遥感影像配准方法探讨

遥感影像配准方法探讨
遥感影像配准方法探讨

科技信息2010年第7期

SCIENCE&TECHNOLOGY INFORMATION

遥感是目前为止能够提供全球范围的动态对地观测数据的惟一

手段,其成像模式多种多样。多源传感器影像的数据融合,可以产生

出比单一信息源更精确、更完整、更可靠的影像信息。在融合这些多源

遥感影像数据时,必须先进行影像配准,经过适当配准的多传感器图

像可以在像素级直接融合形成融合图像,然后在此基础上完成目标探

测、特征提取和目标识别等处理。图像配准广泛应用于航空航天技术、

地理信息系统、图像镶嵌、图像融合、目标识别、虚拟现实等领域。

1图像配准的基本概念

图像配准是指同一目标的两幅(或者两幅以上)图像在空间位置

上的对准,图像配准的技术过程称为图像匹配。影像匹配实质上是在

两幅(或多幅)影像之间识别同名点,是计算机视觉及遥感数字图像制

图的核心问题[1]。对影像匹配可作如下数学描述[2]:

若影像I

1与I

2

中的像点O1与O2具有坐标P

1

=(x1,y1)、P2=(x2,y2)及特

征属性f

1与f

2

,即O1=(P1,f1)、O2=(P2,f2)。其中f1与f2可以是P1与P2为

中心的小影像窗口的灰度矩阵g1与g2,也可以是其他能够描述O1与O2的特征。基于f1与f2定义某种测度m(f1,f2)。所谓影像匹配就是建立一个映射函数M满足:P

2

=M(P1,T)、M(f1,f2)=max或min(O1∈I1,O2∈I2)。其中T为描述映射M的参数矢量,测度m表示O1与O2的匹配程度,称为匹配测度。基于不同的理论或不同的思想可以定义各种不同的匹配测度,因而形成了各种影像匹配方法及相应的实现算法。

2图像匹配的一般算法

2.1基于图像灰度的匹配方法

基于图像灰度的匹配方法的基本思想是:首先对待匹配图像做几何变换;然后根据灰度信息的统计特性定义一个目标函数,作为参考图像与变换图像之间的相似性度量,使得匹配参数在目标函数的极值处取得,并以此为匹配的判决准则和匹配参数最优化的目标函数,从而将匹配问题转化为多元函数的极值问题;最后通过一定的最优化方法求得正确的几何变换参数。在两幅图像灰度信息相似的情况下,常用的匹配方法有:互相关匹配方法,投影匹配方法,基于傅立叶变换的相位匹配方法和图像矩匹配方法。

2.2基于图像特征的配准

基于图像特征的匹配方法就是利用图像的内部特征进行匹配。根据所提取的图像特征的不同,特征提取算子可分为点特征提取算子(如MORAVEC算子,FORSTNER算子)、线特征提取算子(如Log算子,hough变换算子)和区域特征提取算子(主要是区域分割)[3]。

基于图像特征的配准方法在实际应用中越来越广泛。图像的特征只考虑图像的局部信息,较大地减少了匹配过程的计算量,从而提高了配准的速度;同时,特征点的匹配度量值对位置的变化比较敏感,可以提高匹配的精确度。但是该方法只依赖于所提取的图像特征,所以对于图像的细微情节不太敏感。

2.3最小二乘影像匹配

最小二乘影像匹配方法充分利用了影像窗口内的信息进行平差计算,使影像匹配可以达到子像素等级,因此,最小二乘影像匹配被称为“高精度影像匹配”[4]。

影像匹配中判断影像匹配的度量很多,其中最常见的一种是灰度差的平方和最小。若将灰度差记为余差v,则有表达式:

Σvv=min v=g1(x,y)-g2(x,y)

这就是一般的按原则Σvv=min进行影像匹配的数字模型。

最小二乘匹配是以“相关系数最大”作为影像匹配搜索同名点的准则,其实质就是搜索“信噪比为最大”的灰度序列。

其残余灰度差的平方和计算公式:

Σvv=Σg21-(g1g2)2

Σg22

相关系数的计算公式:ρ2=

(Σg1g2)2

Σg21Σg22

影像匹配算法采用目标区相对于搜索区不断地移动一个整像素,在移动的过程中,计算相关系数,搜索最大相关系数的影像区作为同名像点。其搜索过程可以用以下式子予以表示:

maxΣρ(x芄i·△,y芄j·△)}

其中一k荞i荞k;-l荞j荞l k;l为正整数,△为数字影像的采样间隔。

3图像配准的新方法

3.1频域匹配算法

频域匹配算法就是把在空域中的数据通过时频变换,变换为频域的数据,然后通过一定的相似性度量来确定两幅图像之间匹配参数的办法。最常用的时空变换是Fourier变换,最常用的相似性度量是相位相关度量。在诸多现有匹配算法中,频域匹配技术得到了广泛的应用,采用的是空域、频域复合配准的方法。该方法先用空域相关法求取粗匹配点的候选点,再利用频域相关对图像旋转敏感的特性,根据傅立叶变换的平移不变性,当两幅图像存在位移和旋转变化时。两者的频谱只反映了它们的旋转差别。这样,将其中一幅图像的频谱相对其中心旋转角后再与另一幅图像的频谱相减,差别之和为D(θ)的,而D值最小时所对应的θ角即为要校正的旋转角。

与许多空域算法相比,频域算法有如下一些显著的特点:首先频域方法对全局的照度变化不敏感;其次,这种算法可解决两幅图像之间存在平移,旋转和尺度的匹配问题,如果有必要还可得到子像素的匹配精度。因此,这类算法正好满足我们的匹配任务:(下转第406页)

遥感影像配准方法探讨

杨先武1,2李彩露1韦春桃1

(1.桂林理工大学土木与建筑工程学院广西桂林541004;

2.信阳师范学院城市与环境科学学院河南信阳464002)

【摘要】影像匹配是指从数字影像上识别相关影像,它是计算机视觉和数字摄影测量中的一个基本问题。遥感影像的配准技术直接关系到图像融合等地形分析的精度和效果,针对不同的应用目的和条件可以选择不同的匹配算法,本文在三种经典的配准方法的基础上提出了两种图像配准的新方法。

【关键词】图像配准;影像相关;最小二乘;特征提取

The Registration Way of Remote Sensing Image

【Abstract】Images matching is used to identify the related images from the digital image.It is a basic issue in computer vision and digital photogrammetry.The techniques of Remote sensing image registration has directly relation to the accuracy and effectiveness of the image integration and analysis of the terrain,etc.Applications for different purposes and conditions can choose different matching algorithms,this paper,three kinds of quasi-classical method of distribution based on the two kinds of image registration of the new methods.

【Key words】I mage matching;I mage correlation;L east Squares Image Matching;F eatures extraction

○本刊重稿○

397

科技信息

SCIENCE &TECHNOLOGY INFORMATION

2010年第7期该培养什么样的人才呢,未来的社会发展需要哪些类型的人才呢?在市场经济运行的环境下,不考虑市场需要的人才培养注定是失败的。所以,研究生培养考核应依据所处环境的变化而采取相应的变化,相应的研究生考核评价机制也应该随之变化。就中国当前的形势来看,研究型人才的培养与考核不应再固守着传统的学年制模式,而是应该采取学分制,特别在硕士生培养过程中,应建立相对灵活的毕业制度,而不是再一味地强调2年或者3年的学习期限。3.2强调差异性和综合性

当前我国研究生培养模式基本是英美模式,强调先修学分再从事科研论文工作,而且这种考核适应于所有的专业和所有的学生。而这种固化的考核方式却不利于个性化人才的培养和涌现。对于部分科研能力强、专业基础扎实的学生,应该允许他们直接参与到导师的课题研究,将更多的时间投入到科研工作中,以科研成果来抵补其学分,并在科研成果得到认可后允许其提前攻读博士学位或者毕业。对于那些跨专业学习的学生,则要强调课程系统学习的重要性,从而使其在进入科研环节前获得扎实的理论基础,以期实现有差别的研究生考核。同时,考虑考核综合性原则,在课程设置上突出跨学科性和综合性,不应将专业学习仅仅局限在一个单一的专业领域,甚至一个单一的研究方向。因为未来的人才是需要面对更为复杂的竞争环境,需要拥有更高的复合型综合素质。3.3强调核心性和制约性

研究生培养质量的高低最终取决于导师的作用。因为自研究生进入到学习阶段后,与其接触较多并且直接指导其学习和科研工作的是其导师或导师小组。因而,自招生考核这一环节起,导师就应拥有相对大的决定权。当前我国推行的是入学考试,而且具有很大程度的全国统一性。在这种招生环境下,易于导致不少有专业特长但不擅长考试的学生被关在门外,而应试能力强、科研能力弱的学生却成为了研究生队伍中的主力。面对着一群高分但却没有动手能力或者创新思维能力的学生,即使是再有能力的导师,也将面对“巧妇难为无米之炊”的难堪。所以,最好将学生录取考核的决定权交给导师本人,而研究生能否毕业则由独立的学术委员会来决定,这样,便会形成一个对导师的制约机制,使其在选择学生时必须考虑学生的实际能力。3.4强调分权制和协调作用。

依据美国培养模式,对于已经拥有研究生培养权力的高校应该建立研究生院,其与其它院系之间的关系是平等的,并强调分权制,研究

生真正的管理权应由各院系进行承担。研究生院的作用就是在于宏观方面的管理考核,即通过制定和执行研究生的管理政策,更好地推动研究生教育的发展,同时监督与防止可能出现的弊端,达到控制数量提高质量的目的。同时,研究生院在促成有关院、系建立跨学科的新专业或开设研究新项目方面等应起中介作用。建立起职责明确的研究生管理机构,使其基层其它院系形成分权制管理模式。不要是将管理考核等系列事务归于自身,使自身成为权力中心,而使其它院系则成为承担研究生教学的单位。这样的模式不利于研究生与各院系的真正意义上的管理考核。【参考文献】

[1]康建军.我国研究生扩招对培养质量的影响及对策研究[J].理工高教研究,

2007,26(5):59-61.

[2]张茹琴.影响我国研究生培养质量的因素及思考[J].科技信息,2009,5:121-124,84.

[3]潘武玲.美国研究生教育质量自我评价制度及启示[J].教师教育研究,2004,16(2):77-80.

[4]陈少雄,王静一,尹柳银.美、英、德、日四国研究生教育特色研究[J].佛山科学技术学院学报:社会科学版,2004,22(3):89-93.

[5]王炜,徐小强.法国博士研究生的培养与质量保障[J].高教发展与评估,2007,23(5):44-50.

[6]张记龙,李飞跃.中美国研究生培养质量保障措施比较研究[J].中北大学学报:社会科学版,2007,23(2):79-84.

作者简介:于金霞(1974—),女,副教授,博士,研究方向为人工智能。汤永利(1972—),男,助理研究员,清华大学在站博士后,研究方向为信息安全。

※基金资助:河南省“十一五”教育科学规划2009年课题重点资助“导师组制研究生培养模式与考评机制研究”(项目批准号:2009-JKGHAZ-0041);河南理工大学2009年研究生教育教学改革基金资助项目“基于导师组制的研究生培养模式探讨”(项目批准号:2009YJ07)。

[责任编辑:王静]

(上接第397页)匹配两幅存在灰度、平移、旋转和尺度差别的图像。另外,许多空域的算法通过频域处理以后,可大大降低运算时间。如果用空域算法,单就图像之间的平移差别就够麻烦的了,更何况还有旋转和尺度差别。可见,研究频域匹配算法,对图像匹配有着重要的作用。3.2SIFT 算法

针对目前尺度不变的图像特征点提取算法计算量较大,算法较复杂的问题,LOWE D G [5]提出一种简化的SIFT 图像特征点提取算法。此算法通过改变金字塔尺度空间的结构实现对SIFT 特征点提取过程的简化,通过改变特征点描述子的结构实现对特征向量计算的简化,从而在保证算法鲁棒性的同时减少了计算量并增强了实时性。实验证明了该算法的有效性。

SIFT 算法是Lowe 提出的一种比较奇特的特征点提取算法。它选择高斯残差在尺度上的极值点为特征点,并计算特征嗲局部邻域内的梯度方向直方图为描述子。这种算法将图像金字塔结构引入尺度空间以减少计算量,同时针对128维的特征向量空间,使用了BBF 算法加快搜索过程,取得了较好的效果。

4结论与展望

随着图像处理技术的发展和计算机智能技术的发展遥感影像配准算法也得到了很好的发展,数学形态学等方法也用于了遥感影像配准过程中。基于灰度的图像配准方法具有高精度的优点,但也有不少缺点。而基于特征的图像配准方法可以克服基于灰度的图像配准方法的缺点,从而在图像配准领域得到了广泛的应用,其主要的优点:

4.1

图像的特征点比图像的像素点要少很多,因此大大减少了匹配过程的计算量;

4.2特征点的匹配度量值对位置的变化比较敏感,可以大大提高匹配的精确度;

4.3特征点的提取过程可以减少噪声的影响,对灰度变化,图像形态以及遮挡等都有建好的适应能力。

在现在图像自动配准中逐渐采用两者相结合的配准算法以将两方面的优点结合起来提高匹配的精度,减少计算量。【参考文献】

[1]李弼程,彭天强,彭波,等.智能图像处理技术.电子工业出版社,2004,7.[2]张迁.基于地形特征的自动匹配.中国科学技术大学博士学位论文.[3]章毓晋.图象处理和分析.清华大学出版社,1999.

[4]张祖勋,张剑清.数字摄影测量学.武汉:武汉测绘科技大学出版社,1996.[5]LOWE D G.Distinctive image features from scale invariant keyp oints [J].International Journal of Computer Vision,2004,60(2):91-110.

作者简介:杨先武(1982—),男,硕士研究生,研究方向为遥感图像处理。

※课题项目:广西研究生教育创新计划资助项目(00110220737);广西自然科学基金项目(桂科自0728219)。

[责任编辑:张爽]

●○本刊重稿○406

ENVI遥感图像配准实验报告

ENVI遥感图像配准 一、实验目的: 1、掌握ENVI软件的基本操作和对图像进行基本处理,包括打开图像,保存图像。 2、初步了解图像配准的基本流程及采用不同校准及采样方法生成匹配影像的特点。 3、深刻理解和巩固基本理论知识,掌握基本技能和动手操作能力,提高综合分析问题的能力。 二、实验原理 (1)最邻近法 最邻近法是将最邻近的像元值赋予新像元。该方法优点是输出图像仍然保持原来图像的像元值,简单,处理速度快。缺点就是会产生半个像元位置偏移,可能造成输出图像中某些地物的不连贯。适用于表示分类或某种专题的离散数据,如土地利用,植被类型等。

双线性插方法是使用临近4个点的像元值,按照其距插点的距离赋予不同的权重,进行线性插。该方法具有平均化的滤波效果,边缘受到平滑作用,而产生一个比较连贯的输出图像,其缺点是破坏了原来的像元值,在后来的波谱识别分类分析中,会引起一些问题。 示意图: 由梯形计算公式: 故 同理 最终得:

三次卷积插法是一种精度较高的方法,通过增加参与计算的邻近像元的数目达到最佳的重采样结果。使用采样点到周围16邻域像元距离加权计算栅格值,方法与双线性插相似,先在Y 方向插四次(或X 方向),再在X 方向(或Y 方向)插四次,最终得到该像元的栅格值。该方法会加强栅格的细节表现,但是算法复杂,计算量大,同样会改变原来的栅格值,且有可能会超出输入栅格的值域围。适用于航片和遥感影像的重采样。 作为对双线性插法的改进,即“不仅考虑到四个直接邻点灰度值的影响,还考虑到各邻点间灰度值变化率的影响”,立方卷积法利用了待采样点周围更大邻域像素的灰度值作三次插值。其三次多项式表示为: 我们可以设需要计算点的灰度值f(x,y)为:

遥感图像的几何校正(配准)

遥感图像的几何校正(配准) 1.实验目的与任务: (1)了解几何校正的原理; (2)学习使用ENVI软件进行几何校正; 2.实验设备与数据: 设备:遥感图像处理系统ENVI 数据:TM数据 3 几何校正的过程: 注意:几何校正一种是影像对影像,一种是影像对地图,下面介绍的是影像对影像的配 准或几何校正。 1.打开参考影像(base)和待校正影像:分别打开,即在display#1,display#2中打开;2.在主菜单上选择map->Registration->select GCPs:image to image 3.出现窗口Image to Image Registration,分别在两边选中DISPLAY 1(左),和DISPLAY 2(右)。BASE图像指参考图像而warp则指待校正影像。选择OK! 4.现在就可以加点了:将两边的影像十字线焦点对准到自己认为是同一地物的地方, 就可以选择ADD POINT添加点了。(PS:看不清出别忘记放大)如果要放弃该点选择 右下脚的delete last point,或者点show point弹出image to image gcp list窗口,从中选择 你要删除的点,也可以进行其他很多操作,自己慢慢研究,呵呵。选好4个点后就可以 预测:把十字叉放在参考影像某个地物,点选predict则待校正影像就会自动跳转到与参 考影像相对应的位置,而后再进行适当的调整并选点。 5.选点结束后,首先把点保存了:ground control points->file->save gcp as ASCII.. 当然你没有选完点也可以保存,下次就直接启用就可以:ground control points->file->restore gcps from ASCII... 6.接下来就是进行校正了:在ground control points.对话框中选择: options->warp file(as image to map) 在出现的imput warp image中选中你要校正的影像,点ok进入registration parameters 对话框: 首先点change proj按钮,选择坐标系 然后更改象素的大小,如果本身就是你所需要大小则不用改了 最后选择重采样方法(resampling),一般都是选择双线性的(bilinear),最后的最后选择保存路径就OK了

在Arcgis中配准遥感图像

图像 在ArcGIS中配准(TIF、JPEG)栅格图像 在ArcGIS中配准(TIF、JPEG)栅格图像最好不要压缩,越精确地图的矢量化原精确,使用ArcGIS 9.2 Desktop完成。 栅格图像的校正和坐标系确定 启动ArcMap,新建一个新工程,右键Layers选择Add Data…添加TIF图像,将出现如下提示(如果提示无法加载rester data时请安装ArcGIS Desktop SP3补丁),单击Yes确定,加载图像后提示图像没有进行配准,确定然后配准图像。 图像加载后即可看到图像内容,右键工具栏打开Georeferencing工具条,进行图像的配准工作,在配准之前最好先保存工程。 在File菜单下打开Map Properties编辑地图属性,Data Source Options可设置保存地图文件的相对路径和绝对路径。(这里选择相对路径以确保将工程复制到其他机器可用)。 配准前要先读懂地图,望都县土地利用现状图采用1954北京坐标系,比例尺1:40000,查阅河北省地图发现望都县位于东经115度附近,那么按6度分带属于20带中央经线117度,按3度分带属于38带。从图框看到的公里数发现没有带号,应该是公里数。 这里只找了4个点进行配置(可以找更多的点),从左到右从下到上,逆时针编号为1、2、3、4;在ArcMap中单击Georefercning工具条上的Add Control Ponit工具(先掉Auto Adjuest 选项),添加4个点控制点。 然后编辑Link Table中的4个控制点的代表的公里数,然后单击“Georeferecning下拉菜单的Auto Adjuest”图像即进行校正这时可看到参差值这里是0.00175(Total RMS)非常小说明配准较为精确。单击Save按钮可将控制点信息保存到文件,单击Load按钮可从文件加载控制点坐标。 给校准后的地图选择适合的坐标系,右键Layers打开Properties对话框属性对话框选择投影坐标系,(Prokected Coordinate Systems)展开Predefined/ Prokected Coordinate Systems/Gauss Kruger/Beijing 1954下找Beijing 1954 GK Zone 20坐标系(高斯克里克投影20带无带号),单击确定保存工程;这时配准工作即完成,在状态栏就可以看到正确的坐标单位了。 最后保存校正重新生成采样数据,单击“Georeferencing”工具条的“Rectify”菜单矫正并

ArcGIS影像配准及矢量化

实验三、影像配准及矢量化 一、实验目的 1.利用影像配准(Georeferencing) 工具进行影像数据的地理配准 2.编辑器的使用(点要素、线要素、多边形要素的数字化)。 注意:在基于ArcMap 的操作过程中请注意保存地图文档。 二、实验准备 数据:昆明市西山区普吉地形图1:10000 地形图――70011-1.Tif,昆明市旅游休闲图.jpg (扫描图)。 软件准备: ArcGIS Desktop ---ArcMap 三、实验内容及步骤 第1步地形图的配准-加载数据和影像配准工具 所有图件扫描后都必须经过扫描配准,对扫描后的栅格图进行检查,以确保矢量化工作顺利进行。打开ArcMap,添加“影像配准”工具栏。把需要进行配准的影像—70011-1.TIF 增加到ArcMap中,会发现“影像配准”工具栏中的工具被激活。 第2步输入控制点 在配准中我们需要知道一些特殊点的坐标。通过读图,我们可以得到一些控件

点――公里网格的交点,我们可以从图中均匀的取几个点。一般在实际中,这些点应该能够均匀分布。在”影像配准”工具栏上,点击“添加控制点”按钮。使用该工具在扫描图上精确到找一个控制点点击,然后鼠标右击输入该点实际的坐标位置 用相同的方法,在影像上增加多个控制点(大于7个),输入它们的实际坐标。点 击“影像配准”工具栏上的“查看链接表”按钮。 第3步设定数据框的属性 增加所有控制点,并检查均方差(RMS)后,在”影像配准”菜单下,点击“更新显示”。执行菜单命令“视图”-“数据框属性”,设定数据框属性

●更新后,就变成真实的坐标。 第4步矫正并重采样栅格生成新的栅格文件 ●在”影像配准”菜单下,点击“矫正”,对配准的影像根据设定的变换公式重新采样,另存为一个新的影像文件。

基于ENVI的多源遥感影像数据融合毕业设计论文

存档日期:存档编号: 本科生毕业设计(论文) 论文题目:基于ENVI的多源遥感影像数据融合 姓名:董建 系别:环境与测绘系 专业:测绘工程 年级、学号: 11 测绘 118324107 指导教师:林卉 江苏师范大学科文学院印制

摘要 在世界遥感技术领域极速发展的情况下,对于用卫星传感器来观测和获取某一地域遥感影像数据的方法越来越多,此时多时相、多平台、高光谱和高分辨率卫星等影像数据大量涌现,并且在有关地学的多个领域都用到了这些影像数据。多源遥感影像融合技术在处理怎么使各种有差别的的遥感影像既保存着各自重要的使用特点和对象,同时也会将其局限性缩至最小这方面是最有效的途径之一。并且在不同的学科范畴都涉及到多源遥感影像数据融合技术,因此该技术被不断地完善与推行。而当前在世界上对该技术还尚未形成一套完善的理论与方法,于是目前在遥感领域研究的一个重要的研究技术就是周密处理与剖析遥感信息。 本文基于ENVI对多源遥感影像数据融合的研究。第一章介绍了遥感影像数据融合的基本理论知识和本论文内容研究的背景和意义,以及国内外目前对遥感图像融合技术的发展现状。第二章是对数据融合三个层次(像素级融合、决策级融合和特征级融合)的对比介绍,像素级融合、决策级融合和特征级融合,另外还展示了每个层次数据处理流程图。第三章对像素级融合中加权融合法变换、Brovery 变换、IHS变换和PCA变换等融合方法进行了分析比较。第四章介绍了融合的评价指标(主观评价、客观评价)。第五章通过对Quickbird多光谱影像的4、3、2波段和Quickbird全色影像的1波段数据的进行融合实验,对实验结果进行分析,总结出这四种融合方法的特点和适用范围,得到更准确,更可靠、更安全的估计和判断,为相关工作提供帮助。 关键词:数据融合;ENVI;IHS变换;PCA变换;评价指标;多源遥感影像;

ERDAS遥感影像配准

ERDAS遥感影像配准的操作步骤 1.在viewer模块里打开你的正确得影像。 2.点击dataprep模块,打开他下面得image geometric correction子模块, 3.选择from image file,选择你要配得图像,打开 4.在出现得set geometric model里选择第2个polyonial 5.在下面得对话框里有个polynomial order 一般选2就可以 6. 然后应用,在close那个对话框 7.在下面得对话筐里,选第一个 8.出现一个小的对话框,不用管他,点击你第一步打开得准确得图像界面,就可以配准了 9.在你得准确图像里面点击一个点,然后转到你的需要配的图象里面找与他相似的点,点击,选够6个点后,在gcp tool 那个界面里面将出现误差参数,可以看你得点是不是准确。这6个点是控制点,所以你选择时应该分散开,尽量在全图范围里找。 10.然后选择其他点越多越好 11.如果你不想那样麻烦的找,你可以在任何一幅图像上点击鼠标右键,然后选择geo。link/unlink选项,那样子的话,你只需要在一个图象里点点,机器自动给你在另一个里

面找,不过头六个点不会出现误差参数,从第七个点开始会出现误差参数,如果误差太大,你必须在修改。 12.在你配完后,在geo correction tools里面点击第3个图标就ok 13.如果你配准到中间要休息,需要保存gcp tools对话框,下次在匹配直接打开就行。 14.配准完后得总误差也就是那个rms误差必须在0.5个像元以里。这样ERDAS遥感影像配准的操作步骤工作完毕,你的图就ok

MAPGIS图像配准-图像校正

MAPGIS图像配准 . MAPGIS图像配准 2.1. 栅格图像 1.打开MapGIS主界面,点击“图像处理”----“图像分析”模块。 2.点击“文件”--“数据输入”,将其他栅格图像(bmp,jpg,tif等)转换为msi格式,选择转换数据类型,点击添加文件,添加要转换的文件到转换文件列表中,点击转换即可。 以下操作是在镶嵌融合菜单下进行 2.打开参照图像或者是点、线、面文件 3.系统会自动显示4个控制点,可以对控制点进行修改,也可以删除控制点后自己添加 4.开始添加控制点。 选添加控制点命令。利用右键切换放大和指针,左键选控制点位置,左右键来回切换进行选点,确保精度,用空格确定;然后在参照文件上选与控制点相对应的位置,方法同上,用空格确定,将有对话框提示,确定即可。 5.用以上方法继续添加其它的控制点,控制点数至少四个。可以选控制点预览命令,浏览控制点,保存控制点文件。 6.选中校正预览命令 7.选校正参数命令进行设置,默认即可。 8.选影像精校正命令,即可生成所需文件。 2.2. 矢量矫正 1.打开MapGIS主界面,打开误差校正模块。 2.打开需要配准的图层 3.打开菜单“控制点”->“设置控制点参数”,设置参数,可以选择完控制点之后统一输入理论坐标。 4.打开菜单“控制点”->“选择采集文件”,即控制点从所选择的图层文件中选取。 5.打开菜单“控制点”->“添加校正控制点”,弹出是否新建控制点文件的对话框,选择“是” 6.然后在工作区中添加控制点(一般选择坐标格网交叉点或者道路交叉点,水系交叉点等显著地物),如此重复添加控制点,一般不少于4个控制点。 7.打开菜单“控制点”->“编辑校正控制点”,弹出如下对话框,在理论X,理论Y值中输入对应控制点的理论值

ArcMap中影像图配准

影像图配准 数据准备:1:2000影像数据 55.2-38.0.tif 55.2-39.0.tif 配准前:加载上述两幅影像图,在ArcMap中显示效果如下: 第1步地形图的配准-加载数据和影像配准工具 所有图件扫描后都必须经过扫描配准,对扫描后的栅格图进行检查,以确保矢量化工作顺利进行。 ●打开ArcMap,添加“影像配准”工具栏。 ●把需要进行配准的影像—55.2-38.0.tif增加到ArcMap中,会发现“影像配准”工具栏 中的工具被激活。 第2步输入控制点 在配准中我们需要知道一些特殊点的坐标。一般为控件点――公里网格的交点。在这里将选取影像图的四个角点,根据影像图的图幅号算出它的每个角点的坐标点。

●在“影像配准”工具栏上,点击“添加控制点”按钮。 ●使用该工具在扫描图上精确到找一个控制点点击,然后鼠标右击输入该点实际的坐标位 置,如下图所示: ●用相同的方法,在影像上增加多个控制点(大于7个),输入它们的实际坐标。点击“影 像配准”工具栏上的“查看链接表”按钮。 ●检查控制点的残差和RMS,删除残差特别大的控制点并重新选取控制点。转换方式设定为“二次多项式”

注意:在连接表对话框中点击“保存”按钮,可以将当前的控制点保存为磁盘上的文件,以备使用。 第3步设定数据框的属性 增加所有控制点,并检查均方差(RMS)后,在”影像配准”菜单下,点击“更新显示”。 执行菜单命令“视图”-“数据框属性”,设定数据框属性

在“常规”选项页中,将地图显示单位设置为“米”

在“坐标系统”选项页中,设定数据框的坐标系统为“Xian_1980_Degree_GK_CM_102E”(西安80投影坐标系,3度分带,东经 102度中央经线),与扫描地图的坐标系一致 ●更新后,就变成真实的坐标。 第4步矫正并重采样栅格生成新的栅格文件 ●在”影像配准”菜单下,点击“矫正”,对配准的影像根据设定的变换公式重新采样, 另存为一个新的影像文件。

多源遥感影像像素级融合技术

多源遥感影像像素级融合技术 摘要:中国的遥感技术从七十年代起步,经过了几十年的过程,随着现代遥感技术的发展,可获得的遥感数据也越来越丰富。遥感所具有的宏观、动态、快速、精确和综合的优势,使得从遥感影像获取信息已经成为一种非常重要的信息获取手段。为合理、有效地综合使用这些多源海量数据,遥感图像处理技术随之应运而生,而遥感图像融合技术更成为其重要的组成部分。在未来一段时间内,同一地区不同时相、不同分辨率、不同成像机理的遥感影像数据将呈指数递增。因此,研究如何从这些影像源中获取更丰富、更有用和更可靠信息的处理技术,是当前遥感应用研究的重点之一。 关键词:图像融合多源遥感影像像素级图像处理 随着遥感技术的发展,越来越多携带不同类型传感器的遥感卫星获得的多传感器、多时相、多空间分辨率、多光谱分辨率的遥感图像数据被用于对地观测。为进行地形测绘与地图更新、土地利用分类、冰/雪/洪涝灾害监测等提供了丰富的数据。现代遥感卫星都具备一套多光谱和高空间分辨率全色影像的性能,但如何获取多光谱高空间分辨率影像满足植被研究、土地利用和城市资源调查等的要求,是亟待解决的问题。多源遥感影像数据像素级融合的研究则是解决这一问题的有效途径之一。 1 基本概念 图像融合一般可分为像素级、特征级、决策级。像素级图像融合主要是针对初始图像数据进行的,其目的主要是图像增强、图像分割和图像分类,从而为人工判读图像或进一步的特征级融合提供更佳的输入信息;特征级图像融合能以高的置信度来提取有用的图像特征。决策级图像融合允许来自多源数据在最高抽象层次上被有效的利用。不同层次的图像融合研究内容均十分广泛。 多源遥感影像像素级融合是指采用某种算法将覆盖同一地区的两幅或多幅空间配准影像生成满足某种要求的影像技术。它是多源遥感影像数据融合的内容之一,是富集多源遥感影像信息的重要技术手段之一。 从影像类型划分,多源遥感影像像素级融合包括:单一传感器的多时相影像融合、多传感器的多时相影像融合、单一平台多传感器的多空间分辨率影像融合、多平台单一传感器的多时相影像融合和同一时相多传感器影像融合。 2 像素级影像融合过程与特点 基于像素的多源遥感影像融合的过程大致可分为三步: (1)根据实际应用目的、融合方法和相关技术从现有影像数据中选取出来,并进行预处理。预处理主要包括影像几何校正、影像辐射校正、高精度空间配准和

多源遥感影像配准流程

多源遥感影像综合应用的一项重要的准备工作就是影像间的配准,特别是不同类型传感器在同一地区,不同时间,不同高度获取的影像间的配准。即运用一幅纠正过的带有地理信息的影像(主影像)与一幅未纠正的影像(从影像)进行配准,获取一系列同名点位。因为主影像是正射影像,因而这些同名点是具有大地坐标的同名点。同时这些同名点可以作为参考数据(保存在配准后生成的<从影像名>.ctp 文件中)用于对其他影像进行纠正。 在ArcMap中配准影像栅格数据可以通过扫描地图、航片及卫片来获取。扫描的地图通常不包含表明影像对应于地表何处的信息。从航空相片和卫星相片上获得的位置信息往往不适合执行分析,或者与其它数据对齐显示。与其它空间数据一起使用栅格数据,需要把栅格数据对齐或配准到地图的坐标系统。 配准栅格数据定义了它的地图坐标位置,即指定了联系数据与地球上的位置的坐标系统。 配准栅格数据使它能与其它地理数据一起被查看、查询和分析。 配准流程: 1、启动ARCGIS9,用键或者在图层处点右键添加数据,将所要的图象数据 添加近来。如图所示: 2、从“视图”→“工具条”→“影象配准”将影像配准的工具条调出来,如图, , 调出工具条如下, 选择图的四个角的格网点进行配准处理,首先是左上角,如图:

使用“添加控制点”按钮添加第一个控制点,如图: 将左下角格网点放大以准确定位,如图。 点右键,输入XY坐标,根据地图格网坐标输入, 完成一个点,再按相同方法对其他三个角点配准。 4、电击查看连接表可以查看配准后的坐标残差看是否符合要求。

点击地理参考下的矫正,双线性内插,保存矫正图象。 5、将矫正后图象添加到图层覆盖矫正前的,从视图下拉菜单选择数据框属性 打开后如下: 将地图单位改为米,将坐标系统设为西安1980,

ArcGIS空间校正或影像配准

ArcGIS 空间校正影像配准 1、空间校正是针对矢量图的,栅格配准是针对栅格影像的。 在ArcMap中对应的Spatial Adjustment工具条和Georeference工具条【具体平台操作分别参考: https://www.360docs.net/doc/a416173154.html,/ESRI/thread-47016-1-1.html和 https://www.360docs.net/doc/a416173154.html,/ESRI/viewthread.php?tid=23306】;在AE中的具体栅格配准接口为:IGeoreference 、而空间校正根据具体的校正的方法有很多种,具体介绍如下: I、彷射变换: 二维的彷射变换是AffineTransformation2D类,彷射变换主要有两种变换:Conformal Transformation(等角变换)和 Affine Tranformation(真彷射变换),对应的接口机器构造函数为: IAffineTransformation2D3::DefineConformalFromControlPoints和IAffineTransformation2D::DefineFromControlPoints。其中等角变换要求至少两个已知点,因为他的变换函数使用4参数;而真彷射变换要求至少三个已知点,因为他的变换函数使用6参数。 II、投影变换: 主要实现IProjectiveTransformation2DGEN接口。至少需要4个控制点,因为该变换函数有八个参数。 III、还有相似变换等等。 这些接口都是继承于ITransformation,是通过几何的ITransform2D 接口中Transform (esriTransformDirection direction, ITransformation transformation )方法发挥作用的。 2、判断某图层是为内存图层: IFeatureLayer pFeatLayer = MapCtrl.get_Layer(i) as IFeatureLayer; if (pFeatLayer.DataSourceType.Trim().ToUpper() == "InMemory Feature Class".Trim().ToUpper()) { } 空间校正(spatial adjustment)方法

多时相遥感图像配准实验报告

Harbin Institute of Technology 多时相遥感图像配准 实验报告 课程名称:遥感信息处理导论 院系:电子与信息工程学院 姓名: 学号: 授课教师: 哈尔滨工业大学

1. 实验目的 对于通过遥感平台获取的遥感数字影像,由于扫描过程中受地球曲率、地球自转、平台姿态、扫描方式等因素的影响,所获取的图像往往会产生不同程度的几何误差,这些误差如若不经处理,对图像的后续应用如分类、目标检测等会产生很大影响。本实验的目的就是利用多项式映射和重采样等方法对两幅不同时间采集的遥感图像进行几何校正处理,从而方便从配准图像中找到不同时相内发生变化的地物目标信息。 2. 实验原理 图像的配准过程主要可以分为三个过程:控制点对选取(自动或手动)、坐标映射函数拟合、映射后像素重采样。 1) 控制点对选取 对于图像匹配过程,首先要通过控制点对建立两幅图像间的坐标联系。控制点的选取有可分为自动和手动两种方式。对于自动选取,可以采用SIFT 等算法实现;对于手动选取,需要实验人员通过目测观察的方法找到不同时相的遥感图像中的相同目标,这些控制点可以是建筑物的顶点、道路等的交叉点等或其他较容易分辨的位置。 选出控制点后将这些点的坐标信息记录下来,值得注意的是所选控制点的数量、分布情况以及精度会直接影响配准结果的精度和质量。 2) 图像几何校正 图像的配准实质上就是通过图像的几何校正,将产生几何失真的图像转换为标准的数字图像。采用的方法就是通过一定的映射函数将原图像的像素坐标转换为标准图像中的坐标 (,)u f x y = (,)v g x y = 其中(,)x y 表示原图像中的像素坐标值,(,)u v 表示参考图像中的像素坐标值。 映射函数的选择可以有多种形式,一般较为简单常用的是多项式函数,以二次多项式函数为例,映射函数的具体形式为 22 01234522 012345u a a x a y a xy a x a y v b b x b y b xy b x b y ?=+++++?=+++++? 其中,05, ,a a ,05,,b b 分别表示二次多项式横纵坐标映射函数中对应项的系 数,通过选定控制点,可以将这些系数项求解出来。 假设在两幅图像中总共选择了n 对控制点,根据n 对控制点的坐标 (,)~(,)i i i i x y u v 可以得到如下两个方程组,

基于多源多时相遥感影像的城镇扩张动态监测方法研究

基于多源多时相遥感影像的城镇扩张动态监测方法 研究1 周小成,汪小钦,吴波,励惠国 1福州大学福建省空间信息工程研究中心,福州(350002) 2空间数据挖掘与信息共享教育部重点实验室,福州(350002) Email:zhouxc@https://www.360docs.net/doc/a416173154.html, 摘要:利用遥感技术来动态监测城镇扩展己成为一个重要的研究和应用领域。基于TM和ASTER多源多时相遥感影像和地形数据,以福建省漳州市区为示范区,探讨城镇建筑用地扩张遥感监测的一般方法。研究认为,对于ASTER影像,综合利用非监督分类、多时相植被指数、城镇建筑用地的地形分布等知识建立分类决策规则,可以有效提取城镇建筑用地信息,精度不低于90%;另外,针对徐涵秋TM影像三指数法应用到示范区城镇建筑用地提取时的混淆问题,提出了利用城镇建筑用地时空扩张知识、多时相植被指数知识,改进TM 三指数城镇建筑用地提取方法的思路,最终提取的城镇建筑用地信息满足城镇建筑用地动态变化分析的精度要求。 关键词:城镇建筑用地;遥感;TM;ASTER;动态监测 1.引言 RS和GIS技术在过去的20年里得到迅速的发展,利用卫星对地观测技术来动态监测城市扩展己成为一个重要的研究和应用领域。不少国内外学者研究出多种利用遥感影像提取和分析城市扩张变化的技术。Seto(2003)[1]以多时相TM影像为例,比较了ARTMAP神经网络与最大似然法分类方法进行城市变化检测的效果。认为ARTMAP神经网络比传统的最大似然法(MLC)方法更精确;Schottker(2004)[2]利用三个时相的Landsat TM数据检测德国威斯特伐利亚40年来城市发展变化;Rashed(2005)[3]利用多时相遥感影像,提出利用光谱混合分析法(SMA)测量埃及开罗市城市形态组成的变化模式。Onana(2005)[4]使用多时相ENVISAT/ERS SAR图像和多光谱HRV Spot光学影像进行融合来识别热带雨林地区喀麦隆杜阿拉城市动态变化;潘剑君(1997)[5]用两个时期的Landsat TM遥感图象,经过图象自动分类识别和两个时相遥感图象的交叉分析处理,对江苏省扬中市的土地利用状况进行了动态监测;杨存建 (2001)[6]通过对不同类型居民地的遥感影像特征、光谱特征和空间关系分析,从而发现居民地的光谱特征知识、空间关系知识,建立了基于知识的TM遥感图像居民地信息提取模型;祝善友(2002)[7]以不同时相的TM和中巴卫星影像为主要信息源,对不同时相、不同遥感平台的两幅图象进行数据融合,提取与城市扩展动态变化有关的参数因子;吴宏安(2005)[8]分别采用了监督分类法和归一化裸露指数(NDBI)法提取了西安市的城市边界信息,并对二者进行对比分析,认为监督分类法提取的城市边界信息较为准确;徐涵秋(2005)[9][10]通过对城市土地利用类型的分析,选取了归一化差异建筑指数(NDBI)、修正归一化差异水体指数(MNDWI)[11]和土壤调节植被指数(SA VI)三个指数,采用简单的最大似然分类或谱间分析方法,提取的城市建筑用地信息精度可达91.2%。 本研究在总结前人研究方法的基础上,以TM、ASTER多源多时相遥感影像为数据源,以福建省漳州市区为研究示范区,提出城镇扩展遥感动态监测的一般思路和方法,并对徐涵秋三指数法用于研究示范区的问题进行了分析,提出了相应的解决方法。 1本课题得到国家自然科学基金(60602052)和福建省科技重大专项(50304827)的资助。

(完整版)卫星图像处理流程

卫星图像处理流程 一.图像预处理 1.降噪处理 由于传感器的因素,一些获取的遥感图像中,会出现周期性的噪声,我们必须对其进行消除或减弱方可使用。 (1)除周期性噪声和尖锐性噪声 周期性噪声一般重叠在原图像上,成为周期性的干涉图形,具有不同的幅度、频率、和相位。它形成一系列的尖峰或者亮斑,代表在某些空间频率位置最为突出。一般可以用带通或者槽形滤波的方法来消除。 消除尖峰噪声,特别是与扫描方向不平行的,一般用傅立叶变换进行滤波处理的方法比较方便。 图1 消除噪声前

图2 消除噪声后 (2)除坏线和条带 去除遥感图像中的坏线。遥感图像中通常会出现与扫描方向平行的条带,还有一些与辐射信号无关的条带噪声,一般称为坏线。一般采用傅里叶变换和低通滤波进行消除或减弱。 图3 去条纹前

图4 去条纹后 图5 去条带前

图6 去条带后 2.薄云处理 由于天气原因,对于有些遥感图形中出现的薄云可以进行减弱处理。 3.阴影处理 由于太阳高度角的原因,有些图像会出现山体阴影,可以采用比值法对其进行消除。二.几何纠正 通常我们获取的遥感影像一般都是Level2级产品,为使其定位准确,我们在使用遥感图像前,必须对其进行几何精纠正,在地形起伏较大地区,还必须对其进行正射纠正。特殊情况下还须对遥感图像进行大气纠正,此处不做阐述。 1.图像配准 为同一地区的两种数据源能在同一个地理坐标系中进行叠加显示和数学运算,必须先将其中一种数据源的地理坐标配准到另一种数据源的地理坐标上,这个过程叫做配准。(1)影像对栅格图像的配准 将一幅遥感影像配准到相同地区另一幅影像或栅格地图中,使其在空间位置能重合叠加显示。

GIS 栅格图配准流程

光栅文件坐标配准流程 王勇毅 一、原始纸质图扫描光栅文件 上图为河北西郝庄铁矿区一张纸质1:2000储量估算图扫描后的jpg格式光栅文件(也可为tif、jpg、bmp格式),要在Mapgis中进行光栅文件坐标配准 二、光栅文件坐标配准。 1、生成标准图框。 1)“实用服务”模块→投影变换→系列标准图框→用键盘生成矩形图框,出现以下对话框:

2)以光栅图内图廓左下角X及Y值作为起始公里值,以内图廓右上角X及Y坐标值作为结束公里值,单位为公里。 原图左下角X及Y坐标值为: X=527.65;Y=4084.6; 原图右上角X及Y坐标值为:

X=528.60;Y=4085.90; 3)“坐标系”选“国家坐标系”,“矩形分幅方法”选“任意公里矩形分幅” 4)X坐标值前两位38为3度带带号,原图比例尺为1:2000,网格间距xd及yd均为0.2,网格线类型选“绘制实线坐标线”,各参数输入结果如下图所示:

点击确定,图框自动生成如下图。 5)点击“文件”→“另存文件”→选定全部点、线、区文件→“确定” 6)指定存放目录→以“图框”名将点、线、区文件全部存在指定的文件夹中 2、生成MAPGIS内部msi影像文件 1)返回MAPGIS主界面→图像处理→图像分析,

2)文件→数据输入,出现如下对话框: 3)“转换数据类型”处选择要转换光栅文件的类型(如JPG、tif、bmp等)→点“添加文件[F]”选择要转换的光栅文件→“目标文件目录”处点“…”指定转换后的msi影像文件存放目录→点“转换[V]”即生成msi影像文件。

3、光栅文件校正 1)文件→打开影像→选定以上生成的msi影像文件→打开,则装入msi影像文件 2)镶嵌融合→打开参照文件→参照点/线/区文件→选定前面生成

SIFT算法优化及其用于遥感影像自动配准

第34卷第10期2009年10月武汉大学学报#信息科学版 Geo matics and Informat ion Science of W uhan U niver sity Vo l.34N o.10 Oct.2009 收稿日期:2009-08-10。 项目来源:湖北省自然科学基金资助项目(2008CDB388);湖北省教育厅自然科学基础研究资助项目(G200514001);国家863计划 资助项目(2007AA120203)。 文章编号:1671-8860(2009)10-1245-05文献标志码:A SIFT 算法优化及其用于遥感影像自动配准 李芳芳1 肖本林2 贾永红1 毛星亮 3 (1 武汉大学遥感信息工程学院,武汉市珞喻路129号,430079)(2 湖北工业大学土木工程与建筑学院,武汉市李家墩1村,430068)(3 中共湖南省委互联网新闻宣传办公室,长沙市韶山路1号,410011) 摘 要:对传统SIF T 算法从特征点提取时间和匹配精度上进行了优化,基于优化算法提取的特征点对构建三角网进行小面元微分纠正配准。试验结果表明,该方法是一种有效的遥感影像自动配准方法。关键词:SIFT 算法;小面元微分纠正;影像配准中图法分类号:P237.3 近几年来,SIFT (scale invariant feature tr ansform )特征在图像匹配领域取得了巨大成功,基于SIFT 描述子的匹配方法已被成功应用到了很多领域,如目标识别[1]、全景图拼接[2]、从运动恢复结构[3] 等。SIFT 算法最初由Low e [4,5] 于1999年提出,2004年总结完善。2005年, Mikolajczyk 等[6]针对不同的场景,对光照变化、 图像几何变形、分辨率差异、旋转、模糊和图像压缩等6种情况,就多种最具代表性的描述子进行了试验,结果表明SIFT 描述子性能最好。 然而,目前将SIFT 算法应用于遥感影像配准的研究还较少。主要原因如下:特征点提取方面,由于遥感影像数据量一般较大,加上SIFT 算法本身复杂度较高,直接加以应用算法效率较低;特征点匹配方面,传统SIFT 算法采用的是Low e 提出的最近邻次近邻距离比值法,阈值凭经验选取,精确度较低。 1 SIFT 算法 SIFT 算法是一种提取图像局部特征的算法。通过在高斯差分尺度空间(difference of g auss-i an,DOG)寻找极值点作为关键点,提取尺度、亮 度、旋转不变量。 1.1 关键点检测及精确定位 关键点检测在多尺度空间完成。尺度空间理论最早出现于计算机视觉领域,其目的是模拟图像数据的多尺度特征。一幅二维图像的尺度空间定义为: L (x ,y ,R )=G(x ,y ,R )I (x ,y ) (1) 式中,G(x ,y ,R )= 12P R 2e -(x 2+y 2)/2R 2 是尺度可变高斯函数。为了有效检测到关键点,Low e [5] 提出了在高斯差分尺度空间寻找极值点:D(x ,y ,R )=(G(x ,y ,k R )-G(x ,y ,R ))I (x ,y) (2) 每一个采样点和它同尺度的8邻域点以及上下相邻尺度的18邻域点比较是否为极值点,作为关键点候选点。 然后,通过拟合泰勒公式展开的三维二次函数,精确定位关键点的位置和尺度。同时去除低对比度的关键点和不稳定的边缘响应点,以增强匹配稳定性,提高抗噪能力。1.2 关键点方向分配及描述子构造 利用关键点邻域像素的梯度方向分布特性为每个关键点分配方向参数。一个关键点可能会被指定多个方向(一个主方向、一个以上辅方向)以增强匹配的鲁棒性。 然后以关键点为中心取16像素@16像素的

遥感图像处理 图像配准、图像裁剪 实验报告

Lab3 geometric correction and projection transformation of remotely sensed data Objective : The purpose of the current lab section is to adequately understand the mathematic principles and methods of geometric correction (co-registration) and projection transformation . In addition,you guys need to gain hands-on experience or skill to perform them in ENVI and ERDAS environments. 实验过程: 一、envi中图像配准 1、根据控制点的坐标对图像进行配准 1)加载中山陵地形图 2) 选择map 菜单下的registration菜单,选择select gcps:image to map 设置投影信息:基于经纬度的投影(geographic lat/lon),选择基准面为WGS—84

3)开始配准 依次移动一级窗口中的光标到四个图廓点的位置,在三级放大窗口中把十字司放在经纬线的交点的中间位置,输入该点的经纬度于编辑对话框中:

点击add point,完成对控制点的编辑 4)选择option菜单下的wrap file将配准好的地图生成一幅新的影像

修改生成图像信息,改为50带的UTM投影,基准面为WGS-84,保存 2、图像到图像的配准 1)加载全色波段影像作为待配准的影像

ArcGis中进行地形图的配准

ArcGis中进行地形图的配准 地形图配准 1.1.1 方法简介  1.1.1.1 方法0  所有图件扫描后都必须经过扫描纠正,对扫描后的栅格图进行检查,以确保矢量化工作顺利进行。 对影像的配准有很多方法,下面介绍一种常用方法。 (1)打开 ArcMap,增加 Georeferncing 工具条。 (2)把需要进行纠正的影像增加到 ArcMap 中,会发现 Georeferncing 工具条中的工具被激活。 (3)在配准中我们需要知道一些特殊点的坐标,即控制点。可以是经纬线网格的交点、公里网格的交点或者一些典型地物的坐标,我们可以从图中均匀的取几个点。如果我们知道这些点在我们矢量坐标系内坐标,则用以下方法输入点的坐标值,如果不知道它们的坐标,则可以采用间接方法获取。 (4)首先将 Georeferncing 工具条的 Georeferncing 菜单下 Auto Adjust 不选择。 (5)在 Georeferncing 工具条上,点击 Add Control Point 按钮。 (6)使用该工具在扫描图上精确到找一个控制点点击,然后鼠标右击输入该点实际的坐标位置: (7)用相同的方法,在影像上增加多个控制点,输入它们的实际坐标。

(8)增加所有控制点后,在 Georeferencing 菜单下,点击 Update Display。 (9)更新后,就变成真实的坐标。 (10)在 Georeferencing 菜单下,点击 Rectify,将校准后的影像另存。 后面我们的数字化工作是对这个校准后的影像进行操作的。 1.1.1.2 说法1  在配准前,先在arctoolbox下的date management tool下的projections and transformations进行投影系统的定义;然后在arcmap中,利用georeferening工具,进行控制点的输入。增加所有控制点后在georeferening工具下点击updatedisplay,最后rectify保存影像。重新打开配准后的影像在界面的下方即可看到配准后显示的坐标。 1.1.1.3 说法  在利用ArcGIS进行数字化,或者把栅格图像加载到已有坐标系的地图中时,首先的工作就是进行地图的空间配准。 对栅格图像进行配准时,可以用Georeferencing工具。对已有GIS图与其它坐标系或者地图进行配准时,可以利用Spatial Adjustment工具。 1.利用Georeferencing工具配准栅格图像

卫星遥感数据处理规范流程

北京揽宇方圆信息技术有限公司遥感卫星影像图像数据处理介绍 北京揽宇方圆信息技术有限公司是国内的领先遥感卫星数据机构,而且是整合全球的遥感卫星数据资源,分发不同性能、技术应用上可以互补的多种卫星影像,包括光学、雷达卫星影像、历史遥感影像等各种卫星数据服务,各种专业应用目的的图像处理、解译、顾问服务以及基于卫星影像的各种解决方案等。遥感卫星影像数据贯穿中国1960年至今的所有卫星影像数据,是中国遥感卫星数据资源最多的专业遥感卫星数据服务机构,提供多尺度、多分辨率、全覆盖的遥感卫星影像数据服务,最大限度的保证了遥感影像数据获取的及时性和完整性。 优势: 1:北京揽宇方圆国内老牌卫星数据公司,经营时间久,行业口碑相传,1800个行业用户选择的实力见证。 2:北京揽宇方圆遥感数据购买专人数据查询一对一服务,数据查询网址是卫星公司网。 3:北京揽宇方圆拥有大型正版遥感处理软件,遥感数据处理工程师有10年以上遥感处理工作经验,并有国家大型项目工作经验自主卫星数据处理软件著作权,最大限度保持遥感卫星影像处理的真实度。

4:北京揽宇方圆国家高新技术企业,通过ISO900认证的国际质量管理操作体系,无论是遥感卫星品质和遥感数据处理质量,都能得到保障。 5:影像数据官方渠道:所有的卫星数据都是卫星公司授权的原始数据,全球公众数据查询网址公开查询,影像数据质量一目了然,数据反应客观公正实事求是,数据处理技术团队国标规范操作,提供的是行业优质的专业化服务。 6:签定正规合同:影像数据服务付款前,买卖双方须签订服务合同,提供合同相应的正规发票,发票国家税网可以详细查询,有增值税普通发票和增值税专用发票两种发票类型可供选择。以最有效的法律手段来保障您的权益。 7:对公帐号转款:合同约定的对公帐号,与合同主体名发票上面的帐号名称一致,是由工商行政管理部门核准的公司银行账户,所有交易记录均能查询,保障资金安全。 8:售后服务:完善的售后服务体制,全国热线,登陆官网客服服务同步。 技术能力说明 北京揽宇方圆拥有大型正版遥感处理软件,遥感数据处理工程师有10年以上遥感处理工作经验,并有国家大型项目工作经验自主卫星数据处理软件著作权,最大限度保持遥感卫星影像处理的真实度。 一.图像预处理 1.降噪处理 由于传感器的因素,一些获取的遥感图像中,会出现周期性的噪声,我们必须对其进行消除或减弱方可使用。 (1)除周期性噪声和尖锐性噪声 周期性噪声一般重叠在原图像上,成为周期性的干涉图形,具有不同的幅度、频率、和相位。它形成一系列的尖峰或者亮斑,代表在某些空间频率位置最为突出。一般可以用带通或者槽形滤波的方法来消除。 消除尖峰噪声,特别是与扫描方向不平行的,一般用傅立叶变换进行滤波处理的方法比较方便。

相关文档
最新文档