三角恒等式证明专题

三角恒等式证明专题
三角恒等式证明专题

课 题

三角恒等式证明专题 教学目标

通过对三角函数的综合知识整理及复习达到熟练掌握基础知识,及灵活运用三角函数公式。提高利用数型结合思想分析题意的能力, 重点、难点 三角函数图像及其性质,三角恒等式的证明

考点及考试要求

特点一:考小题,重在于基础.

有关三角函数的小题,其考查的重点在于基础知识:其中,三角函数的解析

式,图象和图象变换,两域(定义域,值域),四性(单调性,奇偶性,对称性,周

期性),反函数, 以及简单的三角变换,(求值,化简,及比较大小),都突出了

对三角函数基础知识的考查.

特点二:考大题,难度略有降低.

由于高中数学教材内容的重新修订,对三角函数的整体要求有所降低,体现

在高考中对有关三角函数的大题(解答题),通过三角公式变形,转换等手段

来考查学生思维能力的题目,其难度有所下降,而比较突出地考查了学生对

基本知识,基本方法,基本技能的理解,掌握和应用情况.

特点三:考应用,常融于三角形之中.

高考中此类题型的考查既能考查解三角形的知识与方法,又能考查运用三

角公式进行恒等变换的技能,故近年来备受命题者的青睐,主要解法是充分

利用三角形的内角和定

问题时,常常体现了三角的工具性作用。

教学内容

知识框架 (1)公式的变形及应用

运用三角函数公式的关键是熟记公式,我们不仅要记住公式,更重要的是抓住公式的特征,如角的关系,次数关系,三角函数名等抓住公式的结构特征对提高记忆公式的效率起到至关重要的作用,而且抓住了公式的结构特征,有利于在解题时观察分析题设和结论等三角函数式中所具有的相似性的结构特征,联想到相应的公式,从而找到解题的切入点。(iii )对公式的逆用公式,变形式也要熟悉,如:

()()()()()()()()。

βαβαβαβαβαβαβαβαβαβαβααββαββα+=+++--+=++=-+=+++tan tan tan tan tan tan tan tan tan tan tan tan tan tan tan tan 1tan cos sin sin cos cos ,αααsin 22sin cos =

22cos 1cos 2αα+=,22cos 1sin 2αα-=。

例1、求)3

tan(tan 3)3tan(tan απααπα-+-+=____________ 分析:将公式 ()βαβαtan tan tan +=+变形为:()()βαβαβαtan tan 1tan tan tan -+=+即

可得出答案3,故原式等于3 (2)角的变换

解决三角变换问题应认真分析已知式中角与未知式中角的关系,再确定如何利用已知条件,采用哪些公式,避免盲目处理相关角的三角函数式,以免造成不必要的麻烦,要整体地把握公式,认真考虑角的整体运用,这往往要用到常见角的变换,即拼角与拆角,常见的变换如下:如()++=βαα2()βα-,

()()()=--+=+--+=βαββαβαβαβαβ2222,,()ββα+-2,

()()()()α

βαβαβαβββααββαα+--=-+=+-=-+=,,,()??? ?

?--+=+44πββαπα等。 例2、已知13

543sin ,534cos =??? ??+=??? ??-βπαπ,其中40,434πβπαπ<<<<,求()βα+sin 的值 分析:已知角βπαπ

+-43,4

,与所求角βα+的关系是()βαπαπβπ++=??? ??--??? ??+2443,要求()βα+sin ,即求()]2

cos[βαπ

++- 解: 40,434πβπαπ<<<< πβππαππ<+<<-<-∴4343,042 131243cos ,544sin -=??

? ??+-=??? ??-∴βπαπ ∴()]2cos[βαπ++=cos ]443[??

? ??--??? ??+απβπ=6556- ()βα+∴sin =()]2

cos[βαπ++-=6556- (3)函数名的变换

对于函数名的变换主要是用诱导公式六“函数名改变,符号看象限”即:

;sin 2cos ;cos 2sin ααπααπ=??

? ??-=??? ??-就可实现函数名的改变, 同时还要同时还要注意απ

απα-+4

42,,三个角的内在联系的作用,??

? ??±??? ??±=??? ??±=απαπαπα4cos 4sin 222sin 2cos 也是常用的三角变换。

(i )熟悉常数“1”的各种三角代换,,常用的有αα22cos sin 1+==6sin 23cos 22sin 4tan π

ππ

π

===;|cos sin |2sin 1ααα±=+,

|cos |22cos 1α=α+,|sin |22cos 1α=α-。

(ii)三角函数式asinx+bcosx 是基本三角函数式之一,引进辅助角,将它化为)x sin(b a 22φ++(取

a

b arctan =φ)是常用变形手段。特别是与特殊角有关的sin ±cosx ,±sinx ±3cosx ,要熟练掌握这两个变换技巧,在解题中将起到事半公倍的效果,同时还要熟悉常用的方法与技巧,如切化弦,异名化同名,异角化同角等。

例3、化简)cos 1(2sin 12α++α+,α∈(π,2π)

分析:

凑根号下为完全平方式,化无理式为有理式

∵ 222)2

cos 2(sin 2cos 2sin 22cos 2sin sin 1α+α=αα+α+α=α+ 2cos 4)12cos 21(2)cos 1(222

α=-α+=α+ ∴ 原式=|2

cos |2|2cos 2sin |2α+α+α ∵ α∈(π,2π)

∴ ),2

(2ππ∈α ∴ 02cos

<α 当π≤α<ππ≤α<π23,4922时,02

cos 2sin >α+α ∴ 原式=2sin

2α 当π<α<ππ<α<π22

3,243时,02cos 2sin <α+α ∴ 原式=)2arctan 2

sin(522cos 42sin 2+α-=α-α- ∴ 原式=???

????π<α<π+α-π≤α<πα223)2arctan 2sin(52232sin 2

知识概括、方法总结与易错点分析 (1)三角函数中的求值问题

三角函数的求值就是利用题中的已知条件,正确、合理地应用三角恒等变形公式,也即同角关系,诱导公式,两角和差、倍角公式等三角函数公式,把角变化为特殊角,或三角函数化为同名、同角三角函数进行合并与化简,最后求出三角函数(式)的值。掌握几种主要题形的思路与方法:给角求值、给值求值、给值求角等。

知角求值问题是三角变换中的难点之一,常见问题中角多为非特殊角,那么要解决这类问题,首先认真观察角的特点;其次从函数名的角度去思考,如切化弦,化同名等手段也是解决问题的途径;第三,看其结构符合不符合我们学过的公式或公式变形。

给值求值也就是条件求值问题,即由给出的一些角的三角函数值,求另外一些角的三角函数,关键在于“变角”使“目标角”变换成“已知角”,若角所在象限没有确定,则应分情况讨论,应注意公式的正用、逆用,变形运用,掌握其结构特征,还要注意拆角、拼角等技巧的运用。

给值求角实质也是转化为“”给值求值“关键也是变角,反所求角用含已知角的式子表示,由所得的函数值结合角的范围求得角。

(2)三角函数中的化简

化简是三角函数式求值与证明的基础,即通过一系列的恒等变形变异为同,化繁为简,以达到简化运算的目的,原则是形式简单,函数名称尽量少,次数尽量低,最好不含分母,能求值的尽量求值,化简过程要注意角的范围,难点在于众多的三角公式的灵活运用和解题突破口的合理选择,认真分析所化简式子的整体结构,分析各个三角函数及角的相互关系是灵活运用公式的基础,是恰当寻找解题思维起点的关键所在。

(3)三角恒等式的证明

三角恒等式的证明的思路是利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式,常用的方法是:(i )从等式一边推出另一边;(ii )证明等式都等于同一个式(或值)也就是两边夹法则;(iii )比差法,即证明等式左、右两边之差为零。(iv )运用综合法、分析法证明。

针对性练习

一、填空题

1.若

25π<α<411π,sin2α=-54,求tan 2α________________

2.已知sin θ=-

53,3π<θ<2π7,则tan 2θ的值为___________.

3.已知sin

2α+cos 2α=-53,且2π5<α<3π,则cot 4α的值为____________.

4.已知α为钝角、β为锐角且sin α=

54,sin β=1312,则cos 2-βα的值为____________.

5. 设5π<θ<6π,cos

2θ=a ,则sin 4θ的值等于________________

二、解答题

6.化简

θθθθ2cos 2sin 12cos 2sin 1++-+.

7.求证:2sin (

4π-x )2sin (4π+x )=cos2x .

8.求证:

α

ααααtan 1tan 1sin cos cos sin 2122+-=-?-a .

9.在△ABC 中,已知cos A =B b a b B a cos cos ?--?,求证:b a b a B A

-+=2tan 2tan 2

2

10. 求sin15°,cos15°,tan15°的值.

11. 设-3π<α<-

2

π5,化简2)πcos(1--α.

12. 求证:1+2cos 2θ-cos2θ=2.

13. 求证:4sin θ2cos 2

=2sin θ+sin2θ.

14. 设25sin 2x +sin x -24=0,x 是第二象限角,求cos

2x 的值.

15. 已知sin α=

1312,sin (α+β)=54,α与β均为锐角,求cos 2

β.

课后作业 一.选择题(共12小题,每小题5分,共60分)

1.已知)2,2

3(,1312cos ππαα∈=,则=+)4(cos πα ( ) A. 1325 B. 1327 C. 26

217 D. 2627 2.若均βα,为锐角,==+=ββααcos ,5

3)(sin ,552sin 则( ) A.

552 B. 2552 C. 2552552或 D. 552- 3.=+-)12sin 12(cos )12sin 12(cos π

π

π

π

( )

A. 23-

B. 21-

C. 21

D. 23 4.=-+0000tan50tan703tan50tan70 ( )

A. 3

B. 3

3 C. 33- D. 3- 5.=?+α

αααcos2cos cos212sin22( ) A. αtan B. αtan2 C. 1 D. 2

1 6.已知x 为第三象限角,化简=-x 2cos 1( )

A. x sin 2

B. x sin 2-

C. x cos 2

D. x cos 2-

7. 已知等腰三角形顶角的余弦值等于5

4,则这个三角形底角的正弦值为( ) A .1010 B .1010- C .10103 D .10

103- 8. 若).(),sin(32cos 3sin 3ππ??-∈-=-x x x ,则=?( )

A. 6π-

B. 6π

C. 65π

D. 6

5π- 9. 已知1sin cos 3

αα+=,则sin 2α=( ) A .89- B .21- C . 21 D .89 10. 已知2cos 23

θ=,则44cos sin θθ-的值为( ) A .23-

B .23

C .49

D .1 11. 求=11

5cos 114cos 113cos 112cos 11cos πππππ

( ) A. 521 B. 42

1 C. 1 D. 0 12. 函数sin 3cos 22

x x y =+的图像的一条对称轴方程是 ( ) A .x =113π B .x =53π C .53x π=- D .3

x π=- 二.填空题(共4小题,每小题4分,共16分) 13.已知βα,为锐角,的值为则βαβα+==,51

cos ,101

cos .

14.在ABC ?中,已知tanA ,tanB 是方程23720x x -+=的两个实根,则tan C = .

15.若5

42cos ,532sin -==αα,则角α的终边在 象限. 16.代数式sin15cos75cos15sin105o o o o += .

三.解答题(共6个小题,共74分)

17.(12分)△ABC 中,已知的值求sinC ,13

5B c ,53cosA ==os .

18.(12分)已知

αβαβαπαβπsin2,5

3)(sin ,1312)(cos ,432求-=+=-<<<.

19.(12分)已知α为第二象限角,且 sinα=,415求1

2cos 2sin )4sin(+++ααπ

α的值.

20. (12分)已知71tan ,21)tan(),,0(),4,0(-==-∈∈ββαπβπα且, 求)2tan(βα-的值及角βα-2.

21.(12分)已知函数2()cos 3sin cos 1f x x x x =++,x R ∈.

(1)求证)(x f 的小正周期和最值;

(2)求这个函数的单调递增区间.

.

三角函数公式推导过程

三角函数公式推导过程 万能公式推导 sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α)) (因为cos^2(α)+sin^2(α)=1) 再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α)) 然后用α/2代替α即可。 同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。 三倍角公式推导 tan3α=sin3α/cos3α =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα) =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2s in^2(α)cosα) 上下同除以cos^3(α),得: tan3α=(3tanα-tan^3(α))/(1-3tan^2(α)) sin3α=sin(2α+α)=sin2αcosα+cos2αsinα =2sinαcos^2(α)+(1-2sin^2(α))sinα =2sinα-2sin^3(α)+sinα-2sin^3(α) =3sinα-4sin^3(α) cos3α=cos(2α+α)=cos2αcosα-sin2αsinα =(2cos^2(α)-1)cosα-2cosαsin^2(α) =2cos^3(α)-cosα+(2cosα-2cos^3(α)) =4cos^3(α)-3cosα 即 sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα 和差化积公式推导 首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb 我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb 所以,sina*cosb=(sin(a+b)+sin(a-b))/2 同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2 同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb 所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb 所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2 同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2

三角形全等的证明教案

三角形全等的证明 【知识梳理】 (一)三角形概述: 1.定义(包括内、外角) 2.性质:三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n 边形内角和;④n 边形外角和。 ⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。 ⑶角与边:在同一三角形中 3.三角形的主要线段 (1)定义:高线、中线、角平分线、中垂线 (2)××线的交点—-- 三角形的×心及性质 4.特殊三角形(等腰三角形、等边三角形)的判定与性质 等腰三角形: 定理:等腰三角形的两个底角相等,(简称:“等边对等角”) 定理:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合,(简称:“三线合一”) 等腰三角形的判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等,(简称“等角对等边”)。 等边三角形的性质及判定: 有一个角是60°的等腰三角形是等边三角形 5.全等三角形 全等三角形的的性质:全等三角形的对应边相等,对应角相等; 全等的判定:SAS 、ASA 、AAS 、SSS : 注意问题: (1)在判定两个三角形全等时,至少有一边对应相等; (2)不能证明两个三角形全等的是,a: 三个角对应相等,即AAA ;b :有两边和其中一角对应相等,即SSA 。 记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。 寻找对应元素的方法: (1)根据对应顶点找 如果两个三角形全等,那么,以对应顶点为顶点的角是对应角;以对应顶点为端点的边是对应边。通常情况下,两个三角形全等时,对应顶点的字母都写在对应的位置上,因此,由全等三角形的记法便可写出对应的元素。 (2)根据已知的对应元素寻找 全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (3)通过观察,想象图形的运动变化状况,确定对应关系。 通过对两个全等三角形各种不同位置关系的观察和分析,可以看出其中一个是由另一个经过下列各种运动而形成的。 翻折 如图(1),?BOC ≌?EOD ,?BOC 可以看成是由?EOD 沿直线AO 翻折180?得到的; 等边 等角 大边 大角 小边 小角

三角函数常用公式以及证明

三角函数公式和相关证明 倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 平常针对不同条件的常用的两个公式 sin^2(α)+cos^2(α)=1 tan α *cot α=1 一个特殊公式 (sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ) 证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ) 坡度公式 我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比),用字母i表示, 即i=h / l, 坡度的一般形式写成l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作 a(叫做坡角),那么i=h/l=tan a. 锐角三角函数公式 正弦:sin α=∠α的对边/∠α 的斜边 余弦:cos α=∠α的邻边/∠α的斜边 正切:tan α=∠α的对边/∠α的邻边 余切:cot α=∠α的邻边/∠α的对边 二倍角公式 正弦 sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a) 正切 tan2A=(2tanA)/(1-tan^2(A)) 三倍角公式

三角函数公式大全与证明

高中三角函数公式大全 三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2A )=2 cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2 b a -

sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2 b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = -2 1[cos(a+b)-cos(a-b)] cosacosb = 2 1[cos(a+b)+cos(a-b)] sinacosb = 2 1[sin(a+b)+sin(a-b)] cosasinb = 2 1[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin( 2 π-a) = cosa cos(2 π-a) = sina sin(2 π+a) = cosa cos(2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2(tan 1)2(tan 1a a +-

【北师大版初三数学】第1讲:三角形的证明-教案

知识讲解: 1.通过探索、猜测、计算、证明得到的定理: (1)与等腰三角形、等边三角形有关的结论: 性质:等腰三角形的两个底角相等,即等边对等角; 等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合; 等腰三角形两底角的平分线相等,两条腰上的中线相等,两条腰上的高相等. 等边三角形的三条边都相等,三个角都相等,并且每个角都等于60°; 等边三角形的三条角平分线、三条中线、三条高互相相等. 判定:有两个角相等的三角形是等腰三角形; 有一个角是60°的等腰三角形是等边三角形; 三个角都相等的三角形是等边三角形. (2)与直角三角形有关的结论: 勾股定理的逆定理; 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半; 斜边和一直角边对应相等的两个直角三角形全等.(HL) (3)与一般三角形有关的结论:

在一个三角形中,两个角不相等,它们所对的边也不相等(用反证法证明). 2.命题的逆命题及其真假: 在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题.其中一个命题称为另一个命题的逆命题. 一个命题是真命题,它的逆命题不一定是真命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理.其中一个定理称为另一个定理的逆定理.例如勾股定理及其逆定理. 3.尺规作图 线段垂直平分线的性质定理和判定定理;用尺规作线段的垂直平分线;已知底边和底边上的高,用尺规作等腰三角形 角平分线的性质定理和判定定理;用尺规作已知角的平分线. 课堂练习: 考点一:等腰三角形 【例题】 1、【14外国语期中】等腰三角形的一边为5另一边为9,这这个三角形的周长为()A.19 B.23 C .14 D.19或23 2、【14外国语月考】等腰三角形补充下列条件后,仍不一定成为等边三角形的是() A.有一个内角是600 B.有一个外角是1200 C.有两个角相等 D.腰与底边相等 3、【经开一中月考】将两个全等的有一个角为300的直角三角形拼成如图所示,其中两条直角边在同一直线上,则图中等腰三角形的个数是() A.4B.3C.2D.1 4、【14外国语月考】腰长为5,一条高为4的等腰三角形的底边长为。 5、【经开一中月考】一个等腰三角形有一角是700,则其余两角分别为。 6、【经开一中月考】等腰直角三角形一条边长是1cm,那么它斜边上的高是 cm. 7、【经开一中月考】已知:如图AB=AC,DE∥AC求证:△DBE是等腰三角形。 8、【14外国语月考】如图,等边△ABC中,AO是BC边上的中线,D为AO上一点,以CD为一边且在CD 下方作等边△CDE,连结BE。 (1)求证:AD=BE

三角函数公式的推导及公式大全

诱导公式 目录·诱导公式 ·诱导公式记忆口诀 ·同角三角函数基本关系 ·同角三角函数关系六角形记忆法 ·两角和差公式 ·倍角公式 ·半角公式 ·万能公式 ·万能公式推导 ·三倍角公式 ·三倍角公式推导 ·三倍角公式联想记忆 ·和差化积公式 ·积化和差公式 ·和差化积公式推导 诱导公式 ★诱导公式★ 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα

tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈z) 诱导公式记忆口诀 ※规律总结※

三角函数公式及证明

三角函数公式及证明 ( 编辑整理 2013.5.3) 基本定义 1.任意角的三角函数值: 在此单位圆中,弧AB 的长度等于α; B 点的横坐标αcos =x ,纵坐标 αsin =y ; (由 三角形OBC 面积<弧形OAB 的面积<三角形OMA 的面积 可得: a a tan sin <<α (2 0πα<<)) 2.正切: α α αcos sin tan = 基本定理 1.勾股定理: 1cos sin 22=+αα 1.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2 =b 2 +c 2 -2bc A cos bc a c b A 2cos 2 22-+=? 3.诱导公试: απ ±k 2

cot tan cos sin ?? 奇变偶不变,符号看相线 4.正余弦和差公式: ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos(μ=± 推导结论 1. 基本结论 ααα2sin 1)cos (sin 2+=+ α α2 2cos 1 1tan = + 2. 正切和差公式: β αβ αβαβαβ αβαβαβαβαtan tan 1tan tan sin sin cos cos sin cos cos sin )cos()sin() tan(μμ±= ??? ? ??±=±±=± 3.二倍角公式(包含万能公式): θ θθθθθθθθ2 22tan 1tan 2cos sin cos sin 2cos sin 22sin +=??? ??+== θθ θθθθθθθθθ2222222 2 2 2 tan 1tan 1cos sin sin cos sin 211cos 2sin cos 2cos +-=??? ? ??+-=-=-=-= θ θ θθθ2tan 1tan 22cos 2sin 2tan -= = θ θ θθ222 tan 1tan 22cos 1sin +=-= 22cos 1cos 2θθ+= 4.半角公式:(符号的选择由2θ 所在的象限确定)

八年级数学下册第一章三角形的证明回顾与思考教案1新版北师大版

《回顾与思考》 教学目标 1、在回顾与思考中建立本章的知识框架图,复习有关定理的探索与证明,证明的思 路和方法,尺规作图等。 2、发展学生的初步的演绎推理能力,进一步掌握综合法的证明方法,提高学生用规 范的数学语言表达论证过程的能力。 教学重点 通过例题的讲解和课堂练习对所学知识进行复习巩固 教学难点 本章知识的综合性应用。 教学过程 知识回顾 1、等腰三角形的性质:(边)_______________ ;(角)_______________ ;“三线合一”的 内容____________________________________ 。 2、等边三角形的性质:(边)_______________ ;(角)__________________ 。 3、判定等腰三角形的方法有:(边)_______________ ;(角)________________________ 。 4、判定等边三角形的方法有:(边)_______________ ;(角)________________________ 。 5、_________________________________________________ 线段垂直平分线的性质定理:。 逆定理:____________________________________________________________________ 。 三角形的垂直平分线性质:___________________________________________________ 。 6、_____________________________________________________________ 角的性质定理:。 逆定理:____________________________________________________________________ 。 三角形的角平分线性质:_____________________________________________________ 。 7、___________________________________________________ 三角形全等的判定方法有:。 8 30°锐角的直角三角形的性质: ______________________________________________ 。 9、方法总结: (1)证明线段相等的方法:1)可证明它们所在的两个三角形全等;2)角平分线的性质定理:角平分线上的点到角两边的距离相等;3)等角对等边;4)等腰三角形三线合一的性 质;5)中垂线的性质定理:线段垂直平分线上的点到线段两端点的距离相等。 (2)证明两角相等的方法:1)同角的余角相等;2)平行线性质;3)对顶角相等;4)全等三角形对应角相等;5)等边对等角;6)角平分线的性质定理和逆定理。

三角形内有关角的三角函数恒等式的证明

三角形内有关角的三角函数恒等式的证明 张思明 课型和教学模式:习题课,“导学探索,自主解决”模式 教学目的: (1)掌握利用三角形条件进行角的三角函数恒等式证明的主要方法,使学生熟悉三角变换的一些常用方法和技巧(如定向变形,和积互换等)。 (2)通过自主的发现探索,培养学生发散、创造的思维习惯和思维能力,体验数形结合、特殊一般转化的数学思想。并利用此题材做学法指导。 (3)通过个人自学、小组讨论、互相启发、合作学习,培养学生自主与协作相结合的学习能力和敢于创新,不断探索的科学精神。 教学对象:高一(5)班 教学设计: 一.引题:(A,B环节) 1.1复习提问:在三角形条件下,你能说出哪些有关角的三角恒等式? 拟答: , …… , , …… 这些结果是诱导公式,的特殊情况。 1.2今天开始的学习任务是解决这类问题:在三角形条件下,有关角的三角恒等式的证明。学习策略是先分若干个学习小组(四人一组),分头在课本P233---P238,P261-266的例题和习题中,找出有三角形条件的所有三角恒等式。 1.3备考:期待找出有关△ABC内角A、B、C的三角恒等式有: (1)P233:例题10:sinA+sinB+sinC=4cosA/2cosB/2cosC/2

(2)P238:习题十七第6题:sinA+sinB-sinC=4sinA/2sinB/2cosC/2. (3) cosA+cosB+cosC=1+4sinA/2sinB/2sinC/2. (4) sin2A+sin2B+sin2C=4sinAsinBsinC. (5)cos2A+cos2B+cos2C=-1-4cosAcosBcosC. (6)P264:复参题三第22题:tgA+tgB+tgC = tgAtgBtgC. (7) 也许有学生会找出:P264--(23)但无妨。 1.4请各组学生分工合作完成以上恒等式的证明: 提示:建议先自学例题10,注意题目之间的联系,以减少证明的重复劳动。 二.第一层次的问题解决(C,D环节) 2.1让一个组上黑板,请学生自主地挑出有“代表性”的3题(不超过3题)书写证明过程。然后请其他某一个组评判或给出不同的证法。 证法备考:(1)左到右:化积---->提取----->化积。 (2)左到右:化积---->提取----->化积sin(A+B)/2=cosC/2 (3)左到右:化积--->--->留“1”提取-->化积 (4)左到右:化积--->提取---->化积sin2C=sin2(A+B) (5)左到右: (6)左到右:tgA+tgB=tg(A+B)(1-tgAtgB) (7)左到右:通分后利用(4)的结果 2.2教师注意记录学生的“选择”,问:为什么认为你们的选择有代表性? 体现学法的“暗导”。选择的出发点可以多种多样,如从品种、不同的证法、逻辑源头等考虑。 2.3另一组学生判定结果或给出其他解法,(解法可能多样。)也可对前一组学生所选择书写的“例题”的“代表性”进行评价。教师记录之。注意学生的书写中的问题(不当的跳步等……)。 2.4其他证法备考: 1.如右到左用积化和差,(略) 2.利用已做的习题:

三角函数万能公式及推导过程

三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。接下来分享三角函数万能公式及推导过程。 三角函数万能公式 (1)(sinα)^2+(cosα)^2=1 (2)1+(tanα)^2=(secα)^2 (3)1+(cotα)^2=(cscα)^2 (4)tanA+tanB+tanC=tanAtanBtanC(任意非直角三角形) 三角函数万能公式推导过程 由余弦定理:a^2+b^2-c^2-2abcosC=0 正弦定理:a/sinA=b/sinB=c/sinC=2R 得(sinA)^2+(sinB)^2-(sinC)^2-2sinAsinBcosC=0 转化1-(cosA)^2+1-(cosB)^2-[1-(cosC)^2]-2sinAsinBcosC=0 即(cosA)^2+(cosB)^2-(cosC)^2+2sinAsinBcosC-1=0 又cos(C)=-cos(A+B)=sinAsinB-cosAcosB 得(cosA)^2+(cosB)^2-(cosC)^2+2cosC[cos(C)+cosAcosB]-1=0 (cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC 得证(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC 同角三角函数的关系公式 倒数关系公式 ①tanαcotα=1 ②sinαcscα=1 ③cosαsecα=1 商数关系公式 tanα=sinα/cosα

cotα=cosα/sinα平方关系公式 ①sin2α+cos2α=1 ②1+tan2α=sec2α ③1+cot2α=csc2α

北师版八年级数学下册教案第一章三角形的证明

第一章三角形的证明 1等腰三角形 第1课时全等三角形及等腰三角形的性质 1.理解作为证明基础的几条公理的内容,应用这些公理证明等腰三角形的性质定理. 2.经历“探索-发现-猜想-证明”的过程,让学生进一步掌握证明的基本步骤和书写格式. 3.掌握等腰三角形性质定理的推论. 重点 掌握等腰三角形的性质定理及推论. 难点 证明等腰三角形的相关性质. 一、复习导入 1.请学生回忆并整理已经学过的8条基本事实中的5条: (1)两直线被第三条直线所截,如果同位角相等,那么这两条直线平行; (2)两条平行线被第三条直线所截,同位角相等; (3)两边及其夹角对应相等的两个三角形全等(SAS); (4)两角及其夹边对应相等的两个三角形全等(ASA); (5)三边对应相等的两个三角形全等(SSS). 2.在此基础上回忆全等三角形的判定定理:(推论)两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS),并要求学生利用前面所提到的公理进行证明. 3.回忆全等三角形的性质. 二、探究新知 1.等腰三角形的性质定理 问题1:什么是等腰三角形? 问题2:你会画一个等腰三角形吗?并把你画的等腰三角形裁剪下来. 问题3 :试用折纸的方法回忆等腰三角形有哪些性质. 引导学生得出等腰三角形的性质: 等腰三角形的两底角相等.(简称为“等边对等角”) 问题4:你能利用已有的基本事实和定理证明这些结论吗? 已知:如图,在△ABC中,AB=AC. 求证:∠B=∠C. 分析:方法一:作∠BAC的平分线,交BC边于点D;方法二:过点A作AD ⊥BC于点D;方法三:取BC的中点D. 证法一:取BC的中点D,连接AD. ?? ? ?? AB=AC BD=CD AD=AD ?△ABD≌△ACD?∠B=∠C.

《三角形的证明》复习教案

第一章《三角形的证明》 1、性质和判定 2、尺规作图 垂直平分线的应用: (1)确定到两点(三点)距离相等的点的位置 (2)确定线段的中点 (3)过一点作已知直线或线段的垂线 角平分线的应用 (1)把一个角分成n2等份 (2)确定到角的两边或三角形三边距离相等的点 (3)与垂直平分线结合,解决实际问题 3、全等三角形的判定(AAS,SSS,SAS,ASA,HL) 双基训练: 1.已知等腰三角形的两边长分别为5㎝、2㎝,则该等腰三角形的周长是____________. 2.一个等腰三角形的顶角是40°,则它的底角是________________. 3.已知△ABC的三边长分别是6cm、8cm、10cm,则△ABC的面积是________________. 4.在△ABC中,边AB、BC、AC的垂直平分线相交于P,则PA、PB、PC的大小关系是 . 5.已知⊿ABC中,∠A = 090,角平分线BE、CF交于点O,则∠BOC = . 6.在△ABC中,∠A=40°,AB=AC ,AB的垂直平分线交AC与D,则∠DBC 的度数为. 7.Rt⊿ABC中,∠C=90o,∠B=30o,则AC与AB两边的关系

是 , 8.等腰三角形一腰上的高与另一腰的夹角为300 ,腰长为6,则其底边上的高是 。 9. 如图,在△ABC 和△DEF 中,已知AC=DF ,BC=EF , 要使△ABC ≌△DEF ,还需要的条件是( ) A.∠A=∠D B.∠ACB=∠F C.∠B=∠DEF D.∠ACB=∠D 10.如图,△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD ,则∠A 的度数为( ) A.30° B.36° C.45° D.70° 11.如图,△ABC ≌△AEF ,AB =AE ,∠B =∠E ,则对于结论①AC =AF ;②∠FAB =∠EAB ;③EF =BC ;④∠EAB =∠FAC ,其中正确结论的个数是( ) A.1个 B.2个 C.3个 D.4个 12. 如图, DC ⊥CA ,EA ⊥CA , CD=AB ,CB=AE .求证:△BCD ≌△EAB . 13.如图,∠A=∠D=90°,AC=BD.求证:OB=OC ; 14.如图,在△ABD 和△ACE 中,有下列四个等式: ①AB=AC ②AD=AE ③∠1=∠2 ④BD=CE .以其中..三个条件为已知,填入已知栏中,一个为结论,填入下面求证栏中,使之组成一个真命题,并写出证明过程。 已知: . 求证: . 证明: 提升练习 16.如图,CE ⊥AB ,BF ⊥AC ,CE 与BF 相交于D ,且BD=CD. 求证:D 在∠BAC 的平分线上. D E C B A

三角函数恒等式证明的基本方法

三角函数恒等式证明的基本方法 三角函数恒等式是指对定义域内的任何一个自变量x 都成立的等式;三角函数恒等式的证明问题是指证明给定的三角函数等式对定义域内的任何一个自变量x 都成立的数学问题。这类问题主要包括:①三角函数等式一边较繁杂,一边较简单;②三角函数等式的两边都较繁杂两种类型。那么在实际解答三角函数恒等式的证明问题时,到底应该怎样展开思路,它的基本方法如何呢?下面通过典型例题的解析来回答这个问题。 【典例1】解答下列问题: 1、证明下列三角函数恒等式: (1)4222sin sin cos cos 1αααα++=; (2) 22(cos 1)sin 22cos ααα-+=-; (3)若sin α.cos α<0,sin α.tan α<0, =±2tan 2 α 。 【解析】 【知识点】①同角三角函数的基本关系;②二次根式的定义与性质;③分式的定义与性质。 【解题思路】(1)对左边运用同角三角函数的基本关系,通过运算就可得到右边,从而证明恒等式;(2)对左边运用同角三角函数的基本关系,通过运算就可得到右边,从而证明恒等式;(3)对左边运用分式的性质,同角三角函数的基本关系和二次根式的性质,通过运算就

可得到右边,从而证明恒等式。 【详细解答】(1)Q 左边=sin 2α( sin 2α+ cos 2α)+ cos 2α= sin 2α+ cos 2α=1 =右边,∴4222sin sin cos cos 1αααα++=;(2)Q 左边= cos 2α-2 cos α+1+ sin 2α =2-2 cos α=右边,∴22(cos 1)sin 22cos ααα-+=-;(3) Q sin α.cos α<0,sin α.tan α<0,∴α是第二象限的角,?2 α 是第一象限或第三象限的角,①当 2 α 是第一象限的角时,左边 |1sin |2|cos | 2α α+- |1sin |2|cos | 2 α α-=1sin 1sin 2 2cos 2 α α α +-+=2tan 2α;②当2 α是第一象限的角时,左边 |1sin |2|cos |2α α+-|1sin | 2|cos | 2α α- = 1sin 1sin 2 2cos 2 α α α --+-=-2tan 2α;?左边=±2tan 2 α=右边,∴若若 sin α.cos α<0,sin α.tan α<0 ±2tan 2α。 2、求证:22sin()sin() sin cos αβαβαβ+-=1-22tan tan βα ; 【解析】

三角函数公式及证明(高中)

三角函数公式及相关的证明 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2A )=2 cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2 b a - sina-sinb=2cos 2b a +sin 2 b a -

cosa+cosb = 2cos 2b a +cos 2 b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = -2 1[cos(a+b)-cos(a-b)] cosacosb = 2 1[cos(a+b)+cos(a-b)] sinacosb = 2 1[sin(a+b)+sin(a-b)] cosasinb = 2 1[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin( 2 π-a) = cosa cos(2 π-a) = sina sin(2 π+a) = cosa cos(2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa s in(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2(tan 1)2(tan 1a a +-

第01讲-三角形的证明-教案

第01讲 三角形的证明 温故知新 三角形全等的条件 (1)三角形全等条件1:三条边分别相等的两个三角形全等,简写成“边边边”或“SSS”。 注意:①在运用“SSS”判定三角形全等,必须同时满足三边对应相等,只有一边或两边对应相等是不能得到全等的。②“SSS ”判定全等只适用于三角形,不能适用其他图形。 符号语言:已知△ABC 与△DEF 的三条边对应相等。 在△ABC 与△DEF 中,?? ? ??===DF AC EF BC DE AB ∴△ABC ≌△DEF (SSS ) (2)三角形全等条件2:两角及其夹边分别相等的两个三角形全等,简写成“角边角”或“ASA”。 注意:①用“ASA”判定两个三角形全等时,一定要说明两个角及夹边对应相等 ②在书写两个三角形全等的条件“ASA”时,一般把夹边相等写在中间的位置。 符号语言:已知∠D=∠E ,AD =AE ,∠BAD =∠CAE .求证:△ABD ≌△ACE . 证明:在△ABD 和△ACE 中, ∠D=∠E AD=AE ∠BAD =∠CAE ∴△ABD ≌△ACE (ASA ) (3)三角形全等条件3: 两角分别相等且其中一组等角的对边相等的两个三角形全等,简写成“边边角”或“AAS”。 符号语言:如图:D 在AB 上,E 在AC 上,DC=EB,∠C=∠B .求证:△ACD ≌△ABE 证明:在△ACD 和△ABE 中. ∠C=∠B ∠A=∠A DC=EB ∴△ACD ≌△ABE (AAS ). 注意:“AAS”中的“S”是有限制条件的,必须是两组对应等角中一组等角的对边。 (4)三角形全等条件4:两边及其夹角分别相等的两个三角形全等,简写成“边角边”或“SAS”。 符号语言:在△ABC 与△DEF 中,

三角函数公式的推导及公式大全

诱导公式 目录2诱导公式 2诱导公式记忆口诀 2同角三角函数基本关系 2同角三角函数关系六角形记忆法 2两角和差公式 2倍角公式 2半角公式 2万能公式 2万能公式推导 2三倍角公式 2三倍角公式推导 2三倍角公式联想记忆 2和差化积公式 2积化和差公式 2和差化积公式推导 诱导公式 ★诱导公式★ 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα

公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈z) 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于k2π/2±α(k∈z)的个三角函数值,

三角形内角和定理的证明教学设计

名师精编优秀教案 北师大八年级下册数学 6.5《三角形内角和定理的证明》教学设计 西乡三中蒲忠明 在学生掌握了平行线的性质及严格的证明等知识的基础教案背景:上展开的本节课教学。 北师大八年级下册数学6.5《三角形内角和定理的证明》教学课题:教材分析: (一)教材的地位和作用: 这节内容是在前面学生对“三角形内角和是180°”这个结论有了一定直观认识的基础上编排的,以往对这个结论也曾进行过简单的说理,这里则以严格的步骤演绎证明,旨在让学生从实践操作转移到理性思维上来,使学生初步掌握证明的要求和格式,促使学生养成严谨的数学思维方法,发展学生的证明素养。 三角形内角和定理从数量角度揭示三角形三内角之间的关系,是三角形的一个重要性质,既是今后几何推理的重要依据,又是计算角度的重要方法。教材从学生实践操作到证明过程的呈现训练了学生的抽象思维能力和逻辑推理能力;其中辅助线的作法学生第一次接触,它集中了条件、构造了新图形、形了成新关系,实现了未知与已知的转化,起到了解决问题的桥梁作用;课本议一议引导学生一题多思,体现运动变化的观点,读一读为学生认识定理的发现过程另劈蹊径,渗透极限的思想,是学生认识客观世

界、不断探求新知的一种重要途径。 因此本节内容不仅在知识上具有承前启后的地位,而且对今后学习和生活都将起到重要的指导作用。 教学目标:)二( 名师精编优秀教案 [知识与技能目标]:掌握三角形内角和定理的证明和简单应用,初步学会作辅助线证明的基本方法,培养学生观察、猜想、和推理论证能力。 [过程与方法目标]: 1、对比过去折纸、撕纸等探索过程,体会思维实验和符号化的理性作用。 2、通过一题多证、一题多变体会思维的多向性。 3、引导学生应用运动变化的观点认识数学。 [情感与态度目标]:通过一题多证、一题多变激发学生勇于探索、合作交流的精神,体验成功的乐趣,引导学生的个性发展。感悟逻辑推理的价值。 (三)教学重难点: 本节课的重点是:探索证明三角形内角和定理的不同方法,利用三角形内角和定理进行简单的计算或证明。 本节课的难点是:应用运动变化的观点认识数学。从拼图过程中发现并正确引入辅助线是本节课的关键。 引导发现法、尝试探究法。教学方法:教学过程: 一、创设情景、提出问题:

三角函数公式大全及推导过程

一、任意角的三角函数 在角α的终边上任取.. 一点),(y x P ,记:22y x r +=, 正弦:r y =αsin 余弦:r x =αcos 正切:x y =αtan 二、同角三角函数的基本关系式 商数关系:α ααcos sin tan =,平方关系:1cos sin 22=+αα,221cos 1tan αα=+ 三、诱导公式 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα 公式三: 任意角α与 -α的三角函数值之间的关系: sin (-α)= -sinα cos (-α)= cosα tan(-α)= -tanα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα 公式六: 2 π±α及23π±α与α的三角函数值之间的关系: sin (2π-α)= cosα cos(2 π-α)= sinα sin (2π+α)= cosα cos(2 π+α)= -sinα

sin ( 23π-α)= -cosα cos(2 3π-α)= -sinα sin (23π+α)= -cosα cos(23π+α)= sinα 三、两角和差公式 βαβαβαsin cos cos sin )sin(?+?=+ βαβαβαsin cos cos sin )sin(?-?=- βαβαβαsin sin cos cos )cos(?-?=+ βαβαβαsin sin cos cos )cos(?+?=- β αβαβαtan tan 1tan tan )tan(?-+=+ βαβαβαtan tan 1tan tan )tan(?+-= - 四、二倍角公式 αααcos sin 22sin = ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(* α αα2tan 1tan 22tan -= 二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角) αα2cos 22cos 1=+ αα2sin 22cos 1=- 2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα-=-其它公式 五、辅助角公式: )sin(cos sin 22?++=+x b a x b x a (其中a b =?tan ) 其中:角?的终边所在的象限与点),(b a 所在的象限相同,(以上k ∈Z) 六、其它公式: 1、正弦定理: R C c B b A a 2sin sin sin ===(R 为ABC ?外接圆半径) 2、余弦定理 A bc c b a cos 2222?-+=

相关文档
最新文档