢不锈钢结构钢190-210 0.27-0.30 7850 10-18 14 17 12 钛合金钨木材(弯曲 杉木橡木松木11-13 11-12 11-14 480-560 640-720 560-640 1 表 2 材料的力学性能 材料名称/牌号屈服强度s CT MPa 抗拉强度b CT

MPa 伸长率 5 % 备注 铝合金LY12 35-500 274 100-550 412 1-45 19 硬铝 黄铜青铜 铸铁( 拉伸HT150 HT250 120-290 69-480 150 250 0-1 铸铁( 压缩混凝土(压缩铜及其合金 玻璃

工程材料力学性能答案

工程材料力学性能答案1111111111111111111111111111111111111 1111111111111111111111111111111111111 111111 决定金属屈服强度的因素有哪 些?12 内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。外在因素:温度、应变速率和应力状态。试举出几种能显著强化金属而又不降低其塑性的方法。固溶强化、形变硬化、细晶强化试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?21韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。何谓拉伸断口三要素?影响宏观拉伸断口性态的

因素有哪些?答:宏观断口呈杯锥形,纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化?断裂强度与抗拉强度有何区别?抗拉强度是试样断裂前所承受的最大工程应力,记为σb;拉伸断裂时的真应力称为断裂强度记为σf; 两者之间有经验关系:σf = σb (1+ψ);脆性材料的抗拉强度就是断裂强度;对于塑性材料,于出现颈缩两者并不相等。裂纹扩展受哪些因素支配?答:裂纹形核前均需有塑性变形;位错运动受阻,在一定条件下便会形成裂纹。2222222222222222222222222222222222 2222222222222222222222222222222222 2222 试综合比较单向拉伸、压缩、弯曲及扭转试验的特点和应用范围。答:单向拉伸试验的特点及应用:单向拉伸的应力状态较硬,一般用于塑性变形

工程材料力学性能-第2版答案 束德林

《工程材料力学性能》束德林课后答案 机械工业出版社 2008第2版 第一章单向静拉伸力学性能 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。

9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等 2、 说明下列力学性能指标的意义。 答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指 数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对 组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格

材料力学性能-考前复习总结(前三章)

金属材料的力学性能指标是表示其在力或能量载荷作用下(环境)变形和断裂的某些力学参量的临界值或规定值。 材料的安全性指标:韧脆转变温度Tk;延伸率;断面收缩率;冲击功Ak;缺口敏感性NSR 材料常规力学性能的五大指标:屈服强度;抗拉强度;延伸率;断面收缩率;冲击功Ak;硬度;断裂韧性 第一章单向静拉伸力学性能 应力和应变:条件应力条件应变 = 真应力真应变 应力应变状态:可在受力机件任一点选一六面体,有九组应力,其中六个独立分量。其中必有一主平面,切应力为零,只有主应力,且 ,满足胡克定律。 应力软性系数:最大切应力与最大正应力的相对大小。 1 弹变1)弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。ae=1/2σeεe=σe2/2E。取决于E和弹性极限,弹簧用于减震和储能驱动,应有较高的弹性比功和良好弹性。需通过合金强化及组织控制提高弹性极限。 2)弹性不完整性:纯弹性体的弹性变形只与载荷大小有关,而与加载方向及加载时间无关,但对实际金属而言,与这些因素均有关系。 ①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。与材料成分、组织及试验条件有关,组织约不均匀,温度升高,切应力越大,滞弹性越明显。金属中点缺陷的移动,长时间回火消除。 弹性滞后环:由于实际金属有滞弹性,因此在弹性区内单向快速加载、卸载时,加载线与卸载线不重合,形成一封闭回路。吸收变形功 循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力(塑性区加载,塑性滞后环),也叫内耗(弹性区加载),或消震性。 ②包申格效应: 定义:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。(反向加载时弹性极限或屈服强度降低的现象。特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了) 解释:与位错运动所受阻力有关,在某滑移面上运动位错遇位错林而使其弯曲,密度增大,形成位错缠结或胞状组织,相对稳定。卸载后同向拉伸,位错线不能显著运动。但反向载荷使得位错做反向运动,阻碍

材料力学性能课后习题答案

1弹性比功: 金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性: 金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性: 金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.xx效应: 金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面: 这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性: 金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性: 指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶: 当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样: 解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。

是解理台阶的一种标志。 9.解理面: 是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂: 穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂: 裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变: 具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性: 理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答: 主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。 1、试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么?

材料力学性能考试答案

《工程材料力学性能》课后答案 机械工业出版社 2008第2版 第一章 单向静拉伸力学性能 1、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 2、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 3、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 4、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 5、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 6、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。 【P32】 答: 212?? ? ??=a E s c πγσ,只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1)应力状态软性系数—— 材料或工件所承受的最大切应力τmax 和最大正应力σmax 比值,即: () 32131max max 5.02σσσσσστα+--== 【新书P39 旧书P46】 (2)缺口效应—— 绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。【P44 P53】 (3)缺口敏感度——缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σb 的比值,称为缺口敏感度,即: 【P47 P55 】 (4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。【P49 P58】 (5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度【P51 P60】。 (6)维氏硬度——以两相对面夹角为136。的金刚石四棱锥作压头,采用单位面积所承

材料力学性能考试题及答案分析

07 秋材料力学性能 一、填空:(每空1分,总分25分) 1. 材料硬度的测定方法有、和。 2. 在材料力学行为的研究中,经常采用三种典型的试样进行研 究,即、 和。 3.平均应力越高,疲劳寿命。 4.材料在扭转作用下,在圆杆横截面上无正应力而只有 , 中心处切应力为 ,表面处。 5.脆性断裂的两种方式为和。 6.脆性材料切口根部裂纹形成准则遵循断裂准则; 塑性材料切口根部裂纹形成准则遵循断裂准 则; 7.外力与裂纹面的取向关系不同,断裂模式不同,张开型中外加 拉应力与断裂面,而在滑开型中两者的取向关系则为。 8.蠕变断裂全过程大致由、和

三个阶段组成。 9.磨损目前比较常用的分类方法是按磨损的失效机制分为、和腐蚀磨损等。 10.深层剥落一般发生在表面强化材料的区域。 11.诱发材料脆断的三大因素分别是、和。 二、选择:(每题1分,总分15分) ()1. 下列哪项不是陶瓷材料的优点 a)耐高温 b) 耐腐蚀 c) 耐磨损 d)塑性好 ()2. 对于脆性材料,其抗压强度一般比抗拉强度 a) 高b) 低c) 相等d) 不确定 ()3.用10mm直径淬火钢球,加压3000kg,保持30s,测得的布氏硬度值为150的正确表示应为 a) 150HBW10/3000/30 b) 150HRA3000/l0/ 30 c) 150HRC30/3000/10 d) 150HBSl0/3000/30 ()4.对同一种材料,δ5比δ10 a) 大 b) 小 c) 相同 d) 不确定

()5. 下列哪种材料用显微硬度方法测定其硬度。 a) 淬火钢件 b) 灰铸铁铸件 c) 退货态下的软钢 d) 陶瓷 ()6.下列哪种材料适合作为机床床身材料 a) 45钢 b) 40Cr钢 c) 35CrMo钢 d) 灰铸铁()7. 下列哪种断裂模式的外加应力与裂纹面垂直,因而它是最危险的一种断裂方式。 a) 撕开型 b) 张开型 c) 滑开型 d) 复合型()8. 下列哪副图是金属材料沿晶断裂的典型断口形貌 a) b) c) d) ()9. 下列哪种材料中的弹性模量最高 a) 氧化铝 b) 钢 c) 铝 d) 铜 ()10. 韧性材料在什么样的条件下可能变成脆性材料 a) 增大缺口半径 b) 增大加载速度 c) 升高温度 d) 减小晶粒尺寸 ()11.应力腐蚀门槛值正确的符号为 a) K ISCC b) ΔK th c) K IC d) CF

材料力学性能期末考试[1]

第一章 1,静载荷下材料的力学性能包括材料的拉伸、压缩、扭转、弯曲及硬度等性能。2,在弹性变形阶段,大多数金属的应力与应变之间符合胡克定律的正比例关系,其比例系数称为弹性模量。 3,弹性比功为应力-应变曲线下弹性范围内所吸收的变形功。 4,金属材料经过预先加载产生少量塑性变形(残余应变小余1%~4%),而后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象,称为包辛格效应。 包辛格效应消除方法:(1) 预先进行较大的塑性变形; (2) 在第二次反向受力前先使金属材料于回复或再结晶 温度下退火,如钢在400-500℃,铜合金在250-270℃退 火。 5,屈服标准: (1),比利极限:应力-应变曲线上符合线性关系的最高应力。 (2),弹性极限:试样加载后再卸载,以不出现残留的永久变形为准则,材料能够完全弹性恢复的最高应力。 (3),屈服强度:以规定发生一定的残余变形为标准。 6,影响材料强度的内在因素有:结合键、组织、结构、原子本性。 影响材料强度的外在因素有:温度、应变速度、应力状态。 7,影响金属材料的屈服强度的四种强化机制: ①固溶强化;②形变强化;③沉淀强化和弥散强化;④晶界和亚晶强化。8,加工硬化的作用: (1) 加工硬化可使金属机件具有一定的抗偶然过载能力,保证机件安全。 (2) 加工硬化和塑性变形适当配合可使金属均匀塑性变形,保证冷变形工艺顺利实施。(如果没有加工硬化能力,任何冷加工成型的工艺都是无法进行。)(3) 可降低塑性,改善低碳钢的切削加工性能。 9,应力状态软性系数α: α值越大,表示应力状态越“软”,金属越易于产生塑性变形和韧性断裂。α值越小,表示应力状态越“硬”,金属越不易于产生塑性变形而易于产生脆性断裂。 10,冲击弯曲试验的作用:主要测定脆性或低塑性材料的抗弯强度。 第二章 1,由于缺口的存在,在静载荷作用下,缺口截面上的应力状态将会发生变化,产生所谓的“缺口效应”。 2,冲击韧性的定义是指材料在冲击载荷作用下吸收塑性变形功和断裂功的能力,用标准试样的冲击吸收功A k表示。 3,细化晶粒提高韧性的原因: (1) 晶界是裂纹扩展的阻力; (2) 晶界前塞积的位错数减少,有利于降低应力集中; (3) 晶界总面积增加,使晶界上杂质浓度减小,避免了产生沿晶脆性断裂。 4,断裂机理由微孔聚集型变为穿晶解理,断口特征由纤维状变为结晶状,这就是低温脆性。 5,韧脆转变温度:

材料的力学性能

材料的力学性能 mechanical properties of materials 主要是指材料的宏观性能,如弹性性能、塑性性能、硬度、抗冲击性能等。它们是设计各种工程结构时选用材料的主要依据。各种工程材料的力学性能是按照有关标准规定的方法和程序,用相应的试验设备和仪器测出的。表征材料力学性能的各种参量同材料的化学组成、晶体点阵、晶粒大小、外力特性(静力、动力、冲击力等)、温度、加工方式等一系列内、外因素有关。材料的各种力学性能分述如下: 弹性性能材料在外力作用下发生变形,如果外力不超过某个限度,在外力卸除后恢复原状。材料的这种性能称为弹性。外力卸除后即可消失的变形,称为弹性变形。表示材料在静载荷、常温下弹性性能的一些主要参量可以通过拉伸试验进行测定。 拉伸试样常制成圆截面(图1之a)或矩形截面(图1之b)棒体,l为标距,d为圆形试样的直径,h和t分别为矩形截面试样的宽度和厚度,图中截面形状用阴影表示,面积记为A。长度和横向尺寸的比例关系也有如下规定:对于圆形截面试样,规定l=10d或l=5d;对于矩形截 面试样,按照面积换算规定或者。试样两端的粗大部分用以和材料试验 机的夹头相连接。试验结果通常绘制成拉伸图或应力-应变图。图2为低碳钢的拉伸图,横坐标表示试样的伸长量Δl(或应变ε=Δl/l),纵坐标表示载荷P(或应力σ=P/A)。图中的曲线从原点到点p为直线,pe段为曲线,载荷不大于点e所对应的值时,卸载后试样可恢复原状。反映材料弹性性质的参量有比例极限、弹性极限、弹性模量、剪切弹性模量和泊松比等。 比例极限应力和应变成正比例关系的最大应力称为比例极限,即图中点p所对应的应力,以σp表示。在应力低于σp的情况下,应力和应变保持正比例关系的规律叫胡克定律。载荷超过点p对应的值后,拉伸曲线开始偏离直线。 弹性极限试样卸载后能恢复原状的最大应力称为弹性极限,即图中点e所对应的应力,以σe表示。若在应力超出σe后卸载,试样中将出现残余变形。比例极限和弹性极限的测试值敏感地受测试精度的影响,并不易测准,所以在有关标准中规定,对于拉伸曲线的直线部分产生规定偏离量(用切线斜率的偏差表示)的应力作为"规定比例极限"。对于弹性

材料力学性能大连理工大学课后思考题答案.

第一章 单向静拉伸力学性能 一、 解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b 的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。 13.比例极限:应力—应变曲线上符合线性关系的最高应力。 14.解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数、表面能低的晶面。 15.解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 16.静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 二、说明下列力学性能指标的意义。 答:E 弹性模量;G 切变模量;r σ规定残余伸长应力;2.0σ屈服强度;gt δ金属材料拉伸时最大应力下的总伸长率;n 应变硬化指数 【P15】 三、金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。【P4】 四、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 五、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理

材料力学性能期末考试

一、名词解释 包辛格效应、疲劳门槛值、应力腐蚀门槛值、平面应力状态、平面应变状态、蠕变极限、低周疲劳、高周疲劳、滞弹性、弹性比功、冲击韧性、断裂韧性、氢脆、应力腐蚀、粘着磨损、磨粒磨损、微动磨损、蠕变、持久强度、应力松弛、腐蚀疲劳、加工硬化指数 二、指出下列力学性能指标的名称,物理意义及单位 A K 、K 1、K IC 、K 1SCC 、c a 、E 、σf 、σb 、σ 0.2、σys 、σP 、δ、σ-1、th K ?、C 650103σ、ε、?、H B 、HRC 、H V 、G 、G IC 、 三、填空题 1、低碳钢拉伸试验的过程可以分为 、 和 三个阶段。 2、材料常规力学性能的五大指标为: 、 、 、 。 3、陶瓷材料增韧的主要途径有 、 、 、 显微结构增韧以及复合增韧六种。 4、常用测定硬度的方法有 、 和 测试法。 1、聚合物的弹性模量对 非常敏感,它的粘弹性表现为滞后环、 和 ,这种现象与温度、时间密切有关。 2、影响屈服强度的内在因素有: 、 、 、 ;外在因素有: 、 、 。 3、缺口对材料的力学性能的影响归结为四个方面: 、 、 、 。 4、材料或零件在 和腐蚀介质的共同作用下造成的失效叫腐蚀疲劳。 四、请说明下面公式各符号的名称以及其物理意义 c IC c a Y K /=σ、、n SS A σε= 、n K S ε=、 m K c dN da )(?= 五、简答题 1. 金属疲劳破坏的特点是什么?典型疲劳断口具有什么特征?提高疲劳强度的途径有哪些? 2. 和常温下力学性能相比,金属材料在高温下的力学行为有哪些特点?造成这种差别的原因何在? 3. 提高金属材料的屈服强度有哪些方法?试用已学过的专业知识就每种方法各举一例。 4. 缺口对材料的性能有哪些影响?为什么缺口冲击韧性被列为材料常规性能的五大指标之一?它和断裂韧性有何关系? 5. 为什么通常体心立方金属显示低温脆性,而面心立方金属一般没有低温脆性? 6. 提高零件的疲劳寿命有哪些方法? 试就每种方法各举一应用实例,并对这种方法具体分析,其在抑制疲劳裂纹的萌生中起有益作用,还是在阻碍疲劳裂纹扩展中有良好的效果? 7. 为什么材料的塑性要以延伸率和断面收缩率这两个指标来度量?它们在工程上各有什么实际意义? 8. 缺口冲击韧性为什么被列为材料常规性能的五大指标之一,怎样正确理解冲击韧性的功能:(a)它是

材料力学性能-第2版课后习题答案

第一章单向静拉伸力学性能 1、 解释下列名词。 2. 滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落 后于应力的现象。 3?循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4?包申格效应: 金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规 定残余伸长应力降低的 现象。 11. 韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆 性断裂,这种现象称 为韧脆转变 2、 说明下列力学性能指标的意义。 答:E 弹性模量G 切变模量 r 规定残余伸长应力 0.2屈服强度 gt 金属材料拉伸时最大应力下的总伸长率 n 应 变硬化指数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但 是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏 感。【P4】 4、 现有4 5、40Cr 、35 CrMo 钢和灰铸铁几种材料,你选择哪种材料作为机床起身,为什么? 选灰铸铁,因为其含碳量搞,有良好的吸震减震作用,并且机床床身一般结构简单,对精度要求不高,使用灰铸铁可 降低成本,提高生产效率。 5、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险? 【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程 中不断地消耗能量;而脆性断裂是突然发生的断裂, 断裂前基本上不发生塑性变形, 没有明显征兆,因而危害性很大。 6、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形 态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 7、 板材宏观脆性断口的主要特征是什么?如何寻找断裂源? 断口平齐而光亮,常呈放射状或结晶状,板状矩形拉伸试样断口中的人字纹花样的放射方向也 与裂纹扩展方向平行,其尖端指向裂纹源。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1 )应力状态软性系数—— 材料或工件所承受的最大切应力T max 和最大正应力(T max 比值,即: (3)缺口敏感度一一缺口试样的抗拉强度 T bn 的与等截面尺寸光滑试样的抗拉强度 T b 的比值,称为缺口敏感度,即:【P47 P55】 max 1 3 max 2 1 0.5 2 3 【新书P39旧书P46】

材料力学性能复习重点汇总

第一章 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(σP)或屈服强度(σS)增加;反向加载时弹性极限(σP)或屈服强度(σS)降低的现象。 解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数,表面能低的晶面。 解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。 静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 可以从河流花样的反“河流”方向去寻找裂纹源。 解理断裂是典型的脆性断裂的代表,微孔聚集断裂是典型的塑性断裂。 5.影响屈服强度的因素 与以下三个方面相联系的因素都会影响到屈服强度 位错增值和运动 晶粒、晶界、第二相等 外界影响位错运动的因素 主要从内因和外因两个方面考虑 (一)影响屈服强度的内因素 1.金属本性和晶格类型(结合键、晶体结构)

单晶的屈服强度从理论上说是使位错开始运动的临界切应力,其值与位错运动所受到的阻力(晶格阻力--派拉力、位错运动交互作用产生的阻力)决定。 派拉力: 位错交互作用力 (a是与晶体本性、位错结构分布相关的比例系数,L是位错间距。)2.晶粒大小和亚结构 晶粒小→晶界多(阻碍位错运动)→位错塞积→提供应力→位错开动→产生宏观塑性变形。 晶粒减小将增加位错运动阻碍的数目,减小晶粒内位错塞积群的长度,使屈服强度降低(细晶强化)。 屈服强度与晶粒大小的关系: 霍尔-派奇(Hall-Petch) σs= σi+kyd-1/2 3.溶质元素 加入溶质原子→(间隙或置换型)固溶体→(溶质原子与溶剂原子半径不一样)产生晶格畸变→产生畸变应力场→与位错应力场交互运动→使位错受阻→提高屈服强度(固溶强化)。 4.第二相(弥散强化,沉淀强化) 不可变形第二相 提高位错线张力→绕过第二相→留下位错环→两质点间距变小→流变应力增大。 不可变形第二相 位错切过(产生界面能),使之与机体一起产生变形,提高了屈服强度。 弥散强化:

衡量金属材料力学性能的指标名称 符 基本单位及其含义说明

指标 法定计量单位 计算公式 试验仪器 含义说明 名称 符号 名称 单位 弹性 弹性是指金属在外力作用下产生变形,当外力取消后又恢复到原来的形状和大小的一种特性 弹性指标 正弹性模量 E 兆帕〔斯卡〕 MPa 式中 σ──应力 ε──应变 P ──垂直应力(N ) l 0──试样原长(mm ) F 0──试样原来的横截面积(mm 2) Δl ──绝对伸长量(mm ) 拉伸试验机或万能材料试验机 金属在弹性范围内,外力和变形成比例地增长,即应力与应变成正比例关系时(符合虎克定律),这个比例系数就称为弹性模数或弹性模量。根据应力,应变的性质通常又分为:正弹性模数(E )和剪切弹性模数(G ),弹性模数的大小,相当于引起物体单位变形时所需应力之大小,所以,它在工程技术上是衡量材料刚度的指标,弹性模数愈大,刚度也愈大,亦即在一定应力作用下,发生的弹性变形愈小 切变弹性模量 G 兆帕〔斯卡〕 MPa 式中 ──切应力 ──相应的扭转滑移 M ──扭转力矩 l 0──试样计算长度(mm ) ──计算长度l 0两端的扭 转角度(经度) ──扭转时试样截面相对于轴线的极惯性矩(对圆截面 )(mm 4) 扭转试验机或万能材 料试 验机 比例极限 σp 兆帕 〔斯卡〕 MPa 式中 ──比例极限载荷(N ) F ──试样横截面积 (mm 2) 拉伸试验机 或万 能材 料试验机 指伸长与负荷成正比地增加,保持直线关系,当开始偏离直线时的应力称比例极限,但此位置很难精确测定,通常把能引起材料试样产生残余变形量为试样原长的0.001%或0.003%、0.005%、0.02%时的应力,规定为比例极限 弹性极限 σe 兆帕〔斯卡〕 MPa 式中 ──弹性极限载荷(N ) F ──试样横截面积(mm 2) 拉伸试验机或万 能材 料试 验机 这是表示金属最大弹性的指标,即在弹性变形阶段,试样不产生塑性变形时所能承受的最大应力,它和σp 一样也很难精确测定,一般多不进行测定,而以规定的σp 数值代替之 强度 强度指金属在外力作用下,抵抗塑性变形和断裂的能力 强度极限 σ 兆帕〔斯卡〕 MPa 式中 ──最大载荷(N ) F ──试样横截面积(mm 2) 指金属受外力作用,在断裂前,单位面积上所能承受的最大载荷 抗拉强度 σb 兆帕〔斯卡〕 MPa 式中 ──最大拉力(N ) F ──试样横截面积(mm 2) 拉伸试验机 或万 能材 料试验机 指外力是拉力时的强度极限,它时 衡量金属材料强度的主要性能指标

材料力学性能课后习题答案

材料力学性能课后答案(整理版) 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等决定金属屈服强度的因素有哪些? 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。外在因素:温度、应变速率和应力状态。 2、试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险? 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 3、剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同? 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 4、何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。5、论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论 的局限性。

相关文档
最新文档