几何证明之线段倍分关系(一)

几何证明之线段倍分关系(一)
几何证明之线段倍分关系(一)

中考专题复习

几何证明之线段倍分关系(一)

(导学案)

(一)、自学预检(用简短的语言或图形表示)

1、几何证明题的解题步骤是:

2、线段的中点有哪些常见的用法:

3、证明线段的2倍关系除以上中点的基本图形外还有什么方法:

4、证明线段相等有哪些常见的方法:

(二)、合作探究

例1:如图,在菱形ABCD中,∠BAD=60°,M为线段AC上一点(M不与A,C重合),以AM为边,构造如图所示等边三角形AMN,线段MN与AD交于点G,连接NC,DM,Q为线段NC的中点,连接DQ,MQ,求证:DM=2DQ.

请同学们标上已知条件,并思考以下问题:

1、由菱形ABCD你在图中能得到哪些结论?结合∠BAD=60°你又能得到时哪些结论?把你认为有用的结论标在图上。

2、由等边三角形AMN你能得出哪些结论?

3、中点有哪些常见的用法?结合图形和已知条件猜想中点Q可以怎么用?

4、线段的2倍关系有哪些常见的证明方法?结合图形和已知条件你认为有哪些可能的方法?

5、你还有其他方法吗?请写出简要解题思路(可不写证明过程)。

我的收获:

(三)当堂达标:

如图,在RT △ABC 中,∠ABC=90°,在RT △BDE 中,∠BDE=90°,AB=DB ,∠

BAC=∠BDE ,连接CD ,连接AE 交BD 于点F ,点F 恰好为AE 的中点。求证:CD=2BF 。

备用图

备用图

证题技巧之三——证明线段或角的和差倍分(推荐文档)

证题技巧之三一一证明线段或角的和差倍分 一、证明线段或角的倍分 1、方法:①长(或大)折半 ②短(或小)加倍 2、判断:两种方法有时对同一个题都能使用,但存在易繁的问 题,因此,究竟是折半还是加倍要以有利于利用已知条件为准。 3、添线:①为折半或加倍而添;②为折半或加倍后创造条件或 利于利用已知条件而添。 4、传递:在加倍或折半后,还不易或不能证明结论,则要找与 被证二量有等量关系的量来传递,或者添加这个量来传递。此时,添 线从两方面考虑:①造等量②为证等量与被证二量相等而添。参考例 4、例 5、例6。 例1 AD 是^ ABC 的中线,ABEF 和ACGH 是分别以AB 和 AC 为边向形外作的正方形。求证:FH=2AD / BAC+ / ACN=180 证明:延长AD 至N 使AD=DN 则ABNC 是平行四边形 CN=AB=FA AC=AH 又/ FAH+ / BAC=180 ???△ FAHY NCA ??? FH=AN 例 2、△ ABC 中,/ B=2 / C , AD 是高,M 是BC 边上的中点。 $ ???

1 求证:DM=2 AB / 2=Z B ???/ 2=2Z 1 ???/ 1 = / DNM 又 AN=DN=ND ? DM=2 A B 1 贝J BFAC ??? BF=AE ???△ AEC 心 BFD ?DF 二CE 二 CD=2CE 作业: 1、在△ABC 中,D 为BC 的中点,E 为AD 的中点,BE 的延长 1 线交AC 于F ,求证:AF=2 FC 2、AB 和AC 分别切? O 于B 和C, BD 是直径。求证/ BAC 二Z CBD 3、圆内接△ ABC 的AB=AC ,过C 作切线交AB 的延长线于D , DE 垂直于AC 的延长线于E 。求证:BD=2CE 例4从平行四边形的钝角顶点 A 向BC 边作垂线,垂足为E , 证明:取AB 的中点N ,连接MN 、DN 贝J MN // AC / 1 = / C ??? DM=DN 例 3 △ ABC 中,AB=AC , E 是 AB 的中点,D 在AB 的延长线上,且 DB=AC 。求证:CD=2CE 证明:过B 作CD 的中线BF V AB=AC , E 是AB 的中点 又 DB=AC

如何做几何证明题(方法情况总结)

如何做几何证明题 知识归纳总结: 1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 一. 证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

二. 证明直线平行或垂直 在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。 例3. 如图3所示,设BP、CQ是的内角平分线,AH、AK分别为A到BP、CQ的垂线。求证:KH∥BC 例4. 已知:如图4所示,AB=AC,。 求证:FD⊥ED 三. 证明一线段和的问题 (一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。(截长法) 例5. 已知:如图6所示在中,,∠BAC、∠BCA的角平分线AD、

中考数学复习知识点专题讲解34---线段和差倍分问题的求解策略

中考数学复习知识点专题讲解 线段和差倍分问题的求解策略 在几何问题中,要证明一条线段是另外几条线段的和差,或是另一线段的几倍或几分之几,我们统称为线段的和差倍分问题,处理这类问题的指导思想是化归为线段的相等问题.本文举例说明几种常见的求解策略. 一、利用全等形或相似形 对于线段的倍分问题,通常可利用图形中特殊的分点为解题的突破口,找出图形中较短线段的倍分线段,再用全等三角形证明它与较长线段相等,或围绕特殊分点对应线段所在三角形寻找相似三角形,利用相似形对应线段的比例关系达到求证的目的. 例1如图1,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连CF. (1)求证:BF=2AE; (2)若CD,求AD的长. 分析由图形的对称性,不难发现点E为AC的中点,即AC=2AE,故问题(1)只要证明BF=AC.

(2)略. 例2如图2,点A、B、C、D在⊙O上,AC⊥BD于点E,过点O作OF⊥BC于点F. (1)求证:△AEB∽△OFC; (2)AD=2OF.

二、取长补短法 对于线段的和差问题,通常采用延长较短线段或截取较长线段的方式,化归为线段的相等问题(俗称取长补短法). 例3 如图3,已知点A、B、C、D顺次在⊙O上,且AB=BD,BM ⊥AC于点M,求证:AM=CD+CM. 证明(延长法) 延长DC至点N,使CN=C M,下面只要证明AM=DN即可.连 BN,则由AB=BD,得 ∠ACB=∠ADB=∠BAD=∠BCN, 又CN=CM,BC为公共边,

例4 如图4,在菱形ABCD中,F为BC边的中点,DF与对角线AC交于点M,过点M作ME⊥CD于点E,∠1=∠2. (1)若CE=1,求BC的长; (2)求证:AM=DF+ME. 解(1)略;(2)证法1(截取法) 如图4,连BD交AC于点O,分别证明AO=DF,OM=ME即可. 证法2(延长法) 如图5,延长DF至点N,使FN=ME,只要证AM=DN即可.

初中几何证明常用方法归纳

初中几何证明常用方法 归纳 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

几何证明常用方法归纳 一、证明线段相等的常用办法 1、同一个三角形中,利用等角对等边:先证明某两个角相等。 2、不同的三角形中,利用两个三角形全等:A找到两个合适的目标三角形B确定已有几个 条件C还要增加什么条件。 3、通过平移或旋转或者折叠得到的线段相等。 4、线段垂直平分线性质:线段垂直平分线的一点到线段两个端点的距离相等。 5、角平分线的性质:角平分线上的一点到角两边的距离相等。 6、线段的和差。 二、求线段的长度的常用办法 1、利用线段的和差。 2、利用等量代换:先求其他线段的长度,再证明所求线段与已求的线段相等。 3、勾股定理。 三、证明角相等的常用办法 1、同(等)角的余(补)角相等。 2、两直线平行,内错角(同位角)相等。 3、角的和差 4、同一个三角形中,利用等边对等角:先证明某两条边相等。 5、不同的三角形中,利用两个三角形全等:A找到两个合适的目标三角形B确定已有几个 条件C还要增加什么条件。 四、求角的度数的常用方法 1、利用角的和差。 2、利用等量代换:先求其他角的长度,再证明所求角与已求的角相等。 3、三角形内角和定理。 五、证明直角三角形的常用方法 1、证明有一个角是直角。(从角) 2、有两个角互余。(从角) 3、勾股定理逆定理。(从边) 4、30度角所对的边是另一边的一半。 5、三角形一边上的中线等于这边的一半 六、证明等腰三角形的常用方法 1、证明有两边相等。(从边) 2、证明有两角相等。(从角) 七、证明等边三角形的常用方法 1、三边相等。 2、三角相等。 3、有一角是60度的等腰三角形。 八、证明角平分线的常用方法 1、两个角相等(定义)。 2、等就在:到角两边的距离相等的点在角平行线上。 九、证明线段垂直平分线的常用方法 1、把某条线段平分,并与它垂直。

利用三角形全等证明线段和差倍分问题

利用三角形全等证明线段和差倍分问题 1. 已知:D 是AB 中点,∠ ACB=90°,求证:12 CD AB 2. 已知:AD 平分∠BAC ,∠B=2∠C ,求证: AC=AB+BD 3. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE C D B

4·如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD 上。求证:BC=AB+DC。 5·已知∠ABC=3∠C,∠1=∠2,BE⊥AE,求证:AC-AB=2BE

6.如图,已知AD ∥BC ,∠P AB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于 D .求证:AD +BC =AB . 7.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于 过C 点的直线于E ,直线CE 交BA 的延长线于F . 求证:BD =2CE . 8·在△ABC 中,?=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D , MN BE ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证: ①ADC ?≌CEB ?;②BE AD DE +=; (2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由. P E D C B A F E D C B A

9·如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,则AB与AC+BD 相等吗?请说明理由 10·如图,已知在△ABC中,∠BAC为直角,AB=AC,D为AC上一点,CE⊥BD于E. (1)若BD平分∠ABC,求证CE=1 2 BD; (2)若D为AC上一动点,∠AED如何变化,若变化,求它的变化范围; 若不变,求出它的度数,并说明理由。 E D C B

线段和差倍分

部分内容来源于网络,有侵权请联系删除! 怎样证明线段的和差倍分问题 怎样证明线段的倍分问题 【典型例题】 常规题型1、已知:如图所示,点D 、E 分别是等边ABC ?的边AC 、BC 上的点,AD=CE ,BD 、AE 交于点P ,AE BQ ⊥于Q .求证:PB PQ 2 1 = . 常规题型2、已知:如图所示,在ABC ?中,AB=AC ,?=∠120A ,AB 的垂直平分线MN 分别交BC 、AB 于点M 、N .求证:CM=2BM . 能力挑战1、如图所示,在ABC ?中,BC AB 2 1 =,D 是BC 的中点,M 是BD 的中点.求证:AC=2AM . 能力挑战2、已知:如图所示,在ABC ?中,BD 是AC 边上的中线,BH 平分BH AF CBD ⊥∠,,分别交BD 、BH 、BC 于E 、G 、F .求证:2DE=CF . A D P C B Q M A D B A M N B C A E G B D H

部分内容来源于网络,有侵权请联系删除! 【经典练习】 1、如图所示,已知ABC ?中,21∠=∠,AD=DB ,AC DC ⊥.求证:AB AC 2 1 = . 2、已知:如图所示,D 是ABC ?的边BC 上一点,且CD=AB ,BAD BDA ∠=∠,AE 是ABD ?的中线.求证:AC=2AE . 3、已知:如图所示,在ABC ?中,AB=AC ,?=∠120BAC ,D 是BC 的中点,AB DE ⊥于E .求证:EB=3EA . 4、已知:如图所示,在ABC ?中,AB=AC ,?=∠120BAC ,P 是BC 上一点,且?=∠90BAP .求证:PB=2PC . 5、已知:如图所示,锐角ABC ?中,C B ∠=∠2,BE 是角平分线,BE AD ⊥,垂足是D .求证:AC=2BD . A B E D E CE A D E B C A D E B A P B C A D B C 1 2

中考几何证明---线段的和差 根号

线段和差根号 1.已知∠AOB=900,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA、OB(或它们的反向延长线)相交于点D、E.当三角板绕点C旋转到CD与OA垂直时(如图1),易证:OD+OE=2 OC.当三角板绕点C旋转到CD与OA不垂直时,在图2、图3这两种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,线段OD、OE、OC之间又有怎样的数量关系?请写出你的猜想,不需证明. 图1 图2 图3 2.已知等腰△ABC中,AB=AC, ∠ACB=900 ,D为AB的中点,点E为平面内一点,连接DF、BE 。过点D作DE的垂线 交直线BE于点F ,且∠DEF=∠ABC ,连接CF .当点E在△ABC内时,如图1 ,易证:BF=CF+2DF . 当点E在△ABC外时,如图2、3两种情况,线段BF、CF、DF又有怎样的数量关系?请写出你的猜想,并对图3加以证明。 3.在△ABC中,∠ABC=450 , CD⊥AB ,BE⊥AC ,垂足分别为DE ,连接DE . 当点E与点C重合时,此时EC=0 (如图1) ,易证:EB-EC=2DE . 当点E与点C不重合时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,EBECDE又有怎样的数量关系?请写出你的猜想,不需证明。 4.如图,正方形ABCD中,点O是对角线AC的中点,P是直线AC上的一动点,过点P作PF⊥CD ,交直线CD于F . (1)如图1,若点P在线段AO上(不与点A、O重合)时,PE⊥PB ,且PE交CD于点E.求证:DF=EF . (2) 若点P在线段OA上(不与点A、O重合), PE⊥PB ,且PE交直线CD于点E ,求证:PC=PA+2CE . (3) 若点P在直线AC上(不与点A、C重合),PE⊥PB ,且PE交直线CD于点E ,(2)中的结论是否成立?若成立,说明理由。若不成立,请直接写出线段PC、PA、CE间的一个等量关系。 A B C D E F A B C D E F A B C D A B C D E A B C D E

初中几何证明题思路及做辅助线总结

中考几何题证明思路总结 一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 二、证明两角相等 1.两全等三角形的对应角相等。 2.同一三角形中等边对等角。 3.等腰三角形中,底边上的中线(或高)平分顶角。 4.两条平行线的同位角、错角或平行四边形的对角相等。 5.同角(或等角)的余角(或补角)相等。 6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。 三、证明两直线平行 1.垂直于同一直线的各直线平行。 2.同位角相等,错角相等或同旁角互补的两直线平行。 3.平行四边形的对边平行。 4.三角形的中位线平行于第三边。 5.梯形的中位线平行于两底。 6.平行于同一直线的两直线平行。 7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。 四、证明两直线互相垂直 1.等腰三角形的顶角平分线或底边的中线垂直于底边。 2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。 3.在一个三角形中,若有两个角互余,则第三个角是直角。 4.邻补角的平分线互相垂直。 5.一条直线垂直于平行线中的一条,则必垂直于另一条。 6.两条直线相交成直角则两直线垂直。 7.利用到一线段两端的距离相等的点在线段的垂直平分线上。 8.利用勾股定理的逆定理。 9.利用菱形的对角线互相垂直。 10.在圆中平分弦(或弧)的直径垂直于弦。 11.利用半圆上的圆周角是直角。

线段的和差倍分问题的证明2017

线段的和差倍分问题的证明 一、运用定理法 即直接或间接运用某些涉及线段和差倍分关系的定理或推论进行证明。此类定理和推论有:三角形中位线定理;梯形中位线定理;直角三角形30°的锐角所对的直角边等于斜边的一半;直角三角形斜边上的中线等于斜边的一半。 例1 如图,在△ABC 中,∠B =2∠C ,AD ⊥BC 于D ,M 为BC 中点. 求证:DM = 2 1AB 对应练习 1、已知:如图所示,点D 、E 分别是等边ABC ?的边AC 、BC 上的点,AD=CE ,BD 、AE 交于点P ,AE BQ ⊥于Q .求证:PB PQ 2 1 = . 2、如图所示,在ABC ?中,AB=AC ,?=∠90BAC ,BE 平分ABC ∠,交AC 于D ,BE CE ⊥于E 点,求证:BD CE 2 1 =. 3、如图所示,在ABC ?中,BC AB 2 1 = ,D 是BC 的中点,M 是BD 的中点.求证:AC=2AM . 4、已知:如图所示,D 是ABC ?的边BC 上一点,且CD=AB ,BAD BDA ∠=∠,AE 是ABD ?的中线.求证:AC=2AE . Q A D P C B E M A D B A B E D C A

5、已知:如图所示,锐角ABC ?中,C B ∠=∠2,BE 是角平分线,BE AD ⊥,垂足是D .求证:AC=2BD . 二、割补线段法 这是证明线段的和差倍分问题的一种重要方法。即通过“分割”或“添补”的形式,在相关线段或其延长线上构造一线段,使之能够表示几条线段的和差倍分关系,从而将多线段问题转化为两线段问题。在证明线段的和差倍分关系时,往往通过添辅助线,构造出能表示线段的和差倍分关系的线段,促使问题的转化。但在添加辅助线之前一定要结合题意和图形深入分析,想一想,图形中是否已经存在能表示有关线段和差倍分关系的线段,否则乱添加辅助线只能把图形复杂化,使思路步人歧途。下面请看一个例子。 例2、P 是正方形ABCD 的边BC 上的任意一点,AQ 平分∠PAD . 求证:AP =BP +DQ . 例3、 如图,△ABC 中,∠BAC =90°,AE 是经过点A 的一条直线,交BC 于F ,且B 、C 在AE 在的异侧,BD ⊥AE 于D ,求证:DB =DE +CE 。 对应练习 1、如图所示,已知ABC ?中,?=∠60A ,BD 、CE 分别平分ABC ∠和ACB ∠,BD 、CE 交于点O .求证:BE+CD=BC . A D E B C A O E B C D

几何证明之线段倍分关系(一) (2)

中考专题复习 几何证明之线段倍分关系(一) (教学设计) 一、教学目标 1、掌握几何证明题的基本解题步骤、思路和方法(本节课重点学习解题方法,可简略书写过程)。 2、灵活运用线段中点的常见用法,会证明线段的2倍关系。 3、体会重要的数学思想——转化思想;会从不同角度出发思考问题,探索用多种方法解答问题。 二、教学重难点 教学重点:几何证明题的基本解题步骤、思路和方法;灵活运用线段中点的常见用法,会证明线段的2倍关系。 教学难点:作辅助线。 三、教学过程: (一)、自学预检(用简短的语言或图形表示) 1、几何证明题的解题步骤是: 2、线段的中点有哪些常见的用法: 3、证明线段的2倍关系除以上中点的基本图形外还有什么方法: 4、证明线段相等有哪些常见的方法: (二)、合作探究 例1:如图,在菱形ABCD中,∠BAD=60°,M为线段AC上一点(M不与A,C重合),以AM为边,构造如图所示等边三角形AMN,线段MN与AD交于点G,连接NC,DM,Q为线段NC的中 点,连接DQ,MQ,求证:DM=2DQ. 请同学们标上已知条件,并思考以下问题: 1、由菱形ABCD你在图中能得到哪些结论?结合∠BAD=60°你又能得到时哪些结论?把你认为有用的结论标在图上。 2、由等边三角形AMN你能得出哪些结论? 3、中点有哪些常见的用法?结合图形和已知条件猜想中点Q可以怎么用?

4、线段的2倍关系有哪些常见的证明方法?结合图形和已知条件你认为有哪些可能的方 法? 5、你还有其他方法吗?请写出简要解题思路(可不写证明过程)。 我的收获: (三)当堂达标: 如图,在RT △ABC 中,∠ABC=90°,在RT △BDE 中,∠BDE=90°,AB=DB ,∠ BAC=∠BDE ,连接CD ,连接AE 交BD 于点F ,点F 恰好为AE 的中点。求证:CD=2BF 。 (四)课堂小结 备用图 备用图 备用图

(完整版)做几何证明题方法归纳

做几何证明题方法归纳 知识归纳: 1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 一. 证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。 例1. 已知:如图1 求证:DE =DF 分析:由?ABC 连结CD ,易得CD = 证明:连结CD ΘΘΘAC BC A B ACB AD DB CD BD AD DCB B A AE CF A DCB AD CD =∴∠=∠∠=?=∴==∠=∠=∠=∠=∠=90,,,, ∴?∴=??ADE CDF DE DF 说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。显然,在等腰直角三角形中,更应该连结CD ,因为CD 既是斜边上的中线,又是底边上的中线。本题亦可延长ED 到G ,使DG =DE ,连

三角形全等的应用3 证多条线段之间的和差倍分及不等关系(含详细解答)

四、利用全等三角形证线段之间的和差 倍分问题 证一条线段等于其它两条线段的和或差,常将其转化成证明线段的相等问题,常用的方法如下: (1)利用图形中已有的线段和差关系进行证明。 (2)延长一条线段,作出两条线段的和,然后证明这条线段等于第三条线段。 (3)在第三条线段上截取一段等于第一条线段,然后证余下的线段等于第二条线段。 后两种方法,就是通常所说的截长补短。 例1. 已知:如图在△ABC中,∠ABC的平分线与∠ACB相邻外角∠ACG的平分线相交于D,DE∥BC交AB于E,交AC于F,求证:EF=BE-CF 分析:要证EF=BE-CF,而图中EF=ED-FD,若证出BE=ED,CF=FD,则此题可证出。(证明略) 例2. 已知:如图,四边形ABCD中,AC平分∠BAD,CE⊥AB 于E,且∠B+∠D=180°,求证:AE=AD+BE 分析:要证AE=AD+BE,则可转化为证AE-BE=AD,则需找到一条线段使它等于AE-BE,再证其与AD相等,在EA上截取EF=BE,连结CF,问题转化为证AF=AD,即要证出△AFC≌△ADC 证明:在EA上截取EF=BE,连结CF ∵CE⊥AB于E(已知) ∴CF=CB(在线段垂直平分线上的点,到线段两个端点的距离相等) ∴∠1=∠B(等边对等角) ∵∠1+∠2=180°(平角定义) ∠B+∠D=180°(已知)

∴∠2=∠D(等角的补角相等) (再往下证明略) 3.如图,△ABC是等边三角形,∠BDC=120°,且BD=CD,∠MDN=60°,AB=12cm. (1)证明MN=BM+NC.(2)求△AMN的周长。(3)若点M、N分别是AB、CA延长线上的点,,请说明BM、MN、NC之间的关系。 分析:(1)证明MN=BM+NC.是典型的三条线段之间的关系的题型,这种题型一般是采用“截长补短法”来证明。“截长法”是在最长的线段MN上找一点F,将MN截为两部分(如图4),比如截为MN=MF+NF,且使MF=BM(或NF=NC).再求证剩余的线段NF=NC,从而得到MN=BM+NC。证两条线段相等通常是通过两三角形全等来实现,本题是通过证明△BDM≌△FDM和△FDN≌△CDN来实现(如图4);而本题给出的已知条件不能证明△BDM≌△FDM和△FDN≌△CDN,所以不适用于用截长法来证明。 “补短法”是将两条短线段中的任意一条NC(或BM)延长,比如延长NC到E,使CE=BM.(或延长MB到H,使BH=NC),再证明MN=NE(或证明MN=MH),从而得到MN=BM +NC。证两条线段相等通常是通过两三角形全等来实现,本题是通过证明△DBM≌△DCE和△MDN≌△EDN来实现。(如图3);或者如图0通过证明△DBH≌△DCN和△MDH≌△MDN来实现。

(完整版)2018中考数学:几何证明题

2018中考数学:几何证明题答题思路总结几何证明题重点考察的是学生的逻辑思维能力,能通过严密的”因为”、”所以”逻辑将条件一步步转化为所要证明的结论。 这类题目出法相当灵活,不像代数计算类题目容易总结出固定题型的固定解法,而更看重的是对重要模型的总结、常见思路的总结。 所以对中考中最常出现的若干结论做了一个思路总结。 一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。 10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。 11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。 12.两圆的内(外)公切线的长相等。 13.等于同一线段的两条线段相等。

二、证明两角相等 1.两全等三角形的对应角相等。 2.同一三角形中等边对等角。 3.等腰三角形中,底边上的中线(或高)平分顶角。 4.两条平行线的同位角、内错角或平行四边形的对角相等。 5.同角(或等角)的余角(或补角)相等。 6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。 7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。 8.相似三角形的对应角相等。 9.圆的内接四边形的外角等于内对角。10.等于同一角的两个角相等 三、证明两直线平行 1.垂直于同一直线的各直线平行。 2.同位角相等,内错角相等或同旁内角互补的两直线平行。 3.平行四边形的对边平行。 4.三角形的中位线平行于第三边。 5.梯形的中位线平行于两底。 6.平行于同一直线的两直线平行。 7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。 四、证明两直线互相垂直

2021年中考数学热点专题复习:例析线段和差倍分问题的求解策略

2021年中考数学热点专题复习:例析线段和差倍分问题的求解策略在几何问题中,要证明一条线段是另外几条线段的和差,或是另一线段的几倍或几分之几,我们统称为线段的和差倍分问题,处理这类问题的指导思想是化归为线段的相等问题. 一、利用全等形或相似形 对于线段的倍分问题,通常可利用图形中特殊的分点为解题的突破口,找出图形中较短线段的倍分线段,再用全等三角形证明它与较长线段相等,或围绕特殊分点对应线段所在三角形寻找相似三角形,利用相似形对应线段的比例关系达到求证的目的.例1如图1,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD =45°,AD与BE交于点F,连CF. (1)求证:BF=2AE; (2)若CD=2,求AD的长. 分析由图形的对称性,不难发现点E为AC的中点,即AC=2AE,故问题(1)只要证明BF=AC. (2)略. 例2如图2,点A、B、C、D在⊙O上,AC⊥BD于点E,过点O作OF⊥BC于点F. (1)求证:△AEB∽△OFC; (2)AD=2OF.

二、取长补短法 对于线段的和差问题,通常采用延长较短线段或截取较长线段的方式,化归为线段的相等问题(俗称取长补短法). 例3 如图3,已知点A、B、C、D顺次在⊙O上,且AB=BD,BM⊥AC于点M,求证:AM=CD+CM. 证明(延长法) 延长DC至点N,使CN=C M,下面只要证明AM=DN即可.连BN,则由AB=BD,得 ∠ACB=∠ADB=∠BAD=∠BCN, 又CN=CM,BC为公共边, 例4 如图4,在菱形ABCD中,F为BC边的中点,DF与对角线AC交于点M,过点M作ME⊥CD于点E,∠1=∠2. (1)若CE=1,求BC的长; (2)求证:AM=DF+ME.

初中数学所有几何证明定理

初中数学所有几何证明定理 证明题的思路 很多几何证明题的思路往往是填加辅助线,分析已知、求证与图形,探索证明。对于证明题,有三种思考方式: (1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里 就不详细讲述了。 (2)逆向思维。顾名思义,就是从相反的方向思考问题。在初中数学中,逆向思 维是非常重要的思维方式,在证明题中体现的更加明显。 同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。 例如: 可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要 证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什 么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样 我们就找到了解题的思路,然后把过程正着写出来就可以了。 (3)正逆结合。对于从结论很难分析出思路的题目,可以结合结论和已知条件认 真的分析。 初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知 条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或 平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。 证明题要用到哪些原理?

要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键。 下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题。 一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。 10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。 11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。 12.两圆的内(外)公切线的长相等。 13.等于同一线段的两条线段相等。 二、证明两个角相等 1.两全等三角形的对应角相等。 2.同一三角形中等边对等角。 3.等腰三角形中,底边上的中线(或高)平分顶角。

与线段的和差倍分有关问题的处理

与线段的和差倍分有关问题的处理 1. 如图,已知⊿ABC 中,0 90BAC ∠=,AB=AC ,点P 为BC 边上一动点(BP

3. 如图,正方形ABGE (四边相等,四个角都等于0 90)中,点D 在EG 上,点C 在BG 上,且045DAC ∠=,求证:CD=DE+CB. 一道老题. 4. 如图,在上题中,若点D 在EG 的延长线上,点C 在GB 的延长线上,其余条件不变. 求证:DE=BC+CD. G E A B D 先证明三角形BAC 全等于EA*,然后证明绿蓝两个图形全等,做等边转化. C G E D

5.如图,AB=AE ,AB⊥AE ,AD=AC ,AD⊥AC ,点M为BC的中点,求证:DE=2AM. M D E B A C 1.倍长中线是这道题的第一难点.辅助线做出来就做出了一大半. 2.证明角CAN和角EAD相等是本题的第二关键,在于角BAC和角AED+角ADE的相等转化到三角形ANC当中,做等量代换. 6.如图,AD是⊿ABC的中线,点E在BC的延长线上,CE=AB ,∠BAC=∠BCA,求 证:AE=2AD. 一. 倍长中线的使用,作AD等长的线段DE. 二. 证明蓝绿两三角形全等. A C

初中几何证明题思路及做辅助线总结.

中考几何题证明思路总结 、证明两线段相等 1. 两全等三角形中对应边相等。 2. 同一三角形中等角对等边。 3. 等腰三角形顶角的平分线或底边的高平分底边。 4. 平行四边形的对边或对角线被交点分成的两段相等。 5. 直角三角形斜边的中点到三顶点距离相等。 6. 线段垂直平分线上任意一点到线段两段距离相等。 7. 角平分线上任一点到角的两边距离相等。 8. 过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 、证明两角相等 1. 两全等三角形的对应角相等。 2. 同一三角形中等边对等角。 3. 等腰三角形中,底边上的中线(或高平分顶角。 4. 两条平行线的同位角、内错角或平行四边形的对角相等。 5. 同角(或等角的余角(或补角相等。 6. 同圆(或圆中,等弦(或弧所对的圆心角相等,圆周角相等,弦切角等于它所夹 的 弧对的圆周角。

三、证明两直线平行

1. 垂直于同一直线的各直线平行。 2. 同位角相等,内错角相等或同旁内角互补的两直线平行。 3. 平行四边形的对边平行。 4. 三角形的中位线平行于第三边。 5. 梯形的中位线平行于两底。 6. 平行于同一直线的两直线平行。 7. 一条直线截三角形的两边(或延长线所得的线段对应成比例,则这条直线平行于第三边。 四、证明两直线互相垂直 1. 等腰三角形的顶角平分线或底边的中线垂直于底边。 2. 三角形中一边的中线若等于这边一半,则这一边所对的角是直角。 3. 在一个三角形中,若有两个角互余,则第三个角是直角。 4. 邻补角的平分线互相垂直。 5. 一条直线垂直于平行线中的一条,则必垂直于另一条。 6. 两条直线相交成直角则两直线垂直。 7. 利用到一线段两端的距离相等的点在线段的垂直平分线上。 8. 利用勾股定理的逆定理。 9. 利用菱形的对角线互相垂直。 10. 在圆中平分弦(或弧的直径垂直于弦。

【初三】线段、角的和差倍分

【初三】线段、角的和 差倍分 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

初中数学竞赛专题选讲 线段、角的和差倍分 一、内容提要 证明线段、角的和,差,倍,分,常用两种方法:一是转化为证明线段或角的相等关系;一是用代数恒等式的证明方法。 一.转化为证明相等的一般方法 ㈠通过作图转化 1.要证明一线段(角)等于两线段(角)的和(用截长 补短法) ⑴分解法――把大量分成两部分,证它们分别等于两个 小量 ⑵合成法――作出两个小量的和,证它与大量相等 2.要证明一线段(角)等于另一线段(角)的2倍 ⑴折半法――作出大量的一半,证它与小量相等 ⑵加倍法――作出小量的2倍,证它与大量相等 ㈡应用有关定理转化 1.三角形中位线等于第三边的一半,梯形中位线等于两底和 的一半 2.直角三角形斜边中线等于斜边的一半 3.直角三角形中,含30度的角所对的直角边等于斜边的一 半

4.三角形的一个外角等于和它不相邻的两个内角和 5.等腰三角形顶角的外角等于底角的2倍 6.三角形的重心(各中线的交点)分中线为2∶1 7.有关比例线段定理 二.用代数恒等式的证明 1.由左证到右或由右证到左 2.左右两边分别化简为同一个第三式 3.证明左边减去右边的差为零 4.由已知的等式出发,通过恒等变形,到达求证的结论 二、例题 例1.已知:△ABC中,∠B=2∠C,AD是高 求证:DC=AB+BD 分析一:用分解法,把DC分成两部分,分别证与AB,BD 相等。 可以高AD为轴作△ADB的对称三角形△ADE,再证EC=AE。∵∠AEB=∠B=2∠C且∠AEB=∠C+∠EAC,∴∠EAC=∠C 辅助线是在DC上取DE=DB,连结AE。 分析二:用合成法,把AB,BD合成一线段,证它与DC相等。 1

线段的和差倍分教案

线段的和差倍分教案 篇一:三角形专题线段的和差倍分 专题:三角形之线段的和差倍分 1、在△ABC中,∠ACB= 900,AC=BC,直线MN经过点C,且AD ⊥MN于D,BE⊥MN于E。 (1)当直线MN绕点C旋转到图1的位置时,求证:DE=AD+BE。(2)当直线MN绕点C旋转到图2的位置时,问DE 、AD、BE 有何关系,并说明理由。 A 2、如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D. 求证:DE?AD?BE. 3、如图,在四边形ABCD中,AD∥BC,E为CD的中点,连结AE、BE,BE⊥AE,延长AE交BC的延长线于点F. 求证:(1)FC=AD; (2)AB=BC+AD 4、如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线 垂直于过C点的直线于E,直线CE交BA的延长线于F. 求证:?BD=CF ?BD=2CE.

5、?如图,在△ABC中,BD平分∠ABC,CD平分∠ACB,过D 点作EF∥BC交AB于E, 交AC于F,求证:EF=BE+CF. ?在△ABC中,BD平分∠ABC,CD平分∠ACG,过D点作EF∥BC 交AB于E,交AC于F, 试探究BE、EF与CF的数量关系. 篇二:【教案】2.4线段的和与差 2.4线段的和与差 教学目标 1.理解线段可以相加减,掌握用直尺、圆规作线段的和、差. 2.利用线段的和与差进行简单的计算。 教学重点和难点 重点:用直尺、圆规作线段的和、差。 难点:进行简单的计算。 教学时间:1课时 教学类型:新授 教学过程: 一、复习旧知,作好铺垫 1.已知线段AB,用圆规、直尺画出线段CD,使线段CD=AB. 2.两点间的距离是指() A.连结两点的直线的长度; B.连结两点的线段的长度;

几何证明——线段和差模型(中级)

几何证明——线段和差模型(中级) 【知识要点】 在几何证明中,我们经常遇到要求证明两条线段之和等于一条线段(c b a +=),或者两条线段之差等于一条线段(c b a -=)。在处理这类线段和差关系的问题时,我们常用“截长”与“补短”的方法。 截长补短法,是初中数学几何题中一种辅助线的添加方法,也是把几何问题化难为易的一种思想。截长就是在一条线段上截取成两段(一分为二),补短就是在一条边上延长,使其等于一条所求边(合二为一)。 截长法:如果要证明线段等式c b a +=,可以在长的一条线段a 上截取一条线段等于b (或者c ),然后只需证明线段a 上去掉b (或者c )之后剩下的线段等于c (或者b )就行了。 补短法:如果要证明线段等式c b a +=,可以先将短的两条线段b 和c 拼接在一起形成一条长线段d ,然后只需要证明d a =就行了。 截长补短的方法比较灵活,要根据具体的题目条件,作出相应的辅助线。 对于一些经典的截长补短模型,希望同学们能记住并掌握其用法,以便在遇到类似的几何情境时能迅速作出反应。 【经典例题】 例1、(1)正方形ABCD 中,点E 在CD 上,点F 在BC 上,ο 45=∠EAF 。求证:BF DE EF +=。 F (2)正方形ABCD 中,点E 在CD 延长线上,点F 在BC 延长线上,ο 45=∠EAF 。请问现在 BF DE EF 、、又有什么数量关系? E (3)正方形ABCD 中,点E 在DC 延长线上,点F 在CB 延长线上,ο 45=∠EAF 。请问现在 BF DE EF 、、又有什么数量关系? 例2、正三角形ABC 中,E 在AB 上,F 在AC 上ο60=∠EDF 。ο 120=∠=BDC DC DB ,。

七年级上期有关角和线段的和差倍分专项训练经典

线段有关的计算题 例1.由O 是线段A B的中点,你能得出哪些关系式? ∵O 是线段AB 中点(已知) ∴AO= ,或AO=2 1 ,或AB=2 例2:(1)已知:O 是线段AB中点,AB=10cm ,求OA 的长度。 (2)已知:O 是线段AB 中点,OA=5cm ,则OB= ,AB= 。

例3:线段AB=8cm,C 是AB的中点,D 是BC 的中点,求A D的长度。 例4.已知线段AB=10,C 是线段AB 上的任意一点,M 是A C的中点,N是BC 的中点,求线段MN 的长。 例5.已知C 为线段AB 的中点,AB =10,D 是AB 上一点,若CD =2,求线段BD 的长。 1. 已知:O 是线段AB 中点,OA=3c m,则 OB= ,AB= 。 2. 已知:O 是线段AB 中点,A B=7cm ,则OA = 。 3.如图,若CB=4cm ,DB =7c m,且D 是AC 的中点,AC= 。 4.长为 22 cm 的线段 AB 上有一点 C ,求A C、BC 的中点间的距离。 【拔高例题】 [例1] 填空如图,把线段AB 延长到点C,使BC=2AB,再延长BA 到点D ,使AD=3A B,则 ① DC=_____A B=_____BC ② D B=_____CD=_____B C [例2] 填空 如图,点M 为线段AC 的中点,点N 为线段BC 的中点 ① 若AC=2cm,B C=3cm ,则MN=_____c m ② 若AB=6cm,则MN =_____cm ③ 若A M=1cm ,BC=3cm,则AB=_____cm ④ 若AB =5cm ,MC=1cm,则NB=_____c m [例3] 根据下列语句画图并计算 (1)作线段AB ,在线段AB 的延长线上取点C,使BC=2AB ,M 是线段B C的中点,若AB=30cm,求线段BM 的长 (2)作线段AB ,在线段AB 的延长线上取点C,使BC=2AB ,M 是线段AC 的中点,若AB =30c m,求线段BM 的长 [例4] 如图,已知AB= 40,点C是线段AB的中点,点D 为线段CB 上的一点,点E 为线段D B的中点,EB=6,求线段CD 的长。 [例5] 如图,AE=2 1EB ,点F 是线段B C的中点,BF=5 1 A C=1.5,求线段E F的长。 A B C M N A B C D E A B C E F

相关文档
最新文档